if_msk.c revision 1.55.2.1 1 /* $NetBSD: if_msk.c,v 1.55.2.1 2018/06/25 07:25:52 pgoyette Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.65 2008/09/10 14:01:22 blambert Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.55.2.1 2018/06/25 07:25:52 pgoyette Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
109 void msk_txeof(struct sk_if_softc *, int);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123
124 void msk_update_int_mod(struct sk_softc *, int);
125
126 int msk_miibus_readreg(device_t, int, int);
127 void msk_miibus_writereg(device_t, int, int, int);
128 void msk_miibus_statchg(struct ifnet *);
129
130 void msk_setmulti(struct sk_if_softc *);
131 void msk_setpromisc(struct sk_if_softc *);
132 void msk_tick(void *);
133
134 /* #define MSK_DEBUG 1 */
135 #ifdef MSK_DEBUG
136 #define DPRINTF(x) if (mskdebug) printf x
137 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
138 int mskdebug = MSK_DEBUG;
139
140 void msk_dump_txdesc(struct msk_tx_desc *, int);
141 void msk_dump_mbuf(struct mbuf *);
142 void msk_dump_bytes(const char *, int);
143 #else
144 #define DPRINTF(x)
145 #define DPRINTFN(n,x)
146 #endif
147
148 static int msk_sysctl_handler(SYSCTLFN_PROTO);
149 static int msk_root_num;
150
151 /* supported device vendors */
152 static const struct msk_product {
153 pci_vendor_id_t msk_vendor;
154 pci_product_id_t msk_product;
155 } msk_products[] = {
156 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
157 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
158 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
159 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
160 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
195 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
196 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
197 };
198
199 static inline u_int32_t
200 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
201 {
202 return CSR_READ_4(sc, reg);
203 }
204
205 static inline u_int16_t
206 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
207 {
208 return CSR_READ_2(sc, reg);
209 }
210
211 static inline u_int8_t
212 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
213 {
214 return CSR_READ_1(sc, reg);
215 }
216
217 static inline void
218 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
219 {
220 CSR_WRITE_4(sc, reg, x);
221 }
222
223 static inline void
224 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
225 {
226 CSR_WRITE_2(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
231 {
232 CSR_WRITE_1(sc, reg, x);
233 }
234
235 int
236 msk_miibus_readreg(device_t dev, int phy, int reg)
237 {
238 struct sk_if_softc *sc_if = device_private(dev);
239 u_int16_t val;
240 int i;
241
242 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
243 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
244
245 for (i = 0; i < SK_TIMEOUT; i++) {
246 DELAY(1);
247 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
248 if (val & YU_SMICR_READ_VALID)
249 break;
250 }
251
252 if (i == SK_TIMEOUT) {
253 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
254 return (0);
255 }
256
257 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
258 SK_TIMEOUT));
259
260 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
261
262 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
263 phy, reg, val));
264
265 return (val);
266 }
267
268 void
269 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
270 {
271 struct sk_if_softc *sc_if = device_private(dev);
272 int i;
273
274 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
275 phy, reg, val));
276
277 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
278 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
279 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
280
281 for (i = 0; i < SK_TIMEOUT; i++) {
282 DELAY(1);
283 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
284 break;
285 }
286
287 if (i == SK_TIMEOUT)
288 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
289 }
290
291 void
292 msk_miibus_statchg(struct ifnet *ifp)
293 {
294 struct sk_if_softc *sc_if = ifp->if_softc;
295 struct mii_data *mii = &sc_if->sk_mii;
296 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
297 int gpcr;
298
299 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
300 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
301
302 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
303 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
304 /* Set speed. */
305 gpcr |= YU_GPCR_SPEED_DIS;
306 switch (IFM_SUBTYPE(mii->mii_media_active)) {
307 case IFM_1000_SX:
308 case IFM_1000_LX:
309 case IFM_1000_CX:
310 case IFM_1000_T:
311 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
312 break;
313 case IFM_100_TX:
314 gpcr |= YU_GPCR_SPEED;
315 break;
316 }
317
318 /* Set duplex. */
319 gpcr |= YU_GPCR_DPLX_DIS;
320 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
321 gpcr |= YU_GPCR_DUPLEX;
322
323 /* Disable flow control. */
324 gpcr |= YU_GPCR_FCTL_DIS;
325 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
326 }
327
328 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
329
330 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
331 SK_YU_READ_2(sc_if, YUKON_GPCR)));
332 }
333
334 void
335 msk_setmulti(struct sk_if_softc *sc_if)
336 {
337 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
338 u_int32_t hashes[2] = { 0, 0 };
339 int h;
340 struct ethercom *ec = &sc_if->sk_ethercom;
341 struct ether_multi *enm;
342 struct ether_multistep step;
343 u_int16_t reg;
344
345 /* First, zot all the existing filters. */
346 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
347 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
348 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
349 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
350
351
352 /* Now program new ones. */
353 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
354 reg |= YU_RCR_UFLEN;
355 allmulti:
356 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
357 if ((ifp->if_flags & IFF_PROMISC) != 0)
358 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
359 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
360 hashes[0] = 0xFFFFFFFF;
361 hashes[1] = 0xFFFFFFFF;
362 }
363 } else {
364 /* First find the tail of the list. */
365 ETHER_FIRST_MULTI(step, ec, enm);
366 while (enm != NULL) {
367 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
368 ETHER_ADDR_LEN)) {
369 ifp->if_flags |= IFF_ALLMULTI;
370 goto allmulti;
371 }
372 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
373 ((1 << SK_HASH_BITS) - 1);
374 if (h < 32)
375 hashes[0] |= (1 << h);
376 else
377 hashes[1] |= (1 << (h - 32));
378
379 ETHER_NEXT_MULTI(step, enm);
380 }
381 reg |= YU_RCR_MUFLEN;
382 }
383
384 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
385 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
386 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
387 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
388 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
389 }
390
391 void
392 msk_setpromisc(struct sk_if_softc *sc_if)
393 {
394 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
395
396 if (ifp->if_flags & IFF_PROMISC)
397 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
398 YU_RCR_UFLEN | YU_RCR_MUFLEN);
399 else
400 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
401 YU_RCR_UFLEN | YU_RCR_MUFLEN);
402 }
403
404 int
405 msk_init_rx_ring(struct sk_if_softc *sc_if)
406 {
407 struct msk_chain_data *cd = &sc_if->sk_cdata;
408 struct msk_ring_data *rd = sc_if->sk_rdata;
409 int i, nexti;
410
411 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
412
413 for (i = 0; i < MSK_RX_RING_CNT; i++) {
414 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
415 if (i == (MSK_RX_RING_CNT - 1))
416 nexti = 0;
417 else
418 nexti = i + 1;
419 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
420 }
421
422 for (i = 0; i < MSK_RX_RING_CNT; i++) {
423 if (msk_newbuf(sc_if, i, NULL,
424 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
425 aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
426 return (ENOBUFS);
427 }
428 }
429
430 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
431 sc_if->sk_cdata.sk_rx_cons = 0;
432
433 return (0);
434 }
435
436 int
437 msk_init_tx_ring(struct sk_if_softc *sc_if)
438 {
439 struct sk_softc *sc = sc_if->sk_softc;
440 struct msk_chain_data *cd = &sc_if->sk_cdata;
441 struct msk_ring_data *rd = sc_if->sk_rdata;
442 bus_dmamap_t dmamap;
443 struct sk_txmap_entry *entry;
444 int i, nexti;
445
446 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
447
448 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
449 for (i = 0; i < MSK_TX_RING_CNT; i++) {
450 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
451 if (i == (MSK_TX_RING_CNT - 1))
452 nexti = 0;
453 else
454 nexti = i + 1;
455 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
456
457 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
458 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
459 return (ENOBUFS);
460
461 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
462 if (!entry) {
463 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
464 return (ENOBUFS);
465 }
466 entry->dmamap = dmamap;
467 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
468 }
469
470 sc_if->sk_cdata.sk_tx_prod = 0;
471 sc_if->sk_cdata.sk_tx_cons = 0;
472 sc_if->sk_cdata.sk_tx_cnt = 0;
473
474 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
475 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
476
477 return (0);
478 }
479
480 int
481 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
482 bus_dmamap_t dmamap)
483 {
484 struct mbuf *m_new = NULL;
485 struct sk_chain *c;
486 struct msk_rx_desc *r;
487
488 if (m == NULL) {
489 void *buf = NULL;
490
491 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
492 if (m_new == NULL)
493 return (ENOBUFS);
494
495 /* Allocate the jumbo buffer */
496 buf = msk_jalloc(sc_if);
497 if (buf == NULL) {
498 m_freem(m_new);
499 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
500 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
501 return (ENOBUFS);
502 }
503
504 /* Attach the buffer to the mbuf */
505 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
506 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
507 } else {
508 /*
509 * We're re-using a previously allocated mbuf;
510 * be sure to re-init pointers and lengths to
511 * default values.
512 */
513 m_new = m;
514 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
515 m_new->m_data = m_new->m_ext.ext_buf;
516 }
517 m_adj(m_new, ETHER_ALIGN);
518
519 c = &sc_if->sk_cdata.sk_rx_chain[i];
520 r = c->sk_le;
521 c->sk_mbuf = m_new;
522 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
523 (((vaddr_t)m_new->m_data
524 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
525 r->sk_len = htole16(SK_JLEN);
526 r->sk_ctl = 0;
527 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
528
529 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
530
531 return (0);
532 }
533
534 /*
535 * Memory management for jumbo frames.
536 */
537
538 int
539 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
540 {
541 struct sk_softc *sc = sc_if->sk_softc;
542 char *ptr, *kva;
543 bus_dma_segment_t seg;
544 int i, rseg, state, error;
545 struct sk_jpool_entry *entry;
546
547 state = error = 0;
548
549 /* Grab a big chunk o' storage. */
550 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
551 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
552 aprint_error(": can't alloc rx buffers");
553 return (ENOBUFS);
554 }
555
556 state = 1;
557 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
558 BUS_DMA_NOWAIT)) {
559 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
560 error = ENOBUFS;
561 goto out;
562 }
563
564 state = 2;
565 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
566 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
567 aprint_error(": can't create dma map");
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 3;
573 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
574 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
575 aprint_error(": can't load dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 4;
581 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
582 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
583
584 LIST_INIT(&sc_if->sk_jfree_listhead);
585 LIST_INIT(&sc_if->sk_jinuse_listhead);
586 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
587
588 /*
589 * Now divide it up into 9K pieces and save the addresses
590 * in an array.
591 */
592 ptr = sc_if->sk_cdata.sk_jumbo_buf;
593 for (i = 0; i < MSK_JSLOTS; i++) {
594 sc_if->sk_cdata.sk_jslots[i] = ptr;
595 ptr += SK_JLEN;
596 entry = malloc(sizeof(struct sk_jpool_entry),
597 M_DEVBUF, M_NOWAIT);
598 if (entry == NULL) {
599 sc_if->sk_cdata.sk_jumbo_buf = NULL;
600 aprint_error(": no memory for jumbo buffer queue!");
601 error = ENOBUFS;
602 goto out;
603 }
604 entry->slot = i;
605 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
606 entry, jpool_entries);
607 }
608 out:
609 if (error != 0) {
610 switch (state) {
611 case 4:
612 bus_dmamap_unload(sc->sc_dmatag,
613 sc_if->sk_cdata.sk_rx_jumbo_map);
614 case 3:
615 bus_dmamap_destroy(sc->sc_dmatag,
616 sc_if->sk_cdata.sk_rx_jumbo_map);
617 case 2:
618 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
619 case 1:
620 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
621 break;
622 default:
623 break;
624 }
625 }
626
627 return error;
628 }
629
630 /*
631 * Allocate a jumbo buffer.
632 */
633 void *
634 msk_jalloc(struct sk_if_softc *sc_if)
635 {
636 struct sk_jpool_entry *entry;
637
638 mutex_enter(&sc_if->sk_jpool_mtx);
639 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
640
641 if (entry == NULL) {
642 mutex_exit(&sc_if->sk_jpool_mtx);
643 return NULL;
644 }
645
646 LIST_REMOVE(entry, jpool_entries);
647 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
648 mutex_exit(&sc_if->sk_jpool_mtx);
649 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
650 }
651
652 /*
653 * Release a jumbo buffer.
654 */
655 void
656 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
657 {
658 struct sk_jpool_entry *entry;
659 struct sk_if_softc *sc;
660 int i;
661
662 /* Extract the softc struct pointer. */
663 sc = (struct sk_if_softc *)arg;
664
665 if (sc == NULL)
666 panic("msk_jfree: can't find softc pointer!");
667
668 /* calculate the slot this buffer belongs to */
669 i = ((vaddr_t)buf
670 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
671
672 if ((i < 0) || (i >= MSK_JSLOTS))
673 panic("msk_jfree: asked to free buffer that we don't manage!");
674
675 mutex_enter(&sc->sk_jpool_mtx);
676 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
677 if (entry == NULL)
678 panic("msk_jfree: buffer not in use!");
679 entry->slot = i;
680 LIST_REMOVE(entry, jpool_entries);
681 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
682 mutex_exit(&sc->sk_jpool_mtx);
683
684 if (__predict_true(m != NULL))
685 pool_cache_put(mb_cache, m);
686 }
687
688 int
689 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
690 {
691 struct sk_if_softc *sc = ifp->if_softc;
692 int s, error;
693
694 s = splnet();
695
696 DPRINTFN(2, ("msk_ioctl ETHER\n"));
697 switch (cmd) {
698 case SIOCSIFFLAGS:
699 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
700 break;
701
702 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
703 case IFF_RUNNING:
704 msk_stop(ifp, 1);
705 break;
706 case IFF_UP:
707 msk_init(ifp);
708 break;
709 case IFF_UP | IFF_RUNNING:
710 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
711 msk_setpromisc(sc);
712 msk_setmulti(sc);
713 } else
714 msk_init(ifp);
715 break;
716 }
717 sc->sk_if_flags = ifp->if_flags;
718 break;
719 default:
720 error = ether_ioctl(ifp, cmd, data);
721 if (error == ENETRESET) {
722 error = 0;
723 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
724 ;
725 else if (ifp->if_flags & IFF_RUNNING) {
726 /*
727 * Multicast list has changed; set the hardware
728 * filter accordingly.
729 */
730 msk_setmulti(sc);
731 }
732 }
733 break;
734 }
735
736 splx(s);
737 return error;
738 }
739
740 void
741 msk_update_int_mod(struct sk_softc *sc, int verbose)
742 {
743 u_int32_t imtimer_ticks;
744
745 /*
746 * Configure interrupt moderation. The moderation timer
747 * defers interrupts specified in the interrupt moderation
748 * timer mask based on the timeout specified in the interrupt
749 * moderation timer init register. Each bit in the timer
750 * register represents one tick, so to specify a timeout in
751 * microseconds, we have to multiply by the correct number of
752 * ticks-per-microsecond.
753 */
754 switch (sc->sk_type) {
755 case SK_YUKON_EC:
756 case SK_YUKON_EC_U:
757 case SK_YUKON_EX:
758 case SK_YUKON_SUPR:
759 case SK_YUKON_ULTRA2:
760 case SK_YUKON_OPTIMA:
761 case SK_YUKON_PRM:
762 case SK_YUKON_OPTIMA2:
763 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
764 break;
765 case SK_YUKON_FE:
766 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
767 break;
768 case SK_YUKON_XL:
769 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
770 break;
771 default:
772 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
773 }
774 if (verbose)
775 aprint_verbose_dev(sc->sk_dev,
776 "interrupt moderation is %d us\n", sc->sk_int_mod);
777 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
778 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
779 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
780 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
781 sc->sk_int_mod_pending = 0;
782 }
783
784 static int
785 msk_lookup(const struct pci_attach_args *pa)
786 {
787 const struct msk_product *pmsk;
788
789 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
790 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
791 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
792 return 1;
793 }
794 return 0;
795 }
796
797 /*
798 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
799 * IDs against our list and return a device name if we find a match.
800 */
801 int
802 mskc_probe(device_t parent, cfdata_t match, void *aux)
803 {
804 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
805
806 return msk_lookup(pa);
807 }
808
809 /*
810 * Force the GEnesis into reset, then bring it out of reset.
811 */
812 void
813 mskc_reset(struct sk_softc *sc)
814 {
815 u_int32_t imtimer_ticks, reg1;
816 int reg;
817
818 DPRINTFN(2, ("mskc_reset\n"));
819
820 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
821 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
822
823 DELAY(1000);
824 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
825 DELAY(2);
826 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
827 sk_win_write_1(sc, SK_TESTCTL1, 2);
828
829 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
830 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
831 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
832 else
833 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
834
835 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
836 sc->sk_type >= SK_YUKON_FE_P) {
837 uint32_t our;
838
839 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
840
841 /* enable all clocks. */
842 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
843 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
844 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
845 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
846 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
847 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
848 /* Set all bits to 0 except bits 15..12 */
849 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
850 /* Set to default value */
851 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
852 }
853
854 /* release PHY from PowerDown/Coma mode. */
855 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
856 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
857 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
858 else
859 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
860 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
861
862 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
863 sk_win_write_1(sc, SK_Y2_CLKGATE,
864 SK_Y2_CLKGATE_LINK1_GATE_DIS |
865 SK_Y2_CLKGATE_LINK2_GATE_DIS |
866 SK_Y2_CLKGATE_LINK1_CORE_DIS |
867 SK_Y2_CLKGATE_LINK2_CORE_DIS |
868 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
869 else
870 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
871
872 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
873 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
874 DELAY(1000);
875 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
876 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
877
878 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
879 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
880 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
881 }
882
883 sk_win_write_1(sc, SK_TESTCTL1, 1);
884
885 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
886 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
887 CSR_READ_2(sc, SK_LINK_CTRL)));
888
889 /* Disable ASF */
890 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
891 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
892
893 /* Clear I2C IRQ noise */
894 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
895
896 /* Disable hardware timer */
897 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
898 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
899
900 /* Disable descriptor polling */
901 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
902
903 /* Disable time stamps */
904 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
905 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
906
907 /* Enable RAM interface */
908 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
909 for (reg = SK_TO0;reg <= SK_TO11; reg++)
910 sk_win_write_1(sc, reg, 36);
911 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
912 for (reg = SK_TO0;reg <= SK_TO11; reg++)
913 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
914
915 /*
916 * Configure interrupt moderation. The moderation timer
917 * defers interrupts specified in the interrupt moderation
918 * timer mask based on the timeout specified in the interrupt
919 * moderation timer init register. Each bit in the timer
920 * register represents one tick, so to specify a timeout in
921 * microseconds, we have to multiply by the correct number of
922 * ticks-per-microsecond.
923 */
924 switch (sc->sk_type) {
925 case SK_YUKON_EC:
926 case SK_YUKON_EC_U:
927 case SK_YUKON_EX:
928 case SK_YUKON_SUPR:
929 case SK_YUKON_ULTRA2:
930 case SK_YUKON_OPTIMA:
931 case SK_YUKON_PRM:
932 case SK_YUKON_OPTIMA2:
933 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
934 break;
935 case SK_YUKON_FE:
936 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
937 break;
938 case SK_YUKON_FE_P:
939 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
940 break;
941 case SK_YUKON_XL:
942 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
943 break;
944 default:
945 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
946 break;
947 }
948
949 /* Reset status ring. */
950 memset(sc->sk_status_ring, 0,
951 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
952 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
953 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
954 sc->sk_status_idx = 0;
955 sc->sk_status_own_idx = 0;
956
957 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
958 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
959
960 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
961 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
962 sc->sk_status_map->dm_segs[0].ds_addr);
963 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
964 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
965 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
966 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
967 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
968 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
969 } else {
970 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
971 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
972 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
973 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
974 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
975 }
976
977 #if 0
978 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
979 #endif
980 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
981
982 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
983
984 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
985 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
986 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
987
988 msk_update_int_mod(sc, 0);
989 }
990
991 int
992 msk_probe(device_t parent, cfdata_t match, void *aux)
993 {
994 struct skc_attach_args *sa = aux;
995
996 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
997 return (0);
998
999 switch (sa->skc_type) {
1000 case SK_YUKON_XL:
1001 case SK_YUKON_EC_U:
1002 case SK_YUKON_EX:
1003 case SK_YUKON_EC:
1004 case SK_YUKON_FE:
1005 case SK_YUKON_FE_P:
1006 case SK_YUKON_SUPR:
1007 case SK_YUKON_ULTRA2:
1008 case SK_YUKON_OPTIMA:
1009 case SK_YUKON_PRM:
1010 case SK_YUKON_OPTIMA2:
1011 return (1);
1012 }
1013
1014 return (0);
1015 }
1016
1017 void
1018 msk_reset(struct sk_if_softc *sc_if)
1019 {
1020 /* GMAC and GPHY Reset */
1021 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1022 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1023 DELAY(1000);
1024 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1025 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1026 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1027 }
1028
1029 static bool
1030 msk_resume(device_t dv, const pmf_qual_t *qual)
1031 {
1032 struct sk_if_softc *sc_if = device_private(dv);
1033
1034 msk_init_yukon(sc_if);
1035 return true;
1036 }
1037
1038 /*
1039 * Each XMAC chip is attached as a separate logical IP interface.
1040 * Single port cards will have only one logical interface of course.
1041 */
1042 void
1043 msk_attach(device_t parent, device_t self, void *aux)
1044 {
1045 struct sk_if_softc *sc_if = device_private(self);
1046 struct sk_softc *sc = device_private(parent);
1047 struct skc_attach_args *sa = aux;
1048 struct ifnet *ifp;
1049 void *kva;
1050 int i;
1051 u_int32_t chunk;
1052 int mii_flags;
1053
1054 sc_if->sk_dev = self;
1055 sc_if->sk_port = sa->skc_port;
1056 sc_if->sk_softc = sc;
1057 sc->sk_if[sa->skc_port] = sc_if;
1058
1059 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1060
1061 /*
1062 * Get station address for this interface. Note that
1063 * dual port cards actually come with three station
1064 * addresses: one for each port, plus an extra. The
1065 * extra one is used by the SysKonnect driver software
1066 * as a 'virtual' station address for when both ports
1067 * are operating in failover mode. Currently we don't
1068 * use this extra address.
1069 */
1070 for (i = 0; i < ETHER_ADDR_LEN; i++)
1071 sc_if->sk_enaddr[i] =
1072 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1073
1074 aprint_normal(": Ethernet address %s\n",
1075 ether_sprintf(sc_if->sk_enaddr));
1076
1077 /*
1078 * Set up RAM buffer addresses. The Yukon2 has a small amount
1079 * of SRAM on it, somewhere between 4K and 48K. We need to
1080 * divide this up between the transmitter and receiver. We
1081 * give the receiver 2/3 of the memory (rounded down), and the
1082 * transmitter whatever remains.
1083 */
1084 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1085 sc_if->sk_rx_ramstart = 0;
1086 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1087 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1088 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1089 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1090
1091 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1092 " tx_ramstart=%#x tx_ramend=%#x\n",
1093 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1094 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1095
1096 /* Allocate the descriptor queues. */
1097 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1098 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1099 BUS_DMA_NOWAIT)) {
1100 aprint_error(": can't alloc rx buffers\n");
1101 goto fail;
1102 }
1103 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1104 sc_if->sk_ring_nseg,
1105 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1106 aprint_error(": can't map dma buffers (%zu bytes)\n",
1107 sizeof(struct msk_ring_data));
1108 goto fail_1;
1109 }
1110 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1111 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1112 &sc_if->sk_ring_map)) {
1113 aprint_error(": can't create dma map\n");
1114 goto fail_2;
1115 }
1116 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1117 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1118 aprint_error(": can't load dma map\n");
1119 goto fail_3;
1120 }
1121 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1122 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1123
1124 ifp = &sc_if->sk_ethercom.ec_if;
1125 /* Try to allocate memory for jumbo buffers. */
1126 if (msk_alloc_jumbo_mem(sc_if)) {
1127 aprint_error(": jumbo buffer allocation failed\n");
1128 goto fail_3;
1129 }
1130 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1131 if (sc->sk_type != SK_YUKON_FE)
1132 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1133
1134 ifp->if_softc = sc_if;
1135 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1136 ifp->if_ioctl = msk_ioctl;
1137 ifp->if_start = msk_start;
1138 ifp->if_stop = msk_stop;
1139 ifp->if_init = msk_init;
1140 ifp->if_watchdog = msk_watchdog;
1141 ifp->if_baudrate = 1000000000;
1142 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1143 IFQ_SET_READY(&ifp->if_snd);
1144 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1145
1146 msk_reset(sc_if);
1147
1148 /*
1149 * Do miibus setup.
1150 */
1151 msk_init_yukon(sc_if);
1152
1153 DPRINTFN(2, ("msk_attach: 1\n"));
1154
1155 sc_if->sk_mii.mii_ifp = ifp;
1156 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1157 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1158 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1159
1160 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1161 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1162 ether_mediachange, ether_mediastatus);
1163 mii_flags = MIIF_DOPAUSE;
1164 if (sc->sk_fibertype)
1165 mii_flags |= MIIF_HAVEFIBER;
1166 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1167 MII_OFFSET_ANY, mii_flags);
1168 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1169 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1170 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1171 0, NULL);
1172 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1173 } else
1174 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1175
1176 callout_init(&sc_if->sk_tick_ch, 0);
1177 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1178 callout_schedule(&sc_if->sk_tick_ch, hz);
1179
1180 /*
1181 * Call MI attach routines.
1182 */
1183 if_attach(ifp);
1184 if_deferred_start_init(ifp, NULL);
1185 ether_ifattach(ifp, sc_if->sk_enaddr);
1186
1187 if (pmf_device_register(self, NULL, msk_resume))
1188 pmf_class_network_register(self, ifp);
1189 else
1190 aprint_error_dev(self, "couldn't establish power handler\n");
1191
1192 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1193 RND_TYPE_NET, RND_FLAG_DEFAULT);
1194
1195 DPRINTFN(2, ("msk_attach: end\n"));
1196 return;
1197
1198 fail_3:
1199 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1200 fail_2:
1201 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1202 fail_1:
1203 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1204 fail:
1205 sc->sk_if[sa->skc_port] = NULL;
1206 }
1207
1208 int
1209 msk_detach(device_t self, int flags)
1210 {
1211 struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
1212 struct sk_softc *sc = sc_if->sk_softc;
1213 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1214
1215 if (sc->sk_if[sc_if->sk_port] == NULL)
1216 return (0);
1217
1218 rnd_detach_source(&sc->rnd_source);
1219
1220 callout_halt(&sc_if->sk_tick_ch, NULL);
1221 callout_destroy(&sc_if->sk_tick_ch);
1222
1223 /* Detach any PHYs we might have. */
1224 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1225 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1226
1227 /* Delete any remaining media. */
1228 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1229
1230 pmf_device_deregister(self);
1231
1232 ether_ifdetach(ifp);
1233 if_detach(ifp);
1234
1235 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1236 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1237 sizeof(struct msk_ring_data));
1238 bus_dmamem_free(sc->sc_dmatag,
1239 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1240 sc->sk_if[sc_if->sk_port] = NULL;
1241
1242 return (0);
1243 }
1244
1245 int
1246 mskcprint(void *aux, const char *pnp)
1247 {
1248 struct skc_attach_args *sa = aux;
1249
1250 if (pnp)
1251 aprint_normal("msk port %c at %s",
1252 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1253 else
1254 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1255 return (UNCONF);
1256 }
1257
1258 /*
1259 * Attach the interface. Allocate softc structures, do ifmedia
1260 * setup and ethernet/BPF attach.
1261 */
1262 void
1263 mskc_attach(device_t parent, device_t self, void *aux)
1264 {
1265 struct sk_softc *sc = device_private(self);
1266 struct pci_attach_args *pa = aux;
1267 struct skc_attach_args skca;
1268 pci_chipset_tag_t pc = pa->pa_pc;
1269 pcireg_t command, memtype;
1270 pci_intr_handle_t ih;
1271 const char *intrstr = NULL;
1272 bus_size_t size;
1273 int rc, sk_nodenum;
1274 u_int8_t hw, pmd;
1275 const char *revstr = NULL;
1276 const struct sysctlnode *node;
1277 void *kva;
1278 char intrbuf[PCI_INTRSTR_LEN];
1279
1280 DPRINTFN(2, ("begin mskc_attach\n"));
1281
1282 sc->sk_dev = self;
1283 /*
1284 * Handle power management nonsense.
1285 */
1286 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1287
1288 if (command == 0x01) {
1289 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1290 if (command & SK_PSTATE_MASK) {
1291 u_int32_t iobase, membase, irq;
1292
1293 /* Save important PCI config data. */
1294 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1295 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1296 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1297
1298 /* Reset the power state. */
1299 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1300 "mode -- setting to D0\n",
1301 command & SK_PSTATE_MASK);
1302 command &= 0xFFFFFFFC;
1303 pci_conf_write(pc, pa->pa_tag,
1304 SK_PCI_PWRMGMTCTRL, command);
1305
1306 /* Restore PCI config data. */
1307 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1308 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1309 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1310 }
1311 }
1312
1313 /*
1314 * Map control/status registers.
1315 */
1316 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1317 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1318 &sc->sk_bhandle, NULL, &size)) {
1319 aprint_error(": can't map mem space\n");
1320 return;
1321 }
1322
1323 sc->sc_dmatag = pa->pa_dmat;
1324
1325 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1326 command |= PCI_COMMAND_MASTER_ENABLE;
1327 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1328
1329 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1330 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1331
1332 /* bail out here if chip is not recognized */
1333 if (!(SK_IS_YUKON2(sc))) {
1334 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1335 goto fail_1;
1336 }
1337 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1338
1339 /* Allocate interrupt */
1340 if (pci_intr_map(pa, &ih)) {
1341 aprint_error(": couldn't map interrupt\n");
1342 goto fail_1;
1343 }
1344
1345 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1346 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1347 if (sc->sk_intrhand == NULL) {
1348 aprint_error(": couldn't establish interrupt");
1349 if (intrstr != NULL)
1350 aprint_error(" at %s", intrstr);
1351 aprint_error("\n");
1352 goto fail_1;
1353 }
1354 sc->sk_pc = pc;
1355
1356 if (bus_dmamem_alloc(sc->sc_dmatag,
1357 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), PAGE_SIZE,
1358 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1359 aprint_error(": can't alloc status buffers\n");
1360 goto fail_2;
1361 }
1362
1363 if (bus_dmamem_map(sc->sc_dmatag,
1364 &sc->sk_status_seg, sc->sk_status_nseg,
1365 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1366 &kva, BUS_DMA_NOWAIT)) {
1367 aprint_error(": can't map dma buffers (%zu bytes)\n",
1368 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1369 goto fail_3;
1370 }
1371 if (bus_dmamap_create(sc->sc_dmatag,
1372 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1373 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1374 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1375 aprint_error(": can't create dma map\n");
1376 goto fail_4;
1377 }
1378 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1379 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1380 NULL, BUS_DMA_NOWAIT)) {
1381 aprint_error(": can't load dma map\n");
1382 goto fail_5;
1383 }
1384 sc->sk_status_ring = (struct msk_status_desc *)kva;
1385
1386 sc->sk_int_mod = SK_IM_DEFAULT;
1387 sc->sk_int_mod_pending = 0;
1388
1389 /* Reset the adapter. */
1390 mskc_reset(sc);
1391
1392 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1393 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1394
1395 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1396 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1397 sc->sk_fibertype = 1;
1398
1399 switch (sc->sk_type) {
1400 case SK_YUKON_XL:
1401 sc->sk_name = "Yukon-2 XL";
1402 break;
1403 case SK_YUKON_EC_U:
1404 sc->sk_name = "Yukon-2 EC Ultra";
1405 break;
1406 case SK_YUKON_EX:
1407 sc->sk_name = "Yukon-2 Extreme";
1408 break;
1409 case SK_YUKON_EC:
1410 sc->sk_name = "Yukon-2 EC";
1411 break;
1412 case SK_YUKON_FE:
1413 sc->sk_name = "Yukon-2 FE";
1414 break;
1415 case SK_YUKON_FE_P:
1416 sc->sk_name = "Yukon-2 FE+";
1417 break;
1418 case SK_YUKON_SUPR:
1419 sc->sk_name = "Yukon-2 Supreme";
1420 break;
1421 case SK_YUKON_ULTRA2:
1422 sc->sk_name = "Yukon-2 Ultra 2";
1423 break;
1424 case SK_YUKON_OPTIMA:
1425 sc->sk_name = "Yukon-2 Optima";
1426 break;
1427 case SK_YUKON_PRM:
1428 sc->sk_name = "Yukon-2 Optima Prime";
1429 break;
1430 case SK_YUKON_OPTIMA2:
1431 sc->sk_name = "Yukon-2 Optima 2";
1432 break;
1433 default:
1434 sc->sk_name = "Yukon (Unknown)";
1435 }
1436
1437 if (sc->sk_type == SK_YUKON_XL) {
1438 switch (sc->sk_rev) {
1439 case SK_YUKON_XL_REV_A0:
1440 sc->sk_workaround = 0;
1441 revstr = "A0";
1442 break;
1443 case SK_YUKON_XL_REV_A1:
1444 sc->sk_workaround = SK_WA_4109;
1445 revstr = "A1";
1446 break;
1447 case SK_YUKON_XL_REV_A2:
1448 sc->sk_workaround = SK_WA_4109;
1449 revstr = "A2";
1450 break;
1451 case SK_YUKON_XL_REV_A3:
1452 sc->sk_workaround = SK_WA_4109;
1453 revstr = "A3";
1454 break;
1455 default:
1456 sc->sk_workaround = 0;
1457 break;
1458 }
1459 }
1460
1461 if (sc->sk_type == SK_YUKON_EC) {
1462 switch (sc->sk_rev) {
1463 case SK_YUKON_EC_REV_A1:
1464 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1465 revstr = "A1";
1466 break;
1467 case SK_YUKON_EC_REV_A2:
1468 sc->sk_workaround = SK_WA_4109;
1469 revstr = "A2";
1470 break;
1471 case SK_YUKON_EC_REV_A3:
1472 sc->sk_workaround = SK_WA_4109;
1473 revstr = "A3";
1474 break;
1475 default:
1476 sc->sk_workaround = 0;
1477 break;
1478 }
1479 }
1480
1481 if (sc->sk_type == SK_YUKON_FE) {
1482 sc->sk_workaround = SK_WA_4109;
1483 switch (sc->sk_rev) {
1484 case SK_YUKON_FE_REV_A1:
1485 revstr = "A1";
1486 break;
1487 case SK_YUKON_FE_REV_A2:
1488 revstr = "A2";
1489 break;
1490 default:
1491 sc->sk_workaround = 0;
1492 break;
1493 }
1494 }
1495
1496 if (sc->sk_type == SK_YUKON_EC_U) {
1497 sc->sk_workaround = SK_WA_4109;
1498 switch (sc->sk_rev) {
1499 case SK_YUKON_EC_U_REV_A0:
1500 revstr = "A0";
1501 break;
1502 case SK_YUKON_EC_U_REV_A1:
1503 revstr = "A1";
1504 break;
1505 case SK_YUKON_EC_U_REV_B0:
1506 revstr = "B0";
1507 break;
1508 case SK_YUKON_EC_U_REV_B1:
1509 revstr = "B1";
1510 break;
1511 default:
1512 sc->sk_workaround = 0;
1513 break;
1514 }
1515 }
1516
1517 if (sc->sk_type == SK_YUKON_FE) {
1518 switch (sc->sk_rev) {
1519 case SK_YUKON_FE_REV_A1:
1520 revstr = "A1";
1521 break;
1522 case SK_YUKON_FE_REV_A2:
1523 revstr = "A2";
1524 break;
1525 default:
1526 ;
1527 }
1528 }
1529
1530 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1531 revstr = "A0";
1532
1533 if (sc->sk_type == SK_YUKON_EX) {
1534 switch (sc->sk_rev) {
1535 case SK_YUKON_EX_REV_A0:
1536 revstr = "A0";
1537 break;
1538 case SK_YUKON_EX_REV_B0:
1539 revstr = "B0";
1540 break;
1541 default:
1542 ;
1543 }
1544 }
1545
1546 if (sc->sk_type == SK_YUKON_SUPR) {
1547 switch (sc->sk_rev) {
1548 case SK_YUKON_SUPR_REV_A0:
1549 revstr = "A0";
1550 break;
1551 case SK_YUKON_SUPR_REV_B0:
1552 revstr = "B0";
1553 break;
1554 case SK_YUKON_SUPR_REV_B1:
1555 revstr = "B1";
1556 break;
1557 default:
1558 ;
1559 }
1560 }
1561
1562 if (sc->sk_type == SK_YUKON_PRM) {
1563 switch (sc->sk_rev) {
1564 case SK_YUKON_PRM_REV_Z1:
1565 revstr = "Z1";
1566 break;
1567 case SK_YUKON_PRM_REV_A0:
1568 revstr = "A0";
1569 break;
1570 default:
1571 ;
1572 }
1573 }
1574
1575 /* Announce the product name. */
1576 aprint_normal(", %s", sc->sk_name);
1577 if (revstr != NULL)
1578 aprint_normal(" rev. %s", revstr);
1579 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1580
1581 sc->sk_macs = 1;
1582
1583 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1584 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1585 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1586 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1587 sc->sk_macs++;
1588 }
1589
1590 skca.skc_port = SK_PORT_A;
1591 skca.skc_type = sc->sk_type;
1592 skca.skc_rev = sc->sk_rev;
1593 (void)config_found(sc->sk_dev, &skca, mskcprint);
1594
1595 if (sc->sk_macs > 1) {
1596 skca.skc_port = SK_PORT_B;
1597 skca.skc_type = sc->sk_type;
1598 skca.skc_rev = sc->sk_rev;
1599 (void)config_found(sc->sk_dev, &skca, mskcprint);
1600 }
1601
1602 /* Turn on the 'driver is loaded' LED. */
1603 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1604
1605 /* skc sysctl setup */
1606
1607 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1608 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1609 SYSCTL_DESCR("mskc per-controller controls"),
1610 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1611 CTL_EOL)) != 0) {
1612 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1613 goto fail_6;
1614 }
1615
1616 sk_nodenum = node->sysctl_num;
1617
1618 /* interrupt moderation time in usecs */
1619 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1620 CTLFLAG_READWRITE,
1621 CTLTYPE_INT, "int_mod",
1622 SYSCTL_DESCR("msk interrupt moderation timer"),
1623 msk_sysctl_handler, 0, (void *)sc,
1624 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1625 CTL_EOL)) != 0) {
1626 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1627 goto fail_6;
1628 }
1629
1630 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1631 aprint_error_dev(self, "couldn't establish power handler\n");
1632
1633 return;
1634
1635 fail_6:
1636 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1637 fail_5:
1638 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1639 fail_4:
1640 bus_dmamem_unmap(sc->sc_dmatag, kva,
1641 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1642 fail_3:
1643 bus_dmamem_free(sc->sc_dmatag,
1644 &sc->sk_status_seg, sc->sk_status_nseg);
1645 sc->sk_status_nseg = 0;
1646 fail_2:
1647 pci_intr_disestablish(pc, sc->sk_intrhand);
1648 sc->sk_intrhand = NULL;
1649 fail_1:
1650 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1651 sc->sk_bsize = 0;
1652 }
1653
1654 int
1655 mskc_detach(device_t self, int flags)
1656 {
1657 struct sk_softc *sc = (struct sk_softc *)self;
1658 int rv;
1659
1660 rv = config_detach_children(self, flags);
1661 if (rv != 0)
1662 return (rv);
1663
1664 if (sc->sk_status_nseg > 0) {
1665 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1666 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1667 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1668 bus_dmamem_free(sc->sc_dmatag,
1669 &sc->sk_status_seg, sc->sk_status_nseg);
1670 }
1671
1672 if (sc->sk_intrhand)
1673 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1674
1675 if (sc->sk_bsize > 0)
1676 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1677
1678 return(0);
1679 }
1680
1681 int
1682 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1683 {
1684 struct sk_softc *sc = sc_if->sk_softc;
1685 struct msk_tx_desc *f = NULL;
1686 u_int32_t frag, cur;
1687 int i;
1688 struct sk_txmap_entry *entry;
1689 bus_dmamap_t txmap;
1690
1691 DPRINTFN(2, ("msk_encap\n"));
1692
1693 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1694 if (entry == NULL) {
1695 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1696 return (ENOBUFS);
1697 }
1698 txmap = entry->dmamap;
1699
1700 cur = frag = *txidx;
1701
1702 #ifdef MSK_DEBUG
1703 if (mskdebug >= 2)
1704 msk_dump_mbuf(m_head);
1705 #endif
1706
1707 /*
1708 * Start packing the mbufs in this chain into
1709 * the fragment pointers. Stop when we run out
1710 * of fragments or hit the end of the mbuf chain.
1711 */
1712 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1713 BUS_DMA_NOWAIT)) {
1714 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1715 return (ENOBUFS);
1716 }
1717
1718 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1719 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1720 bus_dmamap_unload(sc->sc_dmatag, txmap);
1721 return (ENOBUFS);
1722 }
1723
1724 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1725
1726 /* Sync the DMA map. */
1727 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1728 BUS_DMASYNC_PREWRITE);
1729
1730 for (i = 0; i < txmap->dm_nsegs; i++) {
1731 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1732 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1733 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1734 f->sk_ctl = 0;
1735 if (i == 0)
1736 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1737 else
1738 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1739 cur = frag;
1740 SK_INC(frag, MSK_TX_RING_CNT);
1741 }
1742
1743 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1744 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1745
1746 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1747 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1748
1749 /* Sync descriptors before handing to chip */
1750 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1751 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1752
1753 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1754
1755 /* Sync first descriptor to hand it off */
1756 MSK_CDTXSYNC(sc_if, *txidx, 1,
1757 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1758
1759 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1760
1761 #ifdef MSK_DEBUG
1762 if (mskdebug >= 2) {
1763 struct msk_tx_desc *le;
1764 u_int32_t idx;
1765 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1766 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1767 msk_dump_txdesc(le, idx);
1768 }
1769 }
1770 #endif
1771
1772 *txidx = frag;
1773
1774 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1775
1776 return (0);
1777 }
1778
1779 void
1780 msk_start(struct ifnet *ifp)
1781 {
1782 struct sk_if_softc *sc_if = ifp->if_softc;
1783 struct mbuf *m_head = NULL;
1784 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1785 int pkts = 0;
1786
1787 DPRINTFN(2, ("msk_start\n"));
1788
1789 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1790 IFQ_POLL(&ifp->if_snd, m_head);
1791 if (m_head == NULL)
1792 break;
1793
1794 /*
1795 * Pack the data into the transmit ring. If we
1796 * don't have room, set the OACTIVE flag and wait
1797 * for the NIC to drain the ring.
1798 */
1799 if (msk_encap(sc_if, m_head, &idx)) {
1800 ifp->if_flags |= IFF_OACTIVE;
1801 break;
1802 }
1803
1804 /* now we are committed to transmit the packet */
1805 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1806 pkts++;
1807
1808 /*
1809 * If there's a BPF listener, bounce a copy of this frame
1810 * to him.
1811 */
1812 bpf_mtap(ifp, m_head);
1813 }
1814 if (pkts == 0)
1815 return;
1816
1817 /* Transmit */
1818 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1819 sc_if->sk_cdata.sk_tx_prod = idx;
1820 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1821
1822 /* Set a timeout in case the chip goes out to lunch. */
1823 ifp->if_timer = 5;
1824 }
1825 }
1826
1827 void
1828 msk_watchdog(struct ifnet *ifp)
1829 {
1830 struct sk_if_softc *sc_if = ifp->if_softc;
1831 u_int32_t reg;
1832 int idx;
1833
1834 /*
1835 * Reclaim first as there is a possibility of losing Tx completion
1836 * interrupts.
1837 */
1838 if (sc_if->sk_port == SK_PORT_A)
1839 reg = SK_STAT_BMU_TXA1_RIDX;
1840 else
1841 reg = SK_STAT_BMU_TXA2_RIDX;
1842
1843 idx = sk_win_read_2(sc_if->sk_softc, reg);
1844 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1845 msk_txeof(sc_if, idx);
1846 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1847 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1848
1849 ifp->if_oerrors++;
1850
1851 /* XXX Resets both ports; we shouldn't do that. */
1852 mskc_reset(sc_if->sk_softc);
1853 msk_reset(sc_if);
1854 msk_init(ifp);
1855 }
1856 }
1857 }
1858
1859 static bool
1860 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1861 {
1862 struct sk_softc *sc = device_private(dv);
1863
1864 DPRINTFN(2, ("mskc_suspend\n"));
1865
1866 /* Turn off the 'driver is loaded' LED. */
1867 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1868
1869 return true;
1870 }
1871
1872 static bool
1873 mskc_resume(device_t dv, const pmf_qual_t *qual)
1874 {
1875 struct sk_softc *sc = device_private(dv);
1876
1877 DPRINTFN(2, ("mskc_resume\n"));
1878
1879 mskc_reset(sc);
1880 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1881
1882 return true;
1883 }
1884
1885 static __inline int
1886 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1887 {
1888 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1889 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1890 YU_RXSTAT_JABBER)) != 0 ||
1891 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1892 YU_RXSTAT_BYTES(stat) != len)
1893 return (0);
1894
1895 return (1);
1896 }
1897
1898 void
1899 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1900 {
1901 struct sk_softc *sc = sc_if->sk_softc;
1902 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1903 struct mbuf *m;
1904 struct sk_chain *cur_rx;
1905 int cur, total_len = len;
1906 bus_dmamap_t dmamap;
1907
1908 DPRINTFN(2, ("msk_rxeof\n"));
1909
1910 cur = sc_if->sk_cdata.sk_rx_cons;
1911 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1912 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1913
1914 /* Sync the descriptor */
1915 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1916
1917 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1918 if (cur_rx->sk_mbuf == NULL)
1919 return;
1920
1921 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1922 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1923 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1924
1925 m = cur_rx->sk_mbuf;
1926 cur_rx->sk_mbuf = NULL;
1927
1928 if (total_len < SK_MIN_FRAMELEN ||
1929 total_len > ETHER_MAX_LEN_JUMBO ||
1930 msk_rxvalid(sc, rxstat, total_len) == 0) {
1931 ifp->if_ierrors++;
1932 msk_newbuf(sc_if, cur, m, dmamap);
1933 return;
1934 }
1935
1936 /*
1937 * Try to allocate a new jumbo buffer. If that fails, copy the
1938 * packet to mbufs and put the jumbo buffer back in the ring
1939 * so it can be re-used. If allocating mbufs fails, then we
1940 * have to drop the packet.
1941 */
1942 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1943 struct mbuf *m0;
1944 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1945 total_len + ETHER_ALIGN, 0, ifp, NULL);
1946 msk_newbuf(sc_if, cur, m, dmamap);
1947 if (m0 == NULL) {
1948 ifp->if_ierrors++;
1949 return;
1950 }
1951 m_adj(m0, ETHER_ALIGN);
1952 m = m0;
1953 } else {
1954 m_set_rcvif(m, ifp);
1955 m->m_pkthdr.len = m->m_len = total_len;
1956 }
1957
1958 /* pass it on. */
1959 if_percpuq_enqueue(ifp->if_percpuq, m);
1960 }
1961
1962 void
1963 msk_txeof(struct sk_if_softc *sc_if, int idx)
1964 {
1965 struct sk_softc *sc = sc_if->sk_softc;
1966 struct msk_tx_desc *cur_tx;
1967 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1968 u_int32_t sk_ctl;
1969 struct sk_txmap_entry *entry;
1970 int cons, prog;
1971
1972 DPRINTFN(2, ("msk_txeof\n"));
1973
1974 /*
1975 * Go through our tx ring and free mbufs for those
1976 * frames that have been sent.
1977 */
1978 cons = sc_if->sk_cdata.sk_tx_cons;
1979 prog = 0;
1980 while (cons != idx) {
1981 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1982 break;
1983 prog++;
1984 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1985
1986 MSK_CDTXSYNC(sc_if, cons, 1,
1987 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1988 sk_ctl = cur_tx->sk_ctl;
1989 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1990 #ifdef MSK_DEBUG
1991 if (mskdebug >= 2)
1992 msk_dump_txdesc(cur_tx, cons);
1993 #endif
1994 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1995 ifp->if_opackets++;
1996 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1997 entry = sc_if->sk_cdata.sk_tx_map[cons];
1998
1999 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2000 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2001
2002 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2003 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2004 link);
2005 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
2006 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
2007 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
2008 }
2009 sc_if->sk_cdata.sk_tx_cnt--;
2010 SK_INC(cons, MSK_TX_RING_CNT);
2011 }
2012 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2013
2014 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2015 ifp->if_flags &= ~IFF_OACTIVE;
2016
2017 if (prog > 0)
2018 sc_if->sk_cdata.sk_tx_cons = cons;
2019 }
2020
2021 void
2022 msk_tick(void *xsc_if)
2023 {
2024 struct sk_if_softc *sc_if = xsc_if;
2025 struct mii_data *mii = &sc_if->sk_mii;
2026 int s;
2027
2028 s = splnet();
2029 mii_tick(mii);
2030 splx(s);
2031
2032 callout_schedule(&sc_if->sk_tick_ch, hz);
2033 }
2034
2035 void
2036 msk_intr_yukon(struct sk_if_softc *sc_if)
2037 {
2038 u_int8_t status;
2039
2040 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2041 /* RX overrun */
2042 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2043 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2044 SK_RFCTL_RX_FIFO_OVER);
2045 }
2046 /* TX underrun */
2047 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2048 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2049 SK_TFCTL_TX_FIFO_UNDER);
2050 }
2051
2052 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2053 }
2054
2055 int
2056 msk_intr(void *xsc)
2057 {
2058 struct sk_softc *sc = xsc;
2059 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2060 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2061 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2062 int claimed = 0;
2063 u_int32_t status;
2064 uint32_t st_status;
2065 uint16_t st_len;
2066 uint8_t st_opcode, st_link;
2067 struct msk_status_desc *cur_st;
2068
2069 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2070 if (status == 0) {
2071 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2072 return (0);
2073 }
2074
2075 status = CSR_READ_4(sc, SK_ISR);
2076
2077 if (sc_if0 != NULL)
2078 ifp0 = &sc_if0->sk_ethercom.ec_if;
2079 if (sc_if1 != NULL)
2080 ifp1 = &sc_if1->sk_ethercom.ec_if;
2081
2082 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2083 (ifp0->if_flags & IFF_RUNNING)) {
2084 msk_intr_yukon(sc_if0);
2085 }
2086
2087 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2088 (ifp1->if_flags & IFF_RUNNING)) {
2089 msk_intr_yukon(sc_if1);
2090 }
2091
2092 for (;;) {
2093 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2094 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2095 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2096 st_opcode = cur_st->sk_opcode;
2097 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
2098 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2099 BUS_DMASYNC_PREREAD);
2100 break;
2101 }
2102 st_status = le32toh(cur_st->sk_status);
2103 st_len = le16toh(cur_st->sk_len);
2104 st_link = cur_st->sk_link;
2105 st_opcode &= ~SK_Y2_STOPC_OWN;
2106
2107 switch (st_opcode) {
2108 case SK_Y2_STOPC_RXSTAT:
2109 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
2110 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
2111 SK_RXQ1_Y2_PREF_PUTIDX,
2112 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
2113 break;
2114 case SK_Y2_STOPC_TXSTAT:
2115 if (sc_if0)
2116 msk_txeof(sc_if0, st_status
2117 & SK_Y2_ST_TXA1_MSKL);
2118 if (sc_if1)
2119 msk_txeof(sc_if1,
2120 ((st_status & SK_Y2_ST_TXA2_MSKL)
2121 >> SK_Y2_ST_TXA2_SHIFTL)
2122 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
2123 break;
2124 default:
2125 aprint_error("opcode=0x%x\n", st_opcode);
2126 break;
2127 }
2128 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2129 }
2130
2131 #define MSK_STATUS_RING_OWN_CNT(sc) \
2132 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
2133 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
2134
2135 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
2136 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
2137 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2138 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
2139 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2140
2141 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
2142 }
2143
2144 if (status & SK_Y2_IMR_BMU) {
2145 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2146 claimed = 1;
2147 }
2148
2149 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2150
2151 if (ifp0 != NULL)
2152 if_schedule_deferred_start(ifp0);
2153 if (ifp1 != NULL)
2154 if_schedule_deferred_start(ifp1);
2155
2156 rnd_add_uint32(&sc->rnd_source, status);
2157
2158 if (sc->sk_int_mod_pending)
2159 msk_update_int_mod(sc, 1);
2160
2161 return claimed;
2162 }
2163
2164 void
2165 msk_init_yukon(struct sk_if_softc *sc_if)
2166 {
2167 u_int32_t v;
2168 u_int16_t reg;
2169 struct sk_softc *sc;
2170 int i;
2171
2172 sc = sc_if->sk_softc;
2173
2174 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2175 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2176
2177 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2178
2179 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2180 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2181
2182 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2183
2184 /* unused read of the interrupt source register */
2185 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2186 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2187
2188 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2189 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2190 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2191
2192 /* MIB Counter Clear Mode set */
2193 reg |= YU_PAR_MIB_CLR;
2194 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2195 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2196 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2197
2198 /* MIB Counter Clear Mode clear */
2199 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2200 reg &= ~YU_PAR_MIB_CLR;
2201 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2202
2203 /* receive control reg */
2204 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2205 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2206
2207 /* transmit control register */
2208 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2209
2210 /* transmit flow control register */
2211 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2212
2213 /* transmit parameter register */
2214 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2215 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2216 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2217
2218 /* serial mode register */
2219 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2220 reg = YU_SMR_DATA_BLIND(0x1c) |
2221 YU_SMR_MFL_VLAN |
2222 YU_SMR_IPG_DATA(0x1e);
2223
2224 if (sc->sk_type != SK_YUKON_FE &&
2225 sc->sk_type != SK_YUKON_FE_P)
2226 reg |= YU_SMR_MFL_JUMBO;
2227
2228 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2229
2230 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2231 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2232 /* msk_attach calls me before ether_ifattach so check null */
2233 if (ifp != NULL && ifp->if_sadl != NULL)
2234 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2235 sizeof(sc_if->sk_enaddr));
2236 /* Setup Yukon's address */
2237 for (i = 0; i < 3; i++) {
2238 /* Write Source Address 1 (unicast filter) */
2239 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2240 sc_if->sk_enaddr[i * 2] |
2241 sc_if->sk_enaddr[i * 2 + 1] << 8);
2242 }
2243
2244 for (i = 0; i < 3; i++) {
2245 reg = sk_win_read_2(sc_if->sk_softc,
2246 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2247 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2248 }
2249
2250 /* Set promiscuous mode */
2251 msk_setpromisc(sc_if);
2252
2253 /* Set multicast filter */
2254 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2255 msk_setmulti(sc_if);
2256
2257 /* enable interrupt mask for counter overflows */
2258 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2259 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2260 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2261 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2262
2263 /* Configure RX MAC FIFO Flush Mask */
2264 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2265 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2266 YU_RXSTAT_JABBER;
2267 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2268
2269 /* Configure RX MAC FIFO */
2270 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2271 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2272 SK_RFCTL_FIFO_FLUSH_ON);
2273
2274 /* Increase flush threshould to 64 bytes */
2275 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2276 SK_RFCTL_FIFO_THRESHOLD + 1);
2277
2278 /* Configure TX MAC FIFO */
2279 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2280 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2281
2282 #if 1
2283 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2284 #endif
2285 DPRINTFN(6, ("msk_init_yukon: end\n"));
2286 }
2287
2288 /*
2289 * Note that to properly initialize any part of the GEnesis chip,
2290 * you first have to take it out of reset mode.
2291 */
2292 int
2293 msk_init(struct ifnet *ifp)
2294 {
2295 struct sk_if_softc *sc_if = ifp->if_softc;
2296 struct sk_softc *sc = sc_if->sk_softc;
2297 int rc = 0, s;
2298 uint32_t imr, imtimer_ticks;
2299
2300
2301 DPRINTFN(2, ("msk_init\n"));
2302
2303 s = splnet();
2304
2305 /* Cancel pending I/O and free all RX/TX buffers. */
2306 msk_stop(ifp, 0);
2307
2308 /* Configure I2C registers */
2309
2310 /* Configure XMAC(s) */
2311 msk_init_yukon(sc_if);
2312 if ((rc = ether_mediachange(ifp)) != 0)
2313 goto out;
2314
2315 /* Configure transmit arbiter(s) */
2316 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2317 #if 0
2318 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2319 #endif
2320
2321 /* Configure RAMbuffers */
2322 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2323 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2324 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2325 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2326 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2327 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2328
2329 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2330 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2331 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2332 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2333 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2334 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2335 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2336
2337 /* Configure BMUs */
2338 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2339 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2340 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2341 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2342
2343 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2344 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2345 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2346 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2347
2348 /* Make sure the sync transmit queue is disabled. */
2349 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2350
2351 /* Init descriptors */
2352 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2353 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2354 "memory for rx buffers\n");
2355 msk_stop(ifp, 0);
2356 splx(s);
2357 return ENOBUFS;
2358 }
2359
2360 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2361 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2362 "memory for tx buffers\n");
2363 msk_stop(ifp, 0);
2364 splx(s);
2365 return ENOBUFS;
2366 }
2367
2368 /* Set interrupt moderation if changed via sysctl. */
2369 switch (sc->sk_type) {
2370 case SK_YUKON_EC:
2371 case SK_YUKON_EC_U:
2372 case SK_YUKON_EX:
2373 case SK_YUKON_SUPR:
2374 case SK_YUKON_ULTRA2:
2375 case SK_YUKON_OPTIMA:
2376 case SK_YUKON_PRM:
2377 case SK_YUKON_OPTIMA2:
2378 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2379 break;
2380 case SK_YUKON_FE:
2381 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2382 break;
2383 case SK_YUKON_FE_P:
2384 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2385 break;
2386 case SK_YUKON_XL:
2387 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2388 break;
2389 default:
2390 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2391 }
2392 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2393 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2394 sk_win_write_4(sc, SK_IMTIMERINIT,
2395 SK_IM_USECS(sc->sk_int_mod));
2396 aprint_verbose_dev(sc->sk_dev,
2397 "interrupt moderation is %d us\n", sc->sk_int_mod);
2398 }
2399
2400 /* Initialize prefetch engine. */
2401 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2402 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2403 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2404 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2405 MSK_RX_RING_ADDR(sc_if, 0));
2406 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2407 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2408 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2409 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2410
2411 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2412 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2413 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2414 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2415 MSK_TX_RING_ADDR(sc_if, 0));
2416 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2417 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2418 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2419 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2420
2421 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2422 sc_if->sk_cdata.sk_rx_prod);
2423
2424 /* Configure interrupt handling */
2425 if (sc_if->sk_port == SK_PORT_A)
2426 sc->sk_intrmask |= SK_Y2_INTRS1;
2427 else
2428 sc->sk_intrmask |= SK_Y2_INTRS2;
2429 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2430 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2431
2432 ifp->if_flags |= IFF_RUNNING;
2433 ifp->if_flags &= ~IFF_OACTIVE;
2434
2435 callout_schedule(&sc_if->sk_tick_ch, hz);
2436
2437 out:
2438 splx(s);
2439 return rc;
2440 }
2441
2442 void
2443 msk_stop(struct ifnet *ifp, int disable)
2444 {
2445 struct sk_if_softc *sc_if = ifp->if_softc;
2446 struct sk_softc *sc = sc_if->sk_softc;
2447 struct sk_txmap_entry *dma;
2448 int i;
2449
2450 DPRINTFN(2, ("msk_stop\n"));
2451
2452 callout_stop(&sc_if->sk_tick_ch);
2453
2454 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2455
2456 /* Stop transfer of Tx descriptors */
2457
2458 /* Stop transfer of Rx descriptors */
2459
2460 /* Turn off various components of this interface. */
2461 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2462 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2463 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2464 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2465 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2466 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2467 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2468 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2469 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2470 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2471 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2472 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2473
2474 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2475 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2476
2477 /* Disable interrupts */
2478 if (sc_if->sk_port == SK_PORT_A)
2479 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2480 else
2481 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2482 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2483
2484 SK_XM_READ_2(sc_if, XM_ISR);
2485 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2486
2487 /* Free RX and TX mbufs still in the queues. */
2488 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2489 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2490 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2491 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2492 }
2493 }
2494
2495 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2496 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2497 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2498 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2499 #if 1
2500 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2501 sc_if->sk_cdata.sk_tx_map[i], link);
2502 sc_if->sk_cdata.sk_tx_map[i] = 0;
2503 #endif
2504 }
2505 }
2506
2507 #if 1
2508 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2509 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2510 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2511 free(dma, M_DEVBUF);
2512 }
2513 #endif
2514 }
2515
2516 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2517 mskc_detach, NULL);
2518
2519 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2520 msk_detach, NULL);
2521
2522 #ifdef MSK_DEBUG
2523 void
2524 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2525 {
2526 #define DESC_PRINT(X) \
2527 if (X) \
2528 printf("txdesc[%d]." #X "=%#x\n", \
2529 idx, X);
2530
2531 DESC_PRINT(letoh32(le->sk_addr));
2532 DESC_PRINT(letoh16(le->sk_len));
2533 DESC_PRINT(le->sk_ctl);
2534 DESC_PRINT(le->sk_opcode);
2535 #undef DESC_PRINT
2536 }
2537
2538 void
2539 msk_dump_bytes(const char *data, int len)
2540 {
2541 int c, i, j;
2542
2543 for (i = 0; i < len; i += 16) {
2544 printf("%08x ", i);
2545 c = len - i;
2546 if (c > 16) c = 16;
2547
2548 for (j = 0; j < c; j++) {
2549 printf("%02x ", data[i + j] & 0xff);
2550 if ((j & 0xf) == 7 && j > 0)
2551 printf(" ");
2552 }
2553
2554 for (; j < 16; j++)
2555 printf(" ");
2556 printf(" ");
2557
2558 for (j = 0; j < c; j++) {
2559 int ch = data[i + j] & 0xff;
2560 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2561 }
2562
2563 printf("\n");
2564
2565 if (c < 16)
2566 break;
2567 }
2568 }
2569
2570 void
2571 msk_dump_mbuf(struct mbuf *m)
2572 {
2573 int count = m->m_pkthdr.len;
2574
2575 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2576
2577 while (count > 0 && m) {
2578 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2579 m, m->m_data, m->m_len);
2580 msk_dump_bytes(mtod(m, char *), m->m_len);
2581
2582 count -= m->m_len;
2583 m = m->m_next;
2584 }
2585 }
2586 #endif
2587
2588 static int
2589 msk_sysctl_handler(SYSCTLFN_ARGS)
2590 {
2591 int error, t;
2592 struct sysctlnode node;
2593 struct sk_softc *sc;
2594
2595 node = *rnode;
2596 sc = node.sysctl_data;
2597 t = sc->sk_int_mod;
2598 node.sysctl_data = &t;
2599 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2600 if (error || newp == NULL)
2601 return error;
2602
2603 if (t < SK_IM_MIN || t > SK_IM_MAX)
2604 return EINVAL;
2605
2606 /* update the softc with sysctl-changed value, and mark
2607 for hardware update */
2608 sc->sk_int_mod = t;
2609 sc->sk_int_mod_pending = 1;
2610 return 0;
2611 }
2612
2613 /*
2614 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2615 * set up in skc_attach()
2616 */
2617 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2618 {
2619 int rc;
2620 const struct sysctlnode *node;
2621
2622 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2623 0, CTLTYPE_NODE, "msk",
2624 SYSCTL_DESCR("msk interface controls"),
2625 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2626 goto err;
2627 }
2628
2629 msk_root_num = node->sysctl_num;
2630 return;
2631
2632 err:
2633 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2634 }
2635