if_msk.c revision 1.55.2.4 1 /* $NetBSD: if_msk.c,v 1.55.2.4 2018/09/30 01:45:50 pgoyette Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.55.2.4 2018/09/30 01:45:50 pgoyette Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int);
128 void msk_miibus_writereg(device_t, int, int, int);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n,x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
155
156 /* supported device vendors */
157 static const struct msk_product {
158 pci_vendor_id_t msk_vendor;
159 pci_product_id_t msk_product;
160 } msk_products[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
199 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 { 0, 0 }
203 };
204
205 static inline u_int32_t
206 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
207 {
208 return CSR_READ_4(sc, reg);
209 }
210
211 static inline u_int16_t
212 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
213 {
214 return CSR_READ_2(sc, reg);
215 }
216
217 static inline u_int8_t
218 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
219 {
220 return CSR_READ_1(sc, reg);
221 }
222
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
225 {
226 CSR_WRITE_4(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
231 {
232 CSR_WRITE_2(sc, reg, x);
233 }
234
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
237 {
238 CSR_WRITE_1(sc, reg, x);
239 }
240
241 int
242 msk_miibus_readreg(device_t dev, int phy, int reg)
243 {
244 struct sk_if_softc *sc_if = device_private(dev);
245 u_int16_t val;
246 int i;
247
248 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250
251 for (i = 0; i < SK_TIMEOUT; i++) {
252 DELAY(1);
253 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 if (val & YU_SMICR_READ_VALID)
255 break;
256 }
257
258 if (i == SK_TIMEOUT) {
259 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 return (0);
261 }
262
263 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
264 SK_TIMEOUT));
265
266 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
267
268 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
269 phy, reg, val));
270
271 return (val);
272 }
273
274 void
275 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
276 {
277 struct sk_if_softc *sc_if = device_private(dev);
278 int i;
279
280 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
281 phy, reg, val));
282
283 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
284 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
285 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
286
287 for (i = 0; i < SK_TIMEOUT; i++) {
288 DELAY(1);
289 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
290 break;
291 }
292
293 if (i == SK_TIMEOUT)
294 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
295 }
296
297 void
298 msk_miibus_statchg(struct ifnet *ifp)
299 {
300 struct sk_if_softc *sc_if = ifp->if_softc;
301 struct mii_data *mii = &sc_if->sk_mii;
302 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
303 int gpcr;
304
305 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
306 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
307
308 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
309 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
310 /* Set speed. */
311 gpcr |= YU_GPCR_SPEED_DIS;
312 switch (IFM_SUBTYPE(mii->mii_media_active)) {
313 case IFM_1000_SX:
314 case IFM_1000_LX:
315 case IFM_1000_CX:
316 case IFM_1000_T:
317 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
318 break;
319 case IFM_100_TX:
320 gpcr |= YU_GPCR_SPEED;
321 break;
322 }
323
324 /* Set duplex. */
325 gpcr |= YU_GPCR_DPLX_DIS;
326 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
327 gpcr |= YU_GPCR_DUPLEX;
328
329 /* Disable flow control. */
330 gpcr |= YU_GPCR_FCTL_DIS;
331 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
332 }
333
334 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
335
336 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
337 SK_YU_READ_2(sc_if, YUKON_GPCR)));
338 }
339
340 void
341 msk_setmulti(struct sk_if_softc *sc_if)
342 {
343 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
344 u_int32_t hashes[2] = { 0, 0 };
345 int h;
346 struct ethercom *ec = &sc_if->sk_ethercom;
347 struct ether_multi *enm;
348 struct ether_multistep step;
349 u_int16_t reg;
350
351 /* First, zot all the existing filters. */
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
356
357
358 /* Now program new ones. */
359 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
360 reg |= YU_RCR_UFLEN;
361 allmulti:
362 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
363 if ((ifp->if_flags & IFF_PROMISC) != 0)
364 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
365 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
366 hashes[0] = 0xFFFFFFFF;
367 hashes[1] = 0xFFFFFFFF;
368 }
369 } else {
370 /* First find the tail of the list. */
371 ETHER_FIRST_MULTI(step, ec, enm);
372 while (enm != NULL) {
373 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
374 ETHER_ADDR_LEN)) {
375 ifp->if_flags |= IFF_ALLMULTI;
376 goto allmulti;
377 }
378 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
379 ((1 << SK_HASH_BITS) - 1);
380 if (h < 32)
381 hashes[0] |= (1 << h);
382 else
383 hashes[1] |= (1 << (h - 32));
384
385 ETHER_NEXT_MULTI(step, enm);
386 }
387 reg |= YU_RCR_MUFLEN;
388 }
389
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
395 }
396
397 void
398 msk_setpromisc(struct sk_if_softc *sc_if)
399 {
400 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
401
402 if (ifp->if_flags & IFF_PROMISC)
403 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
404 YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 else
406 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 }
409
410 int
411 msk_init_rx_ring(struct sk_if_softc *sc_if)
412 {
413 struct msk_chain_data *cd = &sc_if->sk_cdata;
414 struct msk_ring_data *rd = sc_if->sk_rdata;
415 struct msk_rx_desc *r;
416 int i, nexti;
417
418 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
419
420 for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
422 if (i == (MSK_RX_RING_CNT - 1))
423 nexti = 0;
424 else
425 nexti = i + 1;
426 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
427 }
428
429 sc_if->sk_cdata.sk_rx_prod = 0;
430 sc_if->sk_cdata.sk_rx_cons = 0;
431 sc_if->sk_cdata.sk_rx_cnt = 0;
432
433 /* Mark the first ring element to initialize the high address. */
434 sc_if->sk_cdata.sk_rx_hiaddr = 0;
435 r = &rd->sk_rx_ring[cd->sk_rx_prod];
436 r->sk_addr = htole32(cd->sk_rx_hiaddr);
437 r->sk_len = 0;
438 r->sk_ctl = 0;
439 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
440 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
441 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
442 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
443 sc_if->sk_cdata.sk_rx_cnt++;
444
445 msk_fill_rx_ring(sc_if);
446 return (0);
447 }
448
449 int
450 msk_init_tx_ring(struct sk_if_softc *sc_if)
451 {
452 struct sk_softc *sc = sc_if->sk_softc;
453 struct msk_chain_data *cd = &sc_if->sk_cdata;
454 struct msk_ring_data *rd = sc_if->sk_rdata;
455 struct msk_tx_desc *t;
456 bus_dmamap_t dmamap;
457 struct sk_txmap_entry *entry;
458 int i, nexti;
459
460 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
461
462 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
463 for (i = 0; i < MSK_TX_RING_CNT; i++) {
464 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
465 if (i == (MSK_TX_RING_CNT - 1))
466 nexti = 0;
467 else
468 nexti = i + 1;
469 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
470
471 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
472 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
473 return (ENOBUFS);
474
475 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
476 if (!entry) {
477 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
478 return (ENOBUFS);
479 }
480 entry->dmamap = dmamap;
481 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
482 }
483
484 sc_if->sk_cdata.sk_tx_prod = 0;
485 sc_if->sk_cdata.sk_tx_cons = 0;
486 sc_if->sk_cdata.sk_tx_cnt = 0;
487
488 /* Mark the first ring element to initialize the high address. */
489 sc_if->sk_cdata.sk_tx_hiaddr = 0;
490 t = &rd->sk_tx_ring[cd->sk_tx_prod];
491 t->sk_addr = htole32(cd->sk_tx_hiaddr);
492 t->sk_len = 0;
493 t->sk_ctl = 0;
494 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
495 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
496 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
497 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
498 sc_if->sk_cdata.sk_tx_cnt++;
499
500 return (0);
501 }
502
503 int
504 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
505 {
506 struct mbuf *m_new = NULL;
507 struct sk_chain *c;
508 struct msk_rx_desc *r;
509 void *buf = NULL;
510 bus_addr_t addr;
511
512 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
513 if (m_new == NULL)
514 return (ENOBUFS);
515
516 /* Allocate the jumbo buffer */
517 buf = msk_jalloc(sc_if);
518 if (buf == NULL) {
519 m_freem(m_new);
520 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
521 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
522 return (ENOBUFS);
523 }
524
525 /* Attach the buffer to the mbuf */
526 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
527 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
528
529 m_adj(m_new, ETHER_ALIGN);
530
531 addr = dmamap->dm_segs[0].ds_addr +
532 ((vaddr_t)m_new->m_data -
533 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
534
535 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
536 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
537 r = c->sk_le;
538 c->sk_mbuf = NULL;
539 r->sk_addr = htole32(MSK_ADDR_HI(addr));
540 r->sk_len = 0;
541 r->sk_ctl = 0;
542 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
543 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
544
545 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
546 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
547
548 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
549 sc_if->sk_cdata.sk_rx_cnt++;
550
551 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
552 sc_if->sk_ethercom.ec_if.if_xname, (unsigned)MSK_ADDR_HI(addr)));
553 }
554
555 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
556 r = c->sk_le;
557 c->sk_mbuf = m_new;
558 r->sk_addr = htole32(MSK_ADDR_LO(addr));
559 r->sk_len = htole16(SK_JLEN);
560 r->sk_ctl = 0;
561 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
562
563 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
564 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
565
566 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
567 sc_if->sk_cdata.sk_rx_cnt++;
568
569 return (0);
570 }
571
572 /*
573 * Memory management for jumbo frames.
574 */
575
576 int
577 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
578 {
579 struct sk_softc *sc = sc_if->sk_softc;
580 char *ptr, *kva;
581 int i, state, error;
582 struct sk_jpool_entry *entry;
583
584 state = error = 0;
585
586 /* Grab a big chunk o' storage. */
587 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
588 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
589 BUS_DMA_NOWAIT)) {
590 aprint_error(": can't alloc rx buffers");
591 return (ENOBUFS);
592 }
593
594 state = 1;
595 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
596 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
597 BUS_DMA_NOWAIT)) {
598 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
599 error = ENOBUFS;
600 goto out;
601 }
602
603 state = 2;
604 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
605 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
606 aprint_error(": can't create dma map");
607 error = ENOBUFS;
608 goto out;
609 }
610
611 state = 3;
612 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
613 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
614 aprint_error(": can't load dma map");
615 error = ENOBUFS;
616 goto out;
617 }
618
619 state = 4;
620 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
621 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
622
623 LIST_INIT(&sc_if->sk_jfree_listhead);
624 LIST_INIT(&sc_if->sk_jinuse_listhead);
625 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
626
627 /*
628 * Now divide it up into 9K pieces and save the addresses
629 * in an array.
630 */
631 ptr = sc_if->sk_cdata.sk_jumbo_buf;
632 for (i = 0; i < MSK_JSLOTS; i++) {
633 sc_if->sk_cdata.sk_jslots[i] = ptr;
634 ptr += SK_JLEN;
635 entry = malloc(sizeof(struct sk_jpool_entry),
636 M_DEVBUF, M_NOWAIT);
637 if (entry == NULL) {
638 sc_if->sk_cdata.sk_jumbo_buf = NULL;
639 aprint_error(": no memory for jumbo buffer queue!");
640 error = ENOBUFS;
641 goto out;
642 }
643 entry->slot = i;
644 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
645 entry, jpool_entries);
646 }
647 out:
648 if (error != 0) {
649 switch (state) {
650 case 4:
651 bus_dmamap_unload(sc->sc_dmatag,
652 sc_if->sk_cdata.sk_rx_jumbo_map);
653 case 3:
654 bus_dmamap_destroy(sc->sc_dmatag,
655 sc_if->sk_cdata.sk_rx_jumbo_map);
656 case 2:
657 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
658 case 1:
659 bus_dmamem_free(sc->sc_dmatag,
660 &sc_if->sk_cdata.sk_jumbo_seg,
661 sc_if->sk_cdata.sk_jumbo_nseg);
662 break;
663 default:
664 break;
665 }
666 }
667
668 return error;
669 }
670
671 static void
672 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
673 {
674 struct sk_softc *sc = sc_if->sk_softc;
675
676 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
677 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
678 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
679 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
680 sc_if->sk_cdata.sk_jumbo_nseg);
681 }
682
683 /*
684 * Allocate a jumbo buffer.
685 */
686 void *
687 msk_jalloc(struct sk_if_softc *sc_if)
688 {
689 struct sk_jpool_entry *entry;
690
691 mutex_enter(&sc_if->sk_jpool_mtx);
692 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
693
694 if (entry == NULL) {
695 mutex_exit(&sc_if->sk_jpool_mtx);
696 return NULL;
697 }
698
699 LIST_REMOVE(entry, jpool_entries);
700 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
701 mutex_exit(&sc_if->sk_jpool_mtx);
702 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
703 }
704
705 /*
706 * Release a jumbo buffer.
707 */
708 void
709 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
710 {
711 struct sk_jpool_entry *entry;
712 struct sk_if_softc *sc;
713 int i;
714
715 /* Extract the softc struct pointer. */
716 sc = (struct sk_if_softc *)arg;
717
718 if (sc == NULL)
719 panic("msk_jfree: can't find softc pointer!");
720
721 /* calculate the slot this buffer belongs to */
722 i = ((vaddr_t)buf
723 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
724
725 if ((i < 0) || (i >= MSK_JSLOTS))
726 panic("msk_jfree: asked to free buffer that we don't manage!");
727
728 mutex_enter(&sc->sk_jpool_mtx);
729 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
730 if (entry == NULL)
731 panic("msk_jfree: buffer not in use!");
732 entry->slot = i;
733 LIST_REMOVE(entry, jpool_entries);
734 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
735 mutex_exit(&sc->sk_jpool_mtx);
736
737 if (__predict_true(m != NULL))
738 pool_cache_put(mb_cache, m);
739
740 /* Now that we know we have a free RX buffer, refill if running out */
741 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
742 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
743 callout_schedule(&sc->sk_tick_rx, 0);
744 }
745
746 int
747 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
748 {
749 struct sk_if_softc *sc = ifp->if_softc;
750 int s, error;
751
752 s = splnet();
753
754 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
755 switch (cmd) {
756 case SIOCSIFFLAGS:
757 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
758 break;
759
760 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
761 case IFF_RUNNING:
762 msk_stop(ifp, 1);
763 break;
764 case IFF_UP:
765 msk_init(ifp);
766 break;
767 case IFF_UP | IFF_RUNNING:
768 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
769 msk_setpromisc(sc);
770 msk_setmulti(sc);
771 } else
772 msk_init(ifp);
773 break;
774 }
775 sc->sk_if_flags = ifp->if_flags;
776 break;
777 default:
778 error = ether_ioctl(ifp, cmd, data);
779 if (error == ENETRESET) {
780 error = 0;
781 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
782 ;
783 else if (ifp->if_flags & IFF_RUNNING) {
784 /*
785 * Multicast list has changed; set the hardware
786 * filter accordingly.
787 */
788 msk_setmulti(sc);
789 }
790 }
791 break;
792 }
793
794 splx(s);
795 return error;
796 }
797
798 void
799 msk_update_int_mod(struct sk_softc *sc, int verbose)
800 {
801 u_int32_t imtimer_ticks;
802
803 /*
804 * Configure interrupt moderation. The moderation timer
805 * defers interrupts specified in the interrupt moderation
806 * timer mask based on the timeout specified in the interrupt
807 * moderation timer init register. Each bit in the timer
808 * register represents one tick, so to specify a timeout in
809 * microseconds, we have to multiply by the correct number of
810 * ticks-per-microsecond.
811 */
812 switch (sc->sk_type) {
813 case SK_YUKON_EC:
814 case SK_YUKON_EC_U:
815 case SK_YUKON_EX:
816 case SK_YUKON_SUPR:
817 case SK_YUKON_ULTRA2:
818 case SK_YUKON_OPTIMA:
819 case SK_YUKON_PRM:
820 case SK_YUKON_OPTIMA2:
821 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
822 break;
823 case SK_YUKON_FE:
824 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
825 break;
826 case SK_YUKON_FE_P:
827 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
828 break;
829 case SK_YUKON_XL:
830 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
831 break;
832 default:
833 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
834 }
835 if (verbose)
836 aprint_verbose_dev(sc->sk_dev,
837 "interrupt moderation is %d us\n", sc->sk_int_mod);
838 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
839 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
840 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
841 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
842 sc->sk_int_mod_pending = 0;
843 }
844
845 static int
846 msk_lookup(const struct pci_attach_args *pa)
847 {
848 const struct msk_product *pmsk;
849
850 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
851 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
852 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
853 return 1;
854 }
855 return 0;
856 }
857
858 /*
859 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
860 * IDs against our list and return a device name if we find a match.
861 */
862 int
863 mskc_probe(device_t parent, cfdata_t match, void *aux)
864 {
865 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
866
867 return msk_lookup(pa);
868 }
869
870 /*
871 * Force the GEnesis into reset, then bring it out of reset.
872 */
873 void
874 mskc_reset(struct sk_softc *sc)
875 {
876 u_int32_t imtimer_ticks, reg1;
877 int reg;
878
879 DPRINTFN(2, ("mskc_reset\n"));
880
881 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
882 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
883
884 DELAY(1000);
885 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
886 DELAY(2);
887 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
888 sk_win_write_1(sc, SK_TESTCTL1, 2);
889
890 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
891 sc->sk_type >= SK_YUKON_FE_P) {
892 uint32_t our;
893
894 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
895
896 /* enable all clocks. */
897 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
898 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
899 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
900 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
901 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
902 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
903 /* Set all bits to 0 except bits 15..12 */
904 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
905 /* Set to default value */
906 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
907
908 /*
909 * Disable status race, workaround for Yukon EC Ultra &
910 * Yukon EX.
911 */
912 reg1 = sk_win_read_4(sc, SK_GPIO);
913 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
914 sk_win_write_4(sc, SK_GPIO, reg1);
915 sk_win_read_4(sc, SK_GPIO);
916 }
917
918 /* release PHY from PowerDown/Coma mode. */
919 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
920 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
921 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
922 else
923 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
924 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
925
926 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
927 sk_win_write_1(sc, SK_Y2_CLKGATE,
928 SK_Y2_CLKGATE_LINK1_GATE_DIS |
929 SK_Y2_CLKGATE_LINK2_GATE_DIS |
930 SK_Y2_CLKGATE_LINK1_CORE_DIS |
931 SK_Y2_CLKGATE_LINK2_CORE_DIS |
932 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
933 else
934 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
935
936 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
937 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
938 DELAY(1000);
939 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
940 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
941
942 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
943 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
944 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
945 }
946
947 sk_win_write_1(sc, SK_TESTCTL1, 1);
948
949 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
950 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
951 CSR_READ_2(sc, SK_LINK_CTRL)));
952
953 /* Disable ASF */
954 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
955 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
956
957 /* Clear I2C IRQ noise */
958 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
959
960 /* Disable hardware timer */
961 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
962 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
963
964 /* Disable descriptor polling */
965 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
966
967 /* Disable time stamps */
968 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
969 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
970
971 /* Enable RAM interface */
972 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
973 for (reg = SK_TO0;reg <= SK_TO11; reg++)
974 sk_win_write_1(sc, reg, 36);
975 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
976 for (reg = SK_TO0;reg <= SK_TO11; reg++)
977 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
978
979 /*
980 * Configure interrupt moderation. The moderation timer
981 * defers interrupts specified in the interrupt moderation
982 * timer mask based on the timeout specified in the interrupt
983 * moderation timer init register. Each bit in the timer
984 * register represents one tick, so to specify a timeout in
985 * microseconds, we have to multiply by the correct number of
986 * ticks-per-microsecond.
987 */
988 switch (sc->sk_type) {
989 case SK_YUKON_EC:
990 case SK_YUKON_EC_U:
991 case SK_YUKON_EX:
992 case SK_YUKON_SUPR:
993 case SK_YUKON_ULTRA2:
994 case SK_YUKON_OPTIMA:
995 case SK_YUKON_PRM:
996 case SK_YUKON_OPTIMA2:
997 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
998 break;
999 case SK_YUKON_FE:
1000 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1001 break;
1002 case SK_YUKON_FE_P:
1003 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1004 break;
1005 case SK_YUKON_XL:
1006 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1007 break;
1008 default:
1009 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1010 break;
1011 }
1012
1013 /* Reset status ring. */
1014 memset(sc->sk_status_ring, 0,
1015 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1016 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1017 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1018 sc->sk_status_idx = 0;
1019
1020 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1021 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1022
1023 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1024 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1025 sc->sk_status_map->dm_segs[0].ds_addr);
1026 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1027 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
1028 if (sc->sk_type == SK_YUKON_EC &&
1029 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1030 /* WA for dev. #4.3 */
1031 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
1032 /* WA for dev. #4.18 */
1033 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1034 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1035 } else {
1036 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1037 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1038 if (sc->sk_type == SK_YUKON_XL)
1039 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1040 else
1041 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1042 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1043 }
1044
1045 #if 0
1046 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1047 #endif
1048 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1049
1050 /* Enable status unit. */
1051 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1052
1053 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1054 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1055 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1056
1057 msk_update_int_mod(sc, 0);
1058 }
1059
1060 int
1061 msk_probe(device_t parent, cfdata_t match, void *aux)
1062 {
1063 struct skc_attach_args *sa = aux;
1064
1065 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1066 return (0);
1067
1068 switch (sa->skc_type) {
1069 case SK_YUKON_XL:
1070 case SK_YUKON_EC_U:
1071 case SK_YUKON_EX:
1072 case SK_YUKON_EC:
1073 case SK_YUKON_FE:
1074 case SK_YUKON_FE_P:
1075 case SK_YUKON_SUPR:
1076 case SK_YUKON_ULTRA2:
1077 case SK_YUKON_OPTIMA:
1078 case SK_YUKON_PRM:
1079 case SK_YUKON_OPTIMA2:
1080 return (1);
1081 }
1082
1083 return (0);
1084 }
1085
1086 void
1087 msk_reset(struct sk_if_softc *sc_if)
1088 {
1089 /* GMAC and GPHY Reset */
1090 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1091 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1092 DELAY(1000);
1093 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1094 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1095 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1096 }
1097
1098 static bool
1099 msk_resume(device_t dv, const pmf_qual_t *qual)
1100 {
1101 struct sk_if_softc *sc_if = device_private(dv);
1102
1103 msk_init_yukon(sc_if);
1104 return true;
1105 }
1106
1107 /*
1108 * Each XMAC chip is attached as a separate logical IP interface.
1109 * Single port cards will have only one logical interface of course.
1110 */
1111 void
1112 msk_attach(device_t parent, device_t self, void *aux)
1113 {
1114 struct sk_if_softc *sc_if = device_private(self);
1115 struct sk_softc *sc = device_private(parent);
1116 struct skc_attach_args *sa = aux;
1117 struct ifnet *ifp;
1118 void *kva;
1119 int i;
1120 u_int32_t chunk;
1121 int mii_flags;
1122
1123 sc_if->sk_dev = self;
1124 sc_if->sk_port = sa->skc_port;
1125 sc_if->sk_softc = sc;
1126 sc->sk_if[sa->skc_port] = sc_if;
1127
1128 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1129
1130 /*
1131 * Get station address for this interface. Note that
1132 * dual port cards actually come with three station
1133 * addresses: one for each port, plus an extra. The
1134 * extra one is used by the SysKonnect driver software
1135 * as a 'virtual' station address for when both ports
1136 * are operating in failover mode. Currently we don't
1137 * use this extra address.
1138 */
1139 for (i = 0; i < ETHER_ADDR_LEN; i++)
1140 sc_if->sk_enaddr[i] =
1141 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1142
1143 aprint_normal(": Ethernet address %s\n",
1144 ether_sprintf(sc_if->sk_enaddr));
1145
1146 /*
1147 * Set up RAM buffer addresses. The Yukon2 has a small amount
1148 * of SRAM on it, somewhere between 4K and 48K. We need to
1149 * divide this up between the transmitter and receiver. We
1150 * give the receiver 2/3 of the memory (rounded down), and the
1151 * transmitter whatever remains.
1152 */
1153 if (sc->sk_ramsize) {
1154 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1155 sc_if->sk_rx_ramstart = 0;
1156 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1157 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1158 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1159 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1160
1161 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1162 " tx_ramstart=%#x tx_ramend=%#x\n",
1163 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1164 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1165 }
1166
1167 /* Allocate the descriptor queues. */
1168 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1169 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1170 BUS_DMA_NOWAIT)) {
1171 aprint_error(": can't alloc rx buffers\n");
1172 goto fail;
1173 }
1174 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1175 sc_if->sk_ring_nseg,
1176 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1177 aprint_error(": can't map dma buffers (%zu bytes)\n",
1178 sizeof(struct msk_ring_data));
1179 goto fail_1;
1180 }
1181 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1182 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1183 &sc_if->sk_ring_map)) {
1184 aprint_error(": can't create dma map\n");
1185 goto fail_2;
1186 }
1187 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1188 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1189 aprint_error(": can't load dma map\n");
1190 goto fail_3;
1191 }
1192 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1193 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1194
1195 if (sc->sk_type != SK_YUKON_FE &&
1196 sc->sk_type != SK_YUKON_FE_P)
1197 sc_if->sk_pktlen = SK_JLEN;
1198 else
1199 sc_if->sk_pktlen = MCLBYTES;
1200
1201 /* Try to allocate memory for jumbo buffers. */
1202 if (msk_alloc_jumbo_mem(sc_if)) {
1203 aprint_error(": jumbo buffer allocation failed\n");
1204 goto fail_3;
1205 }
1206
1207 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1208 if (sc->sk_type != SK_YUKON_FE &&
1209 sc->sk_type != SK_YUKON_FE_P)
1210 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1211
1212 ifp = &sc_if->sk_ethercom.ec_if;
1213 ifp->if_softc = sc_if;
1214 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1215 ifp->if_ioctl = msk_ioctl;
1216 ifp->if_start = msk_start;
1217 ifp->if_stop = msk_stop;
1218 ifp->if_init = msk_init;
1219 ifp->if_watchdog = msk_watchdog;
1220 ifp->if_baudrate = 1000000000;
1221 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1222 IFQ_SET_READY(&ifp->if_snd);
1223 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1224
1225 msk_reset(sc_if);
1226
1227 /*
1228 * Do miibus setup.
1229 */
1230 msk_init_yukon(sc_if);
1231
1232 DPRINTFN(2, ("msk_attach: 1\n"));
1233
1234 sc_if->sk_mii.mii_ifp = ifp;
1235 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1236 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1237 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1238
1239 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1240 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1241 ether_mediachange, ether_mediastatus);
1242 mii_flags = MIIF_DOPAUSE;
1243 if (sc->sk_fibertype)
1244 mii_flags |= MIIF_HAVEFIBER;
1245 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1246 MII_OFFSET_ANY, mii_flags);
1247 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1248 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1249 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1250 0, NULL);
1251 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1252 } else
1253 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1254
1255 callout_init(&sc_if->sk_tick_ch, 0);
1256 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1257 callout_schedule(&sc_if->sk_tick_ch, hz);
1258
1259 callout_init(&sc_if->sk_tick_rx, 0);
1260 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1261
1262 /*
1263 * Call MI attach routines.
1264 */
1265 if_attach(ifp);
1266 if_deferred_start_init(ifp, NULL);
1267 ether_ifattach(ifp, sc_if->sk_enaddr);
1268
1269 if (pmf_device_register(self, NULL, msk_resume))
1270 pmf_class_network_register(self, ifp);
1271 else
1272 aprint_error_dev(self, "couldn't establish power handler\n");
1273
1274 if (sc->rnd_attached++ == 0) {
1275 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1276 RND_TYPE_NET, RND_FLAG_DEFAULT);
1277 }
1278
1279 DPRINTFN(2, ("msk_attach: end\n"));
1280 return;
1281
1282 fail_3:
1283 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1284 fail_2:
1285 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1286 fail_1:
1287 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1288 fail:
1289 sc->sk_if[sa->skc_port] = NULL;
1290 }
1291
1292 int
1293 msk_detach(device_t self, int flags)
1294 {
1295 struct sk_if_softc *sc_if = device_private(self);
1296 struct sk_softc *sc = sc_if->sk_softc;
1297 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1298
1299 if (sc->sk_if[sc_if->sk_port] == NULL)
1300 return (0);
1301
1302 msk_stop(ifp, 0);
1303
1304 if (--sc->rnd_attached == 0)
1305 rnd_detach_source(&sc->rnd_source);
1306
1307 callout_halt(&sc_if->sk_tick_ch, NULL);
1308 callout_destroy(&sc_if->sk_tick_ch);
1309
1310 callout_halt(&sc_if->sk_tick_rx, NULL);
1311 callout_destroy(&sc_if->sk_tick_rx);
1312
1313 /* Detach any PHYs we might have. */
1314 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1315 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1316
1317 /* Delete any remaining media. */
1318 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1319
1320 pmf_device_deregister(self);
1321
1322 ether_ifdetach(ifp);
1323 if_detach(ifp);
1324
1325 msk_free_jumbo_mem(sc_if);
1326
1327 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1328 sizeof(struct msk_ring_data));
1329 bus_dmamem_free(sc->sc_dmatag,
1330 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1331 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1332 sc->sk_if[sc_if->sk_port] = NULL;
1333
1334 return (0);
1335 }
1336
1337 int
1338 mskcprint(void *aux, const char *pnp)
1339 {
1340 struct skc_attach_args *sa = aux;
1341
1342 if (pnp)
1343 aprint_normal("msk port %c at %s",
1344 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1345 else
1346 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1347 return (UNCONF);
1348 }
1349
1350 /*
1351 * Attach the interface. Allocate softc structures, do ifmedia
1352 * setup and ethernet/BPF attach.
1353 */
1354 void
1355 mskc_attach(device_t parent, device_t self, void *aux)
1356 {
1357 struct sk_softc *sc = device_private(self);
1358 struct pci_attach_args *pa = aux;
1359 struct skc_attach_args skca;
1360 pci_chipset_tag_t pc = pa->pa_pc;
1361 pcireg_t command, memtype;
1362 pci_intr_handle_t ih;
1363 const char *intrstr = NULL;
1364 int rc, sk_nodenum;
1365 u_int8_t hw, pmd;
1366 const char *revstr = NULL;
1367 const struct sysctlnode *node;
1368 void *kva;
1369 char intrbuf[PCI_INTRSTR_LEN];
1370
1371 DPRINTFN(2, ("begin mskc_attach\n"));
1372
1373 sc->sk_dev = self;
1374 /*
1375 * Handle power management nonsense.
1376 */
1377 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1378
1379 if (command == 0x01) {
1380 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1381 if (command & SK_PSTATE_MASK) {
1382 u_int32_t iobase, membase, irq;
1383
1384 /* Save important PCI config data. */
1385 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1386 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1387 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1388
1389 /* Reset the power state. */
1390 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1391 "mode -- setting to D0\n",
1392 command & SK_PSTATE_MASK);
1393 command &= 0xFFFFFFFC;
1394 pci_conf_write(pc, pa->pa_tag,
1395 SK_PCI_PWRMGMTCTRL, command);
1396
1397 /* Restore PCI config data. */
1398 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1399 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1400 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1401 }
1402 }
1403
1404 /*
1405 * Map control/status registers.
1406 */
1407 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1408 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1409 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1410 aprint_error(": can't map mem space\n");
1411 return;
1412 }
1413
1414 if (pci_dma64_available(pa))
1415 sc->sc_dmatag = pa->pa_dmat64;
1416 else
1417 sc->sc_dmatag = pa->pa_dmat;
1418
1419 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1420 command |= PCI_COMMAND_MASTER_ENABLE;
1421 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1422
1423 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1424 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1425
1426 /* bail out here if chip is not recognized */
1427 if (!(SK_IS_YUKON2(sc))) {
1428 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1429 goto fail_1;
1430 }
1431 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1432
1433 /* Allocate interrupt */
1434 if (pci_intr_map(pa, &ih)) {
1435 aprint_error(": couldn't map interrupt\n");
1436 goto fail_1;
1437 }
1438
1439 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1440 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, msk_intr,
1441 sc, device_xname(sc->sk_dev));
1442 if (sc->sk_intrhand == NULL) {
1443 aprint_error(": couldn't establish interrupt");
1444 if (intrstr != NULL)
1445 aprint_error(" at %s", intrstr);
1446 aprint_error("\n");
1447 goto fail_1;
1448 }
1449 sc->sk_pc = pc;
1450
1451 if (bus_dmamem_alloc(sc->sc_dmatag,
1452 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1453 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1454 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1455 aprint_error(": can't alloc status buffers\n");
1456 goto fail_2;
1457 }
1458
1459 if (bus_dmamem_map(sc->sc_dmatag,
1460 &sc->sk_status_seg, sc->sk_status_nseg,
1461 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1462 &kva, BUS_DMA_NOWAIT)) {
1463 aprint_error(": can't map dma buffers (%zu bytes)\n",
1464 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1465 goto fail_3;
1466 }
1467 if (bus_dmamap_create(sc->sc_dmatag,
1468 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1469 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1470 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1471 aprint_error(": can't create dma map\n");
1472 goto fail_4;
1473 }
1474 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1475 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1476 NULL, BUS_DMA_NOWAIT)) {
1477 aprint_error(": can't load dma map\n");
1478 goto fail_5;
1479 }
1480 sc->sk_status_ring = (struct msk_status_desc *)kva;
1481
1482 sc->sk_int_mod = SK_IM_DEFAULT;
1483 sc->sk_int_mod_pending = 0;
1484
1485 /* Reset the adapter. */
1486 mskc_reset(sc);
1487
1488 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1489 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1490
1491 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1492 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1493 sc->sk_fibertype = 1;
1494
1495 switch (sc->sk_type) {
1496 case SK_YUKON_XL:
1497 sc->sk_name = "Yukon-2 XL";
1498 break;
1499 case SK_YUKON_EC_U:
1500 sc->sk_name = "Yukon-2 EC Ultra";
1501 break;
1502 case SK_YUKON_EX:
1503 sc->sk_name = "Yukon-2 Extreme";
1504 break;
1505 case SK_YUKON_EC:
1506 sc->sk_name = "Yukon-2 EC";
1507 break;
1508 case SK_YUKON_FE:
1509 sc->sk_name = "Yukon-2 FE";
1510 break;
1511 case SK_YUKON_FE_P:
1512 sc->sk_name = "Yukon-2 FE+";
1513 break;
1514 case SK_YUKON_SUPR:
1515 sc->sk_name = "Yukon-2 Supreme";
1516 break;
1517 case SK_YUKON_ULTRA2:
1518 sc->sk_name = "Yukon-2 Ultra 2";
1519 break;
1520 case SK_YUKON_OPTIMA:
1521 sc->sk_name = "Yukon-2 Optima";
1522 break;
1523 case SK_YUKON_PRM:
1524 sc->sk_name = "Yukon-2 Optima Prime";
1525 break;
1526 case SK_YUKON_OPTIMA2:
1527 sc->sk_name = "Yukon-2 Optima 2";
1528 break;
1529 default:
1530 sc->sk_name = "Yukon (Unknown)";
1531 }
1532
1533 if (sc->sk_type == SK_YUKON_XL) {
1534 switch (sc->sk_rev) {
1535 case SK_YUKON_XL_REV_A0:
1536 revstr = "A0";
1537 break;
1538 case SK_YUKON_XL_REV_A1:
1539 revstr = "A1";
1540 break;
1541 case SK_YUKON_XL_REV_A2:
1542 revstr = "A2";
1543 break;
1544 case SK_YUKON_XL_REV_A3:
1545 revstr = "A3";
1546 break;
1547 default:
1548 break;
1549 }
1550 }
1551
1552 if (sc->sk_type == SK_YUKON_EC) {
1553 switch (sc->sk_rev) {
1554 case SK_YUKON_EC_REV_A1:
1555 revstr = "A1";
1556 break;
1557 case SK_YUKON_EC_REV_A2:
1558 revstr = "A2";
1559 break;
1560 case SK_YUKON_EC_REV_A3:
1561 revstr = "A3";
1562 break;
1563 default:
1564 break;
1565 }
1566 }
1567
1568 if (sc->sk_type == SK_YUKON_FE) {
1569 switch (sc->sk_rev) {
1570 case SK_YUKON_FE_REV_A1:
1571 revstr = "A1";
1572 break;
1573 case SK_YUKON_FE_REV_A2:
1574 revstr = "A2";
1575 break;
1576 default:
1577 break;
1578 }
1579 }
1580
1581 if (sc->sk_type == SK_YUKON_EC_U) {
1582 switch (sc->sk_rev) {
1583 case SK_YUKON_EC_U_REV_A0:
1584 revstr = "A0";
1585 break;
1586 case SK_YUKON_EC_U_REV_A1:
1587 revstr = "A1";
1588 break;
1589 case SK_YUKON_EC_U_REV_B0:
1590 revstr = "B0";
1591 break;
1592 case SK_YUKON_EC_U_REV_B1:
1593 revstr = "B1";
1594 break;
1595 default:
1596 break;
1597 }
1598 }
1599
1600 if (sc->sk_type == SK_YUKON_FE) {
1601 switch (sc->sk_rev) {
1602 case SK_YUKON_FE_REV_A1:
1603 revstr = "A1";
1604 break;
1605 case SK_YUKON_FE_REV_A2:
1606 revstr = "A2";
1607 break;
1608 default:
1609 ;
1610 }
1611 }
1612
1613 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1614 revstr = "A0";
1615
1616 if (sc->sk_type == SK_YUKON_EX) {
1617 switch (sc->sk_rev) {
1618 case SK_YUKON_EX_REV_A0:
1619 revstr = "A0";
1620 break;
1621 case SK_YUKON_EX_REV_B0:
1622 revstr = "B0";
1623 break;
1624 default:
1625 ;
1626 }
1627 }
1628
1629 if (sc->sk_type == SK_YUKON_SUPR) {
1630 switch (sc->sk_rev) {
1631 case SK_YUKON_SUPR_REV_A0:
1632 revstr = "A0";
1633 break;
1634 case SK_YUKON_SUPR_REV_B0:
1635 revstr = "B0";
1636 break;
1637 case SK_YUKON_SUPR_REV_B1:
1638 revstr = "B1";
1639 break;
1640 default:
1641 ;
1642 }
1643 }
1644
1645 if (sc->sk_type == SK_YUKON_PRM) {
1646 switch (sc->sk_rev) {
1647 case SK_YUKON_PRM_REV_Z1:
1648 revstr = "Z1";
1649 break;
1650 case SK_YUKON_PRM_REV_A0:
1651 revstr = "A0";
1652 break;
1653 default:
1654 ;
1655 }
1656 }
1657
1658 /* Announce the product name. */
1659 aprint_normal(", %s", sc->sk_name);
1660 if (revstr != NULL)
1661 aprint_normal(" rev. %s", revstr);
1662 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1663
1664 sc->sk_macs = 1;
1665
1666 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1667 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1668 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1669 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1670 sc->sk_macs++;
1671 }
1672
1673 skca.skc_port = SK_PORT_A;
1674 skca.skc_type = sc->sk_type;
1675 skca.skc_rev = sc->sk_rev;
1676 (void)config_found(sc->sk_dev, &skca, mskcprint);
1677
1678 if (sc->sk_macs > 1) {
1679 skca.skc_port = SK_PORT_B;
1680 skca.skc_type = sc->sk_type;
1681 skca.skc_rev = sc->sk_rev;
1682 (void)config_found(sc->sk_dev, &skca, mskcprint);
1683 }
1684
1685 /* Turn on the 'driver is loaded' LED. */
1686 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1687
1688 /* skc sysctl setup */
1689
1690 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1691 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1692 SYSCTL_DESCR("mskc per-controller controls"),
1693 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1694 CTL_EOL)) != 0) {
1695 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1696 goto fail_6;
1697 }
1698
1699 sk_nodenum = node->sysctl_num;
1700
1701 /* interrupt moderation time in usecs */
1702 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1703 CTLFLAG_READWRITE,
1704 CTLTYPE_INT, "int_mod",
1705 SYSCTL_DESCR("msk interrupt moderation timer"),
1706 msk_sysctl_handler, 0, (void *)sc,
1707 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1708 CTL_EOL)) != 0) {
1709 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1710 goto fail_6;
1711 }
1712
1713 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1714 aprint_error_dev(self, "couldn't establish power handler\n");
1715
1716 return;
1717
1718 fail_6:
1719 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1720 fail_4:
1721 bus_dmamem_unmap(sc->sc_dmatag, kva,
1722 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1723 fail_3:
1724 bus_dmamem_free(sc->sc_dmatag,
1725 &sc->sk_status_seg, sc->sk_status_nseg);
1726 sc->sk_status_nseg = 0;
1727 fail_5:
1728 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1729 fail_2:
1730 pci_intr_disestablish(pc, sc->sk_intrhand);
1731 sc->sk_intrhand = NULL;
1732 fail_1:
1733 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1734 sc->sk_bsize = 0;
1735 }
1736
1737 int
1738 mskc_detach(device_t self, int flags)
1739 {
1740 struct sk_softc *sc = device_private(self);
1741 int rv;
1742
1743 if (sc->sk_intrhand) {
1744 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1745 sc->sk_intrhand = NULL;
1746 }
1747
1748 rv = config_detach_children(self, flags);
1749 if (rv != 0)
1750 return (rv);
1751
1752 if (sc->sk_status_nseg > 0) {
1753 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1754 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1755 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1756 bus_dmamem_free(sc->sc_dmatag,
1757 &sc->sk_status_seg, sc->sk_status_nseg);
1758 }
1759
1760 if (sc->sk_bsize > 0)
1761 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1762
1763 return(0);
1764 }
1765
1766 int
1767 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1768 {
1769 struct sk_softc *sc = sc_if->sk_softc;
1770 struct msk_tx_desc *f = NULL;
1771 u_int32_t frag, cur, hiaddr, old_hiaddr, total;
1772 u_int32_t entries = 0;
1773 size_t i;
1774 struct sk_txmap_entry *entry;
1775 bus_dmamap_t txmap;
1776 bus_addr_t addr;
1777
1778 DPRINTFN(2, ("msk_encap\n"));
1779
1780 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1781 if (entry == NULL) {
1782 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1783 return (ENOBUFS);
1784 }
1785 txmap = entry->dmamap;
1786
1787 cur = frag = *txidx;
1788
1789 #ifdef MSK_DEBUG
1790 if (mskdebug >= 2)
1791 msk_dump_mbuf(m_head);
1792 #endif
1793
1794 /*
1795 * Start packing the mbufs in this chain into
1796 * the fragment pointers. Stop when we run out
1797 * of fragments or hit the end of the mbuf chain.
1798 */
1799 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1800 BUS_DMA_NOWAIT)) {
1801 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1802 return (ENOBUFS);
1803 }
1804
1805 /* Count how many tx descriptors needed. */
1806 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1807 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1808 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1809 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1810 total++;
1811 }
1812 total++;
1813 }
1814
1815 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1816 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1817 bus_dmamap_unload(sc->sc_dmatag, txmap);
1818 return (ENOBUFS);
1819 }
1820
1821 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1822 txmap->dm_nsegs, total));
1823
1824 /* Sync the DMA map. */
1825 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1826 BUS_DMASYNC_PREWRITE);
1827
1828 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1829 for (i = 0; i < txmap->dm_nsegs; i++) {
1830 addr = txmap->dm_segs[i].ds_addr;
1831 DPRINTFN(2, ("msk_encap: addr %llx\n",
1832 (unsigned long long)addr));
1833 hiaddr = MSK_ADDR_HI(addr);
1834
1835 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1836 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1837 f->sk_addr = htole32(hiaddr);
1838 f->sk_len = 0;
1839 f->sk_ctl = 0;
1840 if (i == 0)
1841 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1842 else
1843 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1844 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1845 SK_INC(frag, MSK_TX_RING_CNT);
1846 entries++;
1847 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1848 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1849 }
1850
1851 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1852 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1853 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1854 f->sk_ctl = 0;
1855 if (i == 0) {
1856 if (hiaddr != old_hiaddr)
1857 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1858 else
1859 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1860 } else
1861 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1862 cur = frag;
1863 SK_INC(frag, MSK_TX_RING_CNT);
1864 entries++;
1865 }
1866 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1867
1868 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1869 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1870
1871 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1872 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1873
1874 /* Sync descriptors before handing to chip */
1875 MSK_CDTXSYNC(sc_if, *txidx, entries,
1876 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1877
1878 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1879
1880 /* Sync first descriptor to hand it off */
1881 MSK_CDTXSYNC(sc_if, *txidx, 1,
1882 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1883
1884 sc_if->sk_cdata.sk_tx_cnt += entries;
1885
1886 #ifdef MSK_DEBUG
1887 if (mskdebug >= 2) {
1888 struct msk_tx_desc *le;
1889 u_int32_t idx;
1890 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1891 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1892 msk_dump_txdesc(le, idx);
1893 }
1894 }
1895 #endif
1896
1897 *txidx = frag;
1898
1899 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1900
1901 return (0);
1902 }
1903
1904 void
1905 msk_start(struct ifnet *ifp)
1906 {
1907 struct sk_if_softc *sc_if = ifp->if_softc;
1908 struct mbuf *m_head = NULL;
1909 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1910 int pkts = 0;
1911
1912 DPRINTFN(2, ("msk_start\n"));
1913
1914 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1915 IFQ_POLL(&ifp->if_snd, m_head);
1916 if (m_head == NULL)
1917 break;
1918
1919 /*
1920 * Pack the data into the transmit ring. If we
1921 * don't have room, set the OACTIVE flag and wait
1922 * for the NIC to drain the ring.
1923 */
1924 if (msk_encap(sc_if, m_head, &idx)) {
1925 ifp->if_flags |= IFF_OACTIVE;
1926 break;
1927 }
1928
1929 /* now we are committed to transmit the packet */
1930 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1931 pkts++;
1932
1933 /*
1934 * If there's a BPF listener, bounce a copy of this frame
1935 * to him.
1936 */
1937 bpf_mtap(ifp, m_head, BPF_D_OUT);
1938 }
1939 if (pkts == 0)
1940 return;
1941
1942 /* Transmit */
1943 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1944 sc_if->sk_cdata.sk_tx_prod = idx;
1945 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1946
1947 /* Set a timeout in case the chip goes out to lunch. */
1948 ifp->if_timer = 5;
1949 }
1950 }
1951
1952 void
1953 msk_watchdog(struct ifnet *ifp)
1954 {
1955 struct sk_if_softc *sc_if = ifp->if_softc;
1956
1957 /*
1958 * Reclaim first as there is a possibility of losing Tx completion
1959 * interrupts.
1960 */
1961 msk_txeof(sc_if);
1962 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1963 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1964
1965 ifp->if_oerrors++;
1966
1967 /* XXX Resets both ports; we shouldn't do that. */
1968 mskc_reset(sc_if->sk_softc);
1969 msk_reset(sc_if);
1970 msk_init(ifp);
1971 }
1972 }
1973
1974 static bool
1975 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1976 {
1977 struct sk_softc *sc = device_private(dv);
1978
1979 DPRINTFN(2, ("mskc_suspend\n"));
1980
1981 /* Turn off the 'driver is loaded' LED. */
1982 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1983
1984 return true;
1985 }
1986
1987 static bool
1988 mskc_resume(device_t dv, const pmf_qual_t *qual)
1989 {
1990 struct sk_softc *sc = device_private(dv);
1991
1992 DPRINTFN(2, ("mskc_resume\n"));
1993
1994 mskc_reset(sc);
1995 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1996
1997 return true;
1998 }
1999
2000 static __inline int
2001 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
2002 {
2003 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2004 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2005 YU_RXSTAT_JABBER)) != 0 ||
2006 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2007 YU_RXSTAT_BYTES(stat) != len)
2008 return (0);
2009
2010 return (1);
2011 }
2012
2013 void
2014 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
2015 {
2016 struct sk_softc *sc = sc_if->sk_softc;
2017 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2018 struct mbuf *m;
2019 unsigned cur, prod, tail, total_len = len;
2020 bus_dmamap_t dmamap;
2021
2022 cur = sc_if->sk_cdata.sk_rx_cons;
2023 prod = sc_if->sk_cdata.sk_rx_prod;
2024
2025 /* Sync the descriptor */
2026 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2027
2028 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod, sc_if->sk_cdata.sk_rx_cnt));
2029
2030 while (prod != cur) {
2031 tail = cur;
2032 SK_INC(cur, MSK_RX_RING_CNT);
2033
2034 sc_if->sk_cdata.sk_rx_cnt--;
2035 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2036 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2037 if (m != NULL)
2038 break; /* found it */
2039 }
2040 sc_if->sk_cdata.sk_rx_cons = cur;
2041 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur, sc_if->sk_cdata.sk_rx_cnt, m));
2042
2043 if (m == NULL)
2044 return;
2045
2046 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2047
2048 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2049 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2050
2051 if (total_len < SK_MIN_FRAMELEN ||
2052 total_len > ETHER_MAX_LEN_JUMBO ||
2053 msk_rxvalid(sc, rxstat, total_len) == 0) {
2054 ifp->if_ierrors++;
2055 m_freem(m);
2056 return;
2057 }
2058
2059 m_set_rcvif(m, ifp);
2060 m->m_pkthdr.len = m->m_len = total_len;
2061
2062 /* pass it on. */
2063 if_percpuq_enqueue(ifp->if_percpuq, m);
2064 }
2065
2066 void
2067 msk_txeof(struct sk_if_softc *sc_if)
2068 {
2069 struct sk_softc *sc = sc_if->sk_softc;
2070 struct msk_tx_desc *cur_tx;
2071 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2072 u_int32_t idx, reg, sk_ctl;
2073 struct sk_txmap_entry *entry;
2074
2075 DPRINTFN(2, ("msk_txeof\n"));
2076
2077 if (sc_if->sk_port == SK_PORT_A)
2078 reg = SK_STAT_BMU_TXA1_RIDX;
2079 else
2080 reg = SK_STAT_BMU_TXA2_RIDX;
2081
2082 /*
2083 * Go through our tx ring and free mbufs for those
2084 * frames that have been sent.
2085 */
2086 idx = sc_if->sk_cdata.sk_tx_cons;
2087 while (idx != sk_win_read_2(sc, reg)) {
2088 MSK_CDTXSYNC(sc_if, idx, 1,
2089 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2090
2091 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2092 sk_ctl = cur_tx->sk_ctl;
2093 #ifdef MSK_DEBUG
2094 if (mskdebug >= 2)
2095 msk_dump_txdesc(cur_tx, idx);
2096 #endif
2097 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2098 ifp->if_opackets++;
2099 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2100 entry = sc_if->sk_cdata.sk_tx_map[idx];
2101
2102 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2103 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2104
2105 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2106 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2107
2108 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2109 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2110 link);
2111 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2112 }
2113 sc_if->sk_cdata.sk_tx_cnt--;
2114 SK_INC(idx, MSK_TX_RING_CNT);
2115 }
2116 if (idx == sc_if->sk_cdata.sk_tx_cons)
2117 return;
2118
2119 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2120
2121 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2122 ifp->if_flags &= ~IFF_OACTIVE;
2123
2124 sc_if->sk_cdata.sk_tx_cons = idx;
2125 }
2126
2127 void
2128 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2129 {
2130 /* Make sure to not completely wrap around */
2131 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2132 if (msk_newbuf(sc_if,
2133 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2134 goto schedretry;
2135 }
2136 }
2137
2138 return;
2139
2140 schedretry:
2141 /* Try later */
2142 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2143 }
2144
2145 static void
2146 msk_fill_rx_tick(void *xsc_if)
2147 {
2148 struct sk_if_softc *sc_if = xsc_if;
2149 int s, rx_prod;
2150
2151 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2152
2153 s = splnet();
2154 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2155 msk_fill_rx_ring(sc_if);
2156 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2157 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2158 sc_if->sk_cdata.sk_rx_prod);
2159 }
2160 splx(s);
2161 }
2162
2163 void
2164 msk_tick(void *xsc_if)
2165 {
2166 struct sk_if_softc *sc_if = xsc_if;
2167 struct mii_data *mii = &sc_if->sk_mii;
2168 int s;
2169
2170 s = splnet();
2171 mii_tick(mii);
2172 splx(s);
2173
2174 callout_schedule(&sc_if->sk_tick_ch, hz);
2175 }
2176
2177 void
2178 msk_intr_yukon(struct sk_if_softc *sc_if)
2179 {
2180 u_int8_t status;
2181
2182 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2183 /* RX overrun */
2184 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2185 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2186 SK_RFCTL_RX_FIFO_OVER);
2187 }
2188 /* TX underrun */
2189 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2190 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2191 SK_TFCTL_TX_FIFO_UNDER);
2192 }
2193
2194 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2195 }
2196
2197 int
2198 msk_intr(void *xsc)
2199 {
2200 struct sk_softc *sc = xsc;
2201 struct sk_if_softc *sc_if;
2202 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2203 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2204 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2205 int claimed = 0;
2206 u_int32_t status;
2207 struct msk_status_desc *cur_st;
2208
2209 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2210 if (status == 0xffffffff)
2211 return (0);
2212 if (status == 0) {
2213 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2214 return (0);
2215 }
2216
2217 status = CSR_READ_4(sc, SK_ISR);
2218
2219 if (sc_if0 != NULL)
2220 ifp0 = &sc_if0->sk_ethercom.ec_if;
2221 if (sc_if1 != NULL)
2222 ifp1 = &sc_if1->sk_ethercom.ec_if;
2223
2224 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2225 (ifp0->if_flags & IFF_RUNNING)) {
2226 msk_intr_yukon(sc_if0);
2227 }
2228
2229 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2230 (ifp1->if_flags & IFF_RUNNING)) {
2231 msk_intr_yukon(sc_if1);
2232 }
2233
2234 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2235 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2236 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2237
2238 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2239 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2240 switch (cur_st->sk_opcode) {
2241 case SK_Y2_STOPC_RXSTAT:
2242 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2243 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2244 letoh32(cur_st->sk_status));
2245 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2246 msk_fill_rx_tick(sc_if);
2247 break;
2248 case SK_Y2_STOPC_TXSTAT:
2249 if (sc_if0)
2250 msk_txeof(sc_if0);
2251 if (sc_if1)
2252 msk_txeof(sc_if1);
2253 break;
2254 default:
2255 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2256 break;
2257 }
2258 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2259
2260 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2261 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2262 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2263 }
2264
2265 if (status & SK_Y2_IMR_BMU) {
2266 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2267 claimed = 1;
2268 }
2269
2270 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2271
2272 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2273 if_schedule_deferred_start(ifp0);
2274 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2275 if_schedule_deferred_start(ifp1);
2276
2277 KASSERT(sc->rnd_attached > 0);
2278 rnd_add_uint32(&sc->rnd_source, status);
2279
2280 if (sc->sk_int_mod_pending)
2281 msk_update_int_mod(sc, 1);
2282
2283 return claimed;
2284 }
2285
2286 void
2287 msk_init_yukon(struct sk_if_softc *sc_if)
2288 {
2289 u_int32_t v;
2290 u_int16_t reg;
2291 struct sk_softc *sc;
2292 int i;
2293
2294 sc = sc_if->sk_softc;
2295
2296 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2297 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2298
2299 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2300
2301 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2302 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2303
2304 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2305
2306 /* unused read of the interrupt source register */
2307 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2308 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2309
2310 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2311 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2312 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2313
2314 /* MIB Counter Clear Mode set */
2315 reg |= YU_PAR_MIB_CLR;
2316 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2317 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2318 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2319
2320 /* MIB Counter Clear Mode clear */
2321 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2322 reg &= ~YU_PAR_MIB_CLR;
2323 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2324
2325 /* receive control reg */
2326 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2327 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2328
2329 /* transmit control register */
2330 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2331
2332 /* transmit flow control register */
2333 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2334
2335 /* transmit parameter register */
2336 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2337 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2338 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2339
2340 /* serial mode register */
2341 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2342 reg = YU_SMR_DATA_BLIND(0x1c) |
2343 YU_SMR_MFL_VLAN |
2344 YU_SMR_IPG_DATA(0x1e);
2345
2346 if (sc->sk_type != SK_YUKON_FE &&
2347 sc->sk_type != SK_YUKON_FE_P)
2348 reg |= YU_SMR_MFL_JUMBO;
2349
2350 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2351
2352 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2353 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2354 /* msk_attach calls me before ether_ifattach so check null */
2355 if (ifp != NULL && ifp->if_sadl != NULL)
2356 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2357 sizeof(sc_if->sk_enaddr));
2358 /* Setup Yukon's address */
2359 for (i = 0; i < 3; i++) {
2360 /* Write Source Address 1 (unicast filter) */
2361 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2362 sc_if->sk_enaddr[i * 2] |
2363 sc_if->sk_enaddr[i * 2 + 1] << 8);
2364 }
2365
2366 for (i = 0; i < 3; i++) {
2367 reg = sk_win_read_2(sc_if->sk_softc,
2368 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2369 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2370 }
2371
2372 /* Set promiscuous mode */
2373 msk_setpromisc(sc_if);
2374
2375 /* Set multicast filter */
2376 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2377 msk_setmulti(sc_if);
2378
2379 /* enable interrupt mask for counter overflows */
2380 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2381 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2382 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2383 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2384
2385 /* Configure RX MAC FIFO Flush Mask */
2386 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2387 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2388 YU_RXSTAT_JABBER;
2389 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2390
2391 /* Configure RX MAC FIFO */
2392 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2393 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2394 SK_RFCTL_FIFO_FLUSH_ON);
2395
2396 /* Increase flush threshold to 64 bytes */
2397 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2398 SK_RFCTL_FIFO_THRESHOLD + 1);
2399
2400 /* Configure TX MAC FIFO */
2401 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2402 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2403
2404 #if 1
2405 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2406 #endif
2407 DPRINTFN(6, ("msk_init_yukon: end\n"));
2408 }
2409
2410 /*
2411 * Note that to properly initialize any part of the GEnesis chip,
2412 * you first have to take it out of reset mode.
2413 */
2414 int
2415 msk_init(struct ifnet *ifp)
2416 {
2417 struct sk_if_softc *sc_if = ifp->if_softc;
2418 struct sk_softc *sc = sc_if->sk_softc;
2419 int rc = 0, s;
2420 uint32_t imr, imtimer_ticks;
2421
2422
2423 DPRINTFN(2, ("msk_init\n"));
2424
2425 s = splnet();
2426
2427 /* Cancel pending I/O and free all RX/TX buffers. */
2428 msk_stop(ifp, 1);
2429
2430 /* Configure I2C registers */
2431
2432 /* Configure XMAC(s) */
2433 msk_init_yukon(sc_if);
2434 if ((rc = ether_mediachange(ifp)) != 0)
2435 goto out;
2436
2437 /* Configure transmit arbiter(s) */
2438 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2439 #if 0
2440 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2441 #endif
2442
2443 if (sc->sk_ramsize) {
2444 /* Configure RAMbuffers */
2445 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2446 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2447 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2448 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2449 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2450 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2451
2452 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2453 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2454 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2455 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2456 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2457 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2458 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2459 }
2460
2461 /* Configure BMUs */
2462 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2463 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2464 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2465 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2466
2467 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2468 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2469 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2470 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2471
2472 /* Make sure the sync transmit queue is disabled. */
2473 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2474
2475 /* Init descriptors */
2476 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2477 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2478 "memory for rx buffers\n");
2479 msk_stop(ifp, 1);
2480 splx(s);
2481 return ENOBUFS;
2482 }
2483
2484 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2485 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2486 "memory for tx buffers\n");
2487 msk_stop(ifp, 1);
2488 splx(s);
2489 return ENOBUFS;
2490 }
2491
2492 /* Set interrupt moderation if changed via sysctl. */
2493 switch (sc->sk_type) {
2494 case SK_YUKON_EC:
2495 case SK_YUKON_EC_U:
2496 case SK_YUKON_EX:
2497 case SK_YUKON_SUPR:
2498 case SK_YUKON_ULTRA2:
2499 case SK_YUKON_OPTIMA:
2500 case SK_YUKON_PRM:
2501 case SK_YUKON_OPTIMA2:
2502 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2503 break;
2504 case SK_YUKON_FE:
2505 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2506 break;
2507 case SK_YUKON_FE_P:
2508 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2509 break;
2510 case SK_YUKON_XL:
2511 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2512 break;
2513 default:
2514 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2515 }
2516 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2517 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2518 sk_win_write_4(sc, SK_IMTIMERINIT,
2519 SK_IM_USECS(sc->sk_int_mod));
2520 aprint_verbose_dev(sc->sk_dev,
2521 "interrupt moderation is %d us\n", sc->sk_int_mod);
2522 }
2523
2524 /* Initialize prefetch engine. */
2525 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2526 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2527 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2528 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2529 MSK_RX_RING_ADDR(sc_if, 0));
2530 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2531 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2532 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2533 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2534
2535 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2536 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2537 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2538 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2539 MSK_TX_RING_ADDR(sc_if, 0));
2540 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2541 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2542 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2543 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2544
2545 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2546 sc_if->sk_cdata.sk_rx_prod);
2547
2548 /* Configure interrupt handling */
2549 if (sc_if->sk_port == SK_PORT_A)
2550 sc->sk_intrmask |= SK_Y2_INTRS1;
2551 else
2552 sc->sk_intrmask |= SK_Y2_INTRS2;
2553 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2554 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2555
2556 ifp->if_flags |= IFF_RUNNING;
2557 ifp->if_flags &= ~IFF_OACTIVE;
2558
2559 callout_schedule(&sc_if->sk_tick_ch, hz);
2560
2561 out:
2562 splx(s);
2563 return rc;
2564 }
2565
2566 /*
2567 * Note: the logic of second parameter is inverted compared to OpenBSD
2568 * code, since this code uses the function as if_stop hook too.
2569 */
2570 void
2571 msk_stop(struct ifnet *ifp, int disable)
2572 {
2573 struct sk_if_softc *sc_if = ifp->if_softc;
2574 struct sk_softc *sc = sc_if->sk_softc;
2575 struct sk_txmap_entry *dma;
2576 int i;
2577
2578 DPRINTFN(2, ("msk_stop\n"));
2579
2580 callout_stop(&sc_if->sk_tick_ch);
2581 callout_stop(&sc_if->sk_tick_rx);
2582
2583 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2584
2585 /* Stop transfer of Tx descriptors */
2586
2587 /* Stop transfer of Rx descriptors */
2588
2589 if (disable) {
2590 /* Turn off various components of this interface. */
2591 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2592 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2593 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2594 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2595 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2596 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2597 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2598 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2599 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2600 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2601 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2602
2603 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2604 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2605
2606 /* Disable interrupts */
2607 if (sc_if->sk_port == SK_PORT_A)
2608 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2609 else
2610 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2611 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2612 }
2613
2614 /* Free RX and TX mbufs still in the queues. */
2615 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2616 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2617 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2618 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2619 }
2620 }
2621
2622 sc_if->sk_cdata.sk_rx_prod = 0;
2623 sc_if->sk_cdata.sk_rx_cons = 0;
2624 sc_if->sk_cdata.sk_rx_cnt = 0;
2625
2626 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2627 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2628 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2629 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2630 #if 1
2631 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2632 sc_if->sk_cdata.sk_tx_map[i], link);
2633 sc_if->sk_cdata.sk_tx_map[i] = 0;
2634 #endif
2635 }
2636 }
2637
2638 #if 1
2639 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2640 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2641 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2642 free(dma, M_DEVBUF);
2643 }
2644 #endif
2645 }
2646
2647 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2648 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2649
2650 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2651 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2652
2653 #ifdef MSK_DEBUG
2654 void
2655 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2656 {
2657 #define DESC_PRINT(X) \
2658 if (X) \
2659 printf("txdesc[%d]." #X "=%#x\n", \
2660 idx, X);
2661
2662 DESC_PRINT(letoh32(le->sk_addr));
2663 DESC_PRINT(letoh16(le->sk_len));
2664 DESC_PRINT(le->sk_ctl);
2665 DESC_PRINT(le->sk_opcode);
2666 #undef DESC_PRINT
2667 }
2668
2669 void
2670 msk_dump_bytes(const char *data, int len)
2671 {
2672 int c, i, j;
2673
2674 for (i = 0; i < len; i += 16) {
2675 printf("%08x ", i);
2676 c = len - i;
2677 if (c > 16) c = 16;
2678
2679 for (j = 0; j < c; j++) {
2680 printf("%02x ", data[i + j] & 0xff);
2681 if ((j & 0xf) == 7 && j > 0)
2682 printf(" ");
2683 }
2684
2685 for (; j < 16; j++)
2686 printf(" ");
2687 printf(" ");
2688
2689 for (j = 0; j < c; j++) {
2690 int ch = data[i + j] & 0xff;
2691 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2692 }
2693
2694 printf("\n");
2695
2696 if (c < 16)
2697 break;
2698 }
2699 }
2700
2701 void
2702 msk_dump_mbuf(struct mbuf *m)
2703 {
2704 int count = m->m_pkthdr.len;
2705
2706 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2707
2708 while (count > 0 && m) {
2709 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2710 m, m->m_data, m->m_len);
2711 if (mskdebug >= 4)
2712 msk_dump_bytes(mtod(m, char *), m->m_len);
2713
2714 count -= m->m_len;
2715 m = m->m_next;
2716 }
2717 }
2718 #endif
2719
2720 static int
2721 msk_sysctl_handler(SYSCTLFN_ARGS)
2722 {
2723 int error, t;
2724 struct sysctlnode node;
2725 struct sk_softc *sc;
2726
2727 node = *rnode;
2728 sc = node.sysctl_data;
2729 t = sc->sk_int_mod;
2730 node.sysctl_data = &t;
2731 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2732 if (error || newp == NULL)
2733 return error;
2734
2735 if (t < SK_IM_MIN || t > SK_IM_MAX)
2736 return EINVAL;
2737
2738 /* update the softc with sysctl-changed value, and mark
2739 for hardware update */
2740 sc->sk_int_mod = t;
2741 sc->sk_int_mod_pending = 1;
2742 return 0;
2743 }
2744
2745 /*
2746 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2747 * set up in mskc_attach()
2748 */
2749 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2750 {
2751 int rc;
2752 const struct sysctlnode *node;
2753
2754 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2755 0, CTLTYPE_NODE, "msk",
2756 SYSCTL_DESCR("msk interface controls"),
2757 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2758 goto err;
2759 }
2760
2761 msk_root_num = node->sysctl_num;
2762 return;
2763
2764 err:
2765 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2766 }
2767