if_msk.c revision 1.57 1 /* $NetBSD: if_msk.c,v 1.57 2018/06/11 19:13:38 jdolecek Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.57 2018/06/11 19:13:38 jdolecek Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 static bool mskc_suspend(device_t, const pmf_qual_t *);
98 static bool mskc_resume(device_t, const pmf_qual_t *);
99 int msk_probe(device_t, cfdata_t, void *);
100 void msk_attach(device_t, device_t, void *);
101 int mskcprint(void *, const char *);
102 int msk_intr(void *);
103 void msk_intr_yukon(struct sk_if_softc *);
104 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
105 void msk_txeof(struct sk_if_softc *, int);
106 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
107 void msk_start(struct ifnet *);
108 int msk_ioctl(struct ifnet *, u_long, void *);
109 int msk_init(struct ifnet *);
110 void msk_init_yukon(struct sk_if_softc *);
111 void msk_stop(struct ifnet *, int);
112 void msk_watchdog(struct ifnet *);
113 void msk_reset(struct sk_softc *);
114 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
115 int msk_alloc_jumbo_mem(struct sk_if_softc *);
116 void *msk_jalloc(struct sk_if_softc *);
117 void msk_jfree(struct mbuf *, void *, size_t, void *);
118 int msk_init_rx_ring(struct sk_if_softc *);
119 int msk_init_tx_ring(struct sk_if_softc *);
120
121 void msk_update_int_mod(struct sk_softc *, int);
122
123 int msk_miibus_readreg(device_t, int, int);
124 void msk_miibus_writereg(device_t, int, int, int);
125 void msk_miibus_statchg(struct ifnet *);
126
127 void msk_setfilt(struct sk_if_softc *, void *, int);
128 void msk_setmulti(struct sk_if_softc *);
129 void msk_setpromisc(struct sk_if_softc *);
130 void msk_tick(void *);
131
132 /* #define MSK_DEBUG 1 */
133 #ifdef MSK_DEBUG
134 #define DPRINTF(x) if (mskdebug) printf x
135 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
136 int mskdebug = MSK_DEBUG;
137
138 void msk_dump_txdesc(struct msk_tx_desc *, int);
139 void msk_dump_mbuf(struct mbuf *);
140 void msk_dump_bytes(const char *, int);
141 #else
142 #define DPRINTF(x)
143 #define DPRINTFN(n,x)
144 #endif
145
146 static int msk_sysctl_handler(SYSCTLFN_PROTO);
147 static int msk_root_num;
148
149 /* supported device vendors */
150 static const struct msk_product {
151 pci_vendor_id_t msk_vendor;
152 pci_product_id_t msk_product;
153 } msk_products[] = {
154 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
155 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
156 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
157 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
158 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
159 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
160 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
190 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
191 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
192 };
193
194 static inline u_int32_t
195 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
196 {
197 return CSR_READ_4(sc, reg);
198 }
199
200 static inline u_int16_t
201 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
202 {
203 return CSR_READ_2(sc, reg);
204 }
205
206 static inline u_int8_t
207 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
208 {
209 return CSR_READ_1(sc, reg);
210 }
211
212 static inline void
213 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
214 {
215 CSR_WRITE_4(sc, reg, x);
216 }
217
218 static inline void
219 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
220 {
221 CSR_WRITE_2(sc, reg, x);
222 }
223
224 static inline void
225 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
226 {
227 CSR_WRITE_1(sc, reg, x);
228 }
229
230 int
231 msk_miibus_readreg(device_t dev, int phy, int reg)
232 {
233 struct sk_if_softc *sc_if = device_private(dev);
234 u_int16_t val;
235 int i;
236
237 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
238 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
239
240 for (i = 0; i < SK_TIMEOUT; i++) {
241 DELAY(1);
242 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
243 if (val & YU_SMICR_READ_VALID)
244 break;
245 }
246
247 if (i == SK_TIMEOUT) {
248 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
249 return (0);
250 }
251
252 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
253 SK_TIMEOUT));
254
255 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
256
257 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
258 phy, reg, val));
259
260 return (val);
261 }
262
263 void
264 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
265 {
266 struct sk_if_softc *sc_if = device_private(dev);
267 int i;
268
269 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
270 phy, reg, val));
271
272 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
273 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
274 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
275
276 for (i = 0; i < SK_TIMEOUT; i++) {
277 DELAY(1);
278 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
279 break;
280 }
281
282 if (i == SK_TIMEOUT)
283 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
284 }
285
286 void
287 msk_miibus_statchg(struct ifnet *ifp)
288 {
289 struct sk_if_softc *sc_if = ifp->if_softc;
290 struct mii_data *mii = &sc_if->sk_mii;
291 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
292 int gpcr;
293
294 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
295 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
296
297 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) {
298 /* Set speed. */
299 gpcr |= YU_GPCR_SPEED_DIS;
300 switch (IFM_SUBTYPE(mii->mii_media_active)) {
301 case IFM_1000_SX:
302 case IFM_1000_LX:
303 case IFM_1000_CX:
304 case IFM_1000_T:
305 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
306 break;
307 case IFM_100_TX:
308 gpcr |= YU_GPCR_SPEED;
309 break;
310 }
311
312 /* Set duplex. */
313 gpcr |= YU_GPCR_DPLX_DIS;
314 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
315 gpcr |= YU_GPCR_DUPLEX;
316
317 /* Disable flow control. */
318 gpcr |= YU_GPCR_FCTL_DIS;
319 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
320 }
321
322 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
323
324 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
325 SK_YU_READ_2(sc_if, YUKON_GPCR)));
326 }
327
328 #define HASH_BITS 6
329
330 void
331 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
332 {
333 char *addr = addrv;
334 int base = XM_RXFILT_ENTRY(slot);
335
336 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
337 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
338 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
339 }
340
341 void
342 msk_setmulti(struct sk_if_softc *sc_if)
343 {
344 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
345 u_int32_t hashes[2] = { 0, 0 };
346 int h;
347 struct ethercom *ec = &sc_if->sk_ethercom;
348 struct ether_multi *enm;
349 struct ether_multistep step;
350 u_int16_t reg;
351
352 /* First, zot all the existing filters. */
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
357
358
359 /* Now program new ones. */
360 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
361 reg |= YU_RCR_UFLEN;
362 allmulti:
363 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
364 if ((ifp->if_flags & IFF_PROMISC) != 0)
365 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
366 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
367 hashes[0] = 0xFFFFFFFF;
368 hashes[1] = 0xFFFFFFFF;
369 }
370 } else {
371 /* First find the tail of the list. */
372 ETHER_FIRST_MULTI(step, ec, enm);
373 while (enm != NULL) {
374 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
375 ETHER_ADDR_LEN)) {
376 ifp->if_flags |= IFF_ALLMULTI;
377 goto allmulti;
378 }
379 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
380 ((1 << HASH_BITS) - 1);
381 if (h < 32)
382 hashes[0] |= (1 << h);
383 else
384 hashes[1] |= (1 << (h - 32));
385
386 ETHER_NEXT_MULTI(step, enm);
387 }
388 reg |= YU_RCR_MUFLEN;
389 }
390
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
395 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
396 }
397
398 void
399 msk_setpromisc(struct sk_if_softc *sc_if)
400 {
401 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
402
403 if (ifp->if_flags & IFF_PROMISC)
404 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
405 YU_RCR_UFLEN | YU_RCR_MUFLEN);
406 else
407 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
408 YU_RCR_UFLEN | YU_RCR_MUFLEN);
409 }
410
411 int
412 msk_init_rx_ring(struct sk_if_softc *sc_if)
413 {
414 struct msk_chain_data *cd = &sc_if->sk_cdata;
415 struct msk_ring_data *rd = sc_if->sk_rdata;
416 int i, nexti;
417
418 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
419
420 for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
422 if (i == (MSK_RX_RING_CNT - 1))
423 nexti = 0;
424 else
425 nexti = i + 1;
426 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
427 }
428
429 for (i = 0; i < MSK_RX_RING_CNT; i++) {
430 if (msk_newbuf(sc_if, i, NULL,
431 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
432 aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
433 return (ENOBUFS);
434 }
435 }
436
437 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
438 sc_if->sk_cdata.sk_rx_cons = 0;
439
440 return (0);
441 }
442
443 int
444 msk_init_tx_ring(struct sk_if_softc *sc_if)
445 {
446 struct sk_softc *sc = sc_if->sk_softc;
447 struct msk_chain_data *cd = &sc_if->sk_cdata;
448 struct msk_ring_data *rd = sc_if->sk_rdata;
449 bus_dmamap_t dmamap;
450 struct sk_txmap_entry *entry;
451 int i, nexti;
452
453 memset(sc_if->sk_rdata->sk_tx_ring, 0,
454 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
455
456 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
457 for (i = 0; i < MSK_TX_RING_CNT; i++) {
458 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
459 if (i == (MSK_TX_RING_CNT - 1))
460 nexti = 0;
461 else
462 nexti = i + 1;
463 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
464
465 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
466 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
467 return (ENOBUFS);
468
469 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
470 if (!entry) {
471 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
472 return (ENOBUFS);
473 }
474 entry->dmamap = dmamap;
475 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
476 }
477
478 sc_if->sk_cdata.sk_tx_prod = 0;
479 sc_if->sk_cdata.sk_tx_cons = 0;
480 sc_if->sk_cdata.sk_tx_cnt = 0;
481
482 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
483 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
484
485 return (0);
486 }
487
488 int
489 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
490 bus_dmamap_t dmamap)
491 {
492 struct mbuf *m_new = NULL;
493 struct sk_chain *c;
494 struct msk_rx_desc *r;
495
496 if (m == NULL) {
497 void *buf = NULL;
498
499 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
500 if (m_new == NULL)
501 return (ENOBUFS);
502
503 /* Allocate the jumbo buffer */
504 buf = msk_jalloc(sc_if);
505 if (buf == NULL) {
506 m_freem(m_new);
507 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
508 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
509 return (ENOBUFS);
510 }
511
512 /* Attach the buffer to the mbuf */
513 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
514 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
515 } else {
516 /*
517 * We're re-using a previously allocated mbuf;
518 * be sure to re-init pointers and lengths to
519 * default values.
520 */
521 m_new = m;
522 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
523 m_new->m_data = m_new->m_ext.ext_buf;
524 }
525 m_adj(m_new, ETHER_ALIGN);
526
527 c = &sc_if->sk_cdata.sk_rx_chain[i];
528 r = c->sk_le;
529 c->sk_mbuf = m_new;
530 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
531 (((vaddr_t)m_new->m_data
532 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
533 r->sk_len = htole16(SK_JLEN);
534 r->sk_ctl = 0;
535 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
536
537 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
538
539 return (0);
540 }
541
542 /*
543 * Memory management for jumbo frames.
544 */
545
546 int
547 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
548 {
549 struct sk_softc *sc = sc_if->sk_softc;
550 char *ptr, *kva;
551 bus_dma_segment_t seg;
552 int i, rseg, state, error;
553 struct sk_jpool_entry *entry;
554
555 state = error = 0;
556
557 /* Grab a big chunk o' storage. */
558 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
559 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
560 aprint_error(": can't alloc rx buffers");
561 return (ENOBUFS);
562 }
563
564 state = 1;
565 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
566 BUS_DMA_NOWAIT)) {
567 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 2;
573 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
574 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
575 aprint_error(": can't create dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 3;
581 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
582 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
583 aprint_error(": can't load dma map");
584 error = ENOBUFS;
585 goto out;
586 }
587
588 state = 4;
589 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
590 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
591
592 LIST_INIT(&sc_if->sk_jfree_listhead);
593 LIST_INIT(&sc_if->sk_jinuse_listhead);
594 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
595
596 /*
597 * Now divide it up into 9K pieces and save the addresses
598 * in an array.
599 */
600 ptr = sc_if->sk_cdata.sk_jumbo_buf;
601 for (i = 0; i < MSK_JSLOTS; i++) {
602 sc_if->sk_cdata.sk_jslots[i] = ptr;
603 ptr += SK_JLEN;
604 entry = malloc(sizeof(struct sk_jpool_entry),
605 M_DEVBUF, M_NOWAIT);
606 if (entry == NULL) {
607 sc_if->sk_cdata.sk_jumbo_buf = NULL;
608 aprint_error(": no memory for jumbo buffer queue!");
609 error = ENOBUFS;
610 goto out;
611 }
612 entry->slot = i;
613 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
614 entry, jpool_entries);
615 }
616 out:
617 if (error != 0) {
618 switch (state) {
619 case 4:
620 bus_dmamap_unload(sc->sc_dmatag,
621 sc_if->sk_cdata.sk_rx_jumbo_map);
622 case 3:
623 bus_dmamap_destroy(sc->sc_dmatag,
624 sc_if->sk_cdata.sk_rx_jumbo_map);
625 case 2:
626 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
627 case 1:
628 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
629 break;
630 default:
631 break;
632 }
633 }
634
635 return error;
636 }
637
638 /*
639 * Allocate a jumbo buffer.
640 */
641 void *
642 msk_jalloc(struct sk_if_softc *sc_if)
643 {
644 struct sk_jpool_entry *entry;
645
646 mutex_enter(&sc_if->sk_jpool_mtx);
647 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
648
649 if (entry == NULL) {
650 mutex_exit(&sc_if->sk_jpool_mtx);
651 return NULL;
652 }
653
654 LIST_REMOVE(entry, jpool_entries);
655 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
656 mutex_exit(&sc_if->sk_jpool_mtx);
657 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
658 }
659
660 /*
661 * Release a jumbo buffer.
662 */
663 void
664 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
665 {
666 struct sk_jpool_entry *entry;
667 struct sk_if_softc *sc;
668 int i;
669
670 /* Extract the softc struct pointer. */
671 sc = (struct sk_if_softc *)arg;
672
673 if (sc == NULL)
674 panic("msk_jfree: can't find softc pointer!");
675
676 /* calculate the slot this buffer belongs to */
677 i = ((vaddr_t)buf
678 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
679
680 if ((i < 0) || (i >= MSK_JSLOTS))
681 panic("msk_jfree: asked to free buffer that we don't manage!");
682
683 mutex_enter(&sc->sk_jpool_mtx);
684 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
685 if (entry == NULL)
686 panic("msk_jfree: buffer not in use!");
687 entry->slot = i;
688 LIST_REMOVE(entry, jpool_entries);
689 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
690 mutex_exit(&sc->sk_jpool_mtx);
691
692 if (__predict_true(m != NULL))
693 pool_cache_put(mb_cache, m);
694 }
695
696 int
697 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
698 {
699 struct sk_if_softc *sc = ifp->if_softc;
700 int s, error;
701
702 s = splnet();
703
704 DPRINTFN(2, ("msk_ioctl ETHER\n"));
705 switch (cmd) {
706 case SIOCSIFFLAGS:
707 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
708 break;
709
710 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
711 case IFF_RUNNING:
712 msk_stop(ifp, 1);
713 break;
714 case IFF_UP:
715 msk_init(ifp);
716 break;
717 case IFF_UP | IFF_RUNNING:
718 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
719 msk_setpromisc(sc);
720 msk_setmulti(sc);
721 } else
722 msk_init(ifp);
723 break;
724 }
725 sc->sk_if_flags = ifp->if_flags;
726 break;
727 default:
728 error = ether_ioctl(ifp, cmd, data);
729 if (error == ENETRESET) {
730 error = 0;
731 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
732 ;
733 else if (ifp->if_flags & IFF_RUNNING) {
734 /*
735 * Multicast list has changed; set the hardware
736 * filter accordingly.
737 */
738 msk_setmulti(sc);
739 }
740 }
741 break;
742 }
743
744 splx(s);
745 return error;
746 }
747
748 void
749 msk_update_int_mod(struct sk_softc *sc, int verbose)
750 {
751 u_int32_t imtimer_ticks;
752
753 /*
754 * Configure interrupt moderation. The moderation timer
755 * defers interrupts specified in the interrupt moderation
756 * timer mask based on the timeout specified in the interrupt
757 * moderation timer init register. Each bit in the timer
758 * register represents one tick, so to specify a timeout in
759 * microseconds, we have to multiply by the correct number of
760 * ticks-per-microsecond.
761 */
762 switch (sc->sk_type) {
763 case SK_YUKON_EC:
764 case SK_YUKON_EC_U:
765 case SK_YUKON_EX:
766 case SK_YUKON_SUPR:
767 case SK_YUKON_ULTRA2:
768 case SK_YUKON_OPTIMA:
769 case SK_YUKON_PRM:
770 case SK_YUKON_OPTIMA2:
771 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
772 break;
773 case SK_YUKON_FE:
774 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
775 break;
776 case SK_YUKON_XL:
777 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
778 break;
779 default:
780 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
781 }
782 if (verbose)
783 aprint_verbose_dev(sc->sk_dev,
784 "interrupt moderation is %d us\n", sc->sk_int_mod);
785 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
786 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
787 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
788 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
789 sc->sk_int_mod_pending = 0;
790 }
791
792 static int
793 msk_lookup(const struct pci_attach_args *pa)
794 {
795 const struct msk_product *pmsk;
796
797 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
798 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
799 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
800 return 1;
801 }
802 return 0;
803 }
804
805 /*
806 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
807 * IDs against our list and return a device name if we find a match.
808 */
809 int
810 mskc_probe(device_t parent, cfdata_t match, void *aux)
811 {
812 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
813
814 return msk_lookup(pa);
815 }
816
817 /*
818 * Force the GEnesis into reset, then bring it out of reset.
819 */
820 void msk_reset(struct sk_softc *sc)
821 {
822 u_int32_t imtimer_ticks, reg1;
823 int reg;
824
825 DPRINTFN(2, ("msk_reset\n"));
826
827 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
828 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
829
830 DELAY(1000);
831 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
832 DELAY(2);
833 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
834 sk_win_write_1(sc, SK_TESTCTL1, 2);
835
836 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
837 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
838 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
839 else
840 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
841
842 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
843 sc->sk_type >= SK_YUKON_FE_P) {
844 uint32_t our;
845
846 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
847
848 /* enable all clocks. */
849 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
850 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
851 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
852 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
853 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
854 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
855 /* Set all bits to 0 except bits 15..12 */
856 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
857 /* Set to default value */
858 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
859 }
860
861 /* release PHY from PowerDown/Coma mode. */
862 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
863
864 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
865 sk_win_write_1(sc, SK_Y2_CLKGATE,
866 SK_Y2_CLKGATE_LINK1_GATE_DIS |
867 SK_Y2_CLKGATE_LINK2_GATE_DIS |
868 SK_Y2_CLKGATE_LINK1_CORE_DIS |
869 SK_Y2_CLKGATE_LINK2_CORE_DIS |
870 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
871 else
872 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
873
874 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
875 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
876 DELAY(1000);
877 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
878 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
879
880 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
881 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
882 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
883 }
884
885 sk_win_write_1(sc, SK_TESTCTL1, 1);
886
887 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
888 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
889 CSR_READ_2(sc, SK_LINK_CTRL)));
890
891 /* Disable ASF */
892 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
893 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
894
895 /* Clear I2C IRQ noise */
896 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
897
898 /* Disable hardware timer */
899 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
900 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
901
902 /* Disable descriptor polling */
903 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
904
905 /* Disable time stamps */
906 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
907 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
908
909 /* Enable RAM interface */
910 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
911 for (reg = SK_TO0;reg <= SK_TO11; reg++)
912 sk_win_write_1(sc, reg, 36);
913 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
914 for (reg = SK_TO0;reg <= SK_TO11; reg++)
915 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
916
917 /*
918 * Configure interrupt moderation. The moderation timer
919 * defers interrupts specified in the interrupt moderation
920 * timer mask based on the timeout specified in the interrupt
921 * moderation timer init register. Each bit in the timer
922 * register represents one tick, so to specify a timeout in
923 * microseconds, we have to multiply by the correct number of
924 * ticks-per-microsecond.
925 */
926 switch (sc->sk_type) {
927 case SK_YUKON_EC:
928 case SK_YUKON_EC_U:
929 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
930 break;
931 case SK_YUKON_FE:
932 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
933 break;
934 case SK_YUKON_XL:
935 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
936 break;
937 default:
938 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
939 }
940
941 /* Reset status ring. */
942 memset(sc->sk_status_ring, 0,
943 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
944 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
945 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
946 sc->sk_status_idx = 0;
947 sc->sk_status_own_idx = 0;
948
949 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
950 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
951
952 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
953 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
954 sc->sk_status_map->dm_segs[0].ds_addr);
955 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
956 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
957 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
958 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
959 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
960 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
961 } else {
962 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
963 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
964 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
965 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
966 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
967 }
968
969 #if 0
970 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
971 #endif
972 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
973
974 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
975
976 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
977 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
978 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
979
980 msk_update_int_mod(sc, 0);
981 }
982
983 int
984 msk_probe(device_t parent, cfdata_t match, void *aux)
985 {
986 struct skc_attach_args *sa = aux;
987
988 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
989 return (0);
990
991 switch (sa->skc_type) {
992 case SK_YUKON_XL:
993 case SK_YUKON_EC_U:
994 case SK_YUKON_EX:
995 case SK_YUKON_EC:
996 case SK_YUKON_FE:
997 case SK_YUKON_FE_P:
998 case SK_YUKON_SUPR:
999 case SK_YUKON_ULTRA2:
1000 case SK_YUKON_OPTIMA:
1001 case SK_YUKON_PRM:
1002 case SK_YUKON_OPTIMA2:
1003 return (1);
1004 }
1005
1006 return (0);
1007 }
1008
1009 static bool
1010 msk_resume(device_t dv, const pmf_qual_t *qual)
1011 {
1012 struct sk_if_softc *sc_if = device_private(dv);
1013
1014 msk_init_yukon(sc_if);
1015 return true;
1016 }
1017
1018 /*
1019 * Each XMAC chip is attached as a separate logical IP interface.
1020 * Single port cards will have only one logical interface of course.
1021 */
1022 void
1023 msk_attach(device_t parent, device_t self, void *aux)
1024 {
1025 struct sk_if_softc *sc_if = device_private(self);
1026 struct sk_softc *sc = device_private(parent);
1027 struct skc_attach_args *sa = aux;
1028 struct ifnet *ifp;
1029 void *kva;
1030 bus_dma_segment_t seg;
1031 int i, rseg;
1032 u_int32_t chunk;
1033
1034 sc_if->sk_dev = self;
1035 sc_if->sk_port = sa->skc_port;
1036 sc_if->sk_softc = sc;
1037 sc->sk_if[sa->skc_port] = sc_if;
1038
1039 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1040
1041 /*
1042 * Get station address for this interface. Note that
1043 * dual port cards actually come with three station
1044 * addresses: one for each port, plus an extra. The
1045 * extra one is used by the SysKonnect driver software
1046 * as a 'virtual' station address for when both ports
1047 * are operating in failover mode. Currently we don't
1048 * use this extra address.
1049 */
1050 for (i = 0; i < ETHER_ADDR_LEN; i++)
1051 sc_if->sk_enaddr[i] =
1052 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1053
1054 aprint_normal(": Ethernet address %s\n",
1055 ether_sprintf(sc_if->sk_enaddr));
1056
1057 /*
1058 * Set up RAM buffer addresses. The Yukon2 has a small amount
1059 * of SRAM on it, somewhere between 4K and 48K. We need to
1060 * divide this up between the transmitter and receiver. We
1061 * give the receiver 2/3 of the memory (rounded down), and the
1062 * transmitter whatever remains.
1063 */
1064 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1065 sc_if->sk_rx_ramstart = 0;
1066 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1067 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1068 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1069 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1070
1071 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1072 " tx_ramstart=%#x tx_ramend=%#x\n",
1073 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1074 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1075
1076 /* Allocate the descriptor queues. */
1077 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1078 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1079 aprint_error(": can't alloc rx buffers\n");
1080 goto fail;
1081 }
1082 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1083 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1084 aprint_error(": can't map dma buffers (%zu bytes)\n",
1085 sizeof(struct msk_ring_data));
1086 goto fail_1;
1087 }
1088 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1089 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1090 &sc_if->sk_ring_map)) {
1091 aprint_error(": can't create dma map\n");
1092 goto fail_2;
1093 }
1094 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1095 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1096 aprint_error(": can't load dma map\n");
1097 goto fail_3;
1098 }
1099 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1100 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1101
1102 ifp = &sc_if->sk_ethercom.ec_if;
1103 /* Try to allocate memory for jumbo buffers. */
1104 if (msk_alloc_jumbo_mem(sc_if)) {
1105 aprint_error(": jumbo buffer allocation failed\n");
1106 goto fail_3;
1107 }
1108 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1109 if (sc->sk_type != SK_YUKON_FE)
1110 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1111
1112 ifp->if_softc = sc_if;
1113 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1114 ifp->if_ioctl = msk_ioctl;
1115 ifp->if_start = msk_start;
1116 ifp->if_stop = msk_stop;
1117 ifp->if_init = msk_init;
1118 ifp->if_watchdog = msk_watchdog;
1119 ifp->if_baudrate = 1000000000;
1120 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1121 IFQ_SET_READY(&ifp->if_snd);
1122 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1123
1124 /*
1125 * Do miibus setup.
1126 */
1127 msk_init_yukon(sc_if);
1128
1129 DPRINTFN(2, ("msk_attach: 1\n"));
1130
1131 sc_if->sk_mii.mii_ifp = ifp;
1132 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1133 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1134 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1135
1136 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1137 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1138 ether_mediachange, ether_mediastatus);
1139 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1140 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1141 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1142 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1143 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1144 0, NULL);
1145 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1146 } else
1147 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1148
1149 callout_init(&sc_if->sk_tick_ch, 0);
1150 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1151 callout_schedule(&sc_if->sk_tick_ch, hz);
1152
1153 /*
1154 * Call MI attach routines.
1155 */
1156 if_attach(ifp);
1157 if_deferred_start_init(ifp, NULL);
1158 ether_ifattach(ifp, sc_if->sk_enaddr);
1159
1160 if (pmf_device_register(self, NULL, msk_resume))
1161 pmf_class_network_register(self, ifp);
1162 else
1163 aprint_error_dev(self, "couldn't establish power handler\n");
1164
1165 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1166 RND_TYPE_NET, RND_FLAG_DEFAULT);
1167
1168 DPRINTFN(2, ("msk_attach: end\n"));
1169 return;
1170
1171 fail_3:
1172 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1173 fail_2:
1174 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1175 fail_1:
1176 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1177 fail:
1178 sc->sk_if[sa->skc_port] = NULL;
1179 }
1180
1181 int
1182 mskcprint(void *aux, const char *pnp)
1183 {
1184 struct skc_attach_args *sa = aux;
1185
1186 if (pnp)
1187 aprint_normal("sk port %c at %s",
1188 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1189 else
1190 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1191 return (UNCONF);
1192 }
1193
1194 /*
1195 * Attach the interface. Allocate softc structures, do ifmedia
1196 * setup and ethernet/BPF attach.
1197 */
1198 void
1199 mskc_attach(device_t parent, device_t self, void *aux)
1200 {
1201 struct sk_softc *sc = device_private(self);
1202 struct pci_attach_args *pa = aux;
1203 struct skc_attach_args skca;
1204 pci_chipset_tag_t pc = pa->pa_pc;
1205 pcireg_t command, memtype;
1206 pci_intr_handle_t ih;
1207 const char *intrstr = NULL;
1208 bus_size_t size;
1209 int rc, sk_nodenum;
1210 u_int8_t hw;
1211 const char *revstr = NULL;
1212 const struct sysctlnode *node;
1213 void *kva;
1214 bus_dma_segment_t seg;
1215 int rseg;
1216 char intrbuf[PCI_INTRSTR_LEN];
1217
1218 DPRINTFN(2, ("begin mskc_attach\n"));
1219
1220 sc->sk_dev = self;
1221 /*
1222 * Handle power management nonsense.
1223 */
1224 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1225
1226 if (command == 0x01) {
1227 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1228 if (command & SK_PSTATE_MASK) {
1229 u_int32_t iobase, membase, irq;
1230
1231 /* Save important PCI config data. */
1232 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1233 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1234 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1235
1236 /* Reset the power state. */
1237 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1238 "mode -- setting to D0\n",
1239 command & SK_PSTATE_MASK);
1240 command &= 0xFFFFFFFC;
1241 pci_conf_write(pc, pa->pa_tag,
1242 SK_PCI_PWRMGMTCTRL, command);
1243
1244 /* Restore PCI config data. */
1245 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1246 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1247 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1248 }
1249 }
1250
1251 /*
1252 * Map control/status registers.
1253 */
1254
1255 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1256 switch (memtype) {
1257 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1258 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1259 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1260 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1261 NULL, &size) == 0) {
1262 break;
1263 }
1264 default:
1265 aprint_error(": can't map mem space\n");
1266 return;
1267 }
1268
1269 sc->sc_dmatag = pa->pa_dmat;
1270
1271 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1272 command |= PCI_COMMAND_MASTER_ENABLE;
1273 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1274
1275 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1276 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1277
1278 /* bail out here if chip is not recognized */
1279 if (!(SK_IS_YUKON2(sc))) {
1280 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1281 goto fail_1;
1282 }
1283 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1284
1285 /* Allocate interrupt */
1286 if (pci_intr_map(pa, &ih)) {
1287 aprint_error(": couldn't map interrupt\n");
1288 goto fail_1;
1289 }
1290
1291 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1292 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1293 if (sc->sk_intrhand == NULL) {
1294 aprint_error(": couldn't establish interrupt");
1295 if (intrstr != NULL)
1296 aprint_error(" at %s", intrstr);
1297 aprint_error("\n");
1298 goto fail_1;
1299 }
1300
1301 if (bus_dmamem_alloc(sc->sc_dmatag,
1302 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1303 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1304 aprint_error(": can't alloc status buffers\n");
1305 goto fail_2;
1306 }
1307
1308 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1309 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1310 &kva, BUS_DMA_NOWAIT)) {
1311 aprint_error(": can't map dma buffers (%zu bytes)\n",
1312 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1313 goto fail_3;
1314 }
1315 if (bus_dmamap_create(sc->sc_dmatag,
1316 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1317 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1318 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1319 aprint_error(": can't create dma map\n");
1320 goto fail_4;
1321 }
1322 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1323 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1324 NULL, BUS_DMA_NOWAIT)) {
1325 aprint_error(": can't load dma map\n");
1326 goto fail_5;
1327 }
1328 sc->sk_status_ring = (struct msk_status_desc *)kva;
1329
1330 sc->sk_int_mod = SK_IM_DEFAULT;
1331 sc->sk_int_mod_pending = 0;
1332
1333 /* Reset the adapter. */
1334 msk_reset(sc);
1335
1336 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1337 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1338
1339 switch (sc->sk_type) {
1340 case SK_YUKON_XL:
1341 sc->sk_name = "Yukon-2 XL";
1342 break;
1343 case SK_YUKON_EC_U:
1344 sc->sk_name = "Yukon-2 EC Ultra";
1345 break;
1346 case SK_YUKON_EX:
1347 sc->sk_name = "Yukon-2 Extreme";
1348 break;
1349 case SK_YUKON_EC:
1350 sc->sk_name = "Yukon-2 EC";
1351 break;
1352 case SK_YUKON_FE:
1353 sc->sk_name = "Yukon-2 FE";
1354 break;
1355 case SK_YUKON_FE_P:
1356 sc->sk_name = "Yukon-2 FE+";
1357 break;
1358 case SK_YUKON_SUPR:
1359 sc->sk_name = "Yukon-2 Supreme";
1360 break;
1361 case SK_YUKON_ULTRA2:
1362 sc->sk_name = "Yukon-2 Ultra 2";
1363 break;
1364 case SK_YUKON_OPTIMA:
1365 sc->sk_name = "Yukon-2 Optima";
1366 break;
1367 case SK_YUKON_PRM:
1368 sc->sk_name = "Yukon-2 Optima Prime";
1369 break;
1370 case SK_YUKON_OPTIMA2:
1371 sc->sk_name = "Yukon-2 Optima 2";
1372 break;
1373 default:
1374 sc->sk_name = "Yukon (Unknown)";
1375 }
1376
1377 if (sc->sk_type == SK_YUKON_XL) {
1378 switch (sc->sk_rev) {
1379 case SK_YUKON_XL_REV_A0:
1380 sc->sk_workaround = 0;
1381 revstr = "A0";
1382 break;
1383 case SK_YUKON_XL_REV_A1:
1384 sc->sk_workaround = SK_WA_4109;
1385 revstr = "A1";
1386 break;
1387 case SK_YUKON_XL_REV_A2:
1388 sc->sk_workaround = SK_WA_4109;
1389 revstr = "A2";
1390 break;
1391 case SK_YUKON_XL_REV_A3:
1392 sc->sk_workaround = SK_WA_4109;
1393 revstr = "A3";
1394 break;
1395 default:
1396 sc->sk_workaround = 0;
1397 break;
1398 }
1399 }
1400
1401 if (sc->sk_type == SK_YUKON_EC) {
1402 switch (sc->sk_rev) {
1403 case SK_YUKON_EC_REV_A1:
1404 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1405 revstr = "A1";
1406 break;
1407 case SK_YUKON_EC_REV_A2:
1408 sc->sk_workaround = SK_WA_4109;
1409 revstr = "A2";
1410 break;
1411 case SK_YUKON_EC_REV_A3:
1412 sc->sk_workaround = SK_WA_4109;
1413 revstr = "A3";
1414 break;
1415 default:
1416 sc->sk_workaround = 0;
1417 break;
1418 }
1419 }
1420
1421 if (sc->sk_type == SK_YUKON_FE) {
1422 sc->sk_workaround = SK_WA_4109;
1423 switch (sc->sk_rev) {
1424 case SK_YUKON_FE_REV_A1:
1425 revstr = "A1";
1426 break;
1427 case SK_YUKON_FE_REV_A2:
1428 revstr = "A2";
1429 break;
1430 default:
1431 sc->sk_workaround = 0;
1432 break;
1433 }
1434 }
1435
1436 if (sc->sk_type == SK_YUKON_EC_U) {
1437 sc->sk_workaround = SK_WA_4109;
1438 switch (sc->sk_rev) {
1439 case SK_YUKON_EC_U_REV_A0:
1440 revstr = "A0";
1441 break;
1442 case SK_YUKON_EC_U_REV_A1:
1443 revstr = "A1";
1444 break;
1445 case SK_YUKON_EC_U_REV_B0:
1446 revstr = "B0";
1447 break;
1448 case SK_YUKON_EC_U_REV_B1:
1449 revstr = "B1";
1450 break;
1451 default:
1452 sc->sk_workaround = 0;
1453 break;
1454 }
1455 }
1456
1457 if (sc->sk_type == SK_YUKON_FE) {
1458 switch (sc->sk_rev) {
1459 case SK_YUKON_FE_REV_A1:
1460 revstr = "A1";
1461 break;
1462 case SK_YUKON_FE_REV_A2:
1463 revstr = "A2";
1464 break;
1465 default:
1466 ;
1467 }
1468 }
1469
1470 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1471 revstr = "A0";
1472
1473 if (sc->sk_type == SK_YUKON_EX) {
1474 switch (sc->sk_rev) {
1475 case SK_YUKON_EX_REV_A0:
1476 revstr = "A0";
1477 break;
1478 case SK_YUKON_EX_REV_B0:
1479 revstr = "B0";
1480 break;
1481 default:
1482 ;
1483 }
1484 }
1485
1486 if (sc->sk_type == SK_YUKON_SUPR) {
1487 switch (sc->sk_rev) {
1488 case SK_YUKON_SUPR_REV_A0:
1489 revstr = "A0";
1490 break;
1491 case SK_YUKON_SUPR_REV_B0:
1492 revstr = "B0";
1493 break;
1494 case SK_YUKON_SUPR_REV_B1:
1495 revstr = "B1";
1496 break;
1497 default:
1498 ;
1499 }
1500 }
1501
1502 if (sc->sk_type == SK_YUKON_PRM) {
1503 switch (sc->sk_rev) {
1504 case SK_YUKON_PRM_REV_Z1:
1505 revstr = "Z1";
1506 break;
1507 case SK_YUKON_PRM_REV_A0:
1508 revstr = "A0";
1509 break;
1510 default:
1511 ;
1512 }
1513 }
1514
1515 /* Announce the product name. */
1516 aprint_normal(", %s", sc->sk_name);
1517 if (revstr != NULL)
1518 aprint_normal(" rev. %s", revstr);
1519 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1520
1521 sc->sk_macs = 1;
1522
1523 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1524 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1525 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1526 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1527 sc->sk_macs++;
1528 }
1529
1530 skca.skc_port = SK_PORT_A;
1531 skca.skc_type = sc->sk_type;
1532 skca.skc_rev = sc->sk_rev;
1533 (void)config_found(sc->sk_dev, &skca, mskcprint);
1534
1535 if (sc->sk_macs > 1) {
1536 skca.skc_port = SK_PORT_B;
1537 skca.skc_type = sc->sk_type;
1538 skca.skc_rev = sc->sk_rev;
1539 (void)config_found(sc->sk_dev, &skca, mskcprint);
1540 }
1541
1542 /* Turn on the 'driver is loaded' LED. */
1543 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1544
1545 /* skc sysctl setup */
1546
1547 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1548 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1549 SYSCTL_DESCR("mskc per-controller controls"),
1550 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1551 CTL_EOL)) != 0) {
1552 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1553 goto fail_6;
1554 }
1555
1556 sk_nodenum = node->sysctl_num;
1557
1558 /* interrupt moderation time in usecs */
1559 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1560 CTLFLAG_READWRITE,
1561 CTLTYPE_INT, "int_mod",
1562 SYSCTL_DESCR("msk interrupt moderation timer"),
1563 msk_sysctl_handler, 0, (void *)sc,
1564 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1565 CTL_EOL)) != 0) {
1566 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1567 goto fail_6;
1568 }
1569
1570 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1571 aprint_error_dev(self, "couldn't establish power handler\n");
1572
1573 return;
1574
1575 fail_6:
1576 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1577 fail_5:
1578 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1579 fail_4:
1580 bus_dmamem_unmap(sc->sc_dmatag, kva,
1581 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1582 fail_3:
1583 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1584 fail_2:
1585 pci_intr_disestablish(pc, sc->sk_intrhand);
1586 fail_1:
1587 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1588 }
1589
1590 int
1591 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1592 {
1593 struct sk_softc *sc = sc_if->sk_softc;
1594 struct msk_tx_desc *f = NULL;
1595 u_int32_t frag, cur;
1596 int i;
1597 struct sk_txmap_entry *entry;
1598 bus_dmamap_t txmap;
1599
1600 DPRINTFN(2, ("msk_encap\n"));
1601
1602 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1603 if (entry == NULL) {
1604 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1605 return (ENOBUFS);
1606 }
1607 txmap = entry->dmamap;
1608
1609 cur = frag = *txidx;
1610
1611 #ifdef MSK_DEBUG
1612 if (mskdebug >= 2)
1613 msk_dump_mbuf(m_head);
1614 #endif
1615
1616 /*
1617 * Start packing the mbufs in this chain into
1618 * the fragment pointers. Stop when we run out
1619 * of fragments or hit the end of the mbuf chain.
1620 */
1621 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1622 BUS_DMA_NOWAIT)) {
1623 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1624 return (ENOBUFS);
1625 }
1626
1627 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1628 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1629 bus_dmamap_unload(sc->sc_dmatag, txmap);
1630 return (ENOBUFS);
1631 }
1632
1633 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1634
1635 /* Sync the DMA map. */
1636 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1637 BUS_DMASYNC_PREWRITE);
1638
1639 for (i = 0; i < txmap->dm_nsegs; i++) {
1640 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1641 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1642 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1643 f->sk_ctl = 0;
1644 if (i == 0)
1645 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1646 else
1647 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1648 cur = frag;
1649 SK_INC(frag, MSK_TX_RING_CNT);
1650 }
1651
1652 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1653 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1654
1655 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1656 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1657
1658 /* Sync descriptors before handing to chip */
1659 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1660 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1661
1662 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1663
1664 /* Sync first descriptor to hand it off */
1665 MSK_CDTXSYNC(sc_if, *txidx, 1,
1666 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1667
1668 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1669
1670 #ifdef MSK_DEBUG
1671 if (mskdebug >= 2) {
1672 struct msk_tx_desc *le;
1673 u_int32_t idx;
1674 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1675 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1676 msk_dump_txdesc(le, idx);
1677 }
1678 }
1679 #endif
1680
1681 *txidx = frag;
1682
1683 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1684
1685 return (0);
1686 }
1687
1688 void
1689 msk_start(struct ifnet *ifp)
1690 {
1691 struct sk_if_softc *sc_if = ifp->if_softc;
1692 struct mbuf *m_head = NULL;
1693 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1694 int pkts = 0;
1695
1696 DPRINTFN(2, ("msk_start\n"));
1697
1698 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1699 IFQ_POLL(&ifp->if_snd, m_head);
1700 if (m_head == NULL)
1701 break;
1702
1703 /*
1704 * Pack the data into the transmit ring. If we
1705 * don't have room, set the OACTIVE flag and wait
1706 * for the NIC to drain the ring.
1707 */
1708 if (msk_encap(sc_if, m_head, &idx)) {
1709 ifp->if_flags |= IFF_OACTIVE;
1710 break;
1711 }
1712
1713 /* now we are committed to transmit the packet */
1714 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1715 pkts++;
1716
1717 /*
1718 * If there's a BPF listener, bounce a copy of this frame
1719 * to him.
1720 */
1721 bpf_mtap(ifp, m_head);
1722 }
1723 if (pkts == 0)
1724 return;
1725
1726 /* Transmit */
1727 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1728 sc_if->sk_cdata.sk_tx_prod = idx;
1729 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1730
1731 /* Set a timeout in case the chip goes out to lunch. */
1732 ifp->if_timer = 5;
1733 }
1734 }
1735
1736 void
1737 msk_watchdog(struct ifnet *ifp)
1738 {
1739 struct sk_if_softc *sc_if = ifp->if_softc;
1740 u_int32_t reg;
1741 int idx;
1742
1743 /*
1744 * Reclaim first as there is a possibility of losing Tx completion
1745 * interrupts.
1746 */
1747 if (sc_if->sk_port == SK_PORT_A)
1748 reg = SK_STAT_BMU_TXA1_RIDX;
1749 else
1750 reg = SK_STAT_BMU_TXA2_RIDX;
1751
1752 idx = sk_win_read_2(sc_if->sk_softc, reg);
1753 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1754 msk_txeof(sc_if, idx);
1755 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1756 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1757
1758 ifp->if_oerrors++;
1759
1760 /* XXX Resets both ports; we shouldn't do that. */
1761 msk_reset(sc_if->sk_softc);
1762 msk_init(ifp);
1763 }
1764 }
1765 }
1766
1767 static bool
1768 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1769 {
1770 struct sk_softc *sc = device_private(dv);
1771
1772 DPRINTFN(2, ("mskc_suspend\n"));
1773
1774 /* Turn off the 'driver is loaded' LED. */
1775 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1776
1777 return true;
1778 }
1779
1780 static bool
1781 mskc_resume(device_t dv, const pmf_qual_t *qual)
1782 {
1783 struct sk_softc *sc = device_private(dv);
1784
1785 DPRINTFN(2, ("mskc_resume\n"));
1786
1787 msk_reset(sc);
1788 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1789
1790 return true;
1791 }
1792
1793 static __inline int
1794 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1795 {
1796 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1797 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1798 YU_RXSTAT_JABBER)) != 0 ||
1799 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1800 YU_RXSTAT_BYTES(stat) != len)
1801 return (0);
1802
1803 return (1);
1804 }
1805
1806 void
1807 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1808 {
1809 struct sk_softc *sc = sc_if->sk_softc;
1810 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1811 struct mbuf *m;
1812 struct sk_chain *cur_rx;
1813 int cur, total_len = len;
1814 bus_dmamap_t dmamap;
1815
1816 DPRINTFN(2, ("msk_rxeof\n"));
1817
1818 cur = sc_if->sk_cdata.sk_rx_cons;
1819 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1820 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1821
1822 /* Sync the descriptor */
1823 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1824
1825 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1826 if (cur_rx->sk_mbuf == NULL)
1827 return;
1828
1829 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1830 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1831 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1832
1833 m = cur_rx->sk_mbuf;
1834 cur_rx->sk_mbuf = NULL;
1835
1836 if (total_len < SK_MIN_FRAMELEN ||
1837 total_len > ETHER_MAX_LEN_JUMBO ||
1838 msk_rxvalid(sc, rxstat, total_len) == 0) {
1839 ifp->if_ierrors++;
1840 msk_newbuf(sc_if, cur, m, dmamap);
1841 return;
1842 }
1843
1844 /*
1845 * Try to allocate a new jumbo buffer. If that fails, copy the
1846 * packet to mbufs and put the jumbo buffer back in the ring
1847 * so it can be re-used. If allocating mbufs fails, then we
1848 * have to drop the packet.
1849 */
1850 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1851 struct mbuf *m0;
1852 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1853 total_len + ETHER_ALIGN, 0, ifp, NULL);
1854 msk_newbuf(sc_if, cur, m, dmamap);
1855 if (m0 == NULL) {
1856 ifp->if_ierrors++;
1857 return;
1858 }
1859 m_adj(m0, ETHER_ALIGN);
1860 m = m0;
1861 } else {
1862 m_set_rcvif(m, ifp);
1863 m->m_pkthdr.len = m->m_len = total_len;
1864 }
1865
1866 /* pass it on. */
1867 if_percpuq_enqueue(ifp->if_percpuq, m);
1868 }
1869
1870 void
1871 msk_txeof(struct sk_if_softc *sc_if, int idx)
1872 {
1873 struct sk_softc *sc = sc_if->sk_softc;
1874 struct msk_tx_desc *cur_tx;
1875 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1876 u_int32_t sk_ctl;
1877 struct sk_txmap_entry *entry;
1878 int cons, prog;
1879
1880 DPRINTFN(2, ("msk_txeof\n"));
1881
1882 /*
1883 * Go through our tx ring and free mbufs for those
1884 * frames that have been sent.
1885 */
1886 cons = sc_if->sk_cdata.sk_tx_cons;
1887 prog = 0;
1888 while (cons != idx) {
1889 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1890 break;
1891 prog++;
1892 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1893
1894 MSK_CDTXSYNC(sc_if, cons, 1,
1895 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1896 sk_ctl = cur_tx->sk_ctl;
1897 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1898 #ifdef MSK_DEBUG
1899 if (mskdebug >= 2)
1900 msk_dump_txdesc(cur_tx, cons);
1901 #endif
1902 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1903 ifp->if_opackets++;
1904 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1905 entry = sc_if->sk_cdata.sk_tx_map[cons];
1906
1907 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1908 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1909
1910 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1911 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1912 link);
1913 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1914 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1915 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1916 }
1917 sc_if->sk_cdata.sk_tx_cnt--;
1918 SK_INC(cons, MSK_TX_RING_CNT);
1919 }
1920 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1921
1922 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1923 ifp->if_flags &= ~IFF_OACTIVE;
1924
1925 if (prog > 0)
1926 sc_if->sk_cdata.sk_tx_cons = cons;
1927 }
1928
1929 void
1930 msk_tick(void *xsc_if)
1931 {
1932 struct sk_if_softc *sc_if = xsc_if;
1933 struct mii_data *mii = &sc_if->sk_mii;
1934 uint16_t gpsr;
1935 int s;
1936
1937 s = splnet();
1938 gpsr = SK_YU_READ_2(sc_if, YUKON_GPSR);
1939 if ((gpsr & YU_GPSR_MII_PHY_STC) != 0) {
1940 SK_YU_WRITE_2(sc_if, YUKON_GPSR, YU_GPSR_MII_PHY_STC);
1941 mii_tick(mii);
1942 }
1943 splx(s);
1944
1945 callout_schedule(&sc_if->sk_tick_ch, hz);
1946 }
1947
1948 void
1949 msk_intr_yukon(struct sk_if_softc *sc_if)
1950 {
1951 u_int8_t status;
1952
1953 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1954 /* RX overrun */
1955 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1956 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1957 SK_RFCTL_RX_FIFO_OVER);
1958 }
1959 /* TX underrun */
1960 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1961 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1962 SK_TFCTL_TX_FIFO_UNDER);
1963 }
1964
1965 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1966 }
1967
1968 int
1969 msk_intr(void *xsc)
1970 {
1971 struct sk_softc *sc = xsc;
1972 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1973 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1974 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1975 int claimed = 0;
1976 u_int32_t status;
1977 uint32_t st_status;
1978 uint16_t st_len;
1979 uint8_t st_opcode, st_link;
1980 struct msk_status_desc *cur_st;
1981
1982 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1983 if (status == 0) {
1984 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1985 return (0);
1986 }
1987
1988 status = CSR_READ_4(sc, SK_ISR);
1989
1990 if (sc_if0 != NULL)
1991 ifp0 = &sc_if0->sk_ethercom.ec_if;
1992 if (sc_if1 != NULL)
1993 ifp1 = &sc_if1->sk_ethercom.ec_if;
1994
1995 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
1996 (ifp0->if_flags & IFF_RUNNING)) {
1997 msk_intr_yukon(sc_if0);
1998 }
1999
2000 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2001 (ifp1->if_flags & IFF_RUNNING)) {
2002 msk_intr_yukon(sc_if1);
2003 }
2004
2005 for (;;) {
2006 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2007 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2008 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2009 st_opcode = cur_st->sk_opcode;
2010 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
2011 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2012 BUS_DMASYNC_PREREAD);
2013 break;
2014 }
2015 st_status = le32toh(cur_st->sk_status);
2016 st_len = le16toh(cur_st->sk_len);
2017 st_link = cur_st->sk_link;
2018 st_opcode &= ~SK_Y2_STOPC_OWN;
2019
2020 switch (st_opcode) {
2021 case SK_Y2_STOPC_RXSTAT:
2022 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
2023 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
2024 SK_RXQ1_Y2_PREF_PUTIDX,
2025 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
2026 break;
2027 case SK_Y2_STOPC_TXSTAT:
2028 if (sc_if0)
2029 msk_txeof(sc_if0, st_status
2030 & SK_Y2_ST_TXA1_MSKL);
2031 if (sc_if1)
2032 msk_txeof(sc_if1,
2033 ((st_status & SK_Y2_ST_TXA2_MSKL)
2034 >> SK_Y2_ST_TXA2_SHIFTL)
2035 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
2036 break;
2037 default:
2038 aprint_error("opcode=0x%x\n", st_opcode);
2039 break;
2040 }
2041 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2042 }
2043
2044 #define MSK_STATUS_RING_OWN_CNT(sc) \
2045 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
2046 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
2047
2048 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
2049 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
2050 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2051 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
2052 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2053
2054 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
2055 }
2056
2057 if (status & SK_Y2_IMR_BMU) {
2058 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2059 claimed = 1;
2060 }
2061
2062 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2063
2064 if (ifp0 != NULL)
2065 if_schedule_deferred_start(ifp0);
2066 if (ifp1 != NULL)
2067 if_schedule_deferred_start(ifp1);
2068
2069 rnd_add_uint32(&sc->rnd_source, status);
2070
2071 if (sc->sk_int_mod_pending)
2072 msk_update_int_mod(sc, 1);
2073
2074 return claimed;
2075 }
2076
2077 void
2078 msk_init_yukon(struct sk_if_softc *sc_if)
2079 {
2080 u_int32_t v;
2081 u_int16_t reg;
2082 struct sk_softc *sc;
2083 int i;
2084
2085 sc = sc_if->sk_softc;
2086
2087 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2088 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2089
2090 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2091
2092 /* GMAC and GPHY Reset */
2093 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2094 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2095 DELAY(1000);
2096
2097 DPRINTFN(6, ("msk_init_yukon: 2\n"));
2098
2099 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
2100 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2101 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2102
2103 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2104 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2105
2106 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2107
2108 /* unused read of the interrupt source register */
2109 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2110 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2111
2112 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2113 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2114 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2115
2116 /* MIB Counter Clear Mode set */
2117 reg |= YU_PAR_MIB_CLR;
2118 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2119 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2120 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2121
2122 /* MIB Counter Clear Mode clear */
2123 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2124 reg &= ~YU_PAR_MIB_CLR;
2125 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2126
2127 /* receive control reg */
2128 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2129 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2130
2131 /* transmit control register */
2132 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2133
2134 /* transmit flow control register */
2135 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2136
2137 /* transmit parameter register */
2138 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2139 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2140 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2141
2142 /* serial mode register */
2143 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2144 reg = YU_SMR_DATA_BLIND(0x1c) |
2145 YU_SMR_MFL_VLAN |
2146 YU_SMR_IPG_DATA(0x1e);
2147
2148 if (sc->sk_type != SK_YUKON_FE &&
2149 sc->sk_type != SK_YUKON_FE)
2150 reg |= YU_SMR_MFL_JUMBO;
2151
2152 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2153
2154 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2155 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2156 /* msk_attach calls me before ether_ifattach so check null */
2157 if (ifp != NULL && ifp->if_sadl != NULL)
2158 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2159 sizeof(sc_if->sk_enaddr));
2160 /* Setup Yukon's address */
2161 for (i = 0; i < 3; i++) {
2162 /* Write Source Address 1 (unicast filter) */
2163 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2164 sc_if->sk_enaddr[i * 2] |
2165 sc_if->sk_enaddr[i * 2 + 1] << 8);
2166 }
2167
2168 for (i = 0; i < 3; i++) {
2169 reg = sk_win_read_2(sc_if->sk_softc,
2170 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2171 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2172 }
2173
2174 /* Set promiscuous mode */
2175 msk_setpromisc(sc_if);
2176
2177 /* Set multicast filter */
2178 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2179 msk_setmulti(sc_if);
2180
2181 /* enable interrupt mask for counter overflows */
2182 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2183 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2184 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2185 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2186
2187 /* Configure RX MAC FIFO Flush Mask */
2188 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2189 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2190 YU_RXSTAT_JABBER;
2191 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2192
2193 /* Configure RX MAC FIFO */
2194 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2195 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2196 SK_RFCTL_FIFO_FLUSH_ON);
2197
2198 /* Increase flush threshould to 64 bytes */
2199 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2200 SK_RFCTL_FIFO_THRESHOLD + 1);
2201
2202 /* Configure TX MAC FIFO */
2203 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2204 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2205
2206 #if 1
2207 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2208 #endif
2209 DPRINTFN(6, ("msk_init_yukon: end\n"));
2210 }
2211
2212 /*
2213 * Note that to properly initialize any part of the GEnesis chip,
2214 * you first have to take it out of reset mode.
2215 */
2216 int
2217 msk_init(struct ifnet *ifp)
2218 {
2219 struct sk_if_softc *sc_if = ifp->if_softc;
2220 struct sk_softc *sc = sc_if->sk_softc;
2221 int rc = 0, s;
2222 uint32_t imr, imtimer_ticks;
2223
2224
2225 DPRINTFN(2, ("msk_init\n"));
2226
2227 s = splnet();
2228
2229 /* Cancel pending I/O and free all RX/TX buffers. */
2230 msk_stop(ifp,0);
2231
2232 /* Configure I2C registers */
2233
2234 /* Configure XMAC(s) */
2235 msk_init_yukon(sc_if);
2236 if ((rc = ether_mediachange(ifp)) != 0)
2237 goto out;
2238
2239 /* Configure transmit arbiter(s) */
2240 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2241 #if 0
2242 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2243 #endif
2244
2245 /* Configure RAMbuffers */
2246 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2247 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2248 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2249 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2250 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2251 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2252
2253 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2254 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2255 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2256 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2257 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2258 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2259 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2260
2261 /* Configure BMUs */
2262 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2263 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2264 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2265 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2266
2267 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2268 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2269 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2270 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2271
2272 /* Make sure the sync transmit queue is disabled. */
2273 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2274
2275 /* Init descriptors */
2276 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2277 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2278 "memory for rx buffers\n");
2279 msk_stop(ifp,0);
2280 splx(s);
2281 return ENOBUFS;
2282 }
2283
2284 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2285 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2286 "memory for tx buffers\n");
2287 msk_stop(ifp,0);
2288 splx(s);
2289 return ENOBUFS;
2290 }
2291
2292 /* Set interrupt moderation if changed via sysctl. */
2293 switch (sc->sk_type) {
2294 case SK_YUKON_EC:
2295 case SK_YUKON_EC_U:
2296 case SK_YUKON_EX:
2297 case SK_YUKON_SUPR:
2298 case SK_YUKON_ULTRA2:
2299 case SK_YUKON_OPTIMA:
2300 case SK_YUKON_PRM:
2301 case SK_YUKON_OPTIMA2:
2302 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2303 break;
2304 case SK_YUKON_FE:
2305 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2306 break;
2307 case SK_YUKON_XL:
2308 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2309 break;
2310 default:
2311 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2312 }
2313 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2314 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2315 sk_win_write_4(sc, SK_IMTIMERINIT,
2316 SK_IM_USECS(sc->sk_int_mod));
2317 aprint_verbose_dev(sc->sk_dev,
2318 "interrupt moderation is %d us\n", sc->sk_int_mod);
2319 }
2320
2321 /* Initialize prefetch engine. */
2322 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2323 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2324 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2325 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2326 MSK_RX_RING_ADDR(sc_if, 0));
2327 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2328 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2329 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2330 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2331
2332 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2333 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2334 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2335 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2336 MSK_TX_RING_ADDR(sc_if, 0));
2337 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2338 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2339 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2340 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2341
2342 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2343 sc_if->sk_cdata.sk_rx_prod);
2344
2345 /* Configure interrupt handling */
2346 if (sc_if->sk_port == SK_PORT_A)
2347 sc->sk_intrmask |= SK_Y2_INTRS1;
2348 else
2349 sc->sk_intrmask |= SK_Y2_INTRS2;
2350 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2351 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2352
2353 ifp->if_flags |= IFF_RUNNING;
2354 ifp->if_flags &= ~IFF_OACTIVE;
2355
2356 callout_schedule(&sc_if->sk_tick_ch, hz);
2357
2358 out:
2359 splx(s);
2360 return rc;
2361 }
2362
2363 void
2364 msk_stop(struct ifnet *ifp, int disable)
2365 {
2366 struct sk_if_softc *sc_if = ifp->if_softc;
2367 struct sk_softc *sc = sc_if->sk_softc;
2368 struct sk_txmap_entry *dma;
2369 int i;
2370
2371 DPRINTFN(2, ("msk_stop\n"));
2372
2373 callout_stop(&sc_if->sk_tick_ch);
2374
2375 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2376
2377 /* Stop transfer of Tx descriptors */
2378
2379 /* Stop transfer of Rx descriptors */
2380
2381 /* Turn off various components of this interface. */
2382 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2383 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2384 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2385 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2386 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2387 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2388 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2389 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2390 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2391 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2392 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2393 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2394
2395 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2396 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2397
2398 /* Disable interrupts */
2399 if (sc_if->sk_port == SK_PORT_A)
2400 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2401 else
2402 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2403 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2404
2405 SK_XM_READ_2(sc_if, XM_ISR);
2406 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2407
2408 /* Free RX and TX mbufs still in the queues. */
2409 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2410 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2411 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2412 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2413 }
2414 }
2415
2416 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2417 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2418 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2419 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2420 #if 1
2421 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2422 sc_if->sk_cdata.sk_tx_map[i], link);
2423 sc_if->sk_cdata.sk_tx_map[i] = 0;
2424 #endif
2425 }
2426 }
2427
2428 #if 1
2429 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2430 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2431 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2432 free(dma, M_DEVBUF);
2433 }
2434 #endif
2435 }
2436
2437 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2438 NULL, NULL);
2439
2440 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2441 NULL, NULL);
2442
2443 #ifdef MSK_DEBUG
2444 void
2445 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2446 {
2447 #define DESC_PRINT(X) \
2448 if (X) \
2449 printf("txdesc[%d]." #X "=%#x\n", \
2450 idx, X);
2451
2452 DESC_PRINT(letoh32(le->sk_addr));
2453 DESC_PRINT(letoh16(le->sk_len));
2454 DESC_PRINT(le->sk_ctl);
2455 DESC_PRINT(le->sk_opcode);
2456 #undef DESC_PRINT
2457 }
2458
2459 void
2460 msk_dump_bytes(const char *data, int len)
2461 {
2462 int c, i, j;
2463
2464 for (i = 0; i < len; i += 16) {
2465 printf("%08x ", i);
2466 c = len - i;
2467 if (c > 16) c = 16;
2468
2469 for (j = 0; j < c; j++) {
2470 printf("%02x ", data[i + j] & 0xff);
2471 if ((j & 0xf) == 7 && j > 0)
2472 printf(" ");
2473 }
2474
2475 for (; j < 16; j++)
2476 printf(" ");
2477 printf(" ");
2478
2479 for (j = 0; j < c; j++) {
2480 int ch = data[i + j] & 0xff;
2481 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2482 }
2483
2484 printf("\n");
2485
2486 if (c < 16)
2487 break;
2488 }
2489 }
2490
2491 void
2492 msk_dump_mbuf(struct mbuf *m)
2493 {
2494 int count = m->m_pkthdr.len;
2495
2496 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2497
2498 while (count > 0 && m) {
2499 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2500 m, m->m_data, m->m_len);
2501 msk_dump_bytes(mtod(m, char *), m->m_len);
2502
2503 count -= m->m_len;
2504 m = m->m_next;
2505 }
2506 }
2507 #endif
2508
2509 static int
2510 msk_sysctl_handler(SYSCTLFN_ARGS)
2511 {
2512 int error, t;
2513 struct sysctlnode node;
2514 struct sk_softc *sc;
2515
2516 node = *rnode;
2517 sc = node.sysctl_data;
2518 t = sc->sk_int_mod;
2519 node.sysctl_data = &t;
2520 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2521 if (error || newp == NULL)
2522 return error;
2523
2524 if (t < SK_IM_MIN || t > SK_IM_MAX)
2525 return EINVAL;
2526
2527 /* update the softc with sysctl-changed value, and mark
2528 for hardware update */
2529 sc->sk_int_mod = t;
2530 sc->sk_int_mod_pending = 1;
2531 return 0;
2532 }
2533
2534 /*
2535 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2536 * set up in skc_attach()
2537 */
2538 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2539 {
2540 int rc;
2541 const struct sysctlnode *node;
2542
2543 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2544 0, CTLTYPE_NODE, "msk",
2545 SYSCTL_DESCR("msk interface controls"),
2546 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2547 goto err;
2548 }
2549
2550 msk_root_num = node->sysctl_num;
2551 return;
2552
2553 err:
2554 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2555 }
2556