if_msk.c revision 1.62 1 /* $NetBSD: if_msk.c,v 1.62 2018/06/13 19:28:18 jdolecek Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.42 2007/01/17 02:43:02 krw Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.62 2018/06/13 19:28:18 jdolecek Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 static bool mskc_suspend(device_t, const pmf_qual_t *);
98 static bool mskc_resume(device_t, const pmf_qual_t *);
99 int msk_probe(device_t, cfdata_t, void *);
100 void msk_attach(device_t, device_t, void *);
101 int mskcprint(void *, const char *);
102 int msk_intr(void *);
103 void msk_intr_yukon(struct sk_if_softc *);
104 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
105 void msk_txeof(struct sk_if_softc *, int);
106 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
107 void msk_start(struct ifnet *);
108 int msk_ioctl(struct ifnet *, u_long, void *);
109 int msk_init(struct ifnet *);
110 void msk_init_yukon(struct sk_if_softc *);
111 void msk_stop(struct ifnet *, int);
112 void msk_watchdog(struct ifnet *);
113 void msk_reset(struct sk_softc *);
114 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
115 int msk_alloc_jumbo_mem(struct sk_if_softc *);
116 void *msk_jalloc(struct sk_if_softc *);
117 void msk_jfree(struct mbuf *, void *, size_t, void *);
118 int msk_init_rx_ring(struct sk_if_softc *);
119 int msk_init_tx_ring(struct sk_if_softc *);
120
121 void msk_update_int_mod(struct sk_softc *, int);
122
123 int msk_miibus_readreg(device_t, int, int);
124 void msk_miibus_writereg(device_t, int, int, int);
125 void msk_miibus_statchg(struct ifnet *);
126
127 void msk_setfilt(struct sk_if_softc *, void *, int);
128 void msk_setmulti(struct sk_if_softc *);
129 void msk_setpromisc(struct sk_if_softc *);
130 void msk_tick(void *);
131
132 /* #define MSK_DEBUG 1 */
133 #ifdef MSK_DEBUG
134 #define DPRINTF(x) if (mskdebug) printf x
135 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
136 int mskdebug = MSK_DEBUG;
137
138 void msk_dump_txdesc(struct msk_tx_desc *, int);
139 void msk_dump_mbuf(struct mbuf *);
140 void msk_dump_bytes(const char *, int);
141 #else
142 #define DPRINTF(x)
143 #define DPRINTFN(n,x)
144 #endif
145
146 static int msk_sysctl_handler(SYSCTLFN_PROTO);
147 static int msk_root_num;
148
149 /* supported device vendors */
150 static const struct msk_product {
151 pci_vendor_id_t msk_vendor;
152 pci_product_id_t msk_product;
153 } msk_products[] = {
154 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
155 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
156 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
157 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
158 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
159 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
160 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
193 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
194 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
195 };
196
197 static inline u_int32_t
198 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
199 {
200 return CSR_READ_4(sc, reg);
201 }
202
203 static inline u_int16_t
204 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
205 {
206 return CSR_READ_2(sc, reg);
207 }
208
209 static inline u_int8_t
210 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
211 {
212 return CSR_READ_1(sc, reg);
213 }
214
215 static inline void
216 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
217 {
218 CSR_WRITE_4(sc, reg, x);
219 }
220
221 static inline void
222 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
223 {
224 CSR_WRITE_2(sc, reg, x);
225 }
226
227 static inline void
228 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
229 {
230 CSR_WRITE_1(sc, reg, x);
231 }
232
233 int
234 msk_miibus_readreg(device_t dev, int phy, int reg)
235 {
236 struct sk_if_softc *sc_if = device_private(dev);
237 u_int16_t val;
238 int i;
239
240 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
241 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
242
243 for (i = 0; i < SK_TIMEOUT; i++) {
244 DELAY(1);
245 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
246 if (val & YU_SMICR_READ_VALID)
247 break;
248 }
249
250 if (i == SK_TIMEOUT) {
251 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
252 return (0);
253 }
254
255 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
256 SK_TIMEOUT));
257
258 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
259
260 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
261 phy, reg, val));
262
263 return (val);
264 }
265
266 void
267 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
268 {
269 struct sk_if_softc *sc_if = device_private(dev);
270 int i;
271
272 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
273 phy, reg, val));
274
275 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
276 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
277 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
278
279 for (i = 0; i < SK_TIMEOUT; i++) {
280 DELAY(1);
281 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
282 break;
283 }
284
285 if (i == SK_TIMEOUT)
286 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
287 }
288
289 void
290 msk_miibus_statchg(struct ifnet *ifp)
291 {
292 struct sk_if_softc *sc_if = ifp->if_softc;
293 struct mii_data *mii = &sc_if->sk_mii;
294 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
295 int gpcr;
296
297 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
298 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
299
300 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
301 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
302 /* Set speed. */
303 gpcr |= YU_GPCR_SPEED_DIS;
304 switch (IFM_SUBTYPE(mii->mii_media_active)) {
305 case IFM_1000_SX:
306 case IFM_1000_LX:
307 case IFM_1000_CX:
308 case IFM_1000_T:
309 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
310 break;
311 case IFM_100_TX:
312 gpcr |= YU_GPCR_SPEED;
313 break;
314 }
315
316 /* Set duplex. */
317 gpcr |= YU_GPCR_DPLX_DIS;
318 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
319 gpcr |= YU_GPCR_DUPLEX;
320
321 /* Disable flow control. */
322 gpcr |= YU_GPCR_FCTL_DIS;
323 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
324 }
325
326 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
327
328 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
329 SK_YU_READ_2(sc_if, YUKON_GPCR)));
330 }
331
332 void
333 msk_setfilt(struct sk_if_softc *sc_if, void *addrv, int slot)
334 {
335 char *addr = addrv;
336 int base = XM_RXFILT_ENTRY(slot);
337
338 SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0]));
339 SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2]));
340 SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4]));
341 }
342
343 void
344 msk_setmulti(struct sk_if_softc *sc_if)
345 {
346 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
347 u_int32_t hashes[2] = { 0, 0 };
348 int h;
349 struct ethercom *ec = &sc_if->sk_ethercom;
350 struct ether_multi *enm;
351 struct ether_multistep step;
352 u_int16_t reg;
353
354 /* First, zot all the existing filters. */
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
358 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
359
360
361 /* Now program new ones. */
362 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
363 reg |= YU_RCR_UFLEN;
364 allmulti:
365 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
366 if ((ifp->if_flags & IFF_PROMISC) != 0)
367 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
368 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
369 hashes[0] = 0xFFFFFFFF;
370 hashes[1] = 0xFFFFFFFF;
371 }
372 } else {
373 /* First find the tail of the list. */
374 ETHER_FIRST_MULTI(step, ec, enm);
375 while (enm != NULL) {
376 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 goto allmulti;
380 }
381 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
382 ((1 << SK_HASH_BITS) - 1);
383 if (h < 32)
384 hashes[0] |= (1 << h);
385 else
386 hashes[1] |= (1 << (h - 32));
387
388 ETHER_NEXT_MULTI(step, enm);
389 }
390 reg |= YU_RCR_MUFLEN;
391 }
392
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
398 }
399
400 void
401 msk_setpromisc(struct sk_if_softc *sc_if)
402 {
403 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
404
405 if (ifp->if_flags & IFF_PROMISC)
406 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 else
409 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
410 YU_RCR_UFLEN | YU_RCR_MUFLEN);
411 }
412
413 int
414 msk_init_rx_ring(struct sk_if_softc *sc_if)
415 {
416 struct msk_chain_data *cd = &sc_if->sk_cdata;
417 struct msk_ring_data *rd = sc_if->sk_rdata;
418 int i, nexti;
419
420 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
421
422 for (i = 0; i < MSK_RX_RING_CNT; i++) {
423 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
424 if (i == (MSK_RX_RING_CNT - 1))
425 nexti = 0;
426 else
427 nexti = i + 1;
428 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
429 }
430
431 for (i = 0; i < MSK_RX_RING_CNT; i++) {
432 if (msk_newbuf(sc_if, i, NULL,
433 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
434 aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
435 return (ENOBUFS);
436 }
437 }
438
439 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
440 sc_if->sk_cdata.sk_rx_cons = 0;
441
442 return (0);
443 }
444
445 int
446 msk_init_tx_ring(struct sk_if_softc *sc_if)
447 {
448 struct sk_softc *sc = sc_if->sk_softc;
449 struct msk_chain_data *cd = &sc_if->sk_cdata;
450 struct msk_ring_data *rd = sc_if->sk_rdata;
451 bus_dmamap_t dmamap;
452 struct sk_txmap_entry *entry;
453 int i, nexti;
454
455 memset(sc_if->sk_rdata->sk_tx_ring, 0,
456 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
457
458 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
459 for (i = 0; i < MSK_TX_RING_CNT; i++) {
460 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
461 if (i == (MSK_TX_RING_CNT - 1))
462 nexti = 0;
463 else
464 nexti = i + 1;
465 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
466
467 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
468 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
469 return (ENOBUFS);
470
471 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
472 if (!entry) {
473 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
474 return (ENOBUFS);
475 }
476 entry->dmamap = dmamap;
477 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
478 }
479
480 sc_if->sk_cdata.sk_tx_prod = 0;
481 sc_if->sk_cdata.sk_tx_cons = 0;
482 sc_if->sk_cdata.sk_tx_cnt = 0;
483
484 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
485 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
486
487 return (0);
488 }
489
490 int
491 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
492 bus_dmamap_t dmamap)
493 {
494 struct mbuf *m_new = NULL;
495 struct sk_chain *c;
496 struct msk_rx_desc *r;
497
498 if (m == NULL) {
499 void *buf = NULL;
500
501 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
502 if (m_new == NULL)
503 return (ENOBUFS);
504
505 /* Allocate the jumbo buffer */
506 buf = msk_jalloc(sc_if);
507 if (buf == NULL) {
508 m_freem(m_new);
509 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
510 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
511 return (ENOBUFS);
512 }
513
514 /* Attach the buffer to the mbuf */
515 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
516 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
517 } else {
518 /*
519 * We're re-using a previously allocated mbuf;
520 * be sure to re-init pointers and lengths to
521 * default values.
522 */
523 m_new = m;
524 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
525 m_new->m_data = m_new->m_ext.ext_buf;
526 }
527 m_adj(m_new, ETHER_ALIGN);
528
529 c = &sc_if->sk_cdata.sk_rx_chain[i];
530 r = c->sk_le;
531 c->sk_mbuf = m_new;
532 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
533 (((vaddr_t)m_new->m_data
534 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
535 r->sk_len = htole16(SK_JLEN);
536 r->sk_ctl = 0;
537 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
538
539 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
540
541 return (0);
542 }
543
544 /*
545 * Memory management for jumbo frames.
546 */
547
548 int
549 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
550 {
551 struct sk_softc *sc = sc_if->sk_softc;
552 char *ptr, *kva;
553 bus_dma_segment_t seg;
554 int i, rseg, state, error;
555 struct sk_jpool_entry *entry;
556
557 state = error = 0;
558
559 /* Grab a big chunk o' storage. */
560 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
561 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
562 aprint_error(": can't alloc rx buffers");
563 return (ENOBUFS);
564 }
565
566 state = 1;
567 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
568 BUS_DMA_NOWAIT)) {
569 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
570 error = ENOBUFS;
571 goto out;
572 }
573
574 state = 2;
575 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
576 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
577 aprint_error(": can't create dma map");
578 error = ENOBUFS;
579 goto out;
580 }
581
582 state = 3;
583 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
584 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
585 aprint_error(": can't load dma map");
586 error = ENOBUFS;
587 goto out;
588 }
589
590 state = 4;
591 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
592 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
593
594 LIST_INIT(&sc_if->sk_jfree_listhead);
595 LIST_INIT(&sc_if->sk_jinuse_listhead);
596 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
597
598 /*
599 * Now divide it up into 9K pieces and save the addresses
600 * in an array.
601 */
602 ptr = sc_if->sk_cdata.sk_jumbo_buf;
603 for (i = 0; i < MSK_JSLOTS; i++) {
604 sc_if->sk_cdata.sk_jslots[i] = ptr;
605 ptr += SK_JLEN;
606 entry = malloc(sizeof(struct sk_jpool_entry),
607 M_DEVBUF, M_NOWAIT);
608 if (entry == NULL) {
609 sc_if->sk_cdata.sk_jumbo_buf = NULL;
610 aprint_error(": no memory for jumbo buffer queue!");
611 error = ENOBUFS;
612 goto out;
613 }
614 entry->slot = i;
615 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
616 entry, jpool_entries);
617 }
618 out:
619 if (error != 0) {
620 switch (state) {
621 case 4:
622 bus_dmamap_unload(sc->sc_dmatag,
623 sc_if->sk_cdata.sk_rx_jumbo_map);
624 case 3:
625 bus_dmamap_destroy(sc->sc_dmatag,
626 sc_if->sk_cdata.sk_rx_jumbo_map);
627 case 2:
628 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
629 case 1:
630 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
631 break;
632 default:
633 break;
634 }
635 }
636
637 return error;
638 }
639
640 /*
641 * Allocate a jumbo buffer.
642 */
643 void *
644 msk_jalloc(struct sk_if_softc *sc_if)
645 {
646 struct sk_jpool_entry *entry;
647
648 mutex_enter(&sc_if->sk_jpool_mtx);
649 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
650
651 if (entry == NULL) {
652 mutex_exit(&sc_if->sk_jpool_mtx);
653 return NULL;
654 }
655
656 LIST_REMOVE(entry, jpool_entries);
657 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
658 mutex_exit(&sc_if->sk_jpool_mtx);
659 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
660 }
661
662 /*
663 * Release a jumbo buffer.
664 */
665 void
666 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
667 {
668 struct sk_jpool_entry *entry;
669 struct sk_if_softc *sc;
670 int i;
671
672 /* Extract the softc struct pointer. */
673 sc = (struct sk_if_softc *)arg;
674
675 if (sc == NULL)
676 panic("msk_jfree: can't find softc pointer!");
677
678 /* calculate the slot this buffer belongs to */
679 i = ((vaddr_t)buf
680 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
681
682 if ((i < 0) || (i >= MSK_JSLOTS))
683 panic("msk_jfree: asked to free buffer that we don't manage!");
684
685 mutex_enter(&sc->sk_jpool_mtx);
686 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
687 if (entry == NULL)
688 panic("msk_jfree: buffer not in use!");
689 entry->slot = i;
690 LIST_REMOVE(entry, jpool_entries);
691 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
692 mutex_exit(&sc->sk_jpool_mtx);
693
694 if (__predict_true(m != NULL))
695 pool_cache_put(mb_cache, m);
696 }
697
698 int
699 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
700 {
701 struct sk_if_softc *sc = ifp->if_softc;
702 int s, error;
703
704 s = splnet();
705
706 DPRINTFN(2, ("msk_ioctl ETHER\n"));
707 switch (cmd) {
708 case SIOCSIFFLAGS:
709 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
710 break;
711
712 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
713 case IFF_RUNNING:
714 msk_stop(ifp, 1);
715 break;
716 case IFF_UP:
717 msk_init(ifp);
718 break;
719 case IFF_UP | IFF_RUNNING:
720 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
721 msk_setpromisc(sc);
722 msk_setmulti(sc);
723 } else
724 msk_init(ifp);
725 break;
726 }
727 sc->sk_if_flags = ifp->if_flags;
728 break;
729 default:
730 error = ether_ioctl(ifp, cmd, data);
731 if (error == ENETRESET) {
732 error = 0;
733 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
734 ;
735 else if (ifp->if_flags & IFF_RUNNING) {
736 /*
737 * Multicast list has changed; set the hardware
738 * filter accordingly.
739 */
740 msk_setmulti(sc);
741 }
742 }
743 break;
744 }
745
746 splx(s);
747 return error;
748 }
749
750 void
751 msk_update_int_mod(struct sk_softc *sc, int verbose)
752 {
753 u_int32_t imtimer_ticks;
754
755 /*
756 * Configure interrupt moderation. The moderation timer
757 * defers interrupts specified in the interrupt moderation
758 * timer mask based on the timeout specified in the interrupt
759 * moderation timer init register. Each bit in the timer
760 * register represents one tick, so to specify a timeout in
761 * microseconds, we have to multiply by the correct number of
762 * ticks-per-microsecond.
763 */
764 switch (sc->sk_type) {
765 case SK_YUKON_EC:
766 case SK_YUKON_EC_U:
767 case SK_YUKON_EX:
768 case SK_YUKON_SUPR:
769 case SK_YUKON_ULTRA2:
770 case SK_YUKON_OPTIMA:
771 case SK_YUKON_PRM:
772 case SK_YUKON_OPTIMA2:
773 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
774 break;
775 case SK_YUKON_FE:
776 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
777 break;
778 case SK_YUKON_XL:
779 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
780 break;
781 default:
782 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
783 }
784 if (verbose)
785 aprint_verbose_dev(sc->sk_dev,
786 "interrupt moderation is %d us\n", sc->sk_int_mod);
787 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
788 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
789 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
790 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
791 sc->sk_int_mod_pending = 0;
792 }
793
794 static int
795 msk_lookup(const struct pci_attach_args *pa)
796 {
797 const struct msk_product *pmsk;
798
799 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
800 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
801 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
802 return 1;
803 }
804 return 0;
805 }
806
807 /*
808 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
809 * IDs against our list and return a device name if we find a match.
810 */
811 int
812 mskc_probe(device_t parent, cfdata_t match, void *aux)
813 {
814 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
815
816 return msk_lookup(pa);
817 }
818
819 /*
820 * Force the GEnesis into reset, then bring it out of reset.
821 */
822 void msk_reset(struct sk_softc *sc)
823 {
824 u_int32_t imtimer_ticks, reg1;
825 int reg;
826
827 DPRINTFN(2, ("msk_reset\n"));
828
829 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
830 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
831
832 DELAY(1000);
833 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
834 DELAY(2);
835 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
836 sk_win_write_1(sc, SK_TESTCTL1, 2);
837
838 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
839 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
840 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
841 else
842 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
843
844 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
845 sc->sk_type >= SK_YUKON_FE_P) {
846 uint32_t our;
847
848 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
849
850 /* enable all clocks. */
851 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
852 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
853 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
854 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
855 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
856 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
857 /* Set all bits to 0 except bits 15..12 */
858 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
859 /* Set to default value */
860 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
861 }
862
863 /* release PHY from PowerDown/Coma mode. */
864 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
865 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
866 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
867 else
868 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
869 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
870
871 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
872 sk_win_write_1(sc, SK_Y2_CLKGATE,
873 SK_Y2_CLKGATE_LINK1_GATE_DIS |
874 SK_Y2_CLKGATE_LINK2_GATE_DIS |
875 SK_Y2_CLKGATE_LINK1_CORE_DIS |
876 SK_Y2_CLKGATE_LINK2_CORE_DIS |
877 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
878 else
879 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
880
881 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
882 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
883 DELAY(1000);
884 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
885 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
886
887 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
888 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
889 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
890 }
891
892 sk_win_write_1(sc, SK_TESTCTL1, 1);
893
894 DPRINTFN(2, ("msk_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
895 DPRINTFN(2, ("msk_reset: sk_link_ctrl=%x\n",
896 CSR_READ_2(sc, SK_LINK_CTRL)));
897
898 /* Disable ASF */
899 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
900 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
901
902 /* Clear I2C IRQ noise */
903 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
904
905 /* Disable hardware timer */
906 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
907 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
908
909 /* Disable descriptor polling */
910 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
911
912 /* Disable time stamps */
913 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
914 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
915
916 /* Enable RAM interface */
917 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
918 for (reg = SK_TO0;reg <= SK_TO11; reg++)
919 sk_win_write_1(sc, reg, 36);
920 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
921 for (reg = SK_TO0;reg <= SK_TO11; reg++)
922 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
923
924 /*
925 * Configure interrupt moderation. The moderation timer
926 * defers interrupts specified in the interrupt moderation
927 * timer mask based on the timeout specified in the interrupt
928 * moderation timer init register. Each bit in the timer
929 * register represents one tick, so to specify a timeout in
930 * microseconds, we have to multiply by the correct number of
931 * ticks-per-microsecond.
932 */
933 switch (sc->sk_type) {
934 case SK_YUKON_EC:
935 case SK_YUKON_EC_U:
936 case SK_YUKON_EX:
937 case SK_YUKON_SUPR:
938 case SK_YUKON_ULTRA2:
939 case SK_YUKON_OPTIMA:
940 case SK_YUKON_PRM:
941 case SK_YUKON_OPTIMA2:
942 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
943 break;
944 case SK_YUKON_FE:
945 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
946 break;
947 case SK_YUKON_FE_P:
948 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
949 break;
950 case SK_YUKON_XL:
951 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
952 break;
953 default:
954 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
955 break;
956 }
957
958 /* Reset status ring. */
959 memset(sc->sk_status_ring, 0,
960 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
961 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
962 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
963 sc->sk_status_idx = 0;
964 sc->sk_status_own_idx = 0;
965
966 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
967 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
968
969 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
970 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
971 sc->sk_status_map->dm_segs[0].ds_addr);
972 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
973 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
974 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
975 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
976 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
977 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
978 } else {
979 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
980 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
981 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
982 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
983 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
984 }
985
986 #if 0
987 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
988 #endif
989 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
990
991 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
992
993 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
994 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
995 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
996
997 msk_update_int_mod(sc, 0);
998 }
999
1000 int
1001 msk_probe(device_t parent, cfdata_t match, void *aux)
1002 {
1003 struct skc_attach_args *sa = aux;
1004
1005 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1006 return (0);
1007
1008 switch (sa->skc_type) {
1009 case SK_YUKON_XL:
1010 case SK_YUKON_EC_U:
1011 case SK_YUKON_EX:
1012 case SK_YUKON_EC:
1013 case SK_YUKON_FE:
1014 case SK_YUKON_FE_P:
1015 case SK_YUKON_SUPR:
1016 case SK_YUKON_ULTRA2:
1017 case SK_YUKON_OPTIMA:
1018 case SK_YUKON_PRM:
1019 case SK_YUKON_OPTIMA2:
1020 return (1);
1021 }
1022
1023 return (0);
1024 }
1025
1026 static bool
1027 msk_resume(device_t dv, const pmf_qual_t *qual)
1028 {
1029 struct sk_if_softc *sc_if = device_private(dv);
1030
1031 msk_init_yukon(sc_if);
1032 return true;
1033 }
1034
1035 /*
1036 * Each XMAC chip is attached as a separate logical IP interface.
1037 * Single port cards will have only one logical interface of course.
1038 */
1039 void
1040 msk_attach(device_t parent, device_t self, void *aux)
1041 {
1042 struct sk_if_softc *sc_if = device_private(self);
1043 struct sk_softc *sc = device_private(parent);
1044 struct skc_attach_args *sa = aux;
1045 struct ifnet *ifp;
1046 void *kva;
1047 bus_dma_segment_t seg;
1048 int i, rseg;
1049 u_int32_t chunk;
1050
1051 sc_if->sk_dev = self;
1052 sc_if->sk_port = sa->skc_port;
1053 sc_if->sk_softc = sc;
1054 sc->sk_if[sa->skc_port] = sc_if;
1055
1056 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1057
1058 /*
1059 * Get station address for this interface. Note that
1060 * dual port cards actually come with three station
1061 * addresses: one for each port, plus an extra. The
1062 * extra one is used by the SysKonnect driver software
1063 * as a 'virtual' station address for when both ports
1064 * are operating in failover mode. Currently we don't
1065 * use this extra address.
1066 */
1067 for (i = 0; i < ETHER_ADDR_LEN; i++)
1068 sc_if->sk_enaddr[i] =
1069 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1070
1071 aprint_normal(": Ethernet address %s\n",
1072 ether_sprintf(sc_if->sk_enaddr));
1073
1074 /*
1075 * Set up RAM buffer addresses. The Yukon2 has a small amount
1076 * of SRAM on it, somewhere between 4K and 48K. We need to
1077 * divide this up between the transmitter and receiver. We
1078 * give the receiver 2/3 of the memory (rounded down), and the
1079 * transmitter whatever remains.
1080 */
1081 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1082 sc_if->sk_rx_ramstart = 0;
1083 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1084 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1085 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1086 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1087
1088 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1089 " tx_ramstart=%#x tx_ramend=%#x\n",
1090 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1091 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1092
1093 /* Allocate the descriptor queues. */
1094 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1095 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1096 aprint_error(": can't alloc rx buffers\n");
1097 goto fail;
1098 }
1099 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1100 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1101 aprint_error(": can't map dma buffers (%zu bytes)\n",
1102 sizeof(struct msk_ring_data));
1103 goto fail_1;
1104 }
1105 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1106 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1107 &sc_if->sk_ring_map)) {
1108 aprint_error(": can't create dma map\n");
1109 goto fail_2;
1110 }
1111 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1112 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1113 aprint_error(": can't load dma map\n");
1114 goto fail_3;
1115 }
1116 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1117 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1118
1119 ifp = &sc_if->sk_ethercom.ec_if;
1120 /* Try to allocate memory for jumbo buffers. */
1121 if (msk_alloc_jumbo_mem(sc_if)) {
1122 aprint_error(": jumbo buffer allocation failed\n");
1123 goto fail_3;
1124 }
1125 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1126 if (sc->sk_type != SK_YUKON_FE)
1127 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1128
1129 ifp->if_softc = sc_if;
1130 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1131 ifp->if_ioctl = msk_ioctl;
1132 ifp->if_start = msk_start;
1133 ifp->if_stop = msk_stop;
1134 ifp->if_init = msk_init;
1135 ifp->if_watchdog = msk_watchdog;
1136 ifp->if_baudrate = 1000000000;
1137 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1138 IFQ_SET_READY(&ifp->if_snd);
1139 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1140
1141 /*
1142 * Do miibus setup.
1143 */
1144 msk_init_yukon(sc_if);
1145
1146 DPRINTFN(2, ("msk_attach: 1\n"));
1147
1148 sc_if->sk_mii.mii_ifp = ifp;
1149 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1150 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1151 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1152
1153 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1154 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1155 ether_mediachange, ether_mediastatus);
1156 mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY,
1157 MII_OFFSET_ANY, MIIF_DOPAUSE|MIIF_FORCEANEG);
1158 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1159 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1160 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1161 0, NULL);
1162 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1163 } else
1164 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1165
1166 callout_init(&sc_if->sk_tick_ch, 0);
1167 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1168 callout_schedule(&sc_if->sk_tick_ch, hz);
1169
1170 /*
1171 * Call MI attach routines.
1172 */
1173 if_attach(ifp);
1174 if_deferred_start_init(ifp, NULL);
1175 ether_ifattach(ifp, sc_if->sk_enaddr);
1176
1177 if (pmf_device_register(self, NULL, msk_resume))
1178 pmf_class_network_register(self, ifp);
1179 else
1180 aprint_error_dev(self, "couldn't establish power handler\n");
1181
1182 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1183 RND_TYPE_NET, RND_FLAG_DEFAULT);
1184
1185 DPRINTFN(2, ("msk_attach: end\n"));
1186 return;
1187
1188 fail_3:
1189 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1190 fail_2:
1191 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1192 fail_1:
1193 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1194 fail:
1195 sc->sk_if[sa->skc_port] = NULL;
1196 }
1197
1198 int
1199 mskcprint(void *aux, const char *pnp)
1200 {
1201 struct skc_attach_args *sa = aux;
1202
1203 if (pnp)
1204 aprint_normal("sk port %c at %s",
1205 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1206 else
1207 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1208 return (UNCONF);
1209 }
1210
1211 /*
1212 * Attach the interface. Allocate softc structures, do ifmedia
1213 * setup and ethernet/BPF attach.
1214 */
1215 void
1216 mskc_attach(device_t parent, device_t self, void *aux)
1217 {
1218 struct sk_softc *sc = device_private(self);
1219 struct pci_attach_args *pa = aux;
1220 struct skc_attach_args skca;
1221 pci_chipset_tag_t pc = pa->pa_pc;
1222 pcireg_t command, memtype;
1223 pci_intr_handle_t ih;
1224 const char *intrstr = NULL;
1225 bus_size_t size;
1226 int rc, sk_nodenum;
1227 u_int8_t hw;
1228 const char *revstr = NULL;
1229 const struct sysctlnode *node;
1230 void *kva;
1231 bus_dma_segment_t seg;
1232 int rseg;
1233 char intrbuf[PCI_INTRSTR_LEN];
1234
1235 DPRINTFN(2, ("begin mskc_attach\n"));
1236
1237 sc->sk_dev = self;
1238 /*
1239 * Handle power management nonsense.
1240 */
1241 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1242
1243 if (command == 0x01) {
1244 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1245 if (command & SK_PSTATE_MASK) {
1246 u_int32_t iobase, membase, irq;
1247
1248 /* Save important PCI config data. */
1249 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1250 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1251 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1252
1253 /* Reset the power state. */
1254 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1255 "mode -- setting to D0\n",
1256 command & SK_PSTATE_MASK);
1257 command &= 0xFFFFFFFC;
1258 pci_conf_write(pc, pa->pa_tag,
1259 SK_PCI_PWRMGMTCTRL, command);
1260
1261 /* Restore PCI config data. */
1262 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1263 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1264 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1265 }
1266 }
1267
1268 /*
1269 * Map control/status registers.
1270 */
1271
1272 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1273 switch (memtype) {
1274 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
1275 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
1276 if (pci_mapreg_map(pa, SK_PCI_LOMEM,
1277 memtype, 0, &sc->sk_btag, &sc->sk_bhandle,
1278 NULL, &size) == 0) {
1279 break;
1280 }
1281 default:
1282 aprint_error(": can't map mem space\n");
1283 return;
1284 }
1285
1286 sc->sc_dmatag = pa->pa_dmat;
1287
1288 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1289 command |= PCI_COMMAND_MASTER_ENABLE;
1290 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1291
1292 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1293 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1294
1295 /* bail out here if chip is not recognized */
1296 if (!(SK_IS_YUKON2(sc))) {
1297 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1298 goto fail_1;
1299 }
1300 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1301
1302 /* Allocate interrupt */
1303 if (pci_intr_map(pa, &ih)) {
1304 aprint_error(": couldn't map interrupt\n");
1305 goto fail_1;
1306 }
1307
1308 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1309 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1310 if (sc->sk_intrhand == NULL) {
1311 aprint_error(": couldn't establish interrupt");
1312 if (intrstr != NULL)
1313 aprint_error(" at %s", intrstr);
1314 aprint_error("\n");
1315 goto fail_1;
1316 }
1317
1318 if (bus_dmamem_alloc(sc->sc_dmatag,
1319 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1320 PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
1321 aprint_error(": can't alloc status buffers\n");
1322 goto fail_2;
1323 }
1324
1325 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
1326 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1327 &kva, BUS_DMA_NOWAIT)) {
1328 aprint_error(": can't map dma buffers (%zu bytes)\n",
1329 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1330 goto fail_3;
1331 }
1332 if (bus_dmamap_create(sc->sc_dmatag,
1333 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1334 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1335 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1336 aprint_error(": can't create dma map\n");
1337 goto fail_4;
1338 }
1339 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1340 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1341 NULL, BUS_DMA_NOWAIT)) {
1342 aprint_error(": can't load dma map\n");
1343 goto fail_5;
1344 }
1345 sc->sk_status_ring = (struct msk_status_desc *)kva;
1346
1347 sc->sk_int_mod = SK_IM_DEFAULT;
1348 sc->sk_int_mod_pending = 0;
1349
1350 /* Reset the adapter. */
1351 msk_reset(sc);
1352
1353 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1354 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1355
1356 switch (sc->sk_type) {
1357 case SK_YUKON_XL:
1358 sc->sk_name = "Yukon-2 XL";
1359 break;
1360 case SK_YUKON_EC_U:
1361 sc->sk_name = "Yukon-2 EC Ultra";
1362 break;
1363 case SK_YUKON_EX:
1364 sc->sk_name = "Yukon-2 Extreme";
1365 break;
1366 case SK_YUKON_EC:
1367 sc->sk_name = "Yukon-2 EC";
1368 break;
1369 case SK_YUKON_FE:
1370 sc->sk_name = "Yukon-2 FE";
1371 break;
1372 case SK_YUKON_FE_P:
1373 sc->sk_name = "Yukon-2 FE+";
1374 break;
1375 case SK_YUKON_SUPR:
1376 sc->sk_name = "Yukon-2 Supreme";
1377 break;
1378 case SK_YUKON_ULTRA2:
1379 sc->sk_name = "Yukon-2 Ultra 2";
1380 break;
1381 case SK_YUKON_OPTIMA:
1382 sc->sk_name = "Yukon-2 Optima";
1383 break;
1384 case SK_YUKON_PRM:
1385 sc->sk_name = "Yukon-2 Optima Prime";
1386 break;
1387 case SK_YUKON_OPTIMA2:
1388 sc->sk_name = "Yukon-2 Optima 2";
1389 break;
1390 default:
1391 sc->sk_name = "Yukon (Unknown)";
1392 }
1393
1394 if (sc->sk_type == SK_YUKON_XL) {
1395 switch (sc->sk_rev) {
1396 case SK_YUKON_XL_REV_A0:
1397 sc->sk_workaround = 0;
1398 revstr = "A0";
1399 break;
1400 case SK_YUKON_XL_REV_A1:
1401 sc->sk_workaround = SK_WA_4109;
1402 revstr = "A1";
1403 break;
1404 case SK_YUKON_XL_REV_A2:
1405 sc->sk_workaround = SK_WA_4109;
1406 revstr = "A2";
1407 break;
1408 case SK_YUKON_XL_REV_A3:
1409 sc->sk_workaround = SK_WA_4109;
1410 revstr = "A3";
1411 break;
1412 default:
1413 sc->sk_workaround = 0;
1414 break;
1415 }
1416 }
1417
1418 if (sc->sk_type == SK_YUKON_EC) {
1419 switch (sc->sk_rev) {
1420 case SK_YUKON_EC_REV_A1:
1421 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1422 revstr = "A1";
1423 break;
1424 case SK_YUKON_EC_REV_A2:
1425 sc->sk_workaround = SK_WA_4109;
1426 revstr = "A2";
1427 break;
1428 case SK_YUKON_EC_REV_A3:
1429 sc->sk_workaround = SK_WA_4109;
1430 revstr = "A3";
1431 break;
1432 default:
1433 sc->sk_workaround = 0;
1434 break;
1435 }
1436 }
1437
1438 if (sc->sk_type == SK_YUKON_FE) {
1439 sc->sk_workaround = SK_WA_4109;
1440 switch (sc->sk_rev) {
1441 case SK_YUKON_FE_REV_A1:
1442 revstr = "A1";
1443 break;
1444 case SK_YUKON_FE_REV_A2:
1445 revstr = "A2";
1446 break;
1447 default:
1448 sc->sk_workaround = 0;
1449 break;
1450 }
1451 }
1452
1453 if (sc->sk_type == SK_YUKON_EC_U) {
1454 sc->sk_workaround = SK_WA_4109;
1455 switch (sc->sk_rev) {
1456 case SK_YUKON_EC_U_REV_A0:
1457 revstr = "A0";
1458 break;
1459 case SK_YUKON_EC_U_REV_A1:
1460 revstr = "A1";
1461 break;
1462 case SK_YUKON_EC_U_REV_B0:
1463 revstr = "B0";
1464 break;
1465 case SK_YUKON_EC_U_REV_B1:
1466 revstr = "B1";
1467 break;
1468 default:
1469 sc->sk_workaround = 0;
1470 break;
1471 }
1472 }
1473
1474 if (sc->sk_type == SK_YUKON_FE) {
1475 switch (sc->sk_rev) {
1476 case SK_YUKON_FE_REV_A1:
1477 revstr = "A1";
1478 break;
1479 case SK_YUKON_FE_REV_A2:
1480 revstr = "A2";
1481 break;
1482 default:
1483 ;
1484 }
1485 }
1486
1487 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1488 revstr = "A0";
1489
1490 if (sc->sk_type == SK_YUKON_EX) {
1491 switch (sc->sk_rev) {
1492 case SK_YUKON_EX_REV_A0:
1493 revstr = "A0";
1494 break;
1495 case SK_YUKON_EX_REV_B0:
1496 revstr = "B0";
1497 break;
1498 default:
1499 ;
1500 }
1501 }
1502
1503 if (sc->sk_type == SK_YUKON_SUPR) {
1504 switch (sc->sk_rev) {
1505 case SK_YUKON_SUPR_REV_A0:
1506 revstr = "A0";
1507 break;
1508 case SK_YUKON_SUPR_REV_B0:
1509 revstr = "B0";
1510 break;
1511 case SK_YUKON_SUPR_REV_B1:
1512 revstr = "B1";
1513 break;
1514 default:
1515 ;
1516 }
1517 }
1518
1519 if (sc->sk_type == SK_YUKON_PRM) {
1520 switch (sc->sk_rev) {
1521 case SK_YUKON_PRM_REV_Z1:
1522 revstr = "Z1";
1523 break;
1524 case SK_YUKON_PRM_REV_A0:
1525 revstr = "A0";
1526 break;
1527 default:
1528 ;
1529 }
1530 }
1531
1532 /* Announce the product name. */
1533 aprint_normal(", %s", sc->sk_name);
1534 if (revstr != NULL)
1535 aprint_normal(" rev. %s", revstr);
1536 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1537
1538 sc->sk_macs = 1;
1539
1540 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1541 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1542 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1543 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1544 sc->sk_macs++;
1545 }
1546
1547 skca.skc_port = SK_PORT_A;
1548 skca.skc_type = sc->sk_type;
1549 skca.skc_rev = sc->sk_rev;
1550 (void)config_found(sc->sk_dev, &skca, mskcprint);
1551
1552 if (sc->sk_macs > 1) {
1553 skca.skc_port = SK_PORT_B;
1554 skca.skc_type = sc->sk_type;
1555 skca.skc_rev = sc->sk_rev;
1556 (void)config_found(sc->sk_dev, &skca, mskcprint);
1557 }
1558
1559 /* Turn on the 'driver is loaded' LED. */
1560 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1561
1562 /* skc sysctl setup */
1563
1564 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1565 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1566 SYSCTL_DESCR("mskc per-controller controls"),
1567 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1568 CTL_EOL)) != 0) {
1569 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1570 goto fail_6;
1571 }
1572
1573 sk_nodenum = node->sysctl_num;
1574
1575 /* interrupt moderation time in usecs */
1576 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1577 CTLFLAG_READWRITE,
1578 CTLTYPE_INT, "int_mod",
1579 SYSCTL_DESCR("msk interrupt moderation timer"),
1580 msk_sysctl_handler, 0, (void *)sc,
1581 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1582 CTL_EOL)) != 0) {
1583 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1584 goto fail_6;
1585 }
1586
1587 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1588 aprint_error_dev(self, "couldn't establish power handler\n");
1589
1590 return;
1591
1592 fail_6:
1593 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1594 fail_5:
1595 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1596 fail_4:
1597 bus_dmamem_unmap(sc->sc_dmatag, kva,
1598 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1599 fail_3:
1600 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
1601 fail_2:
1602 pci_intr_disestablish(pc, sc->sk_intrhand);
1603 fail_1:
1604 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1605 }
1606
1607 int
1608 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1609 {
1610 struct sk_softc *sc = sc_if->sk_softc;
1611 struct msk_tx_desc *f = NULL;
1612 u_int32_t frag, cur;
1613 int i;
1614 struct sk_txmap_entry *entry;
1615 bus_dmamap_t txmap;
1616
1617 DPRINTFN(2, ("msk_encap\n"));
1618
1619 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1620 if (entry == NULL) {
1621 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1622 return (ENOBUFS);
1623 }
1624 txmap = entry->dmamap;
1625
1626 cur = frag = *txidx;
1627
1628 #ifdef MSK_DEBUG
1629 if (mskdebug >= 2)
1630 msk_dump_mbuf(m_head);
1631 #endif
1632
1633 /*
1634 * Start packing the mbufs in this chain into
1635 * the fragment pointers. Stop when we run out
1636 * of fragments or hit the end of the mbuf chain.
1637 */
1638 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1639 BUS_DMA_NOWAIT)) {
1640 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1641 return (ENOBUFS);
1642 }
1643
1644 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1645 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1646 bus_dmamap_unload(sc->sc_dmatag, txmap);
1647 return (ENOBUFS);
1648 }
1649
1650 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1651
1652 /* Sync the DMA map. */
1653 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1654 BUS_DMASYNC_PREWRITE);
1655
1656 for (i = 0; i < txmap->dm_nsegs; i++) {
1657 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1658 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1659 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1660 f->sk_ctl = 0;
1661 if (i == 0)
1662 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1663 else
1664 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1665 cur = frag;
1666 SK_INC(frag, MSK_TX_RING_CNT);
1667 }
1668
1669 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1670 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1671
1672 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1673 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1674
1675 /* Sync descriptors before handing to chip */
1676 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1677 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1678
1679 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1680
1681 /* Sync first descriptor to hand it off */
1682 MSK_CDTXSYNC(sc_if, *txidx, 1,
1683 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1684
1685 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1686
1687 #ifdef MSK_DEBUG
1688 if (mskdebug >= 2) {
1689 struct msk_tx_desc *le;
1690 u_int32_t idx;
1691 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1692 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1693 msk_dump_txdesc(le, idx);
1694 }
1695 }
1696 #endif
1697
1698 *txidx = frag;
1699
1700 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1701
1702 return (0);
1703 }
1704
1705 void
1706 msk_start(struct ifnet *ifp)
1707 {
1708 struct sk_if_softc *sc_if = ifp->if_softc;
1709 struct mbuf *m_head = NULL;
1710 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1711 int pkts = 0;
1712
1713 DPRINTFN(2, ("msk_start\n"));
1714
1715 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1716 IFQ_POLL(&ifp->if_snd, m_head);
1717 if (m_head == NULL)
1718 break;
1719
1720 /*
1721 * Pack the data into the transmit ring. If we
1722 * don't have room, set the OACTIVE flag and wait
1723 * for the NIC to drain the ring.
1724 */
1725 if (msk_encap(sc_if, m_head, &idx)) {
1726 ifp->if_flags |= IFF_OACTIVE;
1727 break;
1728 }
1729
1730 /* now we are committed to transmit the packet */
1731 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1732 pkts++;
1733
1734 /*
1735 * If there's a BPF listener, bounce a copy of this frame
1736 * to him.
1737 */
1738 bpf_mtap(ifp, m_head);
1739 }
1740 if (pkts == 0)
1741 return;
1742
1743 /* Transmit */
1744 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1745 sc_if->sk_cdata.sk_tx_prod = idx;
1746 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1747
1748 /* Set a timeout in case the chip goes out to lunch. */
1749 ifp->if_timer = 5;
1750 }
1751 }
1752
1753 void
1754 msk_watchdog(struct ifnet *ifp)
1755 {
1756 struct sk_if_softc *sc_if = ifp->if_softc;
1757 u_int32_t reg;
1758 int idx;
1759
1760 /*
1761 * Reclaim first as there is a possibility of losing Tx completion
1762 * interrupts.
1763 */
1764 if (sc_if->sk_port == SK_PORT_A)
1765 reg = SK_STAT_BMU_TXA1_RIDX;
1766 else
1767 reg = SK_STAT_BMU_TXA2_RIDX;
1768
1769 idx = sk_win_read_2(sc_if->sk_softc, reg);
1770 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1771 msk_txeof(sc_if, idx);
1772 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1773 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1774
1775 ifp->if_oerrors++;
1776
1777 /* XXX Resets both ports; we shouldn't do that. */
1778 msk_reset(sc_if->sk_softc);
1779 msk_init(ifp);
1780 }
1781 }
1782 }
1783
1784 static bool
1785 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1786 {
1787 struct sk_softc *sc = device_private(dv);
1788
1789 DPRINTFN(2, ("mskc_suspend\n"));
1790
1791 /* Turn off the 'driver is loaded' LED. */
1792 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1793
1794 return true;
1795 }
1796
1797 static bool
1798 mskc_resume(device_t dv, const pmf_qual_t *qual)
1799 {
1800 struct sk_softc *sc = device_private(dv);
1801
1802 DPRINTFN(2, ("mskc_resume\n"));
1803
1804 msk_reset(sc);
1805 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1806
1807 return true;
1808 }
1809
1810 static __inline int
1811 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1812 {
1813 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1814 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1815 YU_RXSTAT_JABBER)) != 0 ||
1816 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1817 YU_RXSTAT_BYTES(stat) != len)
1818 return (0);
1819
1820 return (1);
1821 }
1822
1823 void
1824 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1825 {
1826 struct sk_softc *sc = sc_if->sk_softc;
1827 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1828 struct mbuf *m;
1829 struct sk_chain *cur_rx;
1830 int cur, total_len = len;
1831 bus_dmamap_t dmamap;
1832
1833 DPRINTFN(2, ("msk_rxeof\n"));
1834
1835 cur = sc_if->sk_cdata.sk_rx_cons;
1836 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1837 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1838
1839 /* Sync the descriptor */
1840 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1841
1842 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1843 if (cur_rx->sk_mbuf == NULL)
1844 return;
1845
1846 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1847 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1848 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1849
1850 m = cur_rx->sk_mbuf;
1851 cur_rx->sk_mbuf = NULL;
1852
1853 if (total_len < SK_MIN_FRAMELEN ||
1854 total_len > ETHER_MAX_LEN_JUMBO ||
1855 msk_rxvalid(sc, rxstat, total_len) == 0) {
1856 ifp->if_ierrors++;
1857 msk_newbuf(sc_if, cur, m, dmamap);
1858 return;
1859 }
1860
1861 /*
1862 * Try to allocate a new jumbo buffer. If that fails, copy the
1863 * packet to mbufs and put the jumbo buffer back in the ring
1864 * so it can be re-used. If allocating mbufs fails, then we
1865 * have to drop the packet.
1866 */
1867 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1868 struct mbuf *m0;
1869 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1870 total_len + ETHER_ALIGN, 0, ifp, NULL);
1871 msk_newbuf(sc_if, cur, m, dmamap);
1872 if (m0 == NULL) {
1873 ifp->if_ierrors++;
1874 return;
1875 }
1876 m_adj(m0, ETHER_ALIGN);
1877 m = m0;
1878 } else {
1879 m_set_rcvif(m, ifp);
1880 m->m_pkthdr.len = m->m_len = total_len;
1881 }
1882
1883 /* pass it on. */
1884 if_percpuq_enqueue(ifp->if_percpuq, m);
1885 }
1886
1887 void
1888 msk_txeof(struct sk_if_softc *sc_if, int idx)
1889 {
1890 struct sk_softc *sc = sc_if->sk_softc;
1891 struct msk_tx_desc *cur_tx;
1892 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1893 u_int32_t sk_ctl;
1894 struct sk_txmap_entry *entry;
1895 int cons, prog;
1896
1897 DPRINTFN(2, ("msk_txeof\n"));
1898
1899 /*
1900 * Go through our tx ring and free mbufs for those
1901 * frames that have been sent.
1902 */
1903 cons = sc_if->sk_cdata.sk_tx_cons;
1904 prog = 0;
1905 while (cons != idx) {
1906 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1907 break;
1908 prog++;
1909 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1910
1911 MSK_CDTXSYNC(sc_if, cons, 1,
1912 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1913 sk_ctl = cur_tx->sk_ctl;
1914 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1915 #ifdef MSK_DEBUG
1916 if (mskdebug >= 2)
1917 msk_dump_txdesc(cur_tx, cons);
1918 #endif
1919 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1920 ifp->if_opackets++;
1921 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1922 entry = sc_if->sk_cdata.sk_tx_map[cons];
1923
1924 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
1925 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1926
1927 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
1928 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
1929 link);
1930 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
1931 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
1932 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
1933 }
1934 sc_if->sk_cdata.sk_tx_cnt--;
1935 SK_INC(cons, MSK_TX_RING_CNT);
1936 }
1937 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
1938
1939 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
1940 ifp->if_flags &= ~IFF_OACTIVE;
1941
1942 if (prog > 0)
1943 sc_if->sk_cdata.sk_tx_cons = cons;
1944 }
1945
1946 void
1947 msk_tick(void *xsc_if)
1948 {
1949 struct sk_if_softc *sc_if = xsc_if;
1950 struct mii_data *mii = &sc_if->sk_mii;
1951 uint16_t gpsr;
1952 int s;
1953
1954 s = splnet();
1955 mii_tick(mii);
1956 splx(s);
1957
1958 callout_schedule(&sc_if->sk_tick_ch, hz);
1959 }
1960
1961 void
1962 msk_intr_yukon(struct sk_if_softc *sc_if)
1963 {
1964 u_int8_t status;
1965
1966 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
1967 /* RX overrun */
1968 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
1969 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
1970 SK_RFCTL_RX_FIFO_OVER);
1971 }
1972 /* TX underrun */
1973 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
1974 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
1975 SK_TFCTL_TX_FIFO_UNDER);
1976 }
1977
1978 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
1979 }
1980
1981 int
1982 msk_intr(void *xsc)
1983 {
1984 struct sk_softc *sc = xsc;
1985 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
1986 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
1987 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
1988 int claimed = 0;
1989 u_int32_t status;
1990 uint32_t st_status;
1991 uint16_t st_len;
1992 uint8_t st_opcode, st_link;
1993 struct msk_status_desc *cur_st;
1994
1995 status = CSR_READ_4(sc, SK_Y2_ISSR2);
1996 if (status == 0) {
1997 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
1998 return (0);
1999 }
2000
2001 status = CSR_READ_4(sc, SK_ISR);
2002
2003 if (sc_if0 != NULL)
2004 ifp0 = &sc_if0->sk_ethercom.ec_if;
2005 if (sc_if1 != NULL)
2006 ifp1 = &sc_if1->sk_ethercom.ec_if;
2007
2008 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2009 (ifp0->if_flags & IFF_RUNNING)) {
2010 msk_intr_yukon(sc_if0);
2011 }
2012
2013 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2014 (ifp1->if_flags & IFF_RUNNING)) {
2015 msk_intr_yukon(sc_if1);
2016 }
2017
2018 for (;;) {
2019 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2020 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2021 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2022 st_opcode = cur_st->sk_opcode;
2023 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
2024 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2025 BUS_DMASYNC_PREREAD);
2026 break;
2027 }
2028 st_status = le32toh(cur_st->sk_status);
2029 st_len = le16toh(cur_st->sk_len);
2030 st_link = cur_st->sk_link;
2031 st_opcode &= ~SK_Y2_STOPC_OWN;
2032
2033 switch (st_opcode) {
2034 case SK_Y2_STOPC_RXSTAT:
2035 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
2036 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
2037 SK_RXQ1_Y2_PREF_PUTIDX,
2038 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
2039 break;
2040 case SK_Y2_STOPC_TXSTAT:
2041 if (sc_if0)
2042 msk_txeof(sc_if0, st_status
2043 & SK_Y2_ST_TXA1_MSKL);
2044 if (sc_if1)
2045 msk_txeof(sc_if1,
2046 ((st_status & SK_Y2_ST_TXA2_MSKL)
2047 >> SK_Y2_ST_TXA2_SHIFTL)
2048 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
2049 break;
2050 default:
2051 aprint_error("opcode=0x%x\n", st_opcode);
2052 break;
2053 }
2054 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2055 }
2056
2057 #define MSK_STATUS_RING_OWN_CNT(sc) \
2058 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
2059 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
2060
2061 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
2062 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
2063 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2064 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
2065 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2066
2067 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
2068 }
2069
2070 if (status & SK_Y2_IMR_BMU) {
2071 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2072 claimed = 1;
2073 }
2074
2075 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2076
2077 if (ifp0 != NULL)
2078 if_schedule_deferred_start(ifp0);
2079 if (ifp1 != NULL)
2080 if_schedule_deferred_start(ifp1);
2081
2082 rnd_add_uint32(&sc->rnd_source, status);
2083
2084 if (sc->sk_int_mod_pending)
2085 msk_update_int_mod(sc, 1);
2086
2087 return claimed;
2088 }
2089
2090 void
2091 msk_init_yukon(struct sk_if_softc *sc_if)
2092 {
2093 u_int32_t v;
2094 u_int16_t reg;
2095 struct sk_softc *sc;
2096 int i;
2097
2098 sc = sc_if->sk_softc;
2099
2100 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2101 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2102
2103 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2104
2105 /* GMAC and GPHY Reset */
2106 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
2107 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
2108 DELAY(1000);
2109
2110 DPRINTFN(6, ("msk_init_yukon: 2\n"));
2111
2112 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
2113 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
2114 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
2115
2116 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2117 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2118
2119 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2120
2121 /* unused read of the interrupt source register */
2122 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2123 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2124
2125 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2126 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2127 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2128
2129 /* MIB Counter Clear Mode set */
2130 reg |= YU_PAR_MIB_CLR;
2131 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2132 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2133 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2134
2135 /* MIB Counter Clear Mode clear */
2136 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2137 reg &= ~YU_PAR_MIB_CLR;
2138 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2139
2140 /* receive control reg */
2141 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2142 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2143
2144 /* transmit control register */
2145 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2146
2147 /* transmit flow control register */
2148 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2149
2150 /* transmit parameter register */
2151 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2152 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2153 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2154
2155 /* serial mode register */
2156 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2157 reg = YU_SMR_DATA_BLIND(0x1c) |
2158 YU_SMR_MFL_VLAN |
2159 YU_SMR_IPG_DATA(0x1e);
2160
2161 if (sc->sk_type != SK_YUKON_FE &&
2162 sc->sk_type != SK_YUKON_FE_P)
2163 reg |= YU_SMR_MFL_JUMBO;
2164
2165 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2166
2167 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2168 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2169 /* msk_attach calls me before ether_ifattach so check null */
2170 if (ifp != NULL && ifp->if_sadl != NULL)
2171 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2172 sizeof(sc_if->sk_enaddr));
2173 /* Setup Yukon's address */
2174 for (i = 0; i < 3; i++) {
2175 /* Write Source Address 1 (unicast filter) */
2176 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2177 sc_if->sk_enaddr[i * 2] |
2178 sc_if->sk_enaddr[i * 2 + 1] << 8);
2179 }
2180
2181 for (i = 0; i < 3; i++) {
2182 reg = sk_win_read_2(sc_if->sk_softc,
2183 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2184 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2185 }
2186
2187 /* Set promiscuous mode */
2188 msk_setpromisc(sc_if);
2189
2190 /* Set multicast filter */
2191 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2192 msk_setmulti(sc_if);
2193
2194 /* enable interrupt mask for counter overflows */
2195 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2196 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2197 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2198 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2199
2200 /* Configure RX MAC FIFO Flush Mask */
2201 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2202 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2203 YU_RXSTAT_JABBER;
2204 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2205
2206 /* Configure RX MAC FIFO */
2207 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2208 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2209 SK_RFCTL_FIFO_FLUSH_ON);
2210
2211 /* Increase flush threshould to 64 bytes */
2212 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2213 SK_RFCTL_FIFO_THRESHOLD + 1);
2214
2215 /* Configure TX MAC FIFO */
2216 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2217 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2218
2219 #if 1
2220 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2221 #endif
2222 DPRINTFN(6, ("msk_init_yukon: end\n"));
2223 }
2224
2225 /*
2226 * Note that to properly initialize any part of the GEnesis chip,
2227 * you first have to take it out of reset mode.
2228 */
2229 int
2230 msk_init(struct ifnet *ifp)
2231 {
2232 struct sk_if_softc *sc_if = ifp->if_softc;
2233 struct sk_softc *sc = sc_if->sk_softc;
2234 int rc = 0, s;
2235 uint32_t imr, imtimer_ticks;
2236
2237
2238 DPRINTFN(2, ("msk_init\n"));
2239
2240 s = splnet();
2241
2242 /* Cancel pending I/O and free all RX/TX buffers. */
2243 msk_stop(ifp,0);
2244
2245 /* Configure I2C registers */
2246
2247 /* Configure XMAC(s) */
2248 msk_init_yukon(sc_if);
2249 if ((rc = ether_mediachange(ifp)) != 0)
2250 goto out;
2251
2252 /* Configure transmit arbiter(s) */
2253 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2254 #if 0
2255 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2256 #endif
2257
2258 /* Configure RAMbuffers */
2259 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2260 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2261 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2262 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2263 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2264 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2265
2266 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2267 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2268 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2269 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2270 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2271 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2272 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2273
2274 /* Configure BMUs */
2275 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2276 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2277 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2278 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2279
2280 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2281 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2282 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2283 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2284
2285 /* Make sure the sync transmit queue is disabled. */
2286 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2287
2288 /* Init descriptors */
2289 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2290 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2291 "memory for rx buffers\n");
2292 msk_stop(ifp,0);
2293 splx(s);
2294 return ENOBUFS;
2295 }
2296
2297 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2298 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2299 "memory for tx buffers\n");
2300 msk_stop(ifp,0);
2301 splx(s);
2302 return ENOBUFS;
2303 }
2304
2305 /* Set interrupt moderation if changed via sysctl. */
2306 switch (sc->sk_type) {
2307 case SK_YUKON_EC:
2308 case SK_YUKON_EC_U:
2309 case SK_YUKON_EX:
2310 case SK_YUKON_SUPR:
2311 case SK_YUKON_ULTRA2:
2312 case SK_YUKON_OPTIMA:
2313 case SK_YUKON_PRM:
2314 case SK_YUKON_OPTIMA2:
2315 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2316 break;
2317 case SK_YUKON_FE:
2318 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2319 break;
2320 case SK_YUKON_FE_P:
2321 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2322 break;
2323 case SK_YUKON_XL:
2324 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2325 break;
2326 default:
2327 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2328 }
2329 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2330 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2331 sk_win_write_4(sc, SK_IMTIMERINIT,
2332 SK_IM_USECS(sc->sk_int_mod));
2333 aprint_verbose_dev(sc->sk_dev,
2334 "interrupt moderation is %d us\n", sc->sk_int_mod);
2335 }
2336
2337 /* Initialize prefetch engine. */
2338 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2339 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2340 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2341 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2342 MSK_RX_RING_ADDR(sc_if, 0));
2343 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2344 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2345 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2346 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2347
2348 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2349 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2350 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2351 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2352 MSK_TX_RING_ADDR(sc_if, 0));
2353 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2354 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2355 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2356 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2357
2358 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2359 sc_if->sk_cdata.sk_rx_prod);
2360
2361 /* Configure interrupt handling */
2362 if (sc_if->sk_port == SK_PORT_A)
2363 sc->sk_intrmask |= SK_Y2_INTRS1;
2364 else
2365 sc->sk_intrmask |= SK_Y2_INTRS2;
2366 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2367 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2368
2369 ifp->if_flags |= IFF_RUNNING;
2370 ifp->if_flags &= ~IFF_OACTIVE;
2371
2372 callout_schedule(&sc_if->sk_tick_ch, hz);
2373
2374 out:
2375 splx(s);
2376 return rc;
2377 }
2378
2379 void
2380 msk_stop(struct ifnet *ifp, int disable)
2381 {
2382 struct sk_if_softc *sc_if = ifp->if_softc;
2383 struct sk_softc *sc = sc_if->sk_softc;
2384 struct sk_txmap_entry *dma;
2385 int i;
2386
2387 DPRINTFN(2, ("msk_stop\n"));
2388
2389 callout_stop(&sc_if->sk_tick_ch);
2390
2391 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2392
2393 /* Stop transfer of Tx descriptors */
2394
2395 /* Stop transfer of Rx descriptors */
2396
2397 /* Turn off various components of this interface. */
2398 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2399 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2400 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2401 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2402 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2403 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2404 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2405 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2406 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2407 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2408 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2409 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2410
2411 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2412 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2413
2414 /* Disable interrupts */
2415 if (sc_if->sk_port == SK_PORT_A)
2416 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2417 else
2418 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2419 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2420
2421 SK_XM_READ_2(sc_if, XM_ISR);
2422 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2423
2424 /* Free RX and TX mbufs still in the queues. */
2425 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2426 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2427 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2428 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2429 }
2430 }
2431
2432 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2433 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2434 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2435 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2436 #if 1
2437 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2438 sc_if->sk_cdata.sk_tx_map[i], link);
2439 sc_if->sk_cdata.sk_tx_map[i] = 0;
2440 #endif
2441 }
2442 }
2443
2444 #if 1
2445 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2446 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2447 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2448 free(dma, M_DEVBUF);
2449 }
2450 #endif
2451 }
2452
2453 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2454 NULL, NULL);
2455
2456 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2457 NULL, NULL);
2458
2459 #ifdef MSK_DEBUG
2460 void
2461 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2462 {
2463 #define DESC_PRINT(X) \
2464 if (X) \
2465 printf("txdesc[%d]." #X "=%#x\n", \
2466 idx, X);
2467
2468 DESC_PRINT(letoh32(le->sk_addr));
2469 DESC_PRINT(letoh16(le->sk_len));
2470 DESC_PRINT(le->sk_ctl);
2471 DESC_PRINT(le->sk_opcode);
2472 #undef DESC_PRINT
2473 }
2474
2475 void
2476 msk_dump_bytes(const char *data, int len)
2477 {
2478 int c, i, j;
2479
2480 for (i = 0; i < len; i += 16) {
2481 printf("%08x ", i);
2482 c = len - i;
2483 if (c > 16) c = 16;
2484
2485 for (j = 0; j < c; j++) {
2486 printf("%02x ", data[i + j] & 0xff);
2487 if ((j & 0xf) == 7 && j > 0)
2488 printf(" ");
2489 }
2490
2491 for (; j < 16; j++)
2492 printf(" ");
2493 printf(" ");
2494
2495 for (j = 0; j < c; j++) {
2496 int ch = data[i + j] & 0xff;
2497 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2498 }
2499
2500 printf("\n");
2501
2502 if (c < 16)
2503 break;
2504 }
2505 }
2506
2507 void
2508 msk_dump_mbuf(struct mbuf *m)
2509 {
2510 int count = m->m_pkthdr.len;
2511
2512 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2513
2514 while (count > 0 && m) {
2515 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2516 m, m->m_data, m->m_len);
2517 msk_dump_bytes(mtod(m, char *), m->m_len);
2518
2519 count -= m->m_len;
2520 m = m->m_next;
2521 }
2522 }
2523 #endif
2524
2525 static int
2526 msk_sysctl_handler(SYSCTLFN_ARGS)
2527 {
2528 int error, t;
2529 struct sysctlnode node;
2530 struct sk_softc *sc;
2531
2532 node = *rnode;
2533 sc = node.sysctl_data;
2534 t = sc->sk_int_mod;
2535 node.sysctl_data = &t;
2536 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2537 if (error || newp == NULL)
2538 return error;
2539
2540 if (t < SK_IM_MIN || t > SK_IM_MAX)
2541 return EINVAL;
2542
2543 /* update the softc with sysctl-changed value, and mark
2544 for hardware update */
2545 sc->sk_int_mod = t;
2546 sc->sk_int_mod_pending = 1;
2547 return 0;
2548 }
2549
2550 /*
2551 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2552 * set up in skc_attach()
2553 */
2554 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2555 {
2556 int rc;
2557 const struct sysctlnode *node;
2558
2559 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2560 0, CTLTYPE_NODE, "msk",
2561 SYSCTL_DESCR("msk interface controls"),
2562 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2563 goto err;
2564 }
2565
2566 msk_root_num = node->sysctl_num;
2567 return;
2568
2569 err:
2570 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2571 }
2572