if_msk.c revision 1.63 1 /* $NetBSD: if_msk.c,v 1.63 2018/06/13 19:37:23 jdolecek Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.65 2008/09/10 14:01:22 blambert Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.63 2018/06/13 19:37:23 jdolecek Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
109 void msk_txeof(struct sk_if_softc *, int);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123
124 void msk_update_int_mod(struct sk_softc *, int);
125
126 int msk_miibus_readreg(device_t, int, int);
127 void msk_miibus_writereg(device_t, int, int, int);
128 void msk_miibus_statchg(struct ifnet *);
129
130 void msk_setmulti(struct sk_if_softc *);
131 void msk_setpromisc(struct sk_if_softc *);
132 void msk_tick(void *);
133
134 /* #define MSK_DEBUG 1 */
135 #ifdef MSK_DEBUG
136 #define DPRINTF(x) if (mskdebug) printf x
137 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
138 int mskdebug = MSK_DEBUG;
139
140 void msk_dump_txdesc(struct msk_tx_desc *, int);
141 void msk_dump_mbuf(struct mbuf *);
142 void msk_dump_bytes(const char *, int);
143 #else
144 #define DPRINTF(x)
145 #define DPRINTFN(n,x)
146 #endif
147
148 static int msk_sysctl_handler(SYSCTLFN_PROTO);
149 static int msk_root_num;
150
151 /* supported device vendors */
152 static const struct msk_product {
153 pci_vendor_id_t msk_vendor;
154 pci_product_id_t msk_product;
155 } msk_products[] = {
156 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
157 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
158 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
159 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
160 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
195 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
196 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
197 };
198
199 static inline u_int32_t
200 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
201 {
202 return CSR_READ_4(sc, reg);
203 }
204
205 static inline u_int16_t
206 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
207 {
208 return CSR_READ_2(sc, reg);
209 }
210
211 static inline u_int8_t
212 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
213 {
214 return CSR_READ_1(sc, reg);
215 }
216
217 static inline void
218 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
219 {
220 CSR_WRITE_4(sc, reg, x);
221 }
222
223 static inline void
224 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
225 {
226 CSR_WRITE_2(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
231 {
232 CSR_WRITE_1(sc, reg, x);
233 }
234
235 int
236 msk_miibus_readreg(device_t dev, int phy, int reg)
237 {
238 struct sk_if_softc *sc_if = device_private(dev);
239 u_int16_t val;
240 int i;
241
242 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
243 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
244
245 for (i = 0; i < SK_TIMEOUT; i++) {
246 DELAY(1);
247 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
248 if (val & YU_SMICR_READ_VALID)
249 break;
250 }
251
252 if (i == SK_TIMEOUT) {
253 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
254 return (0);
255 }
256
257 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
258 SK_TIMEOUT));
259
260 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
261
262 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
263 phy, reg, val));
264
265 return (val);
266 }
267
268 void
269 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
270 {
271 struct sk_if_softc *sc_if = device_private(dev);
272 int i;
273
274 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
275 phy, reg, val));
276
277 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
278 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
279 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
280
281 for (i = 0; i < SK_TIMEOUT; i++) {
282 DELAY(1);
283 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
284 break;
285 }
286
287 if (i == SK_TIMEOUT)
288 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
289 }
290
291 void
292 msk_miibus_statchg(struct ifnet *ifp)
293 {
294 struct sk_if_softc *sc_if = ifp->if_softc;
295 struct mii_data *mii = &sc_if->sk_mii;
296 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
297 int gpcr;
298
299 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
300 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
301
302 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
303 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
304 /* Set speed. */
305 gpcr |= YU_GPCR_SPEED_DIS;
306 switch (IFM_SUBTYPE(mii->mii_media_active)) {
307 case IFM_1000_SX:
308 case IFM_1000_LX:
309 case IFM_1000_CX:
310 case IFM_1000_T:
311 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
312 break;
313 case IFM_100_TX:
314 gpcr |= YU_GPCR_SPEED;
315 break;
316 }
317
318 /* Set duplex. */
319 gpcr |= YU_GPCR_DPLX_DIS;
320 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
321 gpcr |= YU_GPCR_DUPLEX;
322
323 /* Disable flow control. */
324 gpcr |= YU_GPCR_FCTL_DIS;
325 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
326 }
327
328 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
329
330 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
331 SK_YU_READ_2(sc_if, YUKON_GPCR)));
332 }
333
334 void
335 msk_setmulti(struct sk_if_softc *sc_if)
336 {
337 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
338 u_int32_t hashes[2] = { 0, 0 };
339 int h;
340 struct ethercom *ec = &sc_if->sk_ethercom;
341 struct ether_multi *enm;
342 struct ether_multistep step;
343 u_int16_t reg;
344
345 /* First, zot all the existing filters. */
346 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
347 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
348 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
349 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
350
351
352 /* Now program new ones. */
353 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
354 reg |= YU_RCR_UFLEN;
355 allmulti:
356 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
357 if ((ifp->if_flags & IFF_PROMISC) != 0)
358 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
359 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
360 hashes[0] = 0xFFFFFFFF;
361 hashes[1] = 0xFFFFFFFF;
362 }
363 } else {
364 /* First find the tail of the list. */
365 ETHER_FIRST_MULTI(step, ec, enm);
366 while (enm != NULL) {
367 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
368 ETHER_ADDR_LEN)) {
369 ifp->if_flags |= IFF_ALLMULTI;
370 goto allmulti;
371 }
372 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
373 ((1 << SK_HASH_BITS) - 1);
374 if (h < 32)
375 hashes[0] |= (1 << h);
376 else
377 hashes[1] |= (1 << (h - 32));
378
379 ETHER_NEXT_MULTI(step, enm);
380 }
381 reg |= YU_RCR_MUFLEN;
382 }
383
384 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
385 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
386 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
387 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
388 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
389 }
390
391 void
392 msk_setpromisc(struct sk_if_softc *sc_if)
393 {
394 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
395
396 if (ifp->if_flags & IFF_PROMISC)
397 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
398 YU_RCR_UFLEN | YU_RCR_MUFLEN);
399 else
400 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
401 YU_RCR_UFLEN | YU_RCR_MUFLEN);
402 }
403
404 int
405 msk_init_rx_ring(struct sk_if_softc *sc_if)
406 {
407 struct msk_chain_data *cd = &sc_if->sk_cdata;
408 struct msk_ring_data *rd = sc_if->sk_rdata;
409 int i, nexti;
410
411 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
412
413 for (i = 0; i < MSK_RX_RING_CNT; i++) {
414 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
415 if (i == (MSK_RX_RING_CNT - 1))
416 nexti = 0;
417 else
418 nexti = i + 1;
419 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
420 }
421
422 for (i = 0; i < MSK_RX_RING_CNT; i++) {
423 if (msk_newbuf(sc_if, i, NULL,
424 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
425 aprint_error_dev(sc_if->sk_dev, "failed alloc of %dth mbuf\n", i);
426 return (ENOBUFS);
427 }
428 }
429
430 sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1;
431 sc_if->sk_cdata.sk_rx_cons = 0;
432
433 return (0);
434 }
435
436 int
437 msk_init_tx_ring(struct sk_if_softc *sc_if)
438 {
439 struct sk_softc *sc = sc_if->sk_softc;
440 struct msk_chain_data *cd = &sc_if->sk_cdata;
441 struct msk_ring_data *rd = sc_if->sk_rdata;
442 bus_dmamap_t dmamap;
443 struct sk_txmap_entry *entry;
444 int i, nexti;
445
446 memset(sc_if->sk_rdata->sk_tx_ring, 0,
447 sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
448
449 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
450 for (i = 0; i < MSK_TX_RING_CNT; i++) {
451 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
452 if (i == (MSK_TX_RING_CNT - 1))
453 nexti = 0;
454 else
455 nexti = i + 1;
456 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
457
458 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
459 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
460 return (ENOBUFS);
461
462 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
463 if (!entry) {
464 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
465 return (ENOBUFS);
466 }
467 entry->dmamap = dmamap;
468 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
469 }
470
471 sc_if->sk_cdata.sk_tx_prod = 0;
472 sc_if->sk_cdata.sk_tx_cons = 0;
473 sc_if->sk_cdata.sk_tx_cnt = 0;
474
475 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
476 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
477
478 return (0);
479 }
480
481 int
482 msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m,
483 bus_dmamap_t dmamap)
484 {
485 struct mbuf *m_new = NULL;
486 struct sk_chain *c;
487 struct msk_rx_desc *r;
488
489 if (m == NULL) {
490 void *buf = NULL;
491
492 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
493 if (m_new == NULL)
494 return (ENOBUFS);
495
496 /* Allocate the jumbo buffer */
497 buf = msk_jalloc(sc_if);
498 if (buf == NULL) {
499 m_freem(m_new);
500 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
501 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
502 return (ENOBUFS);
503 }
504
505 /* Attach the buffer to the mbuf */
506 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
507 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
508 } else {
509 /*
510 * We're re-using a previously allocated mbuf;
511 * be sure to re-init pointers and lengths to
512 * default values.
513 */
514 m_new = m;
515 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
516 m_new->m_data = m_new->m_ext.ext_buf;
517 }
518 m_adj(m_new, ETHER_ALIGN);
519
520 c = &sc_if->sk_cdata.sk_rx_chain[i];
521 r = c->sk_le;
522 c->sk_mbuf = m_new;
523 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
524 (((vaddr_t)m_new->m_data
525 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
526 r->sk_len = htole16(SK_JLEN);
527 r->sk_ctl = 0;
528 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
529
530 MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
531
532 return (0);
533 }
534
535 /*
536 * Memory management for jumbo frames.
537 */
538
539 int
540 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
541 {
542 struct sk_softc *sc = sc_if->sk_softc;
543 char *ptr, *kva;
544 bus_dma_segment_t seg;
545 int i, rseg, state, error;
546 struct sk_jpool_entry *entry;
547
548 state = error = 0;
549
550 /* Grab a big chunk o' storage. */
551 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
552 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
553 aprint_error(": can't alloc rx buffers");
554 return (ENOBUFS);
555 }
556
557 state = 1;
558 if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, (void **)&kva,
559 BUS_DMA_NOWAIT)) {
560 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
561 error = ENOBUFS;
562 goto out;
563 }
564
565 state = 2;
566 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
567 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
568 aprint_error(": can't create dma map");
569 error = ENOBUFS;
570 goto out;
571 }
572
573 state = 3;
574 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
575 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
576 aprint_error(": can't load dma map");
577 error = ENOBUFS;
578 goto out;
579 }
580
581 state = 4;
582 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
583 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
584
585 LIST_INIT(&sc_if->sk_jfree_listhead);
586 LIST_INIT(&sc_if->sk_jinuse_listhead);
587 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
588
589 /*
590 * Now divide it up into 9K pieces and save the addresses
591 * in an array.
592 */
593 ptr = sc_if->sk_cdata.sk_jumbo_buf;
594 for (i = 0; i < MSK_JSLOTS; i++) {
595 sc_if->sk_cdata.sk_jslots[i] = ptr;
596 ptr += SK_JLEN;
597 entry = malloc(sizeof(struct sk_jpool_entry),
598 M_DEVBUF, M_NOWAIT);
599 if (entry == NULL) {
600 sc_if->sk_cdata.sk_jumbo_buf = NULL;
601 aprint_error(": no memory for jumbo buffer queue!");
602 error = ENOBUFS;
603 goto out;
604 }
605 entry->slot = i;
606 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
607 entry, jpool_entries);
608 }
609 out:
610 if (error != 0) {
611 switch (state) {
612 case 4:
613 bus_dmamap_unload(sc->sc_dmatag,
614 sc_if->sk_cdata.sk_rx_jumbo_map);
615 case 3:
616 bus_dmamap_destroy(sc->sc_dmatag,
617 sc_if->sk_cdata.sk_rx_jumbo_map);
618 case 2:
619 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
620 case 1:
621 bus_dmamem_free(sc->sc_dmatag, &seg, rseg);
622 break;
623 default:
624 break;
625 }
626 }
627
628 return error;
629 }
630
631 /*
632 * Allocate a jumbo buffer.
633 */
634 void *
635 msk_jalloc(struct sk_if_softc *sc_if)
636 {
637 struct sk_jpool_entry *entry;
638
639 mutex_enter(&sc_if->sk_jpool_mtx);
640 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
641
642 if (entry == NULL) {
643 mutex_exit(&sc_if->sk_jpool_mtx);
644 return NULL;
645 }
646
647 LIST_REMOVE(entry, jpool_entries);
648 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
649 mutex_exit(&sc_if->sk_jpool_mtx);
650 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
651 }
652
653 /*
654 * Release a jumbo buffer.
655 */
656 void
657 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
658 {
659 struct sk_jpool_entry *entry;
660 struct sk_if_softc *sc;
661 int i;
662
663 /* Extract the softc struct pointer. */
664 sc = (struct sk_if_softc *)arg;
665
666 if (sc == NULL)
667 panic("msk_jfree: can't find softc pointer!");
668
669 /* calculate the slot this buffer belongs to */
670 i = ((vaddr_t)buf
671 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
672
673 if ((i < 0) || (i >= MSK_JSLOTS))
674 panic("msk_jfree: asked to free buffer that we don't manage!");
675
676 mutex_enter(&sc->sk_jpool_mtx);
677 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
678 if (entry == NULL)
679 panic("msk_jfree: buffer not in use!");
680 entry->slot = i;
681 LIST_REMOVE(entry, jpool_entries);
682 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
683 mutex_exit(&sc->sk_jpool_mtx);
684
685 if (__predict_true(m != NULL))
686 pool_cache_put(mb_cache, m);
687 }
688
689 int
690 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
691 {
692 struct sk_if_softc *sc = ifp->if_softc;
693 int s, error;
694
695 s = splnet();
696
697 DPRINTFN(2, ("msk_ioctl ETHER\n"));
698 switch (cmd) {
699 case SIOCSIFFLAGS:
700 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
701 break;
702
703 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
704 case IFF_RUNNING:
705 msk_stop(ifp, 1);
706 break;
707 case IFF_UP:
708 msk_init(ifp);
709 break;
710 case IFF_UP | IFF_RUNNING:
711 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
712 msk_setpromisc(sc);
713 msk_setmulti(sc);
714 } else
715 msk_init(ifp);
716 break;
717 }
718 sc->sk_if_flags = ifp->if_flags;
719 break;
720 default:
721 error = ether_ioctl(ifp, cmd, data);
722 if (error == ENETRESET) {
723 error = 0;
724 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
725 ;
726 else if (ifp->if_flags & IFF_RUNNING) {
727 /*
728 * Multicast list has changed; set the hardware
729 * filter accordingly.
730 */
731 msk_setmulti(sc);
732 }
733 }
734 break;
735 }
736
737 splx(s);
738 return error;
739 }
740
741 void
742 msk_update_int_mod(struct sk_softc *sc, int verbose)
743 {
744 u_int32_t imtimer_ticks;
745
746 /*
747 * Configure interrupt moderation. The moderation timer
748 * defers interrupts specified in the interrupt moderation
749 * timer mask based on the timeout specified in the interrupt
750 * moderation timer init register. Each bit in the timer
751 * register represents one tick, so to specify a timeout in
752 * microseconds, we have to multiply by the correct number of
753 * ticks-per-microsecond.
754 */
755 switch (sc->sk_type) {
756 case SK_YUKON_EC:
757 case SK_YUKON_EC_U:
758 case SK_YUKON_EX:
759 case SK_YUKON_SUPR:
760 case SK_YUKON_ULTRA2:
761 case SK_YUKON_OPTIMA:
762 case SK_YUKON_PRM:
763 case SK_YUKON_OPTIMA2:
764 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
765 break;
766 case SK_YUKON_FE:
767 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
768 break;
769 case SK_YUKON_XL:
770 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
771 break;
772 default:
773 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
774 }
775 if (verbose)
776 aprint_verbose_dev(sc->sk_dev,
777 "interrupt moderation is %d us\n", sc->sk_int_mod);
778 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
779 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
780 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
781 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
782 sc->sk_int_mod_pending = 0;
783 }
784
785 static int
786 msk_lookup(const struct pci_attach_args *pa)
787 {
788 const struct msk_product *pmsk;
789
790 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
791 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
792 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
793 return 1;
794 }
795 return 0;
796 }
797
798 /*
799 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
800 * IDs against our list and return a device name if we find a match.
801 */
802 int
803 mskc_probe(device_t parent, cfdata_t match, void *aux)
804 {
805 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
806
807 return msk_lookup(pa);
808 }
809
810 /*
811 * Force the GEnesis into reset, then bring it out of reset.
812 */
813 void
814 mskc_reset(struct sk_softc *sc)
815 {
816 u_int32_t imtimer_ticks, reg1;
817 int reg;
818
819 DPRINTFN(2, ("mskc_reset\n"));
820
821 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
822 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
823
824 DELAY(1000);
825 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
826 DELAY(2);
827 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
828 sk_win_write_1(sc, SK_TESTCTL1, 2);
829
830 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
831 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
832 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
833 else
834 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
835
836 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
837 sc->sk_type >= SK_YUKON_FE_P) {
838 uint32_t our;
839
840 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
841
842 /* enable all clocks. */
843 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
844 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
845 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
846 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
847 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
848 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
849 /* Set all bits to 0 except bits 15..12 */
850 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
851 /* Set to default value */
852 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
853 }
854
855 /* release PHY from PowerDown/Coma mode. */
856 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
857 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
858 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
859 else
860 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
861 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
862
863 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
864 sk_win_write_1(sc, SK_Y2_CLKGATE,
865 SK_Y2_CLKGATE_LINK1_GATE_DIS |
866 SK_Y2_CLKGATE_LINK2_GATE_DIS |
867 SK_Y2_CLKGATE_LINK1_CORE_DIS |
868 SK_Y2_CLKGATE_LINK2_CORE_DIS |
869 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
870 else
871 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
872
873 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
874 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
875 DELAY(1000);
876 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
877 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
878
879 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
880 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
881 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
882 }
883
884 sk_win_write_1(sc, SK_TESTCTL1, 1);
885
886 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
887 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
888 CSR_READ_2(sc, SK_LINK_CTRL)));
889
890 /* Disable ASF */
891 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
892 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
893
894 /* Clear I2C IRQ noise */
895 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
896
897 /* Disable hardware timer */
898 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
899 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
900
901 /* Disable descriptor polling */
902 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
903
904 /* Disable time stamps */
905 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
906 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
907
908 /* Enable RAM interface */
909 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
910 for (reg = SK_TO0;reg <= SK_TO11; reg++)
911 sk_win_write_1(sc, reg, 36);
912 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
913 for (reg = SK_TO0;reg <= SK_TO11; reg++)
914 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
915
916 /*
917 * Configure interrupt moderation. The moderation timer
918 * defers interrupts specified in the interrupt moderation
919 * timer mask based on the timeout specified in the interrupt
920 * moderation timer init register. Each bit in the timer
921 * register represents one tick, so to specify a timeout in
922 * microseconds, we have to multiply by the correct number of
923 * ticks-per-microsecond.
924 */
925 switch (sc->sk_type) {
926 case SK_YUKON_EC:
927 case SK_YUKON_EC_U:
928 case SK_YUKON_EX:
929 case SK_YUKON_SUPR:
930 case SK_YUKON_ULTRA2:
931 case SK_YUKON_OPTIMA:
932 case SK_YUKON_PRM:
933 case SK_YUKON_OPTIMA2:
934 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
935 break;
936 case SK_YUKON_FE:
937 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
938 break;
939 case SK_YUKON_FE_P:
940 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
941 break;
942 case SK_YUKON_XL:
943 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
944 break;
945 default:
946 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
947 break;
948 }
949
950 /* Reset status ring. */
951 memset(sc->sk_status_ring, 0,
952 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
953 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
954 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
955 sc->sk_status_idx = 0;
956 sc->sk_status_own_idx = 0;
957
958 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
959 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
960
961 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
962 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
963 sc->sk_status_map->dm_segs[0].ds_addr);
964 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
965 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
966 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
967 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
968 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
969 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
970 } else {
971 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
972 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
973 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
974 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
975 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
976 }
977
978 #if 0
979 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
980 #endif
981 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
982
983 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
984
985 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
986 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
987 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
988
989 msk_update_int_mod(sc, 0);
990 }
991
992 int
993 msk_probe(device_t parent, cfdata_t match, void *aux)
994 {
995 struct skc_attach_args *sa = aux;
996
997 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
998 return (0);
999
1000 switch (sa->skc_type) {
1001 case SK_YUKON_XL:
1002 case SK_YUKON_EC_U:
1003 case SK_YUKON_EX:
1004 case SK_YUKON_EC:
1005 case SK_YUKON_FE:
1006 case SK_YUKON_FE_P:
1007 case SK_YUKON_SUPR:
1008 case SK_YUKON_ULTRA2:
1009 case SK_YUKON_OPTIMA:
1010 case SK_YUKON_PRM:
1011 case SK_YUKON_OPTIMA2:
1012 return (1);
1013 }
1014
1015 return (0);
1016 }
1017
1018 void
1019 msk_reset(struct sk_if_softc *sc_if)
1020 {
1021 /* GMAC and GPHY Reset */
1022 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1023 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1024 DELAY(1000);
1025 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1026 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1027 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1028 }
1029
1030 static bool
1031 msk_resume(device_t dv, const pmf_qual_t *qual)
1032 {
1033 struct sk_if_softc *sc_if = device_private(dv);
1034
1035 msk_init_yukon(sc_if);
1036 return true;
1037 }
1038
1039 /*
1040 * Each XMAC chip is attached as a separate logical IP interface.
1041 * Single port cards will have only one logical interface of course.
1042 */
1043 void
1044 msk_attach(device_t parent, device_t self, void *aux)
1045 {
1046 struct sk_if_softc *sc_if = device_private(self);
1047 struct sk_softc *sc = device_private(parent);
1048 struct skc_attach_args *sa = aux;
1049 struct ifnet *ifp;
1050 void *kva;
1051 int i;
1052 u_int32_t chunk;
1053 int mii_flags;
1054
1055 sc_if->sk_dev = self;
1056 sc_if->sk_port = sa->skc_port;
1057 sc_if->sk_softc = sc;
1058 sc->sk_if[sa->skc_port] = sc_if;
1059
1060 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1061
1062 /*
1063 * Get station address for this interface. Note that
1064 * dual port cards actually come with three station
1065 * addresses: one for each port, plus an extra. The
1066 * extra one is used by the SysKonnect driver software
1067 * as a 'virtual' station address for when both ports
1068 * are operating in failover mode. Currently we don't
1069 * use this extra address.
1070 */
1071 for (i = 0; i < ETHER_ADDR_LEN; i++)
1072 sc_if->sk_enaddr[i] =
1073 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1074
1075 aprint_normal(": Ethernet address %s\n",
1076 ether_sprintf(sc_if->sk_enaddr));
1077
1078 /*
1079 * Set up RAM buffer addresses. The Yukon2 has a small amount
1080 * of SRAM on it, somewhere between 4K and 48K. We need to
1081 * divide this up between the transmitter and receiver. We
1082 * give the receiver 2/3 of the memory (rounded down), and the
1083 * transmitter whatever remains.
1084 */
1085 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1086 sc_if->sk_rx_ramstart = 0;
1087 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1088 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1089 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1090 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1091
1092 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1093 " tx_ramstart=%#x tx_ramend=%#x\n",
1094 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1095 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1096
1097 /* Allocate the descriptor queues. */
1098 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1099 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1100 BUS_DMA_NOWAIT)) {
1101 aprint_error(": can't alloc rx buffers\n");
1102 goto fail;
1103 }
1104 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1105 sc_if->sk_ring_nseg,
1106 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1107 aprint_error(": can't map dma buffers (%zu bytes)\n",
1108 sizeof(struct msk_ring_data));
1109 goto fail_1;
1110 }
1111 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1112 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1113 &sc_if->sk_ring_map)) {
1114 aprint_error(": can't create dma map\n");
1115 goto fail_2;
1116 }
1117 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1118 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1119 aprint_error(": can't load dma map\n");
1120 goto fail_3;
1121 }
1122 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1123 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1124
1125 ifp = &sc_if->sk_ethercom.ec_if;
1126 /* Try to allocate memory for jumbo buffers. */
1127 if (msk_alloc_jumbo_mem(sc_if)) {
1128 aprint_error(": jumbo buffer allocation failed\n");
1129 goto fail_3;
1130 }
1131 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1132 if (sc->sk_type != SK_YUKON_FE)
1133 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1134
1135 ifp->if_softc = sc_if;
1136 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1137 ifp->if_ioctl = msk_ioctl;
1138 ifp->if_start = msk_start;
1139 ifp->if_stop = msk_stop;
1140 ifp->if_init = msk_init;
1141 ifp->if_watchdog = msk_watchdog;
1142 ifp->if_baudrate = 1000000000;
1143 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1144 IFQ_SET_READY(&ifp->if_snd);
1145 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1146
1147 msk_reset(sc_if);
1148
1149 /*
1150 * Do miibus setup.
1151 */
1152 msk_init_yukon(sc_if);
1153
1154 DPRINTFN(2, ("msk_attach: 1\n"));
1155
1156 sc_if->sk_mii.mii_ifp = ifp;
1157 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1158 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1159 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1160
1161 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1162 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1163 ether_mediachange, ether_mediastatus);
1164 mii_flags = MIIF_DOPAUSE;
1165 if (sc->sk_fibertype)
1166 mii_flags |= MIIF_HAVEFIBER;
1167 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1168 MII_OFFSET_ANY, mii_flags);
1169 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1170 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1171 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1172 0, NULL);
1173 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1174 } else
1175 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1176
1177 callout_init(&sc_if->sk_tick_ch, 0);
1178 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1179 callout_schedule(&sc_if->sk_tick_ch, hz);
1180
1181 /*
1182 * Call MI attach routines.
1183 */
1184 if_attach(ifp);
1185 if_deferred_start_init(ifp, NULL);
1186 ether_ifattach(ifp, sc_if->sk_enaddr);
1187
1188 if (pmf_device_register(self, NULL, msk_resume))
1189 pmf_class_network_register(self, ifp);
1190 else
1191 aprint_error_dev(self, "couldn't establish power handler\n");
1192
1193 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1194 RND_TYPE_NET, RND_FLAG_DEFAULT);
1195
1196 DPRINTFN(2, ("msk_attach: end\n"));
1197 return;
1198
1199 fail_3:
1200 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1201 fail_2:
1202 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1203 fail_1:
1204 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1205 fail:
1206 sc->sk_if[sa->skc_port] = NULL;
1207 }
1208
1209 int
1210 msk_detach(device_t self, int flags)
1211 {
1212 struct sk_if_softc *sc_if = (struct sk_if_softc *)self;
1213 struct sk_softc *sc = sc_if->sk_softc;
1214 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1215
1216 if (sc->sk_if[sc_if->sk_port] == NULL)
1217 return (0);
1218
1219 rnd_detach_source(&sc->rnd_source);
1220
1221 callout_halt(&sc_if->sk_tick_ch, NULL);
1222 callout_destroy(&sc_if->sk_tick_ch);
1223
1224 /* Detach any PHYs we might have. */
1225 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1226 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1227
1228 /* Delete any remaining media. */
1229 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1230
1231 pmf_device_deregister(self);
1232
1233 ether_ifdetach(ifp);
1234 if_detach(ifp);
1235
1236 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1237 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1238 sizeof(struct msk_ring_data));
1239 bus_dmamem_free(sc->sc_dmatag,
1240 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1241 sc->sk_if[sc_if->sk_port] = NULL;
1242
1243 return (0);
1244 }
1245
1246 int
1247 mskcprint(void *aux, const char *pnp)
1248 {
1249 struct skc_attach_args *sa = aux;
1250
1251 if (pnp)
1252 aprint_normal("sk port %c at %s",
1253 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1254 else
1255 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1256 return (UNCONF);
1257 }
1258
1259 /*
1260 * Attach the interface. Allocate softc structures, do ifmedia
1261 * setup and ethernet/BPF attach.
1262 */
1263 void
1264 mskc_attach(device_t parent, device_t self, void *aux)
1265 {
1266 struct sk_softc *sc = device_private(self);
1267 struct pci_attach_args *pa = aux;
1268 struct skc_attach_args skca;
1269 pci_chipset_tag_t pc = pa->pa_pc;
1270 pcireg_t command, memtype;
1271 pci_intr_handle_t ih;
1272 const char *intrstr = NULL;
1273 bus_size_t size;
1274 int rc, sk_nodenum;
1275 u_int8_t hw, pmd;
1276 const char *revstr = NULL;
1277 const struct sysctlnode *node;
1278 void *kva;
1279 char intrbuf[PCI_INTRSTR_LEN];
1280
1281 DPRINTFN(2, ("begin mskc_attach\n"));
1282
1283 sc->sk_dev = self;
1284 /*
1285 * Handle power management nonsense.
1286 */
1287 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1288
1289 if (command == 0x01) {
1290 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1291 if (command & SK_PSTATE_MASK) {
1292 u_int32_t iobase, membase, irq;
1293
1294 /* Save important PCI config data. */
1295 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1296 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1297 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1298
1299 /* Reset the power state. */
1300 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1301 "mode -- setting to D0\n",
1302 command & SK_PSTATE_MASK);
1303 command &= 0xFFFFFFFC;
1304 pci_conf_write(pc, pa->pa_tag,
1305 SK_PCI_PWRMGMTCTRL, command);
1306
1307 /* Restore PCI config data. */
1308 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1309 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1310 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1311 }
1312 }
1313
1314 /*
1315 * Map control/status registers.
1316 */
1317 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1318 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1319 &sc->sk_bhandle, NULL, &size)) {
1320 aprint_error(": can't map mem space\n");
1321 return;
1322 }
1323
1324 sc->sc_dmatag = pa->pa_dmat;
1325
1326 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1327 command |= PCI_COMMAND_MASTER_ENABLE;
1328 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1329
1330 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1331 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1332
1333 /* bail out here if chip is not recognized */
1334 if (!(SK_IS_YUKON2(sc))) {
1335 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1336 goto fail_1;
1337 }
1338 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1339
1340 /* Allocate interrupt */
1341 if (pci_intr_map(pa, &ih)) {
1342 aprint_error(": couldn't map interrupt\n");
1343 goto fail_1;
1344 }
1345
1346 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1347 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1348 if (sc->sk_intrhand == NULL) {
1349 aprint_error(": couldn't establish interrupt");
1350 if (intrstr != NULL)
1351 aprint_error(" at %s", intrstr);
1352 aprint_error("\n");
1353 goto fail_1;
1354 }
1355 sc->sk_pc = pc;
1356
1357 if (bus_dmamem_alloc(sc->sc_dmatag,
1358 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), PAGE_SIZE,
1359 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1360 aprint_error(": can't alloc status buffers\n");
1361 goto fail_2;
1362 }
1363
1364 if (bus_dmamem_map(sc->sc_dmatag,
1365 &sc->sk_status_seg, sc->sk_status_nseg,
1366 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1367 &kva, BUS_DMA_NOWAIT)) {
1368 aprint_error(": can't map dma buffers (%zu bytes)\n",
1369 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1370 goto fail_3;
1371 }
1372 if (bus_dmamap_create(sc->sc_dmatag,
1373 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1374 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1375 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1376 aprint_error(": can't create dma map\n");
1377 goto fail_4;
1378 }
1379 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1380 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1381 NULL, BUS_DMA_NOWAIT)) {
1382 aprint_error(": can't load dma map\n");
1383 goto fail_5;
1384 }
1385 sc->sk_status_ring = (struct msk_status_desc *)kva;
1386
1387 sc->sk_int_mod = SK_IM_DEFAULT;
1388 sc->sk_int_mod_pending = 0;
1389
1390 /* Reset the adapter. */
1391 mskc_reset(sc);
1392
1393 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1394 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1395
1396 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1397 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1398 sc->sk_fibertype = 1;
1399
1400 switch (sc->sk_type) {
1401 case SK_YUKON_XL:
1402 sc->sk_name = "Yukon-2 XL";
1403 break;
1404 case SK_YUKON_EC_U:
1405 sc->sk_name = "Yukon-2 EC Ultra";
1406 break;
1407 case SK_YUKON_EX:
1408 sc->sk_name = "Yukon-2 Extreme";
1409 break;
1410 case SK_YUKON_EC:
1411 sc->sk_name = "Yukon-2 EC";
1412 break;
1413 case SK_YUKON_FE:
1414 sc->sk_name = "Yukon-2 FE";
1415 break;
1416 case SK_YUKON_FE_P:
1417 sc->sk_name = "Yukon-2 FE+";
1418 break;
1419 case SK_YUKON_SUPR:
1420 sc->sk_name = "Yukon-2 Supreme";
1421 break;
1422 case SK_YUKON_ULTRA2:
1423 sc->sk_name = "Yukon-2 Ultra 2";
1424 break;
1425 case SK_YUKON_OPTIMA:
1426 sc->sk_name = "Yukon-2 Optima";
1427 break;
1428 case SK_YUKON_PRM:
1429 sc->sk_name = "Yukon-2 Optima Prime";
1430 break;
1431 case SK_YUKON_OPTIMA2:
1432 sc->sk_name = "Yukon-2 Optima 2";
1433 break;
1434 default:
1435 sc->sk_name = "Yukon (Unknown)";
1436 }
1437
1438 if (sc->sk_type == SK_YUKON_XL) {
1439 switch (sc->sk_rev) {
1440 case SK_YUKON_XL_REV_A0:
1441 sc->sk_workaround = 0;
1442 revstr = "A0";
1443 break;
1444 case SK_YUKON_XL_REV_A1:
1445 sc->sk_workaround = SK_WA_4109;
1446 revstr = "A1";
1447 break;
1448 case SK_YUKON_XL_REV_A2:
1449 sc->sk_workaround = SK_WA_4109;
1450 revstr = "A2";
1451 break;
1452 case SK_YUKON_XL_REV_A3:
1453 sc->sk_workaround = SK_WA_4109;
1454 revstr = "A3";
1455 break;
1456 default:
1457 sc->sk_workaround = 0;
1458 break;
1459 }
1460 }
1461
1462 if (sc->sk_type == SK_YUKON_EC) {
1463 switch (sc->sk_rev) {
1464 case SK_YUKON_EC_REV_A1:
1465 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1466 revstr = "A1";
1467 break;
1468 case SK_YUKON_EC_REV_A2:
1469 sc->sk_workaround = SK_WA_4109;
1470 revstr = "A2";
1471 break;
1472 case SK_YUKON_EC_REV_A3:
1473 sc->sk_workaround = SK_WA_4109;
1474 revstr = "A3";
1475 break;
1476 default:
1477 sc->sk_workaround = 0;
1478 break;
1479 }
1480 }
1481
1482 if (sc->sk_type == SK_YUKON_FE) {
1483 sc->sk_workaround = SK_WA_4109;
1484 switch (sc->sk_rev) {
1485 case SK_YUKON_FE_REV_A1:
1486 revstr = "A1";
1487 break;
1488 case SK_YUKON_FE_REV_A2:
1489 revstr = "A2";
1490 break;
1491 default:
1492 sc->sk_workaround = 0;
1493 break;
1494 }
1495 }
1496
1497 if (sc->sk_type == SK_YUKON_EC_U) {
1498 sc->sk_workaround = SK_WA_4109;
1499 switch (sc->sk_rev) {
1500 case SK_YUKON_EC_U_REV_A0:
1501 revstr = "A0";
1502 break;
1503 case SK_YUKON_EC_U_REV_A1:
1504 revstr = "A1";
1505 break;
1506 case SK_YUKON_EC_U_REV_B0:
1507 revstr = "B0";
1508 break;
1509 case SK_YUKON_EC_U_REV_B1:
1510 revstr = "B1";
1511 break;
1512 default:
1513 sc->sk_workaround = 0;
1514 break;
1515 }
1516 }
1517
1518 if (sc->sk_type == SK_YUKON_FE) {
1519 switch (sc->sk_rev) {
1520 case SK_YUKON_FE_REV_A1:
1521 revstr = "A1";
1522 break;
1523 case SK_YUKON_FE_REV_A2:
1524 revstr = "A2";
1525 break;
1526 default:
1527 ;
1528 }
1529 }
1530
1531 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1532 revstr = "A0";
1533
1534 if (sc->sk_type == SK_YUKON_EX) {
1535 switch (sc->sk_rev) {
1536 case SK_YUKON_EX_REV_A0:
1537 revstr = "A0";
1538 break;
1539 case SK_YUKON_EX_REV_B0:
1540 revstr = "B0";
1541 break;
1542 default:
1543 ;
1544 }
1545 }
1546
1547 if (sc->sk_type == SK_YUKON_SUPR) {
1548 switch (sc->sk_rev) {
1549 case SK_YUKON_SUPR_REV_A0:
1550 revstr = "A0";
1551 break;
1552 case SK_YUKON_SUPR_REV_B0:
1553 revstr = "B0";
1554 break;
1555 case SK_YUKON_SUPR_REV_B1:
1556 revstr = "B1";
1557 break;
1558 default:
1559 ;
1560 }
1561 }
1562
1563 if (sc->sk_type == SK_YUKON_PRM) {
1564 switch (sc->sk_rev) {
1565 case SK_YUKON_PRM_REV_Z1:
1566 revstr = "Z1";
1567 break;
1568 case SK_YUKON_PRM_REV_A0:
1569 revstr = "A0";
1570 break;
1571 default:
1572 ;
1573 }
1574 }
1575
1576 /* Announce the product name. */
1577 aprint_normal(", %s", sc->sk_name);
1578 if (revstr != NULL)
1579 aprint_normal(" rev. %s", revstr);
1580 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1581
1582 sc->sk_macs = 1;
1583
1584 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1585 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1586 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1587 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1588 sc->sk_macs++;
1589 }
1590
1591 skca.skc_port = SK_PORT_A;
1592 skca.skc_type = sc->sk_type;
1593 skca.skc_rev = sc->sk_rev;
1594 (void)config_found(sc->sk_dev, &skca, mskcprint);
1595
1596 if (sc->sk_macs > 1) {
1597 skca.skc_port = SK_PORT_B;
1598 skca.skc_type = sc->sk_type;
1599 skca.skc_rev = sc->sk_rev;
1600 (void)config_found(sc->sk_dev, &skca, mskcprint);
1601 }
1602
1603 /* Turn on the 'driver is loaded' LED. */
1604 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1605
1606 /* skc sysctl setup */
1607
1608 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1609 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1610 SYSCTL_DESCR("mskc per-controller controls"),
1611 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1612 CTL_EOL)) != 0) {
1613 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1614 goto fail_6;
1615 }
1616
1617 sk_nodenum = node->sysctl_num;
1618
1619 /* interrupt moderation time in usecs */
1620 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1621 CTLFLAG_READWRITE,
1622 CTLTYPE_INT, "int_mod",
1623 SYSCTL_DESCR("msk interrupt moderation timer"),
1624 msk_sysctl_handler, 0, (void *)sc,
1625 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1626 CTL_EOL)) != 0) {
1627 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1628 goto fail_6;
1629 }
1630
1631 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1632 aprint_error_dev(self, "couldn't establish power handler\n");
1633
1634 return;
1635
1636 fail_6:
1637 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1638 fail_5:
1639 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1640 fail_4:
1641 bus_dmamem_unmap(sc->sc_dmatag, kva,
1642 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1643 fail_3:
1644 bus_dmamem_free(sc->sc_dmatag,
1645 &sc->sk_status_seg, sc->sk_status_nseg);
1646 sc->sk_status_nseg = 0;
1647 fail_2:
1648 pci_intr_disestablish(pc, sc->sk_intrhand);
1649 sc->sk_intrhand = NULL;
1650 fail_1:
1651 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1652 sc->sk_bsize = 0;
1653 }
1654
1655 int
1656 mskc_detach(device_t self, int flags)
1657 {
1658 struct sk_softc *sc = (struct sk_softc *)self;
1659 int rv;
1660
1661 rv = config_detach_children(self, flags);
1662 if (rv != 0)
1663 return (rv);
1664
1665 if (sc->sk_status_nseg > 0) {
1666 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1667 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1668 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1669 bus_dmamem_free(sc->sc_dmatag,
1670 &sc->sk_status_seg, sc->sk_status_nseg);
1671 }
1672
1673 if (sc->sk_intrhand)
1674 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1675
1676 if (sc->sk_bsize > 0)
1677 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1678
1679 return(0);
1680 }
1681
1682 int
1683 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1684 {
1685 struct sk_softc *sc = sc_if->sk_softc;
1686 struct msk_tx_desc *f = NULL;
1687 u_int32_t frag, cur;
1688 int i;
1689 struct sk_txmap_entry *entry;
1690 bus_dmamap_t txmap;
1691
1692 DPRINTFN(2, ("msk_encap\n"));
1693
1694 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1695 if (entry == NULL) {
1696 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1697 return (ENOBUFS);
1698 }
1699 txmap = entry->dmamap;
1700
1701 cur = frag = *txidx;
1702
1703 #ifdef MSK_DEBUG
1704 if (mskdebug >= 2)
1705 msk_dump_mbuf(m_head);
1706 #endif
1707
1708 /*
1709 * Start packing the mbufs in this chain into
1710 * the fragment pointers. Stop when we run out
1711 * of fragments or hit the end of the mbuf chain.
1712 */
1713 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1714 BUS_DMA_NOWAIT)) {
1715 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1716 return (ENOBUFS);
1717 }
1718
1719 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1720 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1721 bus_dmamap_unload(sc->sc_dmatag, txmap);
1722 return (ENOBUFS);
1723 }
1724
1725 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1726
1727 /* Sync the DMA map. */
1728 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1729 BUS_DMASYNC_PREWRITE);
1730
1731 for (i = 0; i < txmap->dm_nsegs; i++) {
1732 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1733 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1734 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1735 f->sk_ctl = 0;
1736 if (i == 0)
1737 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1738 else
1739 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1740 cur = frag;
1741 SK_INC(frag, MSK_TX_RING_CNT);
1742 }
1743
1744 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1745 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1746
1747 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1748 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1749
1750 /* Sync descriptors before handing to chip */
1751 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1752 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1753
1754 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1755
1756 /* Sync first descriptor to hand it off */
1757 MSK_CDTXSYNC(sc_if, *txidx, 1,
1758 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1759
1760 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1761
1762 #ifdef MSK_DEBUG
1763 if (mskdebug >= 2) {
1764 struct msk_tx_desc *le;
1765 u_int32_t idx;
1766 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1767 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1768 msk_dump_txdesc(le, idx);
1769 }
1770 }
1771 #endif
1772
1773 *txidx = frag;
1774
1775 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1776
1777 return (0);
1778 }
1779
1780 void
1781 msk_start(struct ifnet *ifp)
1782 {
1783 struct sk_if_softc *sc_if = ifp->if_softc;
1784 struct mbuf *m_head = NULL;
1785 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1786 int pkts = 0;
1787
1788 DPRINTFN(2, ("msk_start\n"));
1789
1790 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1791 IFQ_POLL(&ifp->if_snd, m_head);
1792 if (m_head == NULL)
1793 break;
1794
1795 /*
1796 * Pack the data into the transmit ring. If we
1797 * don't have room, set the OACTIVE flag and wait
1798 * for the NIC to drain the ring.
1799 */
1800 if (msk_encap(sc_if, m_head, &idx)) {
1801 ifp->if_flags |= IFF_OACTIVE;
1802 break;
1803 }
1804
1805 /* now we are committed to transmit the packet */
1806 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1807 pkts++;
1808
1809 /*
1810 * If there's a BPF listener, bounce a copy of this frame
1811 * to him.
1812 */
1813 bpf_mtap(ifp, m_head);
1814 }
1815 if (pkts == 0)
1816 return;
1817
1818 /* Transmit */
1819 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1820 sc_if->sk_cdata.sk_tx_prod = idx;
1821 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1822
1823 /* Set a timeout in case the chip goes out to lunch. */
1824 ifp->if_timer = 5;
1825 }
1826 }
1827
1828 void
1829 msk_watchdog(struct ifnet *ifp)
1830 {
1831 struct sk_if_softc *sc_if = ifp->if_softc;
1832 u_int32_t reg;
1833 int idx;
1834
1835 /*
1836 * Reclaim first as there is a possibility of losing Tx completion
1837 * interrupts.
1838 */
1839 if (sc_if->sk_port == SK_PORT_A)
1840 reg = SK_STAT_BMU_TXA1_RIDX;
1841 else
1842 reg = SK_STAT_BMU_TXA2_RIDX;
1843
1844 idx = sk_win_read_2(sc_if->sk_softc, reg);
1845 if (sc_if->sk_cdata.sk_tx_cons != idx) {
1846 msk_txeof(sc_if, idx);
1847 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1848 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1849
1850 ifp->if_oerrors++;
1851
1852 /* XXX Resets both ports; we shouldn't do that. */
1853 mskc_reset(sc_if->sk_softc);
1854 msk_reset(sc_if);
1855 msk_init(ifp);
1856 }
1857 }
1858 }
1859
1860 static bool
1861 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1862 {
1863 struct sk_softc *sc = device_private(dv);
1864
1865 DPRINTFN(2, ("mskc_suspend\n"));
1866
1867 /* Turn off the 'driver is loaded' LED. */
1868 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1869
1870 return true;
1871 }
1872
1873 static bool
1874 mskc_resume(device_t dv, const pmf_qual_t *qual)
1875 {
1876 struct sk_softc *sc = device_private(dv);
1877
1878 DPRINTFN(2, ("mskc_resume\n"));
1879
1880 mskc_reset(sc);
1881 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1882
1883 return true;
1884 }
1885
1886 static __inline int
1887 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1888 {
1889 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1890 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1891 YU_RXSTAT_JABBER)) != 0 ||
1892 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1893 YU_RXSTAT_BYTES(stat) != len)
1894 return (0);
1895
1896 return (1);
1897 }
1898
1899 void
1900 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1901 {
1902 struct sk_softc *sc = sc_if->sk_softc;
1903 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1904 struct mbuf *m;
1905 struct sk_chain *cur_rx;
1906 int cur, total_len = len;
1907 bus_dmamap_t dmamap;
1908
1909 DPRINTFN(2, ("msk_rxeof\n"));
1910
1911 cur = sc_if->sk_cdata.sk_rx_cons;
1912 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1913 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
1914
1915 /* Sync the descriptor */
1916 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1917
1918 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1919 if (cur_rx->sk_mbuf == NULL)
1920 return;
1921
1922 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1923 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1924 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1925
1926 m = cur_rx->sk_mbuf;
1927 cur_rx->sk_mbuf = NULL;
1928
1929 if (total_len < SK_MIN_FRAMELEN ||
1930 total_len > ETHER_MAX_LEN_JUMBO ||
1931 msk_rxvalid(sc, rxstat, total_len) == 0) {
1932 ifp->if_ierrors++;
1933 msk_newbuf(sc_if, cur, m, dmamap);
1934 return;
1935 }
1936
1937 /*
1938 * Try to allocate a new jumbo buffer. If that fails, copy the
1939 * packet to mbufs and put the jumbo buffer back in the ring
1940 * so it can be re-used. If allocating mbufs fails, then we
1941 * have to drop the packet.
1942 */
1943 if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) {
1944 struct mbuf *m0;
1945 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1946 total_len + ETHER_ALIGN, 0, ifp, NULL);
1947 msk_newbuf(sc_if, cur, m, dmamap);
1948 if (m0 == NULL) {
1949 ifp->if_ierrors++;
1950 return;
1951 }
1952 m_adj(m0, ETHER_ALIGN);
1953 m = m0;
1954 } else {
1955 m_set_rcvif(m, ifp);
1956 m->m_pkthdr.len = m->m_len = total_len;
1957 }
1958
1959 /* pass it on. */
1960 if_percpuq_enqueue(ifp->if_percpuq, m);
1961 }
1962
1963 void
1964 msk_txeof(struct sk_if_softc *sc_if, int idx)
1965 {
1966 struct sk_softc *sc = sc_if->sk_softc;
1967 struct msk_tx_desc *cur_tx;
1968 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1969 u_int32_t sk_ctl;
1970 struct sk_txmap_entry *entry;
1971 int cons, prog;
1972
1973 DPRINTFN(2, ("msk_txeof\n"));
1974
1975 /*
1976 * Go through our tx ring and free mbufs for those
1977 * frames that have been sent.
1978 */
1979 cons = sc_if->sk_cdata.sk_tx_cons;
1980 prog = 0;
1981 while (cons != idx) {
1982 if (sc_if->sk_cdata.sk_tx_cnt <= 0)
1983 break;
1984 prog++;
1985 cur_tx = &sc_if->sk_rdata->sk_tx_ring[cons];
1986
1987 MSK_CDTXSYNC(sc_if, cons, 1,
1988 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1989 sk_ctl = cur_tx->sk_ctl;
1990 MSK_CDTXSYNC(sc_if, cons, 1, BUS_DMASYNC_PREREAD);
1991 #ifdef MSK_DEBUG
1992 if (mskdebug >= 2)
1993 msk_dump_txdesc(cur_tx, cons);
1994 #endif
1995 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1996 ifp->if_opackets++;
1997 if (sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf != NULL) {
1998 entry = sc_if->sk_cdata.sk_tx_map[cons];
1999
2000 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2001 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2002
2003 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2004 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2005 link);
2006 sc_if->sk_cdata.sk_tx_map[cons] = NULL;
2007 m_freem(sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf);
2008 sc_if->sk_cdata.sk_tx_chain[cons].sk_mbuf = NULL;
2009 }
2010 sc_if->sk_cdata.sk_tx_cnt--;
2011 SK_INC(cons, MSK_TX_RING_CNT);
2012 }
2013 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2014
2015 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2016 ifp->if_flags &= ~IFF_OACTIVE;
2017
2018 if (prog > 0)
2019 sc_if->sk_cdata.sk_tx_cons = cons;
2020 }
2021
2022 void
2023 msk_tick(void *xsc_if)
2024 {
2025 struct sk_if_softc *sc_if = xsc_if;
2026 struct mii_data *mii = &sc_if->sk_mii;
2027 int s;
2028
2029 s = splnet();
2030 mii_tick(mii);
2031 splx(s);
2032
2033 callout_schedule(&sc_if->sk_tick_ch, hz);
2034 }
2035
2036 void
2037 msk_intr_yukon(struct sk_if_softc *sc_if)
2038 {
2039 u_int8_t status;
2040
2041 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2042 /* RX overrun */
2043 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2044 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2045 SK_RFCTL_RX_FIFO_OVER);
2046 }
2047 /* TX underrun */
2048 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2049 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2050 SK_TFCTL_TX_FIFO_UNDER);
2051 }
2052
2053 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2054 }
2055
2056 int
2057 msk_intr(void *xsc)
2058 {
2059 struct sk_softc *sc = xsc;
2060 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2061 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2062 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2063 int claimed = 0;
2064 u_int32_t status;
2065 uint32_t st_status;
2066 uint16_t st_len;
2067 uint8_t st_opcode, st_link;
2068 struct msk_status_desc *cur_st;
2069
2070 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2071 if (status == 0) {
2072 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2073 return (0);
2074 }
2075
2076 status = CSR_READ_4(sc, SK_ISR);
2077
2078 if (sc_if0 != NULL)
2079 ifp0 = &sc_if0->sk_ethercom.ec_if;
2080 if (sc_if1 != NULL)
2081 ifp1 = &sc_if1->sk_ethercom.ec_if;
2082
2083 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2084 (ifp0->if_flags & IFF_RUNNING)) {
2085 msk_intr_yukon(sc_if0);
2086 }
2087
2088 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2089 (ifp1->if_flags & IFF_RUNNING)) {
2090 msk_intr_yukon(sc_if1);
2091 }
2092
2093 for (;;) {
2094 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2095 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2096 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2097 st_opcode = cur_st->sk_opcode;
2098 if ((st_opcode & SK_Y2_STOPC_OWN) == 0) {
2099 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2100 BUS_DMASYNC_PREREAD);
2101 break;
2102 }
2103 st_status = le32toh(cur_st->sk_status);
2104 st_len = le16toh(cur_st->sk_len);
2105 st_link = cur_st->sk_link;
2106 st_opcode &= ~SK_Y2_STOPC_OWN;
2107
2108 switch (st_opcode) {
2109 case SK_Y2_STOPC_RXSTAT:
2110 msk_rxeof(sc->sk_if[st_link], st_len, st_status);
2111 SK_IF_WRITE_2(sc->sk_if[st_link], 0,
2112 SK_RXQ1_Y2_PREF_PUTIDX,
2113 sc->sk_if[st_link]->sk_cdata.sk_rx_prod);
2114 break;
2115 case SK_Y2_STOPC_TXSTAT:
2116 if (sc_if0)
2117 msk_txeof(sc_if0, st_status
2118 & SK_Y2_ST_TXA1_MSKL);
2119 if (sc_if1)
2120 msk_txeof(sc_if1,
2121 ((st_status & SK_Y2_ST_TXA2_MSKL)
2122 >> SK_Y2_ST_TXA2_SHIFTL)
2123 | ((st_len & SK_Y2_ST_TXA2_MSKH) << SK_Y2_ST_TXA2_SHIFTH));
2124 break;
2125 default:
2126 aprint_error("opcode=0x%x\n", st_opcode);
2127 break;
2128 }
2129 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2130 }
2131
2132 #define MSK_STATUS_RING_OWN_CNT(sc) \
2133 (((sc)->sk_status_idx + MSK_STATUS_RING_CNT - \
2134 (sc)->sk_status_own_idx) % MSK_STATUS_RING_CNT)
2135
2136 while (MSK_STATUS_RING_OWN_CNT(sc) > MSK_STATUS_RING_CNT / 2) {
2137 cur_st = &sc->sk_status_ring[sc->sk_status_own_idx];
2138 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2139 MSK_CDSTSYNC(sc, sc->sk_status_own_idx,
2140 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
2141
2142 SK_INC(sc->sk_status_own_idx, MSK_STATUS_RING_CNT);
2143 }
2144
2145 if (status & SK_Y2_IMR_BMU) {
2146 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2147 claimed = 1;
2148 }
2149
2150 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2151
2152 if (ifp0 != NULL)
2153 if_schedule_deferred_start(ifp0);
2154 if (ifp1 != NULL)
2155 if_schedule_deferred_start(ifp1);
2156
2157 rnd_add_uint32(&sc->rnd_source, status);
2158
2159 if (sc->sk_int_mod_pending)
2160 msk_update_int_mod(sc, 1);
2161
2162 return claimed;
2163 }
2164
2165 void
2166 msk_init_yukon(struct sk_if_softc *sc_if)
2167 {
2168 u_int32_t v;
2169 u_int16_t reg;
2170 struct sk_softc *sc;
2171 int i;
2172
2173 sc = sc_if->sk_softc;
2174
2175 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2176 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2177
2178 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2179
2180 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2181 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2182
2183 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2184
2185 /* unused read of the interrupt source register */
2186 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2187 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2188
2189 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2190 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2191 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2192
2193 /* MIB Counter Clear Mode set */
2194 reg |= YU_PAR_MIB_CLR;
2195 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2196 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2197 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2198
2199 /* MIB Counter Clear Mode clear */
2200 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2201 reg &= ~YU_PAR_MIB_CLR;
2202 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2203
2204 /* receive control reg */
2205 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2206 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2207
2208 /* transmit control register */
2209 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2210
2211 /* transmit flow control register */
2212 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2213
2214 /* transmit parameter register */
2215 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2216 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2217 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2218
2219 /* serial mode register */
2220 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2221 reg = YU_SMR_DATA_BLIND(0x1c) |
2222 YU_SMR_MFL_VLAN |
2223 YU_SMR_IPG_DATA(0x1e);
2224
2225 if (sc->sk_type != SK_YUKON_FE &&
2226 sc->sk_type != SK_YUKON_FE_P)
2227 reg |= YU_SMR_MFL_JUMBO;
2228
2229 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2230
2231 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2232 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2233 /* msk_attach calls me before ether_ifattach so check null */
2234 if (ifp != NULL && ifp->if_sadl != NULL)
2235 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2236 sizeof(sc_if->sk_enaddr));
2237 /* Setup Yukon's address */
2238 for (i = 0; i < 3; i++) {
2239 /* Write Source Address 1 (unicast filter) */
2240 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2241 sc_if->sk_enaddr[i * 2] |
2242 sc_if->sk_enaddr[i * 2 + 1] << 8);
2243 }
2244
2245 for (i = 0; i < 3; i++) {
2246 reg = sk_win_read_2(sc_if->sk_softc,
2247 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2248 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2249 }
2250
2251 /* Set promiscuous mode */
2252 msk_setpromisc(sc_if);
2253
2254 /* Set multicast filter */
2255 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2256 msk_setmulti(sc_if);
2257
2258 /* enable interrupt mask for counter overflows */
2259 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2260 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2261 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2262 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2263
2264 /* Configure RX MAC FIFO Flush Mask */
2265 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2266 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2267 YU_RXSTAT_JABBER;
2268 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2269
2270 /* Configure RX MAC FIFO */
2271 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2272 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2273 SK_RFCTL_FIFO_FLUSH_ON);
2274
2275 /* Increase flush threshould to 64 bytes */
2276 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2277 SK_RFCTL_FIFO_THRESHOLD + 1);
2278
2279 /* Configure TX MAC FIFO */
2280 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2281 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2282
2283 #if 1
2284 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2285 #endif
2286 DPRINTFN(6, ("msk_init_yukon: end\n"));
2287 }
2288
2289 /*
2290 * Note that to properly initialize any part of the GEnesis chip,
2291 * you first have to take it out of reset mode.
2292 */
2293 int
2294 msk_init(struct ifnet *ifp)
2295 {
2296 struct sk_if_softc *sc_if = ifp->if_softc;
2297 struct sk_softc *sc = sc_if->sk_softc;
2298 int rc = 0, s;
2299 uint32_t imr, imtimer_ticks;
2300
2301
2302 DPRINTFN(2, ("msk_init\n"));
2303
2304 s = splnet();
2305
2306 /* Cancel pending I/O and free all RX/TX buffers. */
2307 msk_stop(ifp,0);
2308
2309 /* Configure I2C registers */
2310
2311 /* Configure XMAC(s) */
2312 msk_init_yukon(sc_if);
2313 if ((rc = ether_mediachange(ifp)) != 0)
2314 goto out;
2315
2316 /* Configure transmit arbiter(s) */
2317 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2318 #if 0
2319 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2320 #endif
2321
2322 /* Configure RAMbuffers */
2323 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2324 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2325 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2326 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2327 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2328 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2329
2330 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2331 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2332 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2333 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2334 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2335 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2336 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2337
2338 /* Configure BMUs */
2339 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2340 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2341 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2342 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2343
2344 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2345 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2346 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2347 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2348
2349 /* Make sure the sync transmit queue is disabled. */
2350 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2351
2352 /* Init descriptors */
2353 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2354 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2355 "memory for rx buffers\n");
2356 msk_stop(ifp,0);
2357 splx(s);
2358 return ENOBUFS;
2359 }
2360
2361 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2362 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2363 "memory for tx buffers\n");
2364 msk_stop(ifp,0);
2365 splx(s);
2366 return ENOBUFS;
2367 }
2368
2369 /* Set interrupt moderation if changed via sysctl. */
2370 switch (sc->sk_type) {
2371 case SK_YUKON_EC:
2372 case SK_YUKON_EC_U:
2373 case SK_YUKON_EX:
2374 case SK_YUKON_SUPR:
2375 case SK_YUKON_ULTRA2:
2376 case SK_YUKON_OPTIMA:
2377 case SK_YUKON_PRM:
2378 case SK_YUKON_OPTIMA2:
2379 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2380 break;
2381 case SK_YUKON_FE:
2382 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2383 break;
2384 case SK_YUKON_FE_P:
2385 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2386 break;
2387 case SK_YUKON_XL:
2388 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2389 break;
2390 default:
2391 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2392 }
2393 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2394 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2395 sk_win_write_4(sc, SK_IMTIMERINIT,
2396 SK_IM_USECS(sc->sk_int_mod));
2397 aprint_verbose_dev(sc->sk_dev,
2398 "interrupt moderation is %d us\n", sc->sk_int_mod);
2399 }
2400
2401 /* Initialize prefetch engine. */
2402 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2403 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2404 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2405 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2406 MSK_RX_RING_ADDR(sc_if, 0));
2407 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2408 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2409 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2410 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2411
2412 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2413 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2414 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2415 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2416 MSK_TX_RING_ADDR(sc_if, 0));
2417 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2418 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2419 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2420 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2421
2422 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2423 sc_if->sk_cdata.sk_rx_prod);
2424
2425 /* Configure interrupt handling */
2426 if (sc_if->sk_port == SK_PORT_A)
2427 sc->sk_intrmask |= SK_Y2_INTRS1;
2428 else
2429 sc->sk_intrmask |= SK_Y2_INTRS2;
2430 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2431 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2432
2433 ifp->if_flags |= IFF_RUNNING;
2434 ifp->if_flags &= ~IFF_OACTIVE;
2435
2436 callout_schedule(&sc_if->sk_tick_ch, hz);
2437
2438 out:
2439 splx(s);
2440 return rc;
2441 }
2442
2443 void
2444 msk_stop(struct ifnet *ifp, int disable)
2445 {
2446 struct sk_if_softc *sc_if = ifp->if_softc;
2447 struct sk_softc *sc = sc_if->sk_softc;
2448 struct sk_txmap_entry *dma;
2449 int i;
2450
2451 DPRINTFN(2, ("msk_stop\n"));
2452
2453 callout_stop(&sc_if->sk_tick_ch);
2454
2455 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2456
2457 /* Stop transfer of Tx descriptors */
2458
2459 /* Stop transfer of Rx descriptors */
2460
2461 /* Turn off various components of this interface. */
2462 SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
2463 SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2464 SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2465 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2466 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2467 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2468 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2469 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2470 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2471 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2472 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2473 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2474
2475 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2476 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2477
2478 /* Disable interrupts */
2479 if (sc_if->sk_port == SK_PORT_A)
2480 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2481 else
2482 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2483 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2484
2485 SK_XM_READ_2(sc_if, XM_ISR);
2486 SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
2487
2488 /* Free RX and TX mbufs still in the queues. */
2489 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2490 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2491 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2492 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2493 }
2494 }
2495
2496 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2497 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2498 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2499 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2500 #if 1
2501 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2502 sc_if->sk_cdata.sk_tx_map[i], link);
2503 sc_if->sk_cdata.sk_tx_map[i] = 0;
2504 #endif
2505 }
2506 }
2507
2508 #if 1
2509 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2510 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2511 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2512 free(dma, M_DEVBUF);
2513 }
2514 #endif
2515 }
2516
2517 CFATTACH_DECL_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2518 mskc_detach, NULL);
2519
2520 CFATTACH_DECL_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2521 msk_detach, NULL);
2522
2523 #ifdef MSK_DEBUG
2524 void
2525 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2526 {
2527 #define DESC_PRINT(X) \
2528 if (X) \
2529 printf("txdesc[%d]." #X "=%#x\n", \
2530 idx, X);
2531
2532 DESC_PRINT(letoh32(le->sk_addr));
2533 DESC_PRINT(letoh16(le->sk_len));
2534 DESC_PRINT(le->sk_ctl);
2535 DESC_PRINT(le->sk_opcode);
2536 #undef DESC_PRINT
2537 }
2538
2539 void
2540 msk_dump_bytes(const char *data, int len)
2541 {
2542 int c, i, j;
2543
2544 for (i = 0; i < len; i += 16) {
2545 printf("%08x ", i);
2546 c = len - i;
2547 if (c > 16) c = 16;
2548
2549 for (j = 0; j < c; j++) {
2550 printf("%02x ", data[i + j] & 0xff);
2551 if ((j & 0xf) == 7 && j > 0)
2552 printf(" ");
2553 }
2554
2555 for (; j < 16; j++)
2556 printf(" ");
2557 printf(" ");
2558
2559 for (j = 0; j < c; j++) {
2560 int ch = data[i + j] & 0xff;
2561 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2562 }
2563
2564 printf("\n");
2565
2566 if (c < 16)
2567 break;
2568 }
2569 }
2570
2571 void
2572 msk_dump_mbuf(struct mbuf *m)
2573 {
2574 int count = m->m_pkthdr.len;
2575
2576 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2577
2578 while (count > 0 && m) {
2579 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2580 m, m->m_data, m->m_len);
2581 msk_dump_bytes(mtod(m, char *), m->m_len);
2582
2583 count -= m->m_len;
2584 m = m->m_next;
2585 }
2586 }
2587 #endif
2588
2589 static int
2590 msk_sysctl_handler(SYSCTLFN_ARGS)
2591 {
2592 int error, t;
2593 struct sysctlnode node;
2594 struct sk_softc *sc;
2595
2596 node = *rnode;
2597 sc = node.sysctl_data;
2598 t = sc->sk_int_mod;
2599 node.sysctl_data = &t;
2600 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2601 if (error || newp == NULL)
2602 return error;
2603
2604 if (t < SK_IM_MIN || t > SK_IM_MAX)
2605 return EINVAL;
2606
2607 /* update the softc with sysctl-changed value, and mark
2608 for hardware update */
2609 sc->sk_int_mod = t;
2610 sc->sk_int_mod_pending = 1;
2611 return 0;
2612 }
2613
2614 /*
2615 * Set up sysctl(3) MIB, hw.sk.* - Individual controllers will be
2616 * set up in skc_attach()
2617 */
2618 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2619 {
2620 int rc;
2621 const struct sysctlnode *node;
2622
2623 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2624 0, CTLTYPE_NODE, "msk",
2625 SYSCTL_DESCR("msk interface controls"),
2626 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2627 goto err;
2628 }
2629
2630 msk_root_num = node->sysctl_num;
2631 return;
2632
2633 err:
2634 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2635 }
2636