if_msk.c revision 1.70 1 /* $NetBSD: if_msk.c,v 1.70 2018/07/03 19:56:01 jdolecek Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.70 2018/07/03 19:56:01 jdolecek Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, struct mbuf *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int);
128 void msk_miibus_writereg(device_t, int, int, int);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134
135 /* #define MSK_DEBUG 1 */
136 #ifdef MSK_DEBUG
137 #define DPRINTF(x) if (mskdebug) printf x
138 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
139 int mskdebug = MSK_DEBUG;
140
141 void msk_dump_txdesc(struct msk_tx_desc *, int);
142 void msk_dump_mbuf(struct mbuf *);
143 void msk_dump_bytes(const char *, int);
144 #else
145 #define DPRINTF(x)
146 #define DPRINTFN(n,x)
147 #endif
148
149 static int msk_sysctl_handler(SYSCTLFN_PROTO);
150 static int msk_root_num;
151
152 /* supported device vendors */
153 static const struct msk_product {
154 pci_vendor_id_t msk_vendor;
155 pci_product_id_t msk_product;
156 } msk_products[] = {
157 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
158 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
159 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
161 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
196 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
197 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
198 };
199
200 static inline u_int32_t
201 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
202 {
203 return CSR_READ_4(sc, reg);
204 }
205
206 static inline u_int16_t
207 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
208 {
209 return CSR_READ_2(sc, reg);
210 }
211
212 static inline u_int8_t
213 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
214 {
215 return CSR_READ_1(sc, reg);
216 }
217
218 static inline void
219 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
220 {
221 CSR_WRITE_4(sc, reg, x);
222 }
223
224 static inline void
225 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
226 {
227 CSR_WRITE_2(sc, reg, x);
228 }
229
230 static inline void
231 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
232 {
233 CSR_WRITE_1(sc, reg, x);
234 }
235
236 int
237 msk_miibus_readreg(device_t dev, int phy, int reg)
238 {
239 struct sk_if_softc *sc_if = device_private(dev);
240 u_int16_t val;
241 int i;
242
243 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
244 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
245
246 for (i = 0; i < SK_TIMEOUT; i++) {
247 DELAY(1);
248 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
249 if (val & YU_SMICR_READ_VALID)
250 break;
251 }
252
253 if (i == SK_TIMEOUT) {
254 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
255 return (0);
256 }
257
258 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
259 SK_TIMEOUT));
260
261 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
262
263 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
264 phy, reg, val));
265
266 return (val);
267 }
268
269 void
270 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
271 {
272 struct sk_if_softc *sc_if = device_private(dev);
273 int i;
274
275 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
276 phy, reg, val));
277
278 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
279 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
280 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
281
282 for (i = 0; i < SK_TIMEOUT; i++) {
283 DELAY(1);
284 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
285 break;
286 }
287
288 if (i == SK_TIMEOUT)
289 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
290 }
291
292 void
293 msk_miibus_statchg(struct ifnet *ifp)
294 {
295 struct sk_if_softc *sc_if = ifp->if_softc;
296 struct mii_data *mii = &sc_if->sk_mii;
297 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
298 int gpcr;
299
300 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
301 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
302
303 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
304 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
305 /* Set speed. */
306 gpcr |= YU_GPCR_SPEED_DIS;
307 switch (IFM_SUBTYPE(mii->mii_media_active)) {
308 case IFM_1000_SX:
309 case IFM_1000_LX:
310 case IFM_1000_CX:
311 case IFM_1000_T:
312 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
313 break;
314 case IFM_100_TX:
315 gpcr |= YU_GPCR_SPEED;
316 break;
317 }
318
319 /* Set duplex. */
320 gpcr |= YU_GPCR_DPLX_DIS;
321 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
322 gpcr |= YU_GPCR_DUPLEX;
323
324 /* Disable flow control. */
325 gpcr |= YU_GPCR_FCTL_DIS;
326 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
327 }
328
329 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
330
331 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
332 SK_YU_READ_2(sc_if, YUKON_GPCR)));
333 }
334
335 void
336 msk_setmulti(struct sk_if_softc *sc_if)
337 {
338 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
339 u_int32_t hashes[2] = { 0, 0 };
340 int h;
341 struct ethercom *ec = &sc_if->sk_ethercom;
342 struct ether_multi *enm;
343 struct ether_multistep step;
344 u_int16_t reg;
345
346 /* First, zot all the existing filters. */
347 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
348 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
349 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
350 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
351
352
353 /* Now program new ones. */
354 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
355 reg |= YU_RCR_UFLEN;
356 allmulti:
357 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
358 if ((ifp->if_flags & IFF_PROMISC) != 0)
359 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
360 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
361 hashes[0] = 0xFFFFFFFF;
362 hashes[1] = 0xFFFFFFFF;
363 }
364 } else {
365 /* First find the tail of the list. */
366 ETHER_FIRST_MULTI(step, ec, enm);
367 while (enm != NULL) {
368 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
369 ETHER_ADDR_LEN)) {
370 ifp->if_flags |= IFF_ALLMULTI;
371 goto allmulti;
372 }
373 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
374 ((1 << SK_HASH_BITS) - 1);
375 if (h < 32)
376 hashes[0] |= (1 << h);
377 else
378 hashes[1] |= (1 << (h - 32));
379
380 ETHER_NEXT_MULTI(step, enm);
381 }
382 reg |= YU_RCR_MUFLEN;
383 }
384
385 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
386 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
387 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
388 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
389 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
390 }
391
392 void
393 msk_setpromisc(struct sk_if_softc *sc_if)
394 {
395 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
396
397 if (ifp->if_flags & IFF_PROMISC)
398 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
399 YU_RCR_UFLEN | YU_RCR_MUFLEN);
400 else
401 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
402 YU_RCR_UFLEN | YU_RCR_MUFLEN);
403 }
404
405 int
406 msk_init_rx_ring(struct sk_if_softc *sc_if)
407 {
408 struct msk_chain_data *cd = &sc_if->sk_cdata;
409 struct msk_ring_data *rd = sc_if->sk_rdata;
410 int i, nexti;
411
412 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
413
414 for (i = 0; i < MSK_RX_RING_CNT; i++) {
415 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
416 if (i == (MSK_RX_RING_CNT - 1))
417 nexti = 0;
418 else
419 nexti = i + 1;
420 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
421 }
422
423 sc_if->sk_cdata.sk_rx_prod = 0;
424 sc_if->sk_cdata.sk_rx_cons = 0;
425 sc_if->sk_cdata.sk_rx_cnt = 0;
426
427 msk_fill_rx_ring(sc_if);
428 return (0);
429 }
430
431 int
432 msk_init_tx_ring(struct sk_if_softc *sc_if)
433 {
434 struct sk_softc *sc = sc_if->sk_softc;
435 struct msk_chain_data *cd = &sc_if->sk_cdata;
436 struct msk_ring_data *rd = sc_if->sk_rdata;
437 bus_dmamap_t dmamap;
438 struct sk_txmap_entry *entry;
439 int i, nexti;
440
441 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
442
443 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
444 for (i = 0; i < MSK_TX_RING_CNT; i++) {
445 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
446 if (i == (MSK_TX_RING_CNT - 1))
447 nexti = 0;
448 else
449 nexti = i + 1;
450 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
451
452 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
453 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
454 return (ENOBUFS);
455
456 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
457 if (!entry) {
458 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
459 return (ENOBUFS);
460 }
461 entry->dmamap = dmamap;
462 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
463 }
464
465 sc_if->sk_cdata.sk_tx_prod = 0;
466 sc_if->sk_cdata.sk_tx_cons = 0;
467 sc_if->sk_cdata.sk_tx_cnt = 0;
468
469 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
470 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
471
472 return (0);
473 }
474
475 int
476 msk_newbuf(struct sk_if_softc *sc_if, struct mbuf *m,
477 bus_dmamap_t dmamap)
478 {
479 struct mbuf *m_new = NULL;
480 struct sk_chain *c;
481 struct msk_rx_desc *r;
482
483 if (m == NULL) {
484 void *buf = NULL;
485
486 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
487 if (m_new == NULL)
488 return (ENOBUFS);
489
490 /* Allocate the jumbo buffer */
491 buf = msk_jalloc(sc_if);
492 if (buf == NULL) {
493 m_freem(m_new);
494 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
495 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
496 return (ENOBUFS);
497 }
498
499 /* Attach the buffer to the mbuf */
500 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
501 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
502 } else {
503 /*
504 * We're re-using a previously allocated mbuf;
505 * be sure to re-init pointers and lengths to
506 * default values.
507 */
508 m_new = m;
509 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
510 m_new->m_data = m_new->m_ext.ext_buf;
511 }
512 m_adj(m_new, ETHER_ALIGN);
513
514 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
515 r = c->sk_le;
516 c->sk_mbuf = m_new;
517 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
518 (((vaddr_t)m_new->m_data
519 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
520 r->sk_len = htole16(SK_JLEN);
521 r->sk_ctl = 0;
522 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
523
524 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
525 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
526
527 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
528 sc_if->sk_cdata.sk_rx_cnt++;
529
530 return (0);
531 }
532
533 /*
534 * Memory management for jumbo frames.
535 */
536
537 int
538 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
539 {
540 struct sk_softc *sc = sc_if->sk_softc;
541 char *ptr, *kva;
542 int i, state, error;
543 struct sk_jpool_entry *entry;
544
545 state = error = 0;
546
547 /* Grab a big chunk o' storage. */
548 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
549 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
550 BUS_DMA_NOWAIT)) {
551 aprint_error(": can't alloc rx buffers");
552 return (ENOBUFS);
553 }
554
555 state = 1;
556 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
557 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
558 BUS_DMA_NOWAIT)) {
559 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
560 error = ENOBUFS;
561 goto out;
562 }
563
564 state = 2;
565 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
566 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
567 aprint_error(": can't create dma map");
568 error = ENOBUFS;
569 goto out;
570 }
571
572 state = 3;
573 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
574 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
575 aprint_error(": can't load dma map");
576 error = ENOBUFS;
577 goto out;
578 }
579
580 state = 4;
581 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
582 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
583
584 LIST_INIT(&sc_if->sk_jfree_listhead);
585 LIST_INIT(&sc_if->sk_jinuse_listhead);
586 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
587
588 /*
589 * Now divide it up into 9K pieces and save the addresses
590 * in an array.
591 */
592 ptr = sc_if->sk_cdata.sk_jumbo_buf;
593 for (i = 0; i < MSK_JSLOTS; i++) {
594 sc_if->sk_cdata.sk_jslots[i] = ptr;
595 ptr += SK_JLEN;
596 entry = malloc(sizeof(struct sk_jpool_entry),
597 M_DEVBUF, M_NOWAIT);
598 if (entry == NULL) {
599 sc_if->sk_cdata.sk_jumbo_buf = NULL;
600 aprint_error(": no memory for jumbo buffer queue!");
601 error = ENOBUFS;
602 goto out;
603 }
604 entry->slot = i;
605 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
606 entry, jpool_entries);
607 }
608 out:
609 if (error != 0) {
610 switch (state) {
611 case 4:
612 bus_dmamap_unload(sc->sc_dmatag,
613 sc_if->sk_cdata.sk_rx_jumbo_map);
614 case 3:
615 bus_dmamap_destroy(sc->sc_dmatag,
616 sc_if->sk_cdata.sk_rx_jumbo_map);
617 case 2:
618 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
619 case 1:
620 bus_dmamem_free(sc->sc_dmatag,
621 &sc_if->sk_cdata.sk_jumbo_seg,
622 sc_if->sk_cdata.sk_jumbo_nseg);
623 break;
624 default:
625 break;
626 }
627 }
628
629 return error;
630 }
631
632 static void
633 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
634 {
635 struct sk_softc *sc = sc_if->sk_softc;
636
637 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
638 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
639 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
640 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
641 sc_if->sk_cdata.sk_jumbo_nseg);
642 }
643
644 /*
645 * Allocate a jumbo buffer.
646 */
647 void *
648 msk_jalloc(struct sk_if_softc *sc_if)
649 {
650 struct sk_jpool_entry *entry;
651
652 mutex_enter(&sc_if->sk_jpool_mtx);
653 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
654
655 if (entry == NULL) {
656 mutex_exit(&sc_if->sk_jpool_mtx);
657 return NULL;
658 }
659
660 LIST_REMOVE(entry, jpool_entries);
661 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
662 mutex_exit(&sc_if->sk_jpool_mtx);
663 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
664 }
665
666 /*
667 * Release a jumbo buffer.
668 */
669 void
670 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
671 {
672 struct sk_jpool_entry *entry;
673 struct sk_if_softc *sc;
674 int i;
675
676 /* Extract the softc struct pointer. */
677 sc = (struct sk_if_softc *)arg;
678
679 if (sc == NULL)
680 panic("msk_jfree: can't find softc pointer!");
681
682 /* calculate the slot this buffer belongs to */
683 i = ((vaddr_t)buf
684 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
685
686 if ((i < 0) || (i >= MSK_JSLOTS))
687 panic("msk_jfree: asked to free buffer that we don't manage!");
688
689 mutex_enter(&sc->sk_jpool_mtx);
690 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
691 if (entry == NULL)
692 panic("msk_jfree: buffer not in use!");
693 entry->slot = i;
694 LIST_REMOVE(entry, jpool_entries);
695 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
696 mutex_exit(&sc->sk_jpool_mtx);
697
698 if (__predict_true(m != NULL))
699 pool_cache_put(mb_cache, m);
700 }
701
702 int
703 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
704 {
705 struct sk_if_softc *sc = ifp->if_softc;
706 int s, error;
707
708 s = splnet();
709
710 DPRINTFN(2, ("msk_ioctl ETHER\n"));
711 switch (cmd) {
712 case SIOCSIFFLAGS:
713 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
714 break;
715
716 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
717 case IFF_RUNNING:
718 msk_stop(ifp, 1);
719 break;
720 case IFF_UP:
721 msk_init(ifp);
722 break;
723 case IFF_UP | IFF_RUNNING:
724 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
725 msk_setpromisc(sc);
726 msk_setmulti(sc);
727 } else
728 msk_init(ifp);
729 break;
730 }
731 sc->sk_if_flags = ifp->if_flags;
732 break;
733 default:
734 error = ether_ioctl(ifp, cmd, data);
735 if (error == ENETRESET) {
736 error = 0;
737 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
738 ;
739 else if (ifp->if_flags & IFF_RUNNING) {
740 /*
741 * Multicast list has changed; set the hardware
742 * filter accordingly.
743 */
744 msk_setmulti(sc);
745 }
746 }
747 break;
748 }
749
750 splx(s);
751 return error;
752 }
753
754 void
755 msk_update_int_mod(struct sk_softc *sc, int verbose)
756 {
757 u_int32_t imtimer_ticks;
758
759 /*
760 * Configure interrupt moderation. The moderation timer
761 * defers interrupts specified in the interrupt moderation
762 * timer mask based on the timeout specified in the interrupt
763 * moderation timer init register. Each bit in the timer
764 * register represents one tick, so to specify a timeout in
765 * microseconds, we have to multiply by the correct number of
766 * ticks-per-microsecond.
767 */
768 switch (sc->sk_type) {
769 case SK_YUKON_EC:
770 case SK_YUKON_EC_U:
771 case SK_YUKON_EX:
772 case SK_YUKON_SUPR:
773 case SK_YUKON_ULTRA2:
774 case SK_YUKON_OPTIMA:
775 case SK_YUKON_PRM:
776 case SK_YUKON_OPTIMA2:
777 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
778 break;
779 case SK_YUKON_FE:
780 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
781 break;
782 case SK_YUKON_FE_P:
783 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
784 break;
785 case SK_YUKON_XL:
786 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
787 break;
788 default:
789 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
790 }
791 if (verbose)
792 aprint_verbose_dev(sc->sk_dev,
793 "interrupt moderation is %d us\n", sc->sk_int_mod);
794 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
795 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
796 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
797 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
798 sc->sk_int_mod_pending = 0;
799 }
800
801 static int
802 msk_lookup(const struct pci_attach_args *pa)
803 {
804 const struct msk_product *pmsk;
805
806 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
807 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
808 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
809 return 1;
810 }
811 return 0;
812 }
813
814 /*
815 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
816 * IDs against our list and return a device name if we find a match.
817 */
818 int
819 mskc_probe(device_t parent, cfdata_t match, void *aux)
820 {
821 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
822
823 return msk_lookup(pa);
824 }
825
826 /*
827 * Force the GEnesis into reset, then bring it out of reset.
828 */
829 void
830 mskc_reset(struct sk_softc *sc)
831 {
832 u_int32_t imtimer_ticks, reg1;
833 int reg;
834
835 DPRINTFN(2, ("mskc_reset\n"));
836
837 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
838 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
839
840 DELAY(1000);
841 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
842 DELAY(2);
843 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
844 sk_win_write_1(sc, SK_TESTCTL1, 2);
845
846 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
847 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
848 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
849 else
850 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
851
852 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
853 sc->sk_type >= SK_YUKON_FE_P) {
854 uint32_t our;
855
856 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
857
858 /* enable all clocks. */
859 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
860 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
861 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
862 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
863 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
864 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
865 /* Set all bits to 0 except bits 15..12 */
866 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
867 /* Set to default value */
868 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
869 }
870
871 /* release PHY from PowerDown/Coma mode. */
872 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
873 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
874 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
875 else
876 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
877 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
878
879 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
880 sk_win_write_1(sc, SK_Y2_CLKGATE,
881 SK_Y2_CLKGATE_LINK1_GATE_DIS |
882 SK_Y2_CLKGATE_LINK2_GATE_DIS |
883 SK_Y2_CLKGATE_LINK1_CORE_DIS |
884 SK_Y2_CLKGATE_LINK2_CORE_DIS |
885 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
886 else
887 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
888
889 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
890 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
891 DELAY(1000);
892 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
893 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
894
895 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
896 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
897 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
898 }
899
900 sk_win_write_1(sc, SK_TESTCTL1, 1);
901
902 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
903 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
904 CSR_READ_2(sc, SK_LINK_CTRL)));
905
906 /* Disable ASF */
907 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
908 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
909
910 /* Clear I2C IRQ noise */
911 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
912
913 /* Disable hardware timer */
914 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
915 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
916
917 /* Disable descriptor polling */
918 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
919
920 /* Disable time stamps */
921 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
922 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
923
924 /* Enable RAM interface */
925 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
926 for (reg = SK_TO0;reg <= SK_TO11; reg++)
927 sk_win_write_1(sc, reg, 36);
928 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
929 for (reg = SK_TO0;reg <= SK_TO11; reg++)
930 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
931
932 /*
933 * Configure interrupt moderation. The moderation timer
934 * defers interrupts specified in the interrupt moderation
935 * timer mask based on the timeout specified in the interrupt
936 * moderation timer init register. Each bit in the timer
937 * register represents one tick, so to specify a timeout in
938 * microseconds, we have to multiply by the correct number of
939 * ticks-per-microsecond.
940 */
941 switch (sc->sk_type) {
942 case SK_YUKON_EC:
943 case SK_YUKON_EC_U:
944 case SK_YUKON_EX:
945 case SK_YUKON_SUPR:
946 case SK_YUKON_ULTRA2:
947 case SK_YUKON_OPTIMA:
948 case SK_YUKON_PRM:
949 case SK_YUKON_OPTIMA2:
950 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
951 break;
952 case SK_YUKON_FE:
953 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
954 break;
955 case SK_YUKON_FE_P:
956 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
957 break;
958 case SK_YUKON_XL:
959 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
960 break;
961 default:
962 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
963 break;
964 }
965
966 /* Reset status ring. */
967 memset(sc->sk_status_ring, 0,
968 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
969 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
970 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
971 sc->sk_status_idx = 0;
972 sc->sk_status_own_idx = 0;
973
974 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
975 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
976
977 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
978 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
979 sc->sk_status_map->dm_segs[0].ds_addr);
980 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
981 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
982 if ((sc->sk_workaround & SK_STAT_BMU_FIFOIWM) != 0) {
983 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
984 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
985 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
986 } else {
987 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
988 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
989 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM,
990 ((sc->sk_workaround & SK_WA_4109) != 0) ? 0x10 : 0x04);
991 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
992 }
993
994 #if 0
995 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
996 #endif
997 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
998
999 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1000
1001 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1002 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1003 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1004
1005 msk_update_int_mod(sc, 0);
1006 }
1007
1008 int
1009 msk_probe(device_t parent, cfdata_t match, void *aux)
1010 {
1011 struct skc_attach_args *sa = aux;
1012
1013 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1014 return (0);
1015
1016 switch (sa->skc_type) {
1017 case SK_YUKON_XL:
1018 case SK_YUKON_EC_U:
1019 case SK_YUKON_EX:
1020 case SK_YUKON_EC:
1021 case SK_YUKON_FE:
1022 case SK_YUKON_FE_P:
1023 case SK_YUKON_SUPR:
1024 case SK_YUKON_ULTRA2:
1025 case SK_YUKON_OPTIMA:
1026 case SK_YUKON_PRM:
1027 case SK_YUKON_OPTIMA2:
1028 return (1);
1029 }
1030
1031 return (0);
1032 }
1033
1034 void
1035 msk_reset(struct sk_if_softc *sc_if)
1036 {
1037 /* GMAC and GPHY Reset */
1038 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1039 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1040 DELAY(1000);
1041 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1042 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1043 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1044 }
1045
1046 static bool
1047 msk_resume(device_t dv, const pmf_qual_t *qual)
1048 {
1049 struct sk_if_softc *sc_if = device_private(dv);
1050
1051 msk_init_yukon(sc_if);
1052 return true;
1053 }
1054
1055 /*
1056 * Each XMAC chip is attached as a separate logical IP interface.
1057 * Single port cards will have only one logical interface of course.
1058 */
1059 void
1060 msk_attach(device_t parent, device_t self, void *aux)
1061 {
1062 struct sk_if_softc *sc_if = device_private(self);
1063 struct sk_softc *sc = device_private(parent);
1064 struct skc_attach_args *sa = aux;
1065 struct ifnet *ifp;
1066 void *kva;
1067 int i;
1068 u_int32_t chunk;
1069 int mii_flags;
1070
1071 sc_if->sk_dev = self;
1072 sc_if->sk_port = sa->skc_port;
1073 sc_if->sk_softc = sc;
1074 sc->sk_if[sa->skc_port] = sc_if;
1075
1076 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1077
1078 /*
1079 * Get station address for this interface. Note that
1080 * dual port cards actually come with three station
1081 * addresses: one for each port, plus an extra. The
1082 * extra one is used by the SysKonnect driver software
1083 * as a 'virtual' station address for when both ports
1084 * are operating in failover mode. Currently we don't
1085 * use this extra address.
1086 */
1087 for (i = 0; i < ETHER_ADDR_LEN; i++)
1088 sc_if->sk_enaddr[i] =
1089 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1090
1091 aprint_normal(": Ethernet address %s\n",
1092 ether_sprintf(sc_if->sk_enaddr));
1093
1094 /*
1095 * Set up RAM buffer addresses. The Yukon2 has a small amount
1096 * of SRAM on it, somewhere between 4K and 48K. We need to
1097 * divide this up between the transmitter and receiver. We
1098 * give the receiver 2/3 of the memory (rounded down), and the
1099 * transmitter whatever remains.
1100 */
1101 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1102 sc_if->sk_rx_ramstart = 0;
1103 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1104 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1105 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1106 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1107
1108 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1109 " tx_ramstart=%#x tx_ramend=%#x\n",
1110 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1111 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1112
1113 /* Allocate the descriptor queues. */
1114 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1115 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1116 BUS_DMA_NOWAIT)) {
1117 aprint_error(": can't alloc rx buffers\n");
1118 goto fail;
1119 }
1120 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1121 sc_if->sk_ring_nseg,
1122 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1123 aprint_error(": can't map dma buffers (%zu bytes)\n",
1124 sizeof(struct msk_ring_data));
1125 goto fail_1;
1126 }
1127 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1128 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1129 &sc_if->sk_ring_map)) {
1130 aprint_error(": can't create dma map\n");
1131 goto fail_2;
1132 }
1133 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1134 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1135 aprint_error(": can't load dma map\n");
1136 goto fail_3;
1137 }
1138 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1139 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1140
1141 if (sc->sk_type != SK_YUKON_FE &&
1142 sc->sk_type != SK_YUKON_FE_P)
1143 sc_if->sk_pktlen = SK_JLEN;
1144 else
1145 sc_if->sk_pktlen = MCLBYTES;
1146
1147 /* Try to allocate memory for jumbo buffers. */
1148 if (msk_alloc_jumbo_mem(sc_if)) {
1149 aprint_error(": jumbo buffer allocation failed\n");
1150 goto fail_3;
1151 }
1152
1153 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1154 if (sc->sk_type != SK_YUKON_FE &&
1155 sc->sk_type != SK_YUKON_FE_P)
1156 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1157
1158 ifp = &sc_if->sk_ethercom.ec_if;
1159 ifp->if_softc = sc_if;
1160 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1161 ifp->if_ioctl = msk_ioctl;
1162 ifp->if_start = msk_start;
1163 ifp->if_stop = msk_stop;
1164 ifp->if_init = msk_init;
1165 ifp->if_watchdog = msk_watchdog;
1166 ifp->if_baudrate = 1000000000;
1167 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1168 IFQ_SET_READY(&ifp->if_snd);
1169 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1170
1171 msk_reset(sc_if);
1172
1173 /*
1174 * Do miibus setup.
1175 */
1176 msk_init_yukon(sc_if);
1177
1178 DPRINTFN(2, ("msk_attach: 1\n"));
1179
1180 sc_if->sk_mii.mii_ifp = ifp;
1181 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1182 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1183 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1184
1185 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1186 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1187 ether_mediachange, ether_mediastatus);
1188 mii_flags = MIIF_DOPAUSE;
1189 if (sc->sk_fibertype)
1190 mii_flags |= MIIF_HAVEFIBER;
1191 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1192 MII_OFFSET_ANY, mii_flags);
1193 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1194 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1195 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1196 0, NULL);
1197 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1198 } else
1199 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1200
1201 callout_init(&sc_if->sk_tick_ch, 0);
1202 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1203 callout_schedule(&sc_if->sk_tick_ch, hz);
1204
1205 /*
1206 * Call MI attach routines.
1207 */
1208 if_attach(ifp);
1209 if_deferred_start_init(ifp, NULL);
1210 ether_ifattach(ifp, sc_if->sk_enaddr);
1211
1212 if (pmf_device_register(self, NULL, msk_resume))
1213 pmf_class_network_register(self, ifp);
1214 else
1215 aprint_error_dev(self, "couldn't establish power handler\n");
1216
1217 if (sc->rnd_attached++ == 0) {
1218 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1219 RND_TYPE_NET, RND_FLAG_DEFAULT);
1220 }
1221
1222 DPRINTFN(2, ("msk_attach: end\n"));
1223 return;
1224
1225 fail_3:
1226 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1227 fail_2:
1228 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1229 fail_1:
1230 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1231 fail:
1232 sc->sk_if[sa->skc_port] = NULL;
1233 }
1234
1235 int
1236 msk_detach(device_t self, int flags)
1237 {
1238 struct sk_if_softc *sc_if = device_private(self);
1239 struct sk_softc *sc = sc_if->sk_softc;
1240 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1241
1242 if (sc->sk_if[sc_if->sk_port] == NULL)
1243 return (0);
1244
1245 msk_stop(ifp, 0);
1246
1247 if (--sc->rnd_attached == 0)
1248 rnd_detach_source(&sc->rnd_source);
1249
1250 callout_halt(&sc_if->sk_tick_ch, NULL);
1251 callout_destroy(&sc_if->sk_tick_ch);
1252
1253 /* Detach any PHYs we might have. */
1254 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1255 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1256
1257 /* Delete any remaining media. */
1258 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1259
1260 pmf_device_deregister(self);
1261
1262 ether_ifdetach(ifp);
1263 if_detach(ifp);
1264
1265 msk_free_jumbo_mem(sc_if);
1266
1267 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1268 sizeof(struct msk_ring_data));
1269 bus_dmamem_free(sc->sc_dmatag,
1270 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1271 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1272 sc->sk_if[sc_if->sk_port] = NULL;
1273
1274 return (0);
1275 }
1276
1277 int
1278 mskcprint(void *aux, const char *pnp)
1279 {
1280 struct skc_attach_args *sa = aux;
1281
1282 if (pnp)
1283 aprint_normal("msk port %c at %s",
1284 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1285 else
1286 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1287 return (UNCONF);
1288 }
1289
1290 /*
1291 * Attach the interface. Allocate softc structures, do ifmedia
1292 * setup and ethernet/BPF attach.
1293 */
1294 void
1295 mskc_attach(device_t parent, device_t self, void *aux)
1296 {
1297 struct sk_softc *sc = device_private(self);
1298 struct pci_attach_args *pa = aux;
1299 struct skc_attach_args skca;
1300 pci_chipset_tag_t pc = pa->pa_pc;
1301 pcireg_t command, memtype;
1302 pci_intr_handle_t ih;
1303 const char *intrstr = NULL;
1304 bus_size_t size;
1305 int rc, sk_nodenum;
1306 u_int8_t hw, pmd;
1307 const char *revstr = NULL;
1308 const struct sysctlnode *node;
1309 void *kva;
1310 char intrbuf[PCI_INTRSTR_LEN];
1311
1312 DPRINTFN(2, ("begin mskc_attach\n"));
1313
1314 sc->sk_dev = self;
1315 /*
1316 * Handle power management nonsense.
1317 */
1318 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1319
1320 if (command == 0x01) {
1321 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1322 if (command & SK_PSTATE_MASK) {
1323 u_int32_t iobase, membase, irq;
1324
1325 /* Save important PCI config data. */
1326 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1327 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1328 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1329
1330 /* Reset the power state. */
1331 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1332 "mode -- setting to D0\n",
1333 command & SK_PSTATE_MASK);
1334 command &= 0xFFFFFFFC;
1335 pci_conf_write(pc, pa->pa_tag,
1336 SK_PCI_PWRMGMTCTRL, command);
1337
1338 /* Restore PCI config data. */
1339 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1340 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1341 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1342 }
1343 }
1344
1345 /*
1346 * Map control/status registers.
1347 */
1348 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1349 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1350 &sc->sk_bhandle, NULL, &size)) {
1351 aprint_error(": can't map mem space\n");
1352 return;
1353 }
1354
1355 sc->sc_dmatag = pa->pa_dmat;
1356
1357 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1358 command |= PCI_COMMAND_MASTER_ENABLE;
1359 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1360
1361 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1362 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1363
1364 /* bail out here if chip is not recognized */
1365 if (!(SK_IS_YUKON2(sc))) {
1366 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1367 goto fail_1;
1368 }
1369 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1370
1371 /* Allocate interrupt */
1372 if (pci_intr_map(pa, &ih)) {
1373 aprint_error(": couldn't map interrupt\n");
1374 goto fail_1;
1375 }
1376
1377 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1378 sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc);
1379 if (sc->sk_intrhand == NULL) {
1380 aprint_error(": couldn't establish interrupt");
1381 if (intrstr != NULL)
1382 aprint_error(" at %s", intrstr);
1383 aprint_error("\n");
1384 goto fail_1;
1385 }
1386 sc->sk_pc = pc;
1387
1388 if (bus_dmamem_alloc(sc->sc_dmatag,
1389 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1390 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1391 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1392 aprint_error(": can't alloc status buffers\n");
1393 goto fail_2;
1394 }
1395
1396 if (bus_dmamem_map(sc->sc_dmatag,
1397 &sc->sk_status_seg, sc->sk_status_nseg,
1398 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1399 &kva, BUS_DMA_NOWAIT)) {
1400 aprint_error(": can't map dma buffers (%zu bytes)\n",
1401 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1402 goto fail_3;
1403 }
1404 if (bus_dmamap_create(sc->sc_dmatag,
1405 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1406 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1407 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1408 aprint_error(": can't create dma map\n");
1409 goto fail_4;
1410 }
1411 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1412 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1413 NULL, BUS_DMA_NOWAIT)) {
1414 aprint_error(": can't load dma map\n");
1415 goto fail_5;
1416 }
1417 sc->sk_status_ring = (struct msk_status_desc *)kva;
1418
1419 sc->sk_int_mod = SK_IM_DEFAULT;
1420 sc->sk_int_mod_pending = 0;
1421
1422 /* Reset the adapter. */
1423 mskc_reset(sc);
1424
1425 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1426 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1427
1428 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1429 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1430 sc->sk_fibertype = 1;
1431
1432 switch (sc->sk_type) {
1433 case SK_YUKON_XL:
1434 sc->sk_name = "Yukon-2 XL";
1435 break;
1436 case SK_YUKON_EC_U:
1437 sc->sk_name = "Yukon-2 EC Ultra";
1438 break;
1439 case SK_YUKON_EX:
1440 sc->sk_name = "Yukon-2 Extreme";
1441 break;
1442 case SK_YUKON_EC:
1443 sc->sk_name = "Yukon-2 EC";
1444 break;
1445 case SK_YUKON_FE:
1446 sc->sk_name = "Yukon-2 FE";
1447 break;
1448 case SK_YUKON_FE_P:
1449 sc->sk_name = "Yukon-2 FE+";
1450 break;
1451 case SK_YUKON_SUPR:
1452 sc->sk_name = "Yukon-2 Supreme";
1453 break;
1454 case SK_YUKON_ULTRA2:
1455 sc->sk_name = "Yukon-2 Ultra 2";
1456 break;
1457 case SK_YUKON_OPTIMA:
1458 sc->sk_name = "Yukon-2 Optima";
1459 break;
1460 case SK_YUKON_PRM:
1461 sc->sk_name = "Yukon-2 Optima Prime";
1462 break;
1463 case SK_YUKON_OPTIMA2:
1464 sc->sk_name = "Yukon-2 Optima 2";
1465 break;
1466 default:
1467 sc->sk_name = "Yukon (Unknown)";
1468 }
1469
1470 if (sc->sk_type == SK_YUKON_XL) {
1471 switch (sc->sk_rev) {
1472 case SK_YUKON_XL_REV_A0:
1473 sc->sk_workaround = 0;
1474 revstr = "A0";
1475 break;
1476 case SK_YUKON_XL_REV_A1:
1477 sc->sk_workaround = SK_WA_4109;
1478 revstr = "A1";
1479 break;
1480 case SK_YUKON_XL_REV_A2:
1481 sc->sk_workaround = SK_WA_4109;
1482 revstr = "A2";
1483 break;
1484 case SK_YUKON_XL_REV_A3:
1485 sc->sk_workaround = SK_WA_4109;
1486 revstr = "A3";
1487 break;
1488 default:
1489 sc->sk_workaround = 0;
1490 break;
1491 }
1492 }
1493
1494 if (sc->sk_type == SK_YUKON_EC) {
1495 switch (sc->sk_rev) {
1496 case SK_YUKON_EC_REV_A1:
1497 sc->sk_workaround = SK_WA_43_418 | SK_WA_4109;
1498 revstr = "A1";
1499 break;
1500 case SK_YUKON_EC_REV_A2:
1501 sc->sk_workaround = SK_WA_4109;
1502 revstr = "A2";
1503 break;
1504 case SK_YUKON_EC_REV_A3:
1505 sc->sk_workaround = SK_WA_4109;
1506 revstr = "A3";
1507 break;
1508 default:
1509 sc->sk_workaround = 0;
1510 break;
1511 }
1512 }
1513
1514 if (sc->sk_type == SK_YUKON_FE) {
1515 sc->sk_workaround = SK_WA_4109;
1516 switch (sc->sk_rev) {
1517 case SK_YUKON_FE_REV_A1:
1518 revstr = "A1";
1519 break;
1520 case SK_YUKON_FE_REV_A2:
1521 revstr = "A2";
1522 break;
1523 default:
1524 sc->sk_workaround = 0;
1525 break;
1526 }
1527 }
1528
1529 if (sc->sk_type == SK_YUKON_EC_U) {
1530 sc->sk_workaround = SK_WA_4109;
1531 switch (sc->sk_rev) {
1532 case SK_YUKON_EC_U_REV_A0:
1533 revstr = "A0";
1534 break;
1535 case SK_YUKON_EC_U_REV_A1:
1536 revstr = "A1";
1537 break;
1538 case SK_YUKON_EC_U_REV_B0:
1539 revstr = "B0";
1540 break;
1541 case SK_YUKON_EC_U_REV_B1:
1542 revstr = "B1";
1543 break;
1544 default:
1545 sc->sk_workaround = 0;
1546 break;
1547 }
1548 }
1549
1550 if (sc->sk_type == SK_YUKON_FE) {
1551 switch (sc->sk_rev) {
1552 case SK_YUKON_FE_REV_A1:
1553 revstr = "A1";
1554 break;
1555 case SK_YUKON_FE_REV_A2:
1556 revstr = "A2";
1557 break;
1558 default:
1559 ;
1560 }
1561 }
1562
1563 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1564 revstr = "A0";
1565
1566 if (sc->sk_type == SK_YUKON_EX) {
1567 switch (sc->sk_rev) {
1568 case SK_YUKON_EX_REV_A0:
1569 revstr = "A0";
1570 break;
1571 case SK_YUKON_EX_REV_B0:
1572 revstr = "B0";
1573 break;
1574 default:
1575 ;
1576 }
1577 }
1578
1579 if (sc->sk_type == SK_YUKON_SUPR) {
1580 switch (sc->sk_rev) {
1581 case SK_YUKON_SUPR_REV_A0:
1582 revstr = "A0";
1583 break;
1584 case SK_YUKON_SUPR_REV_B0:
1585 revstr = "B0";
1586 break;
1587 case SK_YUKON_SUPR_REV_B1:
1588 revstr = "B1";
1589 break;
1590 default:
1591 ;
1592 }
1593 }
1594
1595 if (sc->sk_type == SK_YUKON_PRM) {
1596 switch (sc->sk_rev) {
1597 case SK_YUKON_PRM_REV_Z1:
1598 revstr = "Z1";
1599 break;
1600 case SK_YUKON_PRM_REV_A0:
1601 revstr = "A0";
1602 break;
1603 default:
1604 ;
1605 }
1606 }
1607
1608 /* Announce the product name. */
1609 aprint_normal(", %s", sc->sk_name);
1610 if (revstr != NULL)
1611 aprint_normal(" rev. %s", revstr);
1612 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1613
1614 sc->sk_macs = 1;
1615
1616 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1617 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1618 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1619 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1620 sc->sk_macs++;
1621 }
1622
1623 skca.skc_port = SK_PORT_A;
1624 skca.skc_type = sc->sk_type;
1625 skca.skc_rev = sc->sk_rev;
1626 (void)config_found(sc->sk_dev, &skca, mskcprint);
1627
1628 if (sc->sk_macs > 1) {
1629 skca.skc_port = SK_PORT_B;
1630 skca.skc_type = sc->sk_type;
1631 skca.skc_rev = sc->sk_rev;
1632 (void)config_found(sc->sk_dev, &skca, mskcprint);
1633 }
1634
1635 /* Turn on the 'driver is loaded' LED. */
1636 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1637
1638 /* skc sysctl setup */
1639
1640 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1641 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1642 SYSCTL_DESCR("mskc per-controller controls"),
1643 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1644 CTL_EOL)) != 0) {
1645 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1646 goto fail_6;
1647 }
1648
1649 sk_nodenum = node->sysctl_num;
1650
1651 /* interrupt moderation time in usecs */
1652 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1653 CTLFLAG_READWRITE,
1654 CTLTYPE_INT, "int_mod",
1655 SYSCTL_DESCR("msk interrupt moderation timer"),
1656 msk_sysctl_handler, 0, (void *)sc,
1657 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1658 CTL_EOL)) != 0) {
1659 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1660 goto fail_6;
1661 }
1662
1663 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1664 aprint_error_dev(self, "couldn't establish power handler\n");
1665
1666 return;
1667
1668 fail_6:
1669 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1670 fail_4:
1671 bus_dmamem_unmap(sc->sc_dmatag, kva,
1672 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1673 fail_3:
1674 bus_dmamem_free(sc->sc_dmatag,
1675 &sc->sk_status_seg, sc->sk_status_nseg);
1676 sc->sk_status_nseg = 0;
1677 fail_5:
1678 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1679 fail_2:
1680 pci_intr_disestablish(pc, sc->sk_intrhand);
1681 sc->sk_intrhand = NULL;
1682 fail_1:
1683 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1684 sc->sk_bsize = 0;
1685 }
1686
1687 int
1688 mskc_detach(device_t self, int flags)
1689 {
1690 struct sk_softc *sc = device_private(self);
1691 int rv;
1692
1693 if (sc->sk_intrhand)
1694 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1695
1696 rv = config_detach_children(self, flags);
1697 if (rv != 0)
1698 return (rv);
1699
1700 if (sc->sk_status_nseg > 0) {
1701 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1702 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1703 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1704 bus_dmamem_free(sc->sc_dmatag,
1705 &sc->sk_status_seg, sc->sk_status_nseg);
1706 }
1707
1708 if (sc->sk_bsize > 0)
1709 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1710
1711 return(0);
1712 }
1713
1714 int
1715 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1716 {
1717 struct sk_softc *sc = sc_if->sk_softc;
1718 struct msk_tx_desc *f = NULL;
1719 u_int32_t frag, cur;
1720 int i;
1721 struct sk_txmap_entry *entry;
1722 bus_dmamap_t txmap;
1723
1724 DPRINTFN(2, ("msk_encap\n"));
1725
1726 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1727 if (entry == NULL) {
1728 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1729 return (ENOBUFS);
1730 }
1731 txmap = entry->dmamap;
1732
1733 cur = frag = *txidx;
1734
1735 #ifdef MSK_DEBUG
1736 if (mskdebug >= 2)
1737 msk_dump_mbuf(m_head);
1738 #endif
1739
1740 /*
1741 * Start packing the mbufs in this chain into
1742 * the fragment pointers. Stop when we run out
1743 * of fragments or hit the end of the mbuf chain.
1744 */
1745 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1746 BUS_DMA_NOWAIT)) {
1747 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1748 return (ENOBUFS);
1749 }
1750
1751 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1752 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1753 bus_dmamap_unload(sc->sc_dmatag, txmap);
1754 return (ENOBUFS);
1755 }
1756
1757 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1758
1759 /* Sync the DMA map. */
1760 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1761 BUS_DMASYNC_PREWRITE);
1762
1763 for (i = 0; i < txmap->dm_nsegs; i++) {
1764 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1765 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1766 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1767 f->sk_ctl = 0;
1768 if (i == 0)
1769 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1770 else
1771 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1772 cur = frag;
1773 SK_INC(frag, MSK_TX_RING_CNT);
1774 }
1775
1776 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1777 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1778
1779 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1780 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1781
1782 /* Sync descriptors before handing to chip */
1783 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1784 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1785
1786 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1787
1788 /* Sync first descriptor to hand it off */
1789 MSK_CDTXSYNC(sc_if, *txidx, 1,
1790 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1791
1792 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1793
1794 #ifdef MSK_DEBUG
1795 if (mskdebug >= 2) {
1796 struct msk_tx_desc *le;
1797 u_int32_t idx;
1798 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1799 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1800 msk_dump_txdesc(le, idx);
1801 }
1802 }
1803 #endif
1804
1805 *txidx = frag;
1806
1807 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1808
1809 return (0);
1810 }
1811
1812 void
1813 msk_start(struct ifnet *ifp)
1814 {
1815 struct sk_if_softc *sc_if = ifp->if_softc;
1816 struct mbuf *m_head = NULL;
1817 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1818 int pkts = 0;
1819
1820 DPRINTFN(2, ("msk_start\n"));
1821
1822 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1823 IFQ_POLL(&ifp->if_snd, m_head);
1824 if (m_head == NULL)
1825 break;
1826
1827 /*
1828 * Pack the data into the transmit ring. If we
1829 * don't have room, set the OACTIVE flag and wait
1830 * for the NIC to drain the ring.
1831 */
1832 if (msk_encap(sc_if, m_head, &idx)) {
1833 ifp->if_flags |= IFF_OACTIVE;
1834 break;
1835 }
1836
1837 /* now we are committed to transmit the packet */
1838 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1839 pkts++;
1840
1841 /*
1842 * If there's a BPF listener, bounce a copy of this frame
1843 * to him.
1844 */
1845 bpf_mtap(ifp, m_head, BPF_D_OUT);
1846 }
1847 if (pkts == 0)
1848 return;
1849
1850 /* Transmit */
1851 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1852 sc_if->sk_cdata.sk_tx_prod = idx;
1853 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1854
1855 /* Set a timeout in case the chip goes out to lunch. */
1856 ifp->if_timer = 5;
1857 }
1858 }
1859
1860 void
1861 msk_watchdog(struct ifnet *ifp)
1862 {
1863 struct sk_if_softc *sc_if = ifp->if_softc;
1864
1865 /*
1866 * Reclaim first as there is a possibility of losing Tx completion
1867 * interrupts.
1868 */
1869 msk_txeof(sc_if);
1870 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1871 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1872
1873 ifp->if_oerrors++;
1874
1875 /* XXX Resets both ports; we shouldn't do that. */
1876 mskc_reset(sc_if->sk_softc);
1877 msk_reset(sc_if);
1878 msk_init(ifp);
1879 }
1880 }
1881
1882 static bool
1883 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1884 {
1885 struct sk_softc *sc = device_private(dv);
1886
1887 DPRINTFN(2, ("mskc_suspend\n"));
1888
1889 /* Turn off the 'driver is loaded' LED. */
1890 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1891
1892 return true;
1893 }
1894
1895 static bool
1896 mskc_resume(device_t dv, const pmf_qual_t *qual)
1897 {
1898 struct sk_softc *sc = device_private(dv);
1899
1900 DPRINTFN(2, ("mskc_resume\n"));
1901
1902 mskc_reset(sc);
1903 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1904
1905 return true;
1906 }
1907
1908 static __inline int
1909 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1910 {
1911 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1912 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1913 YU_RXSTAT_JABBER)) != 0 ||
1914 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1915 YU_RXSTAT_BYTES(stat) != len)
1916 return (0);
1917
1918 return (1);
1919 }
1920
1921 void
1922 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1923 {
1924 struct sk_softc *sc = sc_if->sk_softc;
1925 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1926 struct mbuf *m;
1927 struct sk_chain *cur_rx;
1928 int cur, total_len = len;
1929 bus_dmamap_t dmamap;
1930
1931 DPRINTFN(2, ("msk_rxeof\n"));
1932
1933 cur = sc_if->sk_cdata.sk_rx_cons;
1934
1935 /* Sync the descriptor */
1936 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1937
1938 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1939 if (cur_rx->sk_mbuf == NULL)
1940 return;
1941
1942 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1943 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1944 sc_if->sk_cdata.sk_rx_cnt--;
1945
1946 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1947 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1948
1949 m = cur_rx->sk_mbuf;
1950 cur_rx->sk_mbuf = NULL;
1951
1952 if (total_len < SK_MIN_FRAMELEN ||
1953 total_len > ETHER_MAX_LEN_JUMBO ||
1954 msk_rxvalid(sc, rxstat, total_len) == 0) {
1955 ifp->if_ierrors++;
1956 msk_newbuf(sc_if, m, dmamap);
1957 return;
1958 }
1959
1960 /*
1961 * Try to allocate a new jumbo buffer. If that fails, copy the
1962 * packet to mbufs and put the jumbo buffer back in the ring
1963 * so it can be re-used. If allocating mbufs fails, then we
1964 * have to drop the packet.
1965 */
1966 if (msk_newbuf(sc_if, NULL, dmamap) == ENOBUFS) {
1967 struct mbuf *m0;
1968 m0 = m_devget(mtod(m, char *) - ETHER_ALIGN,
1969 total_len + ETHER_ALIGN, 0, ifp, NULL);
1970 msk_newbuf(sc_if, m, dmamap);
1971 if (m0 == NULL) {
1972 ifp->if_ierrors++;
1973 return;
1974 }
1975 m_adj(m0, ETHER_ALIGN);
1976 m = m0;
1977 } else {
1978 m_set_rcvif(m, ifp);
1979 m->m_pkthdr.len = m->m_len = total_len;
1980 }
1981
1982 /* pass it on. */
1983 if_percpuq_enqueue(ifp->if_percpuq, m);
1984 }
1985
1986 void
1987 msk_txeof(struct sk_if_softc *sc_if)
1988 {
1989 struct sk_softc *sc = sc_if->sk_softc;
1990 struct msk_tx_desc *cur_tx;
1991 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1992 u_int32_t idx, reg, sk_ctl;
1993 struct sk_txmap_entry *entry;
1994
1995 DPRINTFN(2, ("msk_txeof\n"));
1996
1997 if (sc_if->sk_port == SK_PORT_A)
1998 reg = SK_STAT_BMU_TXA1_RIDX;
1999 else
2000 reg = SK_STAT_BMU_TXA2_RIDX;
2001
2002 /*
2003 * Go through our tx ring and free mbufs for those
2004 * frames that have been sent.
2005 */
2006 idx = sc_if->sk_cdata.sk_tx_cons;
2007 while (idx != sk_win_read_2(sc, reg)) {
2008 MSK_CDTXSYNC(sc_if, idx, 1,
2009 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2010
2011 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2012 sk_ctl = cur_tx->sk_ctl;
2013 #ifdef MSK_DEBUG
2014 if (mskdebug >= 2)
2015 msk_dump_txdesc(cur_tx, idx);
2016 #endif
2017 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2018 ifp->if_opackets++;
2019 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2020 entry = sc_if->sk_cdata.sk_tx_map[idx];
2021
2022 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2023 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2024
2025 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2026 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2027
2028 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2029 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2030 link);
2031 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2032 }
2033 sc_if->sk_cdata.sk_tx_cnt--;
2034 SK_INC(idx, MSK_TX_RING_CNT);
2035 }
2036 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2037
2038 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2039 ifp->if_flags &= ~IFF_OACTIVE;
2040
2041 sc_if->sk_cdata.sk_tx_cons = idx;
2042 }
2043
2044 void
2045 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2046 {
2047 /* Make sure to not completely wrap around */
2048 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2049 if (msk_newbuf(sc_if, NULL,
2050 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2051 break;
2052 }
2053 }
2054 }
2055
2056 void
2057 msk_tick(void *xsc_if)
2058 {
2059 struct sk_if_softc *sc_if = xsc_if;
2060 struct mii_data *mii = &sc_if->sk_mii;
2061 int s;
2062
2063 s = splnet();
2064 mii_tick(mii);
2065 splx(s);
2066
2067 callout_schedule(&sc_if->sk_tick_ch, hz);
2068 }
2069
2070 void
2071 msk_intr_yukon(struct sk_if_softc *sc_if)
2072 {
2073 u_int8_t status;
2074
2075 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2076 /* RX overrun */
2077 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2078 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2079 SK_RFCTL_RX_FIFO_OVER);
2080 }
2081 /* TX underrun */
2082 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2083 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2084 SK_TFCTL_TX_FIFO_UNDER);
2085 }
2086
2087 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2088 }
2089
2090 int
2091 msk_intr(void *xsc)
2092 {
2093 struct sk_softc *sc = xsc;
2094 struct sk_if_softc *sc_if;
2095 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2096 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2097 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2098 int claimed = 0;
2099 u_int32_t status;
2100 struct msk_status_desc *cur_st;
2101
2102 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2103 if (status == 0xffffffff)
2104 return (0);
2105 if (status == 0) {
2106 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2107 return (0);
2108 }
2109
2110 status = CSR_READ_4(sc, SK_ISR);
2111
2112 if (sc_if0 != NULL)
2113 ifp0 = &sc_if0->sk_ethercom.ec_if;
2114 if (sc_if1 != NULL)
2115 ifp1 = &sc_if1->sk_ethercom.ec_if;
2116
2117 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2118 (ifp0->if_flags & IFF_RUNNING)) {
2119 msk_intr_yukon(sc_if0);
2120 }
2121
2122 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2123 (ifp1->if_flags & IFF_RUNNING)) {
2124 msk_intr_yukon(sc_if1);
2125 }
2126
2127 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2128 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2129 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2130
2131 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2132 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2133 switch (cur_st->sk_opcode) {
2134 case SK_Y2_STOPC_RXSTAT:
2135 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2136 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2137 letoh32(cur_st->sk_status));
2138 msk_fill_rx_ring(sc_if);
2139 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2140 sc_if->sk_cdata.sk_rx_prod);
2141 break;
2142 case SK_Y2_STOPC_TXSTAT:
2143 if (sc_if0)
2144 msk_txeof(sc_if0);
2145 if (sc_if1)
2146 msk_txeof(sc_if1);
2147 break;
2148 default:
2149 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2150 break;
2151 }
2152 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2153
2154 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2155 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2156 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2157 }
2158
2159 if (status & SK_Y2_IMR_BMU) {
2160 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2161 claimed = 1;
2162 }
2163
2164 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2165
2166 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2167 if_schedule_deferred_start(ifp0);
2168 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2169 if_schedule_deferred_start(ifp1);
2170
2171 KASSERT(sc->rnd_attached > 0);
2172 rnd_add_uint32(&sc->rnd_source, status);
2173
2174 if (sc->sk_int_mod_pending)
2175 msk_update_int_mod(sc, 1);
2176
2177 return claimed;
2178 }
2179
2180 void
2181 msk_init_yukon(struct sk_if_softc *sc_if)
2182 {
2183 u_int32_t v;
2184 u_int16_t reg;
2185 struct sk_softc *sc;
2186 int i;
2187
2188 sc = sc_if->sk_softc;
2189
2190 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2191 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2192
2193 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2194
2195 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2196 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2197
2198 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2199
2200 /* unused read of the interrupt source register */
2201 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2202 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2203
2204 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2205 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2206 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2207
2208 /* MIB Counter Clear Mode set */
2209 reg |= YU_PAR_MIB_CLR;
2210 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2211 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2212 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2213
2214 /* MIB Counter Clear Mode clear */
2215 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2216 reg &= ~YU_PAR_MIB_CLR;
2217 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2218
2219 /* receive control reg */
2220 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2221 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2222
2223 /* transmit control register */
2224 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2225
2226 /* transmit flow control register */
2227 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2228
2229 /* transmit parameter register */
2230 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2231 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2232 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2233
2234 /* serial mode register */
2235 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2236 reg = YU_SMR_DATA_BLIND(0x1c) |
2237 YU_SMR_MFL_VLAN |
2238 YU_SMR_IPG_DATA(0x1e);
2239
2240 if (sc->sk_type != SK_YUKON_FE &&
2241 sc->sk_type != SK_YUKON_FE_P)
2242 reg |= YU_SMR_MFL_JUMBO;
2243
2244 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2245
2246 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2247 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2248 /* msk_attach calls me before ether_ifattach so check null */
2249 if (ifp != NULL && ifp->if_sadl != NULL)
2250 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2251 sizeof(sc_if->sk_enaddr));
2252 /* Setup Yukon's address */
2253 for (i = 0; i < 3; i++) {
2254 /* Write Source Address 1 (unicast filter) */
2255 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2256 sc_if->sk_enaddr[i * 2] |
2257 sc_if->sk_enaddr[i * 2 + 1] << 8);
2258 }
2259
2260 for (i = 0; i < 3; i++) {
2261 reg = sk_win_read_2(sc_if->sk_softc,
2262 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2263 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2264 }
2265
2266 /* Set promiscuous mode */
2267 msk_setpromisc(sc_if);
2268
2269 /* Set multicast filter */
2270 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2271 msk_setmulti(sc_if);
2272
2273 /* enable interrupt mask for counter overflows */
2274 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2275 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2276 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2277 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2278
2279 /* Configure RX MAC FIFO Flush Mask */
2280 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2281 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2282 YU_RXSTAT_JABBER;
2283 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2284
2285 /* Configure RX MAC FIFO */
2286 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2287 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2288 SK_RFCTL_FIFO_FLUSH_ON);
2289
2290 /* Increase flush threshould to 64 bytes */
2291 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2292 SK_RFCTL_FIFO_THRESHOLD + 1);
2293
2294 /* Configure TX MAC FIFO */
2295 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2296 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2297
2298 #if 1
2299 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2300 #endif
2301 DPRINTFN(6, ("msk_init_yukon: end\n"));
2302 }
2303
2304 /*
2305 * Note that to properly initialize any part of the GEnesis chip,
2306 * you first have to take it out of reset mode.
2307 */
2308 int
2309 msk_init(struct ifnet *ifp)
2310 {
2311 struct sk_if_softc *sc_if = ifp->if_softc;
2312 struct sk_softc *sc = sc_if->sk_softc;
2313 int rc = 0, s;
2314 uint32_t imr, imtimer_ticks;
2315
2316
2317 DPRINTFN(2, ("msk_init\n"));
2318
2319 s = splnet();
2320
2321 /* Cancel pending I/O and free all RX/TX buffers. */
2322 msk_stop(ifp, 1);
2323
2324 /* Configure I2C registers */
2325
2326 /* Configure XMAC(s) */
2327 msk_init_yukon(sc_if);
2328 if ((rc = ether_mediachange(ifp)) != 0)
2329 goto out;
2330
2331 /* Configure transmit arbiter(s) */
2332 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2333 #if 0
2334 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2335 #endif
2336
2337 /* Configure RAMbuffers */
2338 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2339 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2340 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2341 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2342 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2343 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2344
2345 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2346 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2347 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2348 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2349 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2350 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2351 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2352
2353 /* Configure BMUs */
2354 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2355 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2356 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2357 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2358
2359 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2360 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2361 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2362 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2363
2364 /* Make sure the sync transmit queue is disabled. */
2365 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2366
2367 /* Init descriptors */
2368 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2369 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2370 "memory for rx buffers\n");
2371 msk_stop(ifp, 1);
2372 splx(s);
2373 return ENOBUFS;
2374 }
2375
2376 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2377 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2378 "memory for tx buffers\n");
2379 msk_stop(ifp, 1);
2380 splx(s);
2381 return ENOBUFS;
2382 }
2383
2384 /* Set interrupt moderation if changed via sysctl. */
2385 switch (sc->sk_type) {
2386 case SK_YUKON_EC:
2387 case SK_YUKON_EC_U:
2388 case SK_YUKON_EX:
2389 case SK_YUKON_SUPR:
2390 case SK_YUKON_ULTRA2:
2391 case SK_YUKON_OPTIMA:
2392 case SK_YUKON_PRM:
2393 case SK_YUKON_OPTIMA2:
2394 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2395 break;
2396 case SK_YUKON_FE:
2397 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2398 break;
2399 case SK_YUKON_FE_P:
2400 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2401 break;
2402 case SK_YUKON_XL:
2403 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2404 break;
2405 default:
2406 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2407 }
2408 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2409 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2410 sk_win_write_4(sc, SK_IMTIMERINIT,
2411 SK_IM_USECS(sc->sk_int_mod));
2412 aprint_verbose_dev(sc->sk_dev,
2413 "interrupt moderation is %d us\n", sc->sk_int_mod);
2414 }
2415
2416 /* Initialize prefetch engine. */
2417 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2418 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2419 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2420 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2421 MSK_RX_RING_ADDR(sc_if, 0));
2422 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2423 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2424 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2425 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2426
2427 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2428 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2429 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2430 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2431 MSK_TX_RING_ADDR(sc_if, 0));
2432 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2433 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2434 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2435 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2436
2437 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2438 sc_if->sk_cdata.sk_rx_prod);
2439
2440 /* Configure interrupt handling */
2441 if (sc_if->sk_port == SK_PORT_A)
2442 sc->sk_intrmask |= SK_Y2_INTRS1;
2443 else
2444 sc->sk_intrmask |= SK_Y2_INTRS2;
2445 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2446 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2447
2448 ifp->if_flags |= IFF_RUNNING;
2449 ifp->if_flags &= ~IFF_OACTIVE;
2450
2451 callout_schedule(&sc_if->sk_tick_ch, hz);
2452
2453 out:
2454 splx(s);
2455 return rc;
2456 }
2457
2458 /*
2459 * Note: the logic of second parameter is inverted compared to OpenBSD
2460 * code, since this code uses the function as if_stop hook too.
2461 */
2462 void
2463 msk_stop(struct ifnet *ifp, int disable)
2464 {
2465 struct sk_if_softc *sc_if = ifp->if_softc;
2466 struct sk_softc *sc = sc_if->sk_softc;
2467 struct sk_txmap_entry *dma;
2468 int i;
2469
2470 DPRINTFN(2, ("msk_stop\n"));
2471
2472 callout_stop(&sc_if->sk_tick_ch);
2473
2474 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2475
2476 /* Stop transfer of Tx descriptors */
2477
2478 /* Stop transfer of Rx descriptors */
2479
2480 if (disable) {
2481 /* Turn off various components of this interface. */
2482 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2483 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2484 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2485 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2486 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2487 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2488 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2489 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2490 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2491 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2492 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2493
2494 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2495 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2496
2497 /* Disable interrupts */
2498 if (sc_if->sk_port == SK_PORT_A)
2499 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2500 else
2501 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2502 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2503 }
2504
2505 /* Free RX and TX mbufs still in the queues. */
2506 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2507 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2508 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2509 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2510 }
2511 }
2512
2513 sc_if->sk_cdata.sk_rx_prod = 0;
2514 sc_if->sk_cdata.sk_rx_cons = 0;
2515 sc_if->sk_cdata.sk_rx_cnt = 0;
2516
2517 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2518 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2519 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2520 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2521 #if 1
2522 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2523 sc_if->sk_cdata.sk_tx_map[i], link);
2524 sc_if->sk_cdata.sk_tx_map[i] = 0;
2525 #endif
2526 }
2527 }
2528
2529 #if 1
2530 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2531 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2532 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2533 free(dma, M_DEVBUF);
2534 }
2535 #endif
2536 }
2537
2538 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2539 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2540
2541 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2542 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2543
2544 #ifdef MSK_DEBUG
2545 void
2546 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2547 {
2548 #define DESC_PRINT(X) \
2549 if (X) \
2550 printf("txdesc[%d]." #X "=%#x\n", \
2551 idx, X);
2552
2553 DESC_PRINT(letoh32(le->sk_addr));
2554 DESC_PRINT(letoh16(le->sk_len));
2555 DESC_PRINT(le->sk_ctl);
2556 DESC_PRINT(le->sk_opcode);
2557 #undef DESC_PRINT
2558 }
2559
2560 void
2561 msk_dump_bytes(const char *data, int len)
2562 {
2563 int c, i, j;
2564
2565 for (i = 0; i < len; i += 16) {
2566 printf("%08x ", i);
2567 c = len - i;
2568 if (c > 16) c = 16;
2569
2570 for (j = 0; j < c; j++) {
2571 printf("%02x ", data[i + j] & 0xff);
2572 if ((j & 0xf) == 7 && j > 0)
2573 printf(" ");
2574 }
2575
2576 for (; j < 16; j++)
2577 printf(" ");
2578 printf(" ");
2579
2580 for (j = 0; j < c; j++) {
2581 int ch = data[i + j] & 0xff;
2582 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2583 }
2584
2585 printf("\n");
2586
2587 if (c < 16)
2588 break;
2589 }
2590 }
2591
2592 void
2593 msk_dump_mbuf(struct mbuf *m)
2594 {
2595 int count = m->m_pkthdr.len;
2596
2597 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2598
2599 while (count > 0 && m) {
2600 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2601 m, m->m_data, m->m_len);
2602 msk_dump_bytes(mtod(m, char *), m->m_len);
2603
2604 count -= m->m_len;
2605 m = m->m_next;
2606 }
2607 }
2608 #endif
2609
2610 static int
2611 msk_sysctl_handler(SYSCTLFN_ARGS)
2612 {
2613 int error, t;
2614 struct sysctlnode node;
2615 struct sk_softc *sc;
2616
2617 node = *rnode;
2618 sc = node.sysctl_data;
2619 t = sc->sk_int_mod;
2620 node.sysctl_data = &t;
2621 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2622 if (error || newp == NULL)
2623 return error;
2624
2625 if (t < SK_IM_MIN || t > SK_IM_MAX)
2626 return EINVAL;
2627
2628 /* update the softc with sysctl-changed value, and mark
2629 for hardware update */
2630 sc->sk_int_mod = t;
2631 sc->sk_int_mod_pending = 1;
2632 return 0;
2633 }
2634
2635 /*
2636 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2637 * set up in mskc_attach()
2638 */
2639 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2640 {
2641 int rc;
2642 const struct sysctlnode *node;
2643
2644 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2645 0, CTLTYPE_NODE, "msk",
2646 SYSCTL_DESCR("msk interface controls"),
2647 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2648 goto err;
2649 }
2650
2651 msk_root_num = node->sysctl_num;
2652 return;
2653
2654 err:
2655 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2656 }
2657