if_msk.c revision 1.75 1 /* $NetBSD: if_msk.c,v 1.75 2018/07/10 20:48:54 jdolecek Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.75 2018/07/10 20:48:54 jdolecek Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int);
128 void msk_miibus_writereg(device_t, int, int, int);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n,x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 /* supported device vendors */
154 static const struct msk_product {
155 pci_vendor_id_t msk_vendor;
156 pci_product_id_t msk_product;
157 } msk_products[] = {
158 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
159 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
197 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
198 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 }
199 };
200
201 static inline u_int32_t
202 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
203 {
204 return CSR_READ_4(sc, reg);
205 }
206
207 static inline u_int16_t
208 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
209 {
210 return CSR_READ_2(sc, reg);
211 }
212
213 static inline u_int8_t
214 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
215 {
216 return CSR_READ_1(sc, reg);
217 }
218
219 static inline void
220 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
221 {
222 CSR_WRITE_4(sc, reg, x);
223 }
224
225 static inline void
226 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
227 {
228 CSR_WRITE_2(sc, reg, x);
229 }
230
231 static inline void
232 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
233 {
234 CSR_WRITE_1(sc, reg, x);
235 }
236
237 int
238 msk_miibus_readreg(device_t dev, int phy, int reg)
239 {
240 struct sk_if_softc *sc_if = device_private(dev);
241 u_int16_t val;
242 int i;
243
244 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
245 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
246
247 for (i = 0; i < SK_TIMEOUT; i++) {
248 DELAY(1);
249 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
250 if (val & YU_SMICR_READ_VALID)
251 break;
252 }
253
254 if (i == SK_TIMEOUT) {
255 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
256 return (0);
257 }
258
259 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
260 SK_TIMEOUT));
261
262 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
263
264 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
265 phy, reg, val));
266
267 return (val);
268 }
269
270 void
271 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
272 {
273 struct sk_if_softc *sc_if = device_private(dev);
274 int i;
275
276 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
277 phy, reg, val));
278
279 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
280 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
281 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
282
283 for (i = 0; i < SK_TIMEOUT; i++) {
284 DELAY(1);
285 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
286 break;
287 }
288
289 if (i == SK_TIMEOUT)
290 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
291 }
292
293 void
294 msk_miibus_statchg(struct ifnet *ifp)
295 {
296 struct sk_if_softc *sc_if = ifp->if_softc;
297 struct mii_data *mii = &sc_if->sk_mii;
298 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
299 int gpcr;
300
301 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
302 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
303
304 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
305 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
306 /* Set speed. */
307 gpcr |= YU_GPCR_SPEED_DIS;
308 switch (IFM_SUBTYPE(mii->mii_media_active)) {
309 case IFM_1000_SX:
310 case IFM_1000_LX:
311 case IFM_1000_CX:
312 case IFM_1000_T:
313 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
314 break;
315 case IFM_100_TX:
316 gpcr |= YU_GPCR_SPEED;
317 break;
318 }
319
320 /* Set duplex. */
321 gpcr |= YU_GPCR_DPLX_DIS;
322 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
323 gpcr |= YU_GPCR_DUPLEX;
324
325 /* Disable flow control. */
326 gpcr |= YU_GPCR_FCTL_DIS;
327 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
328 }
329
330 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
331
332 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
333 SK_YU_READ_2(sc_if, YUKON_GPCR)));
334 }
335
336 void
337 msk_setmulti(struct sk_if_softc *sc_if)
338 {
339 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
340 u_int32_t hashes[2] = { 0, 0 };
341 int h;
342 struct ethercom *ec = &sc_if->sk_ethercom;
343 struct ether_multi *enm;
344 struct ether_multistep step;
345 u_int16_t reg;
346
347 /* First, zot all the existing filters. */
348 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
349 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
350 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
351 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
352
353
354 /* Now program new ones. */
355 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
356 reg |= YU_RCR_UFLEN;
357 allmulti:
358 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
359 if ((ifp->if_flags & IFF_PROMISC) != 0)
360 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
361 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
362 hashes[0] = 0xFFFFFFFF;
363 hashes[1] = 0xFFFFFFFF;
364 }
365 } else {
366 /* First find the tail of the list. */
367 ETHER_FIRST_MULTI(step, ec, enm);
368 while (enm != NULL) {
369 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
370 ETHER_ADDR_LEN)) {
371 ifp->if_flags |= IFF_ALLMULTI;
372 goto allmulti;
373 }
374 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
375 ((1 << SK_HASH_BITS) - 1);
376 if (h < 32)
377 hashes[0] |= (1 << h);
378 else
379 hashes[1] |= (1 << (h - 32));
380
381 ETHER_NEXT_MULTI(step, enm);
382 }
383 reg |= YU_RCR_MUFLEN;
384 }
385
386 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
387 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
388 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
389 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
390 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
391 }
392
393 void
394 msk_setpromisc(struct sk_if_softc *sc_if)
395 {
396 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
397
398 if (ifp->if_flags & IFF_PROMISC)
399 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
400 YU_RCR_UFLEN | YU_RCR_MUFLEN);
401 else
402 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
403 YU_RCR_UFLEN | YU_RCR_MUFLEN);
404 }
405
406 int
407 msk_init_rx_ring(struct sk_if_softc *sc_if)
408 {
409 struct msk_chain_data *cd = &sc_if->sk_cdata;
410 struct msk_ring_data *rd = sc_if->sk_rdata;
411 int i, nexti;
412
413 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
414
415 for (i = 0; i < MSK_RX_RING_CNT; i++) {
416 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
417 if (i == (MSK_RX_RING_CNT - 1))
418 nexti = 0;
419 else
420 nexti = i + 1;
421 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
422 }
423
424 sc_if->sk_cdata.sk_rx_prod = 0;
425 sc_if->sk_cdata.sk_rx_cons = 0;
426 sc_if->sk_cdata.sk_rx_cnt = 0;
427
428 msk_fill_rx_ring(sc_if);
429 return (0);
430 }
431
432 int
433 msk_init_tx_ring(struct sk_if_softc *sc_if)
434 {
435 struct sk_softc *sc = sc_if->sk_softc;
436 struct msk_chain_data *cd = &sc_if->sk_cdata;
437 struct msk_ring_data *rd = sc_if->sk_rdata;
438 bus_dmamap_t dmamap;
439 struct sk_txmap_entry *entry;
440 int i, nexti;
441
442 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
443
444 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
445 for (i = 0; i < MSK_TX_RING_CNT; i++) {
446 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
447 if (i == (MSK_TX_RING_CNT - 1))
448 nexti = 0;
449 else
450 nexti = i + 1;
451 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
452
453 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
454 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
455 return (ENOBUFS);
456
457 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
458 if (!entry) {
459 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
460 return (ENOBUFS);
461 }
462 entry->dmamap = dmamap;
463 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
464 }
465
466 sc_if->sk_cdata.sk_tx_prod = 0;
467 sc_if->sk_cdata.sk_tx_cons = 0;
468 sc_if->sk_cdata.sk_tx_cnt = 0;
469
470 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
471 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
472
473 return (0);
474 }
475
476 int
477 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
478 {
479 struct mbuf *m_new = NULL;
480 struct sk_chain *c;
481 struct msk_rx_desc *r;
482 void *buf = NULL;
483
484 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
485 if (m_new == NULL)
486 return (ENOBUFS);
487
488 /* Allocate the jumbo buffer */
489 buf = msk_jalloc(sc_if);
490 if (buf == NULL) {
491 m_freem(m_new);
492 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
493 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
494 return (ENOBUFS);
495 }
496
497 /* Attach the buffer to the mbuf */
498 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
499 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
500
501 m_adj(m_new, ETHER_ALIGN);
502
503 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
504 r = c->sk_le;
505 c->sk_mbuf = m_new;
506 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
507 (((vaddr_t)m_new->m_data
508 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
509 r->sk_len = htole16(SK_JLEN);
510 r->sk_ctl = 0;
511 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
512
513 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
514 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
515
516 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
517 sc_if->sk_cdata.sk_rx_cnt++;
518
519 return (0);
520 }
521
522 /*
523 * Memory management for jumbo frames.
524 */
525
526 int
527 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
528 {
529 struct sk_softc *sc = sc_if->sk_softc;
530 char *ptr, *kva;
531 int i, state, error;
532 struct sk_jpool_entry *entry;
533
534 state = error = 0;
535
536 /* Grab a big chunk o' storage. */
537 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
538 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
539 BUS_DMA_NOWAIT)) {
540 aprint_error(": can't alloc rx buffers");
541 return (ENOBUFS);
542 }
543
544 state = 1;
545 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
546 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
547 BUS_DMA_NOWAIT)) {
548 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
549 error = ENOBUFS;
550 goto out;
551 }
552
553 state = 2;
554 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
555 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
556 aprint_error(": can't create dma map");
557 error = ENOBUFS;
558 goto out;
559 }
560
561 state = 3;
562 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
563 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
564 aprint_error(": can't load dma map");
565 error = ENOBUFS;
566 goto out;
567 }
568
569 state = 4;
570 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
571 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
572
573 LIST_INIT(&sc_if->sk_jfree_listhead);
574 LIST_INIT(&sc_if->sk_jinuse_listhead);
575 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
576
577 /*
578 * Now divide it up into 9K pieces and save the addresses
579 * in an array.
580 */
581 ptr = sc_if->sk_cdata.sk_jumbo_buf;
582 for (i = 0; i < MSK_JSLOTS; i++) {
583 sc_if->sk_cdata.sk_jslots[i] = ptr;
584 ptr += SK_JLEN;
585 entry = malloc(sizeof(struct sk_jpool_entry),
586 M_DEVBUF, M_NOWAIT);
587 if (entry == NULL) {
588 sc_if->sk_cdata.sk_jumbo_buf = NULL;
589 aprint_error(": no memory for jumbo buffer queue!");
590 error = ENOBUFS;
591 goto out;
592 }
593 entry->slot = i;
594 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
595 entry, jpool_entries);
596 }
597 out:
598 if (error != 0) {
599 switch (state) {
600 case 4:
601 bus_dmamap_unload(sc->sc_dmatag,
602 sc_if->sk_cdata.sk_rx_jumbo_map);
603 case 3:
604 bus_dmamap_destroy(sc->sc_dmatag,
605 sc_if->sk_cdata.sk_rx_jumbo_map);
606 case 2:
607 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
608 case 1:
609 bus_dmamem_free(sc->sc_dmatag,
610 &sc_if->sk_cdata.sk_jumbo_seg,
611 sc_if->sk_cdata.sk_jumbo_nseg);
612 break;
613 default:
614 break;
615 }
616 }
617
618 return error;
619 }
620
621 static void
622 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
623 {
624 struct sk_softc *sc = sc_if->sk_softc;
625
626 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
627 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
628 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
629 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
630 sc_if->sk_cdata.sk_jumbo_nseg);
631 }
632
633 /*
634 * Allocate a jumbo buffer.
635 */
636 void *
637 msk_jalloc(struct sk_if_softc *sc_if)
638 {
639 struct sk_jpool_entry *entry;
640
641 mutex_enter(&sc_if->sk_jpool_mtx);
642 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
643
644 if (entry == NULL) {
645 mutex_exit(&sc_if->sk_jpool_mtx);
646 return NULL;
647 }
648
649 LIST_REMOVE(entry, jpool_entries);
650 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
651 mutex_exit(&sc_if->sk_jpool_mtx);
652 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
653 }
654
655 /*
656 * Release a jumbo buffer.
657 */
658 void
659 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
660 {
661 struct sk_jpool_entry *entry;
662 struct sk_if_softc *sc;
663 int i;
664
665 /* Extract the softc struct pointer. */
666 sc = (struct sk_if_softc *)arg;
667
668 if (sc == NULL)
669 panic("msk_jfree: can't find softc pointer!");
670
671 /* calculate the slot this buffer belongs to */
672 i = ((vaddr_t)buf
673 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
674
675 if ((i < 0) || (i >= MSK_JSLOTS))
676 panic("msk_jfree: asked to free buffer that we don't manage!");
677
678 mutex_enter(&sc->sk_jpool_mtx);
679 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
680 if (entry == NULL)
681 panic("msk_jfree: buffer not in use!");
682 entry->slot = i;
683 LIST_REMOVE(entry, jpool_entries);
684 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
685 mutex_exit(&sc->sk_jpool_mtx);
686
687 if (__predict_true(m != NULL))
688 pool_cache_put(mb_cache, m);
689
690 /* Now that we know we have a free RX buffer, refill if running out */
691 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
692 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
693 callout_schedule(&sc->sk_tick_rx, 0);
694 }
695
696 int
697 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
698 {
699 struct sk_if_softc *sc = ifp->if_softc;
700 int s, error;
701
702 s = splnet();
703
704 DPRINTFN(2, ("msk_ioctl ETHER\n"));
705 switch (cmd) {
706 case SIOCSIFFLAGS:
707 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
708 break;
709
710 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
711 case IFF_RUNNING:
712 msk_stop(ifp, 1);
713 break;
714 case IFF_UP:
715 msk_init(ifp);
716 break;
717 case IFF_UP | IFF_RUNNING:
718 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
719 msk_setpromisc(sc);
720 msk_setmulti(sc);
721 } else
722 msk_init(ifp);
723 break;
724 }
725 sc->sk_if_flags = ifp->if_flags;
726 break;
727 default:
728 error = ether_ioctl(ifp, cmd, data);
729 if (error == ENETRESET) {
730 error = 0;
731 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
732 ;
733 else if (ifp->if_flags & IFF_RUNNING) {
734 /*
735 * Multicast list has changed; set the hardware
736 * filter accordingly.
737 */
738 msk_setmulti(sc);
739 }
740 }
741 break;
742 }
743
744 splx(s);
745 return error;
746 }
747
748 void
749 msk_update_int_mod(struct sk_softc *sc, int verbose)
750 {
751 u_int32_t imtimer_ticks;
752
753 /*
754 * Configure interrupt moderation. The moderation timer
755 * defers interrupts specified in the interrupt moderation
756 * timer mask based on the timeout specified in the interrupt
757 * moderation timer init register. Each bit in the timer
758 * register represents one tick, so to specify a timeout in
759 * microseconds, we have to multiply by the correct number of
760 * ticks-per-microsecond.
761 */
762 switch (sc->sk_type) {
763 case SK_YUKON_EC:
764 case SK_YUKON_EC_U:
765 case SK_YUKON_EX:
766 case SK_YUKON_SUPR:
767 case SK_YUKON_ULTRA2:
768 case SK_YUKON_OPTIMA:
769 case SK_YUKON_PRM:
770 case SK_YUKON_OPTIMA2:
771 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
772 break;
773 case SK_YUKON_FE:
774 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
775 break;
776 case SK_YUKON_FE_P:
777 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
778 break;
779 case SK_YUKON_XL:
780 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
781 break;
782 default:
783 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
784 }
785 if (verbose)
786 aprint_verbose_dev(sc->sk_dev,
787 "interrupt moderation is %d us\n", sc->sk_int_mod);
788 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
789 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
790 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
791 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
792 sc->sk_int_mod_pending = 0;
793 }
794
795 static int
796 msk_lookup(const struct pci_attach_args *pa)
797 {
798 const struct msk_product *pmsk;
799
800 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
801 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
802 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
803 return 1;
804 }
805 return 0;
806 }
807
808 /*
809 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
810 * IDs against our list and return a device name if we find a match.
811 */
812 int
813 mskc_probe(device_t parent, cfdata_t match, void *aux)
814 {
815 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
816
817 return msk_lookup(pa);
818 }
819
820 /*
821 * Force the GEnesis into reset, then bring it out of reset.
822 */
823 void
824 mskc_reset(struct sk_softc *sc)
825 {
826 u_int32_t imtimer_ticks, reg1;
827 int reg;
828
829 DPRINTFN(2, ("mskc_reset\n"));
830
831 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
832 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
833
834 DELAY(1000);
835 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
836 DELAY(2);
837 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
838 sk_win_write_1(sc, SK_TESTCTL1, 2);
839
840 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
841 sc->sk_type >= SK_YUKON_FE_P) {
842 uint32_t our;
843
844 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
845
846 /* enable all clocks. */
847 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
848 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
849 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
850 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
851 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
852 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
853 /* Set all bits to 0 except bits 15..12 */
854 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
855 /* Set to default value */
856 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
857
858 /*
859 * Disable status race, workaround for Yukon EC Ultra &
860 * Yukon EX.
861 */
862 reg1 = sk_win_read_4(sc, SK_GPIO);
863 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
864 sk_win_write_4(sc, SK_GPIO, reg1);
865 sk_win_read_4(sc, SK_GPIO);
866 }
867
868 /* release PHY from PowerDown/Coma mode. */
869 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
870 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
871 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
872 else
873 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
874 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
875
876 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
877 sk_win_write_1(sc, SK_Y2_CLKGATE,
878 SK_Y2_CLKGATE_LINK1_GATE_DIS |
879 SK_Y2_CLKGATE_LINK2_GATE_DIS |
880 SK_Y2_CLKGATE_LINK1_CORE_DIS |
881 SK_Y2_CLKGATE_LINK2_CORE_DIS |
882 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
883 else
884 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
885
886 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
887 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
888 DELAY(1000);
889 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
890 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
891
892 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
893 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
894 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
895 }
896
897 sk_win_write_1(sc, SK_TESTCTL1, 1);
898
899 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
900 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
901 CSR_READ_2(sc, SK_LINK_CTRL)));
902
903 /* Disable ASF */
904 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
905 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
906
907 /* Clear I2C IRQ noise */
908 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
909
910 /* Disable hardware timer */
911 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
912 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
913
914 /* Disable descriptor polling */
915 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
916
917 /* Disable time stamps */
918 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
919 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
920
921 /* Enable RAM interface */
922 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
923 for (reg = SK_TO0;reg <= SK_TO11; reg++)
924 sk_win_write_1(sc, reg, 36);
925 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
926 for (reg = SK_TO0;reg <= SK_TO11; reg++)
927 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
928
929 /*
930 * Configure interrupt moderation. The moderation timer
931 * defers interrupts specified in the interrupt moderation
932 * timer mask based on the timeout specified in the interrupt
933 * moderation timer init register. Each bit in the timer
934 * register represents one tick, so to specify a timeout in
935 * microseconds, we have to multiply by the correct number of
936 * ticks-per-microsecond.
937 */
938 switch (sc->sk_type) {
939 case SK_YUKON_EC:
940 case SK_YUKON_EC_U:
941 case SK_YUKON_EX:
942 case SK_YUKON_SUPR:
943 case SK_YUKON_ULTRA2:
944 case SK_YUKON_OPTIMA:
945 case SK_YUKON_PRM:
946 case SK_YUKON_OPTIMA2:
947 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
948 break;
949 case SK_YUKON_FE:
950 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
951 break;
952 case SK_YUKON_FE_P:
953 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
954 break;
955 case SK_YUKON_XL:
956 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
957 break;
958 default:
959 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
960 break;
961 }
962
963 /* Reset status ring. */
964 memset(sc->sk_status_ring, 0,
965 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
966 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
967 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
968 sc->sk_status_idx = 0;
969
970 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
971 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
972
973 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
974 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
975 sc->sk_status_map->dm_segs[0].ds_addr);
976 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
977 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
978 if (sc->sk_type == SK_YUKON_EC &&
979 sc->sk_rev == SK_YUKON_EC_REV_A1) {
980 /* WA for dev. #4.3 */
981 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
982 /* WA for dev. #4.18 */
983 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
984 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
985 } else {
986 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
987 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
988 if (sc->sk_type == SK_YUKON_XL)
989 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
990 else
991 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
992 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
993 }
994
995 #if 0
996 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
997 #endif
998 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
999
1000 /* Enable status unit. */
1001 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1002
1003 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1004 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1005 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1006
1007 msk_update_int_mod(sc, 0);
1008 }
1009
1010 int
1011 msk_probe(device_t parent, cfdata_t match, void *aux)
1012 {
1013 struct skc_attach_args *sa = aux;
1014
1015 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1016 return (0);
1017
1018 switch (sa->skc_type) {
1019 case SK_YUKON_XL:
1020 case SK_YUKON_EC_U:
1021 case SK_YUKON_EX:
1022 case SK_YUKON_EC:
1023 case SK_YUKON_FE:
1024 case SK_YUKON_FE_P:
1025 case SK_YUKON_SUPR:
1026 case SK_YUKON_ULTRA2:
1027 case SK_YUKON_OPTIMA:
1028 case SK_YUKON_PRM:
1029 case SK_YUKON_OPTIMA2:
1030 return (1);
1031 }
1032
1033 return (0);
1034 }
1035
1036 void
1037 msk_reset(struct sk_if_softc *sc_if)
1038 {
1039 /* GMAC and GPHY Reset */
1040 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1041 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1042 DELAY(1000);
1043 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1044 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1045 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1046 }
1047
1048 static bool
1049 msk_resume(device_t dv, const pmf_qual_t *qual)
1050 {
1051 struct sk_if_softc *sc_if = device_private(dv);
1052
1053 msk_init_yukon(sc_if);
1054 return true;
1055 }
1056
1057 /*
1058 * Each XMAC chip is attached as a separate logical IP interface.
1059 * Single port cards will have only one logical interface of course.
1060 */
1061 void
1062 msk_attach(device_t parent, device_t self, void *aux)
1063 {
1064 struct sk_if_softc *sc_if = device_private(self);
1065 struct sk_softc *sc = device_private(parent);
1066 struct skc_attach_args *sa = aux;
1067 struct ifnet *ifp;
1068 void *kva;
1069 int i;
1070 u_int32_t chunk;
1071 int mii_flags;
1072
1073 sc_if->sk_dev = self;
1074 sc_if->sk_port = sa->skc_port;
1075 sc_if->sk_softc = sc;
1076 sc->sk_if[sa->skc_port] = sc_if;
1077
1078 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1079
1080 /*
1081 * Get station address for this interface. Note that
1082 * dual port cards actually come with three station
1083 * addresses: one for each port, plus an extra. The
1084 * extra one is used by the SysKonnect driver software
1085 * as a 'virtual' station address for when both ports
1086 * are operating in failover mode. Currently we don't
1087 * use this extra address.
1088 */
1089 for (i = 0; i < ETHER_ADDR_LEN; i++)
1090 sc_if->sk_enaddr[i] =
1091 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1092
1093 aprint_normal(": Ethernet address %s\n",
1094 ether_sprintf(sc_if->sk_enaddr));
1095
1096 /*
1097 * Set up RAM buffer addresses. The Yukon2 has a small amount
1098 * of SRAM on it, somewhere between 4K and 48K. We need to
1099 * divide this up between the transmitter and receiver. We
1100 * give the receiver 2/3 of the memory (rounded down), and the
1101 * transmitter whatever remains.
1102 */
1103 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1104 sc_if->sk_rx_ramstart = 0;
1105 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1106 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1107 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1108 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1109
1110 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1111 " tx_ramstart=%#x tx_ramend=%#x\n",
1112 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1113 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1114
1115 /* Allocate the descriptor queues. */
1116 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1117 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1118 BUS_DMA_NOWAIT)) {
1119 aprint_error(": can't alloc rx buffers\n");
1120 goto fail;
1121 }
1122 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1123 sc_if->sk_ring_nseg,
1124 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1125 aprint_error(": can't map dma buffers (%zu bytes)\n",
1126 sizeof(struct msk_ring_data));
1127 goto fail_1;
1128 }
1129 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1130 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1131 &sc_if->sk_ring_map)) {
1132 aprint_error(": can't create dma map\n");
1133 goto fail_2;
1134 }
1135 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1136 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1137 aprint_error(": can't load dma map\n");
1138 goto fail_3;
1139 }
1140 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1141 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1142
1143 if (sc->sk_type != SK_YUKON_FE &&
1144 sc->sk_type != SK_YUKON_FE_P)
1145 sc_if->sk_pktlen = SK_JLEN;
1146 else
1147 sc_if->sk_pktlen = MCLBYTES;
1148
1149 /* Try to allocate memory for jumbo buffers. */
1150 if (msk_alloc_jumbo_mem(sc_if)) {
1151 aprint_error(": jumbo buffer allocation failed\n");
1152 goto fail_3;
1153 }
1154
1155 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1156 if (sc->sk_type != SK_YUKON_FE &&
1157 sc->sk_type != SK_YUKON_FE_P)
1158 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1159
1160 ifp = &sc_if->sk_ethercom.ec_if;
1161 ifp->if_softc = sc_if;
1162 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1163 ifp->if_ioctl = msk_ioctl;
1164 ifp->if_start = msk_start;
1165 ifp->if_stop = msk_stop;
1166 ifp->if_init = msk_init;
1167 ifp->if_watchdog = msk_watchdog;
1168 ifp->if_baudrate = 1000000000;
1169 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1170 IFQ_SET_READY(&ifp->if_snd);
1171 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1172
1173 msk_reset(sc_if);
1174
1175 /*
1176 * Do miibus setup.
1177 */
1178 msk_init_yukon(sc_if);
1179
1180 DPRINTFN(2, ("msk_attach: 1\n"));
1181
1182 sc_if->sk_mii.mii_ifp = ifp;
1183 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1184 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1185 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1186
1187 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1188 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1189 ether_mediachange, ether_mediastatus);
1190 mii_flags = MIIF_DOPAUSE;
1191 if (sc->sk_fibertype)
1192 mii_flags |= MIIF_HAVEFIBER;
1193 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1194 MII_OFFSET_ANY, mii_flags);
1195 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1196 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1197 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1198 0, NULL);
1199 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1200 } else
1201 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1202
1203 callout_init(&sc_if->sk_tick_ch, 0);
1204 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1205 callout_schedule(&sc_if->sk_tick_ch, hz);
1206
1207 callout_init(&sc_if->sk_tick_rx, 0);
1208 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1209
1210 /*
1211 * Call MI attach routines.
1212 */
1213 if_attach(ifp);
1214 if_deferred_start_init(ifp, NULL);
1215 ether_ifattach(ifp, sc_if->sk_enaddr);
1216
1217 if (pmf_device_register(self, NULL, msk_resume))
1218 pmf_class_network_register(self, ifp);
1219 else
1220 aprint_error_dev(self, "couldn't establish power handler\n");
1221
1222 if (sc->rnd_attached++ == 0) {
1223 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1224 RND_TYPE_NET, RND_FLAG_DEFAULT);
1225 }
1226
1227 DPRINTFN(2, ("msk_attach: end\n"));
1228 return;
1229
1230 fail_3:
1231 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1232 fail_2:
1233 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1234 fail_1:
1235 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1236 fail:
1237 sc->sk_if[sa->skc_port] = NULL;
1238 }
1239
1240 int
1241 msk_detach(device_t self, int flags)
1242 {
1243 struct sk_if_softc *sc_if = device_private(self);
1244 struct sk_softc *sc = sc_if->sk_softc;
1245 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1246
1247 if (sc->sk_if[sc_if->sk_port] == NULL)
1248 return (0);
1249
1250 msk_stop(ifp, 0);
1251
1252 if (--sc->rnd_attached == 0)
1253 rnd_detach_source(&sc->rnd_source);
1254
1255 callout_halt(&sc_if->sk_tick_ch, NULL);
1256 callout_destroy(&sc_if->sk_tick_ch);
1257
1258 callout_halt(&sc_if->sk_tick_rx, NULL);
1259 callout_destroy(&sc_if->sk_tick_rx);
1260
1261 /* Detach any PHYs we might have. */
1262 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1263 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1264
1265 /* Delete any remaining media. */
1266 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1267
1268 pmf_device_deregister(self);
1269
1270 ether_ifdetach(ifp);
1271 if_detach(ifp);
1272
1273 msk_free_jumbo_mem(sc_if);
1274
1275 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1276 sizeof(struct msk_ring_data));
1277 bus_dmamem_free(sc->sc_dmatag,
1278 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1279 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1280 sc->sk_if[sc_if->sk_port] = NULL;
1281
1282 return (0);
1283 }
1284
1285 int
1286 mskcprint(void *aux, const char *pnp)
1287 {
1288 struct skc_attach_args *sa = aux;
1289
1290 if (pnp)
1291 aprint_normal("msk port %c at %s",
1292 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1293 else
1294 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1295 return (UNCONF);
1296 }
1297
1298 /*
1299 * Attach the interface. Allocate softc structures, do ifmedia
1300 * setup and ethernet/BPF attach.
1301 */
1302 void
1303 mskc_attach(device_t parent, device_t self, void *aux)
1304 {
1305 struct sk_softc *sc = device_private(self);
1306 struct pci_attach_args *pa = aux;
1307 struct skc_attach_args skca;
1308 pci_chipset_tag_t pc = pa->pa_pc;
1309 pcireg_t command, memtype;
1310 pci_intr_handle_t ih;
1311 const char *intrstr = NULL;
1312 bus_size_t size;
1313 int rc, sk_nodenum;
1314 u_int8_t hw, pmd;
1315 const char *revstr = NULL;
1316 const struct sysctlnode *node;
1317 void *kva;
1318 char intrbuf[PCI_INTRSTR_LEN];
1319
1320 DPRINTFN(2, ("begin mskc_attach\n"));
1321
1322 sc->sk_dev = self;
1323 /*
1324 * Handle power management nonsense.
1325 */
1326 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1327
1328 if (command == 0x01) {
1329 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1330 if (command & SK_PSTATE_MASK) {
1331 u_int32_t iobase, membase, irq;
1332
1333 /* Save important PCI config data. */
1334 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1335 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1336 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1337
1338 /* Reset the power state. */
1339 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1340 "mode -- setting to D0\n",
1341 command & SK_PSTATE_MASK);
1342 command &= 0xFFFFFFFC;
1343 pci_conf_write(pc, pa->pa_tag,
1344 SK_PCI_PWRMGMTCTRL, command);
1345
1346 /* Restore PCI config data. */
1347 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1348 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1349 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1350 }
1351 }
1352
1353 /*
1354 * Map control/status registers.
1355 */
1356 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1357 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1358 &sc->sk_bhandle, NULL, &size)) {
1359 aprint_error(": can't map mem space\n");
1360 return;
1361 }
1362
1363 sc->sc_dmatag = pa->pa_dmat;
1364
1365 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1366 command |= PCI_COMMAND_MASTER_ENABLE;
1367 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1368
1369 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1370 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1371
1372 /* bail out here if chip is not recognized */
1373 if (!(SK_IS_YUKON2(sc))) {
1374 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1375 goto fail_1;
1376 }
1377 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1378
1379 /* Allocate interrupt */
1380 if (pci_intr_map(pa, &ih)) {
1381 aprint_error(": couldn't map interrupt\n");
1382 goto fail_1;
1383 }
1384
1385 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1386 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, msk_intr,
1387 sc, device_xname(sc->sk_dev));
1388 if (sc->sk_intrhand == NULL) {
1389 aprint_error(": couldn't establish interrupt");
1390 if (intrstr != NULL)
1391 aprint_error(" at %s", intrstr);
1392 aprint_error("\n");
1393 goto fail_1;
1394 }
1395 sc->sk_pc = pc;
1396
1397 if (bus_dmamem_alloc(sc->sc_dmatag,
1398 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1399 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1400 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1401 aprint_error(": can't alloc status buffers\n");
1402 goto fail_2;
1403 }
1404
1405 if (bus_dmamem_map(sc->sc_dmatag,
1406 &sc->sk_status_seg, sc->sk_status_nseg,
1407 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1408 &kva, BUS_DMA_NOWAIT)) {
1409 aprint_error(": can't map dma buffers (%zu bytes)\n",
1410 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1411 goto fail_3;
1412 }
1413 if (bus_dmamap_create(sc->sc_dmatag,
1414 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1415 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1416 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1417 aprint_error(": can't create dma map\n");
1418 goto fail_4;
1419 }
1420 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1421 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1422 NULL, BUS_DMA_NOWAIT)) {
1423 aprint_error(": can't load dma map\n");
1424 goto fail_5;
1425 }
1426 sc->sk_status_ring = (struct msk_status_desc *)kva;
1427
1428 sc->sk_int_mod = SK_IM_DEFAULT;
1429 sc->sk_int_mod_pending = 0;
1430
1431 /* Reset the adapter. */
1432 mskc_reset(sc);
1433
1434 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1435 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1436
1437 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1438 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1439 sc->sk_fibertype = 1;
1440
1441 switch (sc->sk_type) {
1442 case SK_YUKON_XL:
1443 sc->sk_name = "Yukon-2 XL";
1444 break;
1445 case SK_YUKON_EC_U:
1446 sc->sk_name = "Yukon-2 EC Ultra";
1447 break;
1448 case SK_YUKON_EX:
1449 sc->sk_name = "Yukon-2 Extreme";
1450 break;
1451 case SK_YUKON_EC:
1452 sc->sk_name = "Yukon-2 EC";
1453 break;
1454 case SK_YUKON_FE:
1455 sc->sk_name = "Yukon-2 FE";
1456 break;
1457 case SK_YUKON_FE_P:
1458 sc->sk_name = "Yukon-2 FE+";
1459 break;
1460 case SK_YUKON_SUPR:
1461 sc->sk_name = "Yukon-2 Supreme";
1462 break;
1463 case SK_YUKON_ULTRA2:
1464 sc->sk_name = "Yukon-2 Ultra 2";
1465 break;
1466 case SK_YUKON_OPTIMA:
1467 sc->sk_name = "Yukon-2 Optima";
1468 break;
1469 case SK_YUKON_PRM:
1470 sc->sk_name = "Yukon-2 Optima Prime";
1471 break;
1472 case SK_YUKON_OPTIMA2:
1473 sc->sk_name = "Yukon-2 Optima 2";
1474 break;
1475 default:
1476 sc->sk_name = "Yukon (Unknown)";
1477 }
1478
1479 if (sc->sk_type == SK_YUKON_XL) {
1480 switch (sc->sk_rev) {
1481 case SK_YUKON_XL_REV_A0:
1482 revstr = "A0";
1483 break;
1484 case SK_YUKON_XL_REV_A1:
1485 revstr = "A1";
1486 break;
1487 case SK_YUKON_XL_REV_A2:
1488 revstr = "A2";
1489 break;
1490 case SK_YUKON_XL_REV_A3:
1491 revstr = "A3";
1492 break;
1493 default:
1494 break;
1495 }
1496 }
1497
1498 if (sc->sk_type == SK_YUKON_EC) {
1499 switch (sc->sk_rev) {
1500 case SK_YUKON_EC_REV_A1:
1501 revstr = "A1";
1502 break;
1503 case SK_YUKON_EC_REV_A2:
1504 revstr = "A2";
1505 break;
1506 case SK_YUKON_EC_REV_A3:
1507 revstr = "A3";
1508 break;
1509 default:
1510 break;
1511 }
1512 }
1513
1514 if (sc->sk_type == SK_YUKON_FE) {
1515 switch (sc->sk_rev) {
1516 case SK_YUKON_FE_REV_A1:
1517 revstr = "A1";
1518 break;
1519 case SK_YUKON_FE_REV_A2:
1520 revstr = "A2";
1521 break;
1522 default:
1523 break;
1524 }
1525 }
1526
1527 if (sc->sk_type == SK_YUKON_EC_U) {
1528 switch (sc->sk_rev) {
1529 case SK_YUKON_EC_U_REV_A0:
1530 revstr = "A0";
1531 break;
1532 case SK_YUKON_EC_U_REV_A1:
1533 revstr = "A1";
1534 break;
1535 case SK_YUKON_EC_U_REV_B0:
1536 revstr = "B0";
1537 break;
1538 case SK_YUKON_EC_U_REV_B1:
1539 revstr = "B1";
1540 break;
1541 default:
1542 break;
1543 }
1544 }
1545
1546 if (sc->sk_type == SK_YUKON_FE) {
1547 switch (sc->sk_rev) {
1548 case SK_YUKON_FE_REV_A1:
1549 revstr = "A1";
1550 break;
1551 case SK_YUKON_FE_REV_A2:
1552 revstr = "A2";
1553 break;
1554 default:
1555 ;
1556 }
1557 }
1558
1559 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1560 revstr = "A0";
1561
1562 if (sc->sk_type == SK_YUKON_EX) {
1563 switch (sc->sk_rev) {
1564 case SK_YUKON_EX_REV_A0:
1565 revstr = "A0";
1566 break;
1567 case SK_YUKON_EX_REV_B0:
1568 revstr = "B0";
1569 break;
1570 default:
1571 ;
1572 }
1573 }
1574
1575 if (sc->sk_type == SK_YUKON_SUPR) {
1576 switch (sc->sk_rev) {
1577 case SK_YUKON_SUPR_REV_A0:
1578 revstr = "A0";
1579 break;
1580 case SK_YUKON_SUPR_REV_B0:
1581 revstr = "B0";
1582 break;
1583 case SK_YUKON_SUPR_REV_B1:
1584 revstr = "B1";
1585 break;
1586 default:
1587 ;
1588 }
1589 }
1590
1591 if (sc->sk_type == SK_YUKON_PRM) {
1592 switch (sc->sk_rev) {
1593 case SK_YUKON_PRM_REV_Z1:
1594 revstr = "Z1";
1595 break;
1596 case SK_YUKON_PRM_REV_A0:
1597 revstr = "A0";
1598 break;
1599 default:
1600 ;
1601 }
1602 }
1603
1604 /* Announce the product name. */
1605 aprint_normal(", %s", sc->sk_name);
1606 if (revstr != NULL)
1607 aprint_normal(" rev. %s", revstr);
1608 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1609
1610 sc->sk_macs = 1;
1611
1612 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1613 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1614 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1615 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1616 sc->sk_macs++;
1617 }
1618
1619 skca.skc_port = SK_PORT_A;
1620 skca.skc_type = sc->sk_type;
1621 skca.skc_rev = sc->sk_rev;
1622 (void)config_found(sc->sk_dev, &skca, mskcprint);
1623
1624 if (sc->sk_macs > 1) {
1625 skca.skc_port = SK_PORT_B;
1626 skca.skc_type = sc->sk_type;
1627 skca.skc_rev = sc->sk_rev;
1628 (void)config_found(sc->sk_dev, &skca, mskcprint);
1629 }
1630
1631 /* Turn on the 'driver is loaded' LED. */
1632 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1633
1634 /* skc sysctl setup */
1635
1636 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1637 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1638 SYSCTL_DESCR("mskc per-controller controls"),
1639 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1640 CTL_EOL)) != 0) {
1641 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1642 goto fail_6;
1643 }
1644
1645 sk_nodenum = node->sysctl_num;
1646
1647 /* interrupt moderation time in usecs */
1648 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1649 CTLFLAG_READWRITE,
1650 CTLTYPE_INT, "int_mod",
1651 SYSCTL_DESCR("msk interrupt moderation timer"),
1652 msk_sysctl_handler, 0, (void *)sc,
1653 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1654 CTL_EOL)) != 0) {
1655 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1656 goto fail_6;
1657 }
1658
1659 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1660 aprint_error_dev(self, "couldn't establish power handler\n");
1661
1662 return;
1663
1664 fail_6:
1665 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1666 fail_4:
1667 bus_dmamem_unmap(sc->sc_dmatag, kva,
1668 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1669 fail_3:
1670 bus_dmamem_free(sc->sc_dmatag,
1671 &sc->sk_status_seg, sc->sk_status_nseg);
1672 sc->sk_status_nseg = 0;
1673 fail_5:
1674 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1675 fail_2:
1676 pci_intr_disestablish(pc, sc->sk_intrhand);
1677 sc->sk_intrhand = NULL;
1678 fail_1:
1679 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, size);
1680 sc->sk_bsize = 0;
1681 }
1682
1683 int
1684 mskc_detach(device_t self, int flags)
1685 {
1686 struct sk_softc *sc = device_private(self);
1687 int rv;
1688
1689 if (sc->sk_intrhand)
1690 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1691
1692 rv = config_detach_children(self, flags);
1693 if (rv != 0)
1694 return (rv);
1695
1696 if (sc->sk_status_nseg > 0) {
1697 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1698 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1699 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1700 bus_dmamem_free(sc->sc_dmatag,
1701 &sc->sk_status_seg, sc->sk_status_nseg);
1702 }
1703
1704 if (sc->sk_bsize > 0)
1705 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1706
1707 return(0);
1708 }
1709
1710 int
1711 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1712 {
1713 struct sk_softc *sc = sc_if->sk_softc;
1714 struct msk_tx_desc *f = NULL;
1715 u_int32_t frag, cur;
1716 int i;
1717 struct sk_txmap_entry *entry;
1718 bus_dmamap_t txmap;
1719
1720 DPRINTFN(2, ("msk_encap\n"));
1721
1722 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1723 if (entry == NULL) {
1724 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1725 return (ENOBUFS);
1726 }
1727 txmap = entry->dmamap;
1728
1729 cur = frag = *txidx;
1730
1731 #ifdef MSK_DEBUG
1732 if (mskdebug >= 2)
1733 msk_dump_mbuf(m_head);
1734 #endif
1735
1736 /*
1737 * Start packing the mbufs in this chain into
1738 * the fragment pointers. Stop when we run out
1739 * of fragments or hit the end of the mbuf chain.
1740 */
1741 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1742 BUS_DMA_NOWAIT)) {
1743 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1744 return (ENOBUFS);
1745 }
1746
1747 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1748 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1749 bus_dmamap_unload(sc->sc_dmatag, txmap);
1750 return (ENOBUFS);
1751 }
1752
1753 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1754
1755 /* Sync the DMA map. */
1756 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1757 BUS_DMASYNC_PREWRITE);
1758
1759 for (i = 0; i < txmap->dm_nsegs; i++) {
1760 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1761 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1762 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1763 f->sk_ctl = 0;
1764 if (i == 0)
1765 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1766 else
1767 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1768 cur = frag;
1769 SK_INC(frag, MSK_TX_RING_CNT);
1770 }
1771
1772 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1773 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1774
1775 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1776 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1777
1778 /* Sync descriptors before handing to chip */
1779 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1780 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1781
1782 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1783
1784 /* Sync first descriptor to hand it off */
1785 MSK_CDTXSYNC(sc_if, *txidx, 1,
1786 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1787
1788 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1789
1790 #ifdef MSK_DEBUG
1791 if (mskdebug >= 2) {
1792 struct msk_tx_desc *le;
1793 u_int32_t idx;
1794 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1795 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1796 msk_dump_txdesc(le, idx);
1797 }
1798 }
1799 #endif
1800
1801 *txidx = frag;
1802
1803 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1804
1805 return (0);
1806 }
1807
1808 void
1809 msk_start(struct ifnet *ifp)
1810 {
1811 struct sk_if_softc *sc_if = ifp->if_softc;
1812 struct mbuf *m_head = NULL;
1813 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1814 int pkts = 0;
1815
1816 DPRINTFN(2, ("msk_start\n"));
1817
1818 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1819 IFQ_POLL(&ifp->if_snd, m_head);
1820 if (m_head == NULL)
1821 break;
1822
1823 /*
1824 * Pack the data into the transmit ring. If we
1825 * don't have room, set the OACTIVE flag and wait
1826 * for the NIC to drain the ring.
1827 */
1828 if (msk_encap(sc_if, m_head, &idx)) {
1829 ifp->if_flags |= IFF_OACTIVE;
1830 break;
1831 }
1832
1833 /* now we are committed to transmit the packet */
1834 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1835 pkts++;
1836
1837 /*
1838 * If there's a BPF listener, bounce a copy of this frame
1839 * to him.
1840 */
1841 bpf_mtap(ifp, m_head, BPF_D_OUT);
1842 }
1843 if (pkts == 0)
1844 return;
1845
1846 /* Transmit */
1847 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1848 sc_if->sk_cdata.sk_tx_prod = idx;
1849 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1850
1851 /* Set a timeout in case the chip goes out to lunch. */
1852 ifp->if_timer = 5;
1853 }
1854 }
1855
1856 void
1857 msk_watchdog(struct ifnet *ifp)
1858 {
1859 struct sk_if_softc *sc_if = ifp->if_softc;
1860
1861 /*
1862 * Reclaim first as there is a possibility of losing Tx completion
1863 * interrupts.
1864 */
1865 msk_txeof(sc_if);
1866 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1867 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1868
1869 ifp->if_oerrors++;
1870
1871 /* XXX Resets both ports; we shouldn't do that. */
1872 mskc_reset(sc_if->sk_softc);
1873 msk_reset(sc_if);
1874 msk_init(ifp);
1875 }
1876 }
1877
1878 static bool
1879 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1880 {
1881 struct sk_softc *sc = device_private(dv);
1882
1883 DPRINTFN(2, ("mskc_suspend\n"));
1884
1885 /* Turn off the 'driver is loaded' LED. */
1886 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1887
1888 return true;
1889 }
1890
1891 static bool
1892 mskc_resume(device_t dv, const pmf_qual_t *qual)
1893 {
1894 struct sk_softc *sc = device_private(dv);
1895
1896 DPRINTFN(2, ("mskc_resume\n"));
1897
1898 mskc_reset(sc);
1899 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1900
1901 return true;
1902 }
1903
1904 static __inline int
1905 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1906 {
1907 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1908 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1909 YU_RXSTAT_JABBER)) != 0 ||
1910 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1911 YU_RXSTAT_BYTES(stat) != len)
1912 return (0);
1913
1914 return (1);
1915 }
1916
1917 void
1918 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1919 {
1920 struct sk_softc *sc = sc_if->sk_softc;
1921 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1922 struct mbuf *m;
1923 struct sk_chain *cur_rx;
1924 int cur, total_len = len;
1925 bus_dmamap_t dmamap;
1926
1927 DPRINTFN(2, ("msk_rxeof\n"));
1928
1929 cur = sc_if->sk_cdata.sk_rx_cons;
1930
1931 /* Sync the descriptor */
1932 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1933
1934 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1935 if (cur_rx->sk_mbuf == NULL)
1936 return;
1937
1938 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1939 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1940 sc_if->sk_cdata.sk_rx_cnt--;
1941
1942 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1943 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1944
1945 m = cur_rx->sk_mbuf;
1946 cur_rx->sk_mbuf = NULL;
1947
1948 if (total_len < SK_MIN_FRAMELEN ||
1949 total_len > ETHER_MAX_LEN_JUMBO ||
1950 msk_rxvalid(sc, rxstat, total_len) == 0) {
1951 ifp->if_ierrors++;
1952 m_freem(m);
1953 return;
1954 }
1955
1956 m_set_rcvif(m, ifp);
1957 m->m_pkthdr.len = m->m_len = total_len;
1958
1959 /* pass it on. */
1960 if_percpuq_enqueue(ifp->if_percpuq, m);
1961 }
1962
1963 void
1964 msk_txeof(struct sk_if_softc *sc_if)
1965 {
1966 struct sk_softc *sc = sc_if->sk_softc;
1967 struct msk_tx_desc *cur_tx;
1968 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1969 u_int32_t idx, reg, sk_ctl;
1970 struct sk_txmap_entry *entry;
1971
1972 DPRINTFN(2, ("msk_txeof\n"));
1973
1974 if (sc_if->sk_port == SK_PORT_A)
1975 reg = SK_STAT_BMU_TXA1_RIDX;
1976 else
1977 reg = SK_STAT_BMU_TXA2_RIDX;
1978
1979 /*
1980 * Go through our tx ring and free mbufs for those
1981 * frames that have been sent.
1982 */
1983 idx = sc_if->sk_cdata.sk_tx_cons;
1984 while (idx != sk_win_read_2(sc, reg)) {
1985 MSK_CDTXSYNC(sc_if, idx, 1,
1986 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1987
1988 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1989 sk_ctl = cur_tx->sk_ctl;
1990 #ifdef MSK_DEBUG
1991 if (mskdebug >= 2)
1992 msk_dump_txdesc(cur_tx, idx);
1993 #endif
1994 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1995 ifp->if_opackets++;
1996 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1997 entry = sc_if->sk_cdata.sk_tx_map[idx];
1998
1999 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2000 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2001
2002 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2003 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2004
2005 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2006 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2007 link);
2008 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2009 }
2010 sc_if->sk_cdata.sk_tx_cnt--;
2011 SK_INC(idx, MSK_TX_RING_CNT);
2012 }
2013 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2014
2015 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2016 ifp->if_flags &= ~IFF_OACTIVE;
2017
2018 sc_if->sk_cdata.sk_tx_cons = idx;
2019 }
2020
2021 void
2022 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2023 {
2024 /* Make sure to not completely wrap around */
2025 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2026 if (msk_newbuf(sc_if,
2027 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2028 goto schedretry;
2029 }
2030 }
2031
2032 return;
2033
2034 schedretry:
2035 /* Try later */
2036 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2037 }
2038
2039 static void
2040 msk_fill_rx_tick(void *xsc_if)
2041 {
2042 struct sk_if_softc *sc_if = xsc_if;
2043 int s, rx_prod;
2044
2045 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2046
2047 s = splnet();
2048 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2049 msk_fill_rx_ring(sc_if);
2050 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2051 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2052 sc_if->sk_cdata.sk_rx_prod);
2053 }
2054 splx(s);
2055 }
2056
2057 void
2058 msk_tick(void *xsc_if)
2059 {
2060 struct sk_if_softc *sc_if = xsc_if;
2061 struct mii_data *mii = &sc_if->sk_mii;
2062 int s;
2063
2064 s = splnet();
2065 mii_tick(mii);
2066 splx(s);
2067
2068 callout_schedule(&sc_if->sk_tick_ch, hz);
2069 }
2070
2071 void
2072 msk_intr_yukon(struct sk_if_softc *sc_if)
2073 {
2074 u_int8_t status;
2075
2076 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2077 /* RX overrun */
2078 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2079 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2080 SK_RFCTL_RX_FIFO_OVER);
2081 }
2082 /* TX underrun */
2083 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2084 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2085 SK_TFCTL_TX_FIFO_UNDER);
2086 }
2087
2088 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2089 }
2090
2091 int
2092 msk_intr(void *xsc)
2093 {
2094 struct sk_softc *sc = xsc;
2095 struct sk_if_softc *sc_if;
2096 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2097 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2098 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2099 int claimed = 0;
2100 u_int32_t status;
2101 struct msk_status_desc *cur_st;
2102
2103 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2104 if (status == 0xffffffff)
2105 return (0);
2106 if (status == 0) {
2107 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2108 return (0);
2109 }
2110
2111 status = CSR_READ_4(sc, SK_ISR);
2112
2113 if (sc_if0 != NULL)
2114 ifp0 = &sc_if0->sk_ethercom.ec_if;
2115 if (sc_if1 != NULL)
2116 ifp1 = &sc_if1->sk_ethercom.ec_if;
2117
2118 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2119 (ifp0->if_flags & IFF_RUNNING)) {
2120 msk_intr_yukon(sc_if0);
2121 }
2122
2123 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2124 (ifp1->if_flags & IFF_RUNNING)) {
2125 msk_intr_yukon(sc_if1);
2126 }
2127
2128 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2129 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2130 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2131
2132 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2133 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2134 switch (cur_st->sk_opcode) {
2135 case SK_Y2_STOPC_RXSTAT:
2136 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2137 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2138 letoh32(cur_st->sk_status));
2139 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2140 msk_fill_rx_tick(sc_if);
2141 break;
2142 case SK_Y2_STOPC_TXSTAT:
2143 if (sc_if0)
2144 msk_txeof(sc_if0);
2145 if (sc_if1)
2146 msk_txeof(sc_if1);
2147 break;
2148 default:
2149 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2150 break;
2151 }
2152 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2153
2154 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2155 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2156 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2157 }
2158
2159 if (status & SK_Y2_IMR_BMU) {
2160 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2161 claimed = 1;
2162 }
2163
2164 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2165
2166 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2167 if_schedule_deferred_start(ifp0);
2168 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2169 if_schedule_deferred_start(ifp1);
2170
2171 KASSERT(sc->rnd_attached > 0);
2172 rnd_add_uint32(&sc->rnd_source, status);
2173
2174 if (sc->sk_int_mod_pending)
2175 msk_update_int_mod(sc, 1);
2176
2177 return claimed;
2178 }
2179
2180 void
2181 msk_init_yukon(struct sk_if_softc *sc_if)
2182 {
2183 u_int32_t v;
2184 u_int16_t reg;
2185 struct sk_softc *sc;
2186 int i;
2187
2188 sc = sc_if->sk_softc;
2189
2190 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2191 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2192
2193 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2194
2195 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2196 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2197
2198 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2199
2200 /* unused read of the interrupt source register */
2201 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2202 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2203
2204 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2205 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2206 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2207
2208 /* MIB Counter Clear Mode set */
2209 reg |= YU_PAR_MIB_CLR;
2210 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2211 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2212 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2213
2214 /* MIB Counter Clear Mode clear */
2215 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2216 reg &= ~YU_PAR_MIB_CLR;
2217 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2218
2219 /* receive control reg */
2220 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2221 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2222
2223 /* transmit control register */
2224 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2225
2226 /* transmit flow control register */
2227 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2228
2229 /* transmit parameter register */
2230 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2231 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2232 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2233
2234 /* serial mode register */
2235 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2236 reg = YU_SMR_DATA_BLIND(0x1c) |
2237 YU_SMR_MFL_VLAN |
2238 YU_SMR_IPG_DATA(0x1e);
2239
2240 if (sc->sk_type != SK_YUKON_FE &&
2241 sc->sk_type != SK_YUKON_FE_P)
2242 reg |= YU_SMR_MFL_JUMBO;
2243
2244 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2245
2246 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2247 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2248 /* msk_attach calls me before ether_ifattach so check null */
2249 if (ifp != NULL && ifp->if_sadl != NULL)
2250 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2251 sizeof(sc_if->sk_enaddr));
2252 /* Setup Yukon's address */
2253 for (i = 0; i < 3; i++) {
2254 /* Write Source Address 1 (unicast filter) */
2255 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2256 sc_if->sk_enaddr[i * 2] |
2257 sc_if->sk_enaddr[i * 2 + 1] << 8);
2258 }
2259
2260 for (i = 0; i < 3; i++) {
2261 reg = sk_win_read_2(sc_if->sk_softc,
2262 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2263 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2264 }
2265
2266 /* Set promiscuous mode */
2267 msk_setpromisc(sc_if);
2268
2269 /* Set multicast filter */
2270 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2271 msk_setmulti(sc_if);
2272
2273 /* enable interrupt mask for counter overflows */
2274 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2275 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2276 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2277 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2278
2279 /* Configure RX MAC FIFO Flush Mask */
2280 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2281 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2282 YU_RXSTAT_JABBER;
2283 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2284
2285 /* Configure RX MAC FIFO */
2286 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2287 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2288 SK_RFCTL_FIFO_FLUSH_ON);
2289
2290 /* Increase flush threshold to 64 bytes */
2291 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2292 SK_RFCTL_FIFO_THRESHOLD + 1);
2293
2294 /* Configure TX MAC FIFO */
2295 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2296 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2297
2298 #if 1
2299 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2300 #endif
2301 DPRINTFN(6, ("msk_init_yukon: end\n"));
2302 }
2303
2304 /*
2305 * Note that to properly initialize any part of the GEnesis chip,
2306 * you first have to take it out of reset mode.
2307 */
2308 int
2309 msk_init(struct ifnet *ifp)
2310 {
2311 struct sk_if_softc *sc_if = ifp->if_softc;
2312 struct sk_softc *sc = sc_if->sk_softc;
2313 int rc = 0, s;
2314 uint32_t imr, imtimer_ticks;
2315
2316
2317 DPRINTFN(2, ("msk_init\n"));
2318
2319 s = splnet();
2320
2321 /* Cancel pending I/O and free all RX/TX buffers. */
2322 msk_stop(ifp, 1);
2323
2324 /* Configure I2C registers */
2325
2326 /* Configure XMAC(s) */
2327 msk_init_yukon(sc_if);
2328 if ((rc = ether_mediachange(ifp)) != 0)
2329 goto out;
2330
2331 /* Configure transmit arbiter(s) */
2332 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2333 #if 0
2334 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2335 #endif
2336
2337 /* Configure RAMbuffers */
2338 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2339 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2340 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2341 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2342 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2343 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2344
2345 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2346 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2347 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2348 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2349 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2350 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2351 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2352
2353 /* Configure BMUs */
2354 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2355 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2356 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2357 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2358
2359 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2360 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2361 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2362 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2363
2364 /* Make sure the sync transmit queue is disabled. */
2365 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2366
2367 /* Init descriptors */
2368 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2369 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2370 "memory for rx buffers\n");
2371 msk_stop(ifp, 1);
2372 splx(s);
2373 return ENOBUFS;
2374 }
2375
2376 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2377 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2378 "memory for tx buffers\n");
2379 msk_stop(ifp, 1);
2380 splx(s);
2381 return ENOBUFS;
2382 }
2383
2384 /* Set interrupt moderation if changed via sysctl. */
2385 switch (sc->sk_type) {
2386 case SK_YUKON_EC:
2387 case SK_YUKON_EC_U:
2388 case SK_YUKON_EX:
2389 case SK_YUKON_SUPR:
2390 case SK_YUKON_ULTRA2:
2391 case SK_YUKON_OPTIMA:
2392 case SK_YUKON_PRM:
2393 case SK_YUKON_OPTIMA2:
2394 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2395 break;
2396 case SK_YUKON_FE:
2397 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2398 break;
2399 case SK_YUKON_FE_P:
2400 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2401 break;
2402 case SK_YUKON_XL:
2403 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2404 break;
2405 default:
2406 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2407 }
2408 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2409 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2410 sk_win_write_4(sc, SK_IMTIMERINIT,
2411 SK_IM_USECS(sc->sk_int_mod));
2412 aprint_verbose_dev(sc->sk_dev,
2413 "interrupt moderation is %d us\n", sc->sk_int_mod);
2414 }
2415
2416 /* Initialize prefetch engine. */
2417 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2418 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2419 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2420 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2421 MSK_RX_RING_ADDR(sc_if, 0));
2422 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2423 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2424 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2425 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2426
2427 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2428 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2429 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2430 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2431 MSK_TX_RING_ADDR(sc_if, 0));
2432 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2433 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2434 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2435 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2436
2437 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2438 sc_if->sk_cdata.sk_rx_prod);
2439
2440 /* Configure interrupt handling */
2441 if (sc_if->sk_port == SK_PORT_A)
2442 sc->sk_intrmask |= SK_Y2_INTRS1;
2443 else
2444 sc->sk_intrmask |= SK_Y2_INTRS2;
2445 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2446 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2447
2448 ifp->if_flags |= IFF_RUNNING;
2449 ifp->if_flags &= ~IFF_OACTIVE;
2450
2451 callout_schedule(&sc_if->sk_tick_ch, hz);
2452
2453 out:
2454 splx(s);
2455 return rc;
2456 }
2457
2458 /*
2459 * Note: the logic of second parameter is inverted compared to OpenBSD
2460 * code, since this code uses the function as if_stop hook too.
2461 */
2462 void
2463 msk_stop(struct ifnet *ifp, int disable)
2464 {
2465 struct sk_if_softc *sc_if = ifp->if_softc;
2466 struct sk_softc *sc = sc_if->sk_softc;
2467 struct sk_txmap_entry *dma;
2468 int i;
2469
2470 DPRINTFN(2, ("msk_stop\n"));
2471
2472 callout_stop(&sc_if->sk_tick_ch);
2473 callout_stop(&sc_if->sk_tick_rx);
2474
2475 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2476
2477 /* Stop transfer of Tx descriptors */
2478
2479 /* Stop transfer of Rx descriptors */
2480
2481 if (disable) {
2482 /* Turn off various components of this interface. */
2483 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2484 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2485 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2486 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2487 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2488 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2489 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2490 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2491 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2492 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2493 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2494
2495 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2496 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2497
2498 /* Disable interrupts */
2499 if (sc_if->sk_port == SK_PORT_A)
2500 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2501 else
2502 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2503 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2504 }
2505
2506 /* Free RX and TX mbufs still in the queues. */
2507 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2508 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2509 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2510 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2511 }
2512 }
2513
2514 sc_if->sk_cdata.sk_rx_prod = 0;
2515 sc_if->sk_cdata.sk_rx_cons = 0;
2516 sc_if->sk_cdata.sk_rx_cnt = 0;
2517
2518 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2519 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2520 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2521 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2522 #if 1
2523 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2524 sc_if->sk_cdata.sk_tx_map[i], link);
2525 sc_if->sk_cdata.sk_tx_map[i] = 0;
2526 #endif
2527 }
2528 }
2529
2530 #if 1
2531 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2532 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2533 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2534 free(dma, M_DEVBUF);
2535 }
2536 #endif
2537 }
2538
2539 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2540 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2541
2542 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2543 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2544
2545 #ifdef MSK_DEBUG
2546 void
2547 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2548 {
2549 #define DESC_PRINT(X) \
2550 if (X) \
2551 printf("txdesc[%d]." #X "=%#x\n", \
2552 idx, X);
2553
2554 DESC_PRINT(letoh32(le->sk_addr));
2555 DESC_PRINT(letoh16(le->sk_len));
2556 DESC_PRINT(le->sk_ctl);
2557 DESC_PRINT(le->sk_opcode);
2558 #undef DESC_PRINT
2559 }
2560
2561 void
2562 msk_dump_bytes(const char *data, int len)
2563 {
2564 int c, i, j;
2565
2566 for (i = 0; i < len; i += 16) {
2567 printf("%08x ", i);
2568 c = len - i;
2569 if (c > 16) c = 16;
2570
2571 for (j = 0; j < c; j++) {
2572 printf("%02x ", data[i + j] & 0xff);
2573 if ((j & 0xf) == 7 && j > 0)
2574 printf(" ");
2575 }
2576
2577 for (; j < 16; j++)
2578 printf(" ");
2579 printf(" ");
2580
2581 for (j = 0; j < c; j++) {
2582 int ch = data[i + j] & 0xff;
2583 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2584 }
2585
2586 printf("\n");
2587
2588 if (c < 16)
2589 break;
2590 }
2591 }
2592
2593 void
2594 msk_dump_mbuf(struct mbuf *m)
2595 {
2596 int count = m->m_pkthdr.len;
2597
2598 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2599
2600 while (count > 0 && m) {
2601 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2602 m, m->m_data, m->m_len);
2603 msk_dump_bytes(mtod(m, char *), m->m_len);
2604
2605 count -= m->m_len;
2606 m = m->m_next;
2607 }
2608 }
2609 #endif
2610
2611 static int
2612 msk_sysctl_handler(SYSCTLFN_ARGS)
2613 {
2614 int error, t;
2615 struct sysctlnode node;
2616 struct sk_softc *sc;
2617
2618 node = *rnode;
2619 sc = node.sysctl_data;
2620 t = sc->sk_int_mod;
2621 node.sysctl_data = &t;
2622 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2623 if (error || newp == NULL)
2624 return error;
2625
2626 if (t < SK_IM_MIN || t > SK_IM_MAX)
2627 return EINVAL;
2628
2629 /* update the softc with sysctl-changed value, and mark
2630 for hardware update */
2631 sc->sk_int_mod = t;
2632 sc->sk_int_mod_pending = 1;
2633 return 0;
2634 }
2635
2636 /*
2637 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2638 * set up in mskc_attach()
2639 */
2640 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2641 {
2642 int rc;
2643 const struct sysctlnode *node;
2644
2645 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2646 0, CTLTYPE_NODE, "msk",
2647 SYSCTL_DESCR("msk interface controls"),
2648 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2649 goto err;
2650 }
2651
2652 msk_root_num = node->sysctl_num;
2653 return;
2654
2655 err:
2656 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2657 }
2658