if_msk.c revision 1.77 1 /* $NetBSD: if_msk.c,v 1.77 2018/09/12 13:52:36 jakllsch Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.77 2018/09/12 13:52:36 jakllsch Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int);
128 void msk_miibus_writereg(device_t, int, int, int);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n,x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 /* supported device vendors */
154 static const struct msk_product {
155 pci_vendor_id_t msk_vendor;
156 pci_product_id_t msk_product;
157 } msk_products[] = {
158 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
159 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
160 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
162 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
163 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
164 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
197 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
198 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
199 { 0, 0 }
200 };
201
202 static inline u_int32_t
203 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
204 {
205 return CSR_READ_4(sc, reg);
206 }
207
208 static inline u_int16_t
209 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
210 {
211 return CSR_READ_2(sc, reg);
212 }
213
214 static inline u_int8_t
215 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
216 {
217 return CSR_READ_1(sc, reg);
218 }
219
220 static inline void
221 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
222 {
223 CSR_WRITE_4(sc, reg, x);
224 }
225
226 static inline void
227 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
228 {
229 CSR_WRITE_2(sc, reg, x);
230 }
231
232 static inline void
233 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
234 {
235 CSR_WRITE_1(sc, reg, x);
236 }
237
238 int
239 msk_miibus_readreg(device_t dev, int phy, int reg)
240 {
241 struct sk_if_softc *sc_if = device_private(dev);
242 u_int16_t val;
243 int i;
244
245 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
246 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
247
248 for (i = 0; i < SK_TIMEOUT; i++) {
249 DELAY(1);
250 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
251 if (val & YU_SMICR_READ_VALID)
252 break;
253 }
254
255 if (i == SK_TIMEOUT) {
256 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
257 return (0);
258 }
259
260 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
261 SK_TIMEOUT));
262
263 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
264
265 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
266 phy, reg, val));
267
268 return (val);
269 }
270
271 void
272 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
273 {
274 struct sk_if_softc *sc_if = device_private(dev);
275 int i;
276
277 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
278 phy, reg, val));
279
280 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
281 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
282 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
283
284 for (i = 0; i < SK_TIMEOUT; i++) {
285 DELAY(1);
286 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
287 break;
288 }
289
290 if (i == SK_TIMEOUT)
291 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
292 }
293
294 void
295 msk_miibus_statchg(struct ifnet *ifp)
296 {
297 struct sk_if_softc *sc_if = ifp->if_softc;
298 struct mii_data *mii = &sc_if->sk_mii;
299 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
300 int gpcr;
301
302 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
303 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
304
305 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
306 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
307 /* Set speed. */
308 gpcr |= YU_GPCR_SPEED_DIS;
309 switch (IFM_SUBTYPE(mii->mii_media_active)) {
310 case IFM_1000_SX:
311 case IFM_1000_LX:
312 case IFM_1000_CX:
313 case IFM_1000_T:
314 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
315 break;
316 case IFM_100_TX:
317 gpcr |= YU_GPCR_SPEED;
318 break;
319 }
320
321 /* Set duplex. */
322 gpcr |= YU_GPCR_DPLX_DIS;
323 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
324 gpcr |= YU_GPCR_DUPLEX;
325
326 /* Disable flow control. */
327 gpcr |= YU_GPCR_FCTL_DIS;
328 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
329 }
330
331 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
332
333 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
334 SK_YU_READ_2(sc_if, YUKON_GPCR)));
335 }
336
337 void
338 msk_setmulti(struct sk_if_softc *sc_if)
339 {
340 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
341 u_int32_t hashes[2] = { 0, 0 };
342 int h;
343 struct ethercom *ec = &sc_if->sk_ethercom;
344 struct ether_multi *enm;
345 struct ether_multistep step;
346 u_int16_t reg;
347
348 /* First, zot all the existing filters. */
349 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
350 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
351 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
353
354
355 /* Now program new ones. */
356 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
357 reg |= YU_RCR_UFLEN;
358 allmulti:
359 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
360 if ((ifp->if_flags & IFF_PROMISC) != 0)
361 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
362 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
363 hashes[0] = 0xFFFFFFFF;
364 hashes[1] = 0xFFFFFFFF;
365 }
366 } else {
367 /* First find the tail of the list. */
368 ETHER_FIRST_MULTI(step, ec, enm);
369 while (enm != NULL) {
370 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
371 ETHER_ADDR_LEN)) {
372 ifp->if_flags |= IFF_ALLMULTI;
373 goto allmulti;
374 }
375 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
376 ((1 << SK_HASH_BITS) - 1);
377 if (h < 32)
378 hashes[0] |= (1 << h);
379 else
380 hashes[1] |= (1 << (h - 32));
381
382 ETHER_NEXT_MULTI(step, enm);
383 }
384 reg |= YU_RCR_MUFLEN;
385 }
386
387 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
388 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
389 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
392 }
393
394 void
395 msk_setpromisc(struct sk_if_softc *sc_if)
396 {
397 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
398
399 if (ifp->if_flags & IFF_PROMISC)
400 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
401 YU_RCR_UFLEN | YU_RCR_MUFLEN);
402 else
403 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
404 YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 }
406
407 int
408 msk_init_rx_ring(struct sk_if_softc *sc_if)
409 {
410 struct msk_chain_data *cd = &sc_if->sk_cdata;
411 struct msk_ring_data *rd = sc_if->sk_rdata;
412 int i, nexti;
413
414 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
415
416 for (i = 0; i < MSK_RX_RING_CNT; i++) {
417 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
418 if (i == (MSK_RX_RING_CNT - 1))
419 nexti = 0;
420 else
421 nexti = i + 1;
422 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
423 }
424
425 sc_if->sk_cdata.sk_rx_prod = 0;
426 sc_if->sk_cdata.sk_rx_cons = 0;
427 sc_if->sk_cdata.sk_rx_cnt = 0;
428
429 msk_fill_rx_ring(sc_if);
430 return (0);
431 }
432
433 int
434 msk_init_tx_ring(struct sk_if_softc *sc_if)
435 {
436 struct sk_softc *sc = sc_if->sk_softc;
437 struct msk_chain_data *cd = &sc_if->sk_cdata;
438 struct msk_ring_data *rd = sc_if->sk_rdata;
439 bus_dmamap_t dmamap;
440 struct sk_txmap_entry *entry;
441 int i, nexti;
442
443 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
444
445 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
446 for (i = 0; i < MSK_TX_RING_CNT; i++) {
447 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
448 if (i == (MSK_TX_RING_CNT - 1))
449 nexti = 0;
450 else
451 nexti = i + 1;
452 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
453
454 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
455 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
456 return (ENOBUFS);
457
458 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
459 if (!entry) {
460 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
461 return (ENOBUFS);
462 }
463 entry->dmamap = dmamap;
464 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
465 }
466
467 sc_if->sk_cdata.sk_tx_prod = 0;
468 sc_if->sk_cdata.sk_tx_cons = 0;
469 sc_if->sk_cdata.sk_tx_cnt = 0;
470
471 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
472 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
473
474 return (0);
475 }
476
477 int
478 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
479 {
480 struct mbuf *m_new = NULL;
481 struct sk_chain *c;
482 struct msk_rx_desc *r;
483 void *buf = NULL;
484
485 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
486 if (m_new == NULL)
487 return (ENOBUFS);
488
489 /* Allocate the jumbo buffer */
490 buf = msk_jalloc(sc_if);
491 if (buf == NULL) {
492 m_freem(m_new);
493 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
494 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
495 return (ENOBUFS);
496 }
497
498 /* Attach the buffer to the mbuf */
499 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
500 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
501
502 m_adj(m_new, ETHER_ALIGN);
503
504 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
505 r = c->sk_le;
506 c->sk_mbuf = m_new;
507 r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr +
508 (((vaddr_t)m_new->m_data
509 - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)));
510 r->sk_len = htole16(SK_JLEN);
511 r->sk_ctl = 0;
512 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
513
514 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
515 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
516
517 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
518 sc_if->sk_cdata.sk_rx_cnt++;
519
520 return (0);
521 }
522
523 /*
524 * Memory management for jumbo frames.
525 */
526
527 int
528 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
529 {
530 struct sk_softc *sc = sc_if->sk_softc;
531 char *ptr, *kva;
532 int i, state, error;
533 struct sk_jpool_entry *entry;
534
535 state = error = 0;
536
537 /* Grab a big chunk o' storage. */
538 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
539 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
540 BUS_DMA_NOWAIT)) {
541 aprint_error(": can't alloc rx buffers");
542 return (ENOBUFS);
543 }
544
545 state = 1;
546 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
547 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
548 BUS_DMA_NOWAIT)) {
549 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
550 error = ENOBUFS;
551 goto out;
552 }
553
554 state = 2;
555 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
556 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
557 aprint_error(": can't create dma map");
558 error = ENOBUFS;
559 goto out;
560 }
561
562 state = 3;
563 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
564 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
565 aprint_error(": can't load dma map");
566 error = ENOBUFS;
567 goto out;
568 }
569
570 state = 4;
571 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
572 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
573
574 LIST_INIT(&sc_if->sk_jfree_listhead);
575 LIST_INIT(&sc_if->sk_jinuse_listhead);
576 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
577
578 /*
579 * Now divide it up into 9K pieces and save the addresses
580 * in an array.
581 */
582 ptr = sc_if->sk_cdata.sk_jumbo_buf;
583 for (i = 0; i < MSK_JSLOTS; i++) {
584 sc_if->sk_cdata.sk_jslots[i] = ptr;
585 ptr += SK_JLEN;
586 entry = malloc(sizeof(struct sk_jpool_entry),
587 M_DEVBUF, M_NOWAIT);
588 if (entry == NULL) {
589 sc_if->sk_cdata.sk_jumbo_buf = NULL;
590 aprint_error(": no memory for jumbo buffer queue!");
591 error = ENOBUFS;
592 goto out;
593 }
594 entry->slot = i;
595 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
596 entry, jpool_entries);
597 }
598 out:
599 if (error != 0) {
600 switch (state) {
601 case 4:
602 bus_dmamap_unload(sc->sc_dmatag,
603 sc_if->sk_cdata.sk_rx_jumbo_map);
604 case 3:
605 bus_dmamap_destroy(sc->sc_dmatag,
606 sc_if->sk_cdata.sk_rx_jumbo_map);
607 case 2:
608 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
609 case 1:
610 bus_dmamem_free(sc->sc_dmatag,
611 &sc_if->sk_cdata.sk_jumbo_seg,
612 sc_if->sk_cdata.sk_jumbo_nseg);
613 break;
614 default:
615 break;
616 }
617 }
618
619 return error;
620 }
621
622 static void
623 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
624 {
625 struct sk_softc *sc = sc_if->sk_softc;
626
627 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
628 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
629 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
630 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
631 sc_if->sk_cdata.sk_jumbo_nseg);
632 }
633
634 /*
635 * Allocate a jumbo buffer.
636 */
637 void *
638 msk_jalloc(struct sk_if_softc *sc_if)
639 {
640 struct sk_jpool_entry *entry;
641
642 mutex_enter(&sc_if->sk_jpool_mtx);
643 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
644
645 if (entry == NULL) {
646 mutex_exit(&sc_if->sk_jpool_mtx);
647 return NULL;
648 }
649
650 LIST_REMOVE(entry, jpool_entries);
651 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
652 mutex_exit(&sc_if->sk_jpool_mtx);
653 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
654 }
655
656 /*
657 * Release a jumbo buffer.
658 */
659 void
660 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
661 {
662 struct sk_jpool_entry *entry;
663 struct sk_if_softc *sc;
664 int i;
665
666 /* Extract the softc struct pointer. */
667 sc = (struct sk_if_softc *)arg;
668
669 if (sc == NULL)
670 panic("msk_jfree: can't find softc pointer!");
671
672 /* calculate the slot this buffer belongs to */
673 i = ((vaddr_t)buf
674 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
675
676 if ((i < 0) || (i >= MSK_JSLOTS))
677 panic("msk_jfree: asked to free buffer that we don't manage!");
678
679 mutex_enter(&sc->sk_jpool_mtx);
680 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
681 if (entry == NULL)
682 panic("msk_jfree: buffer not in use!");
683 entry->slot = i;
684 LIST_REMOVE(entry, jpool_entries);
685 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
686 mutex_exit(&sc->sk_jpool_mtx);
687
688 if (__predict_true(m != NULL))
689 pool_cache_put(mb_cache, m);
690
691 /* Now that we know we have a free RX buffer, refill if running out */
692 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
693 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
694 callout_schedule(&sc->sk_tick_rx, 0);
695 }
696
697 int
698 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
699 {
700 struct sk_if_softc *sc = ifp->if_softc;
701 int s, error;
702
703 s = splnet();
704
705 DPRINTFN(2, ("msk_ioctl ETHER\n"));
706 switch (cmd) {
707 case SIOCSIFFLAGS:
708 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
709 break;
710
711 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
712 case IFF_RUNNING:
713 msk_stop(ifp, 1);
714 break;
715 case IFF_UP:
716 msk_init(ifp);
717 break;
718 case IFF_UP | IFF_RUNNING:
719 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
720 msk_setpromisc(sc);
721 msk_setmulti(sc);
722 } else
723 msk_init(ifp);
724 break;
725 }
726 sc->sk_if_flags = ifp->if_flags;
727 break;
728 default:
729 error = ether_ioctl(ifp, cmd, data);
730 if (error == ENETRESET) {
731 error = 0;
732 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
733 ;
734 else if (ifp->if_flags & IFF_RUNNING) {
735 /*
736 * Multicast list has changed; set the hardware
737 * filter accordingly.
738 */
739 msk_setmulti(sc);
740 }
741 }
742 break;
743 }
744
745 splx(s);
746 return error;
747 }
748
749 void
750 msk_update_int_mod(struct sk_softc *sc, int verbose)
751 {
752 u_int32_t imtimer_ticks;
753
754 /*
755 * Configure interrupt moderation. The moderation timer
756 * defers interrupts specified in the interrupt moderation
757 * timer mask based on the timeout specified in the interrupt
758 * moderation timer init register. Each bit in the timer
759 * register represents one tick, so to specify a timeout in
760 * microseconds, we have to multiply by the correct number of
761 * ticks-per-microsecond.
762 */
763 switch (sc->sk_type) {
764 case SK_YUKON_EC:
765 case SK_YUKON_EC_U:
766 case SK_YUKON_EX:
767 case SK_YUKON_SUPR:
768 case SK_YUKON_ULTRA2:
769 case SK_YUKON_OPTIMA:
770 case SK_YUKON_PRM:
771 case SK_YUKON_OPTIMA2:
772 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
773 break;
774 case SK_YUKON_FE:
775 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
776 break;
777 case SK_YUKON_FE_P:
778 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
779 break;
780 case SK_YUKON_XL:
781 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
782 break;
783 default:
784 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
785 }
786 if (verbose)
787 aprint_verbose_dev(sc->sk_dev,
788 "interrupt moderation is %d us\n", sc->sk_int_mod);
789 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
790 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
791 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
792 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
793 sc->sk_int_mod_pending = 0;
794 }
795
796 static int
797 msk_lookup(const struct pci_attach_args *pa)
798 {
799 const struct msk_product *pmsk;
800
801 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
802 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
803 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
804 return 1;
805 }
806 return 0;
807 }
808
809 /*
810 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
811 * IDs against our list and return a device name if we find a match.
812 */
813 int
814 mskc_probe(device_t parent, cfdata_t match, void *aux)
815 {
816 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
817
818 return msk_lookup(pa);
819 }
820
821 /*
822 * Force the GEnesis into reset, then bring it out of reset.
823 */
824 void
825 mskc_reset(struct sk_softc *sc)
826 {
827 u_int32_t imtimer_ticks, reg1;
828 int reg;
829
830 DPRINTFN(2, ("mskc_reset\n"));
831
832 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
833 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
834
835 DELAY(1000);
836 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
837 DELAY(2);
838 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
839 sk_win_write_1(sc, SK_TESTCTL1, 2);
840
841 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
842 sc->sk_type >= SK_YUKON_FE_P) {
843 uint32_t our;
844
845 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
846
847 /* enable all clocks. */
848 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
849 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
850 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
851 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
852 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
853 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
854 /* Set all bits to 0 except bits 15..12 */
855 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
856 /* Set to default value */
857 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
858
859 /*
860 * Disable status race, workaround for Yukon EC Ultra &
861 * Yukon EX.
862 */
863 reg1 = sk_win_read_4(sc, SK_GPIO);
864 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
865 sk_win_write_4(sc, SK_GPIO, reg1);
866 sk_win_read_4(sc, SK_GPIO);
867 }
868
869 /* release PHY from PowerDown/Coma mode. */
870 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
871 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
872 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
873 else
874 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
875 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
876
877 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
878 sk_win_write_1(sc, SK_Y2_CLKGATE,
879 SK_Y2_CLKGATE_LINK1_GATE_DIS |
880 SK_Y2_CLKGATE_LINK2_GATE_DIS |
881 SK_Y2_CLKGATE_LINK1_CORE_DIS |
882 SK_Y2_CLKGATE_LINK2_CORE_DIS |
883 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
884 else
885 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
886
887 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
888 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
889 DELAY(1000);
890 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
891 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
892
893 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
894 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
895 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
896 }
897
898 sk_win_write_1(sc, SK_TESTCTL1, 1);
899
900 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
901 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
902 CSR_READ_2(sc, SK_LINK_CTRL)));
903
904 /* Disable ASF */
905 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
906 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
907
908 /* Clear I2C IRQ noise */
909 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
910
911 /* Disable hardware timer */
912 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
913 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
914
915 /* Disable descriptor polling */
916 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
917
918 /* Disable time stamps */
919 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
920 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
921
922 /* Enable RAM interface */
923 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
924 for (reg = SK_TO0;reg <= SK_TO11; reg++)
925 sk_win_write_1(sc, reg, 36);
926 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
927 for (reg = SK_TO0;reg <= SK_TO11; reg++)
928 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
929
930 /*
931 * Configure interrupt moderation. The moderation timer
932 * defers interrupts specified in the interrupt moderation
933 * timer mask based on the timeout specified in the interrupt
934 * moderation timer init register. Each bit in the timer
935 * register represents one tick, so to specify a timeout in
936 * microseconds, we have to multiply by the correct number of
937 * ticks-per-microsecond.
938 */
939 switch (sc->sk_type) {
940 case SK_YUKON_EC:
941 case SK_YUKON_EC_U:
942 case SK_YUKON_EX:
943 case SK_YUKON_SUPR:
944 case SK_YUKON_ULTRA2:
945 case SK_YUKON_OPTIMA:
946 case SK_YUKON_PRM:
947 case SK_YUKON_OPTIMA2:
948 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
949 break;
950 case SK_YUKON_FE:
951 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
952 break;
953 case SK_YUKON_FE_P:
954 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
955 break;
956 case SK_YUKON_XL:
957 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
958 break;
959 default:
960 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
961 break;
962 }
963
964 /* Reset status ring. */
965 memset(sc->sk_status_ring, 0,
966 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
967 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
968 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
969 sc->sk_status_idx = 0;
970
971 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
972 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
973
974 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
975 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
976 sc->sk_status_map->dm_segs[0].ds_addr);
977 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
978 (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32);
979 if (sc->sk_type == SK_YUKON_EC &&
980 sc->sk_rev == SK_YUKON_EC_REV_A1) {
981 /* WA for dev. #4.3 */
982 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
983 /* WA for dev. #4.18 */
984 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
985 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
986 } else {
987 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
988 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
989 if (sc->sk_type == SK_YUKON_XL)
990 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
991 else
992 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
993 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
994 }
995
996 #if 0
997 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
998 #endif
999 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1000
1001 /* Enable status unit. */
1002 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1003
1004 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1005 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1006 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1007
1008 msk_update_int_mod(sc, 0);
1009 }
1010
1011 int
1012 msk_probe(device_t parent, cfdata_t match, void *aux)
1013 {
1014 struct skc_attach_args *sa = aux;
1015
1016 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1017 return (0);
1018
1019 switch (sa->skc_type) {
1020 case SK_YUKON_XL:
1021 case SK_YUKON_EC_U:
1022 case SK_YUKON_EX:
1023 case SK_YUKON_EC:
1024 case SK_YUKON_FE:
1025 case SK_YUKON_FE_P:
1026 case SK_YUKON_SUPR:
1027 case SK_YUKON_ULTRA2:
1028 case SK_YUKON_OPTIMA:
1029 case SK_YUKON_PRM:
1030 case SK_YUKON_OPTIMA2:
1031 return (1);
1032 }
1033
1034 return (0);
1035 }
1036
1037 void
1038 msk_reset(struct sk_if_softc *sc_if)
1039 {
1040 /* GMAC and GPHY Reset */
1041 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1042 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1043 DELAY(1000);
1044 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1045 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1046 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1047 }
1048
1049 static bool
1050 msk_resume(device_t dv, const pmf_qual_t *qual)
1051 {
1052 struct sk_if_softc *sc_if = device_private(dv);
1053
1054 msk_init_yukon(sc_if);
1055 return true;
1056 }
1057
1058 /*
1059 * Each XMAC chip is attached as a separate logical IP interface.
1060 * Single port cards will have only one logical interface of course.
1061 */
1062 void
1063 msk_attach(device_t parent, device_t self, void *aux)
1064 {
1065 struct sk_if_softc *sc_if = device_private(self);
1066 struct sk_softc *sc = device_private(parent);
1067 struct skc_attach_args *sa = aux;
1068 struct ifnet *ifp;
1069 void *kva;
1070 int i;
1071 u_int32_t chunk;
1072 int mii_flags;
1073
1074 sc_if->sk_dev = self;
1075 sc_if->sk_port = sa->skc_port;
1076 sc_if->sk_softc = sc;
1077 sc->sk_if[sa->skc_port] = sc_if;
1078
1079 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1080
1081 /*
1082 * Get station address for this interface. Note that
1083 * dual port cards actually come with three station
1084 * addresses: one for each port, plus an extra. The
1085 * extra one is used by the SysKonnect driver software
1086 * as a 'virtual' station address for when both ports
1087 * are operating in failover mode. Currently we don't
1088 * use this extra address.
1089 */
1090 for (i = 0; i < ETHER_ADDR_LEN; i++)
1091 sc_if->sk_enaddr[i] =
1092 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1093
1094 aprint_normal(": Ethernet address %s\n",
1095 ether_sprintf(sc_if->sk_enaddr));
1096
1097 /*
1098 * Set up RAM buffer addresses. The Yukon2 has a small amount
1099 * of SRAM on it, somewhere between 4K and 48K. We need to
1100 * divide this up between the transmitter and receiver. We
1101 * give the receiver 2/3 of the memory (rounded down), and the
1102 * transmitter whatever remains.
1103 */
1104 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1105 sc_if->sk_rx_ramstart = 0;
1106 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1107 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1108 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1109 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1110
1111 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1112 " tx_ramstart=%#x tx_ramend=%#x\n",
1113 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1114 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1115
1116 /* Allocate the descriptor queues. */
1117 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1118 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1119 BUS_DMA_NOWAIT)) {
1120 aprint_error(": can't alloc rx buffers\n");
1121 goto fail;
1122 }
1123 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1124 sc_if->sk_ring_nseg,
1125 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1126 aprint_error(": can't map dma buffers (%zu bytes)\n",
1127 sizeof(struct msk_ring_data));
1128 goto fail_1;
1129 }
1130 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1131 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1132 &sc_if->sk_ring_map)) {
1133 aprint_error(": can't create dma map\n");
1134 goto fail_2;
1135 }
1136 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1137 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1138 aprint_error(": can't load dma map\n");
1139 goto fail_3;
1140 }
1141 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1142 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1143
1144 if (sc->sk_type != SK_YUKON_FE &&
1145 sc->sk_type != SK_YUKON_FE_P)
1146 sc_if->sk_pktlen = SK_JLEN;
1147 else
1148 sc_if->sk_pktlen = MCLBYTES;
1149
1150 /* Try to allocate memory for jumbo buffers. */
1151 if (msk_alloc_jumbo_mem(sc_if)) {
1152 aprint_error(": jumbo buffer allocation failed\n");
1153 goto fail_3;
1154 }
1155
1156 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1157 if (sc->sk_type != SK_YUKON_FE &&
1158 sc->sk_type != SK_YUKON_FE_P)
1159 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1160
1161 ifp = &sc_if->sk_ethercom.ec_if;
1162 ifp->if_softc = sc_if;
1163 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1164 ifp->if_ioctl = msk_ioctl;
1165 ifp->if_start = msk_start;
1166 ifp->if_stop = msk_stop;
1167 ifp->if_init = msk_init;
1168 ifp->if_watchdog = msk_watchdog;
1169 ifp->if_baudrate = 1000000000;
1170 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1171 IFQ_SET_READY(&ifp->if_snd);
1172 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1173
1174 msk_reset(sc_if);
1175
1176 /*
1177 * Do miibus setup.
1178 */
1179 msk_init_yukon(sc_if);
1180
1181 DPRINTFN(2, ("msk_attach: 1\n"));
1182
1183 sc_if->sk_mii.mii_ifp = ifp;
1184 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1185 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1186 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1187
1188 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1189 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1190 ether_mediachange, ether_mediastatus);
1191 mii_flags = MIIF_DOPAUSE;
1192 if (sc->sk_fibertype)
1193 mii_flags |= MIIF_HAVEFIBER;
1194 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1195 MII_OFFSET_ANY, mii_flags);
1196 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1197 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1198 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1199 0, NULL);
1200 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1201 } else
1202 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1203
1204 callout_init(&sc_if->sk_tick_ch, 0);
1205 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1206 callout_schedule(&sc_if->sk_tick_ch, hz);
1207
1208 callout_init(&sc_if->sk_tick_rx, 0);
1209 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1210
1211 /*
1212 * Call MI attach routines.
1213 */
1214 if_attach(ifp);
1215 if_deferred_start_init(ifp, NULL);
1216 ether_ifattach(ifp, sc_if->sk_enaddr);
1217
1218 if (pmf_device_register(self, NULL, msk_resume))
1219 pmf_class_network_register(self, ifp);
1220 else
1221 aprint_error_dev(self, "couldn't establish power handler\n");
1222
1223 if (sc->rnd_attached++ == 0) {
1224 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1225 RND_TYPE_NET, RND_FLAG_DEFAULT);
1226 }
1227
1228 DPRINTFN(2, ("msk_attach: end\n"));
1229 return;
1230
1231 fail_3:
1232 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1233 fail_2:
1234 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1235 fail_1:
1236 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1237 fail:
1238 sc->sk_if[sa->skc_port] = NULL;
1239 }
1240
1241 int
1242 msk_detach(device_t self, int flags)
1243 {
1244 struct sk_if_softc *sc_if = device_private(self);
1245 struct sk_softc *sc = sc_if->sk_softc;
1246 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1247
1248 if (sc->sk_if[sc_if->sk_port] == NULL)
1249 return (0);
1250
1251 msk_stop(ifp, 0);
1252
1253 if (--sc->rnd_attached == 0)
1254 rnd_detach_source(&sc->rnd_source);
1255
1256 callout_halt(&sc_if->sk_tick_ch, NULL);
1257 callout_destroy(&sc_if->sk_tick_ch);
1258
1259 callout_halt(&sc_if->sk_tick_rx, NULL);
1260 callout_destroy(&sc_if->sk_tick_rx);
1261
1262 /* Detach any PHYs we might have. */
1263 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1264 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1265
1266 /* Delete any remaining media. */
1267 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1268
1269 pmf_device_deregister(self);
1270
1271 ether_ifdetach(ifp);
1272 if_detach(ifp);
1273
1274 msk_free_jumbo_mem(sc_if);
1275
1276 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1277 sizeof(struct msk_ring_data));
1278 bus_dmamem_free(sc->sc_dmatag,
1279 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1280 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1281 sc->sk_if[sc_if->sk_port] = NULL;
1282
1283 return (0);
1284 }
1285
1286 int
1287 mskcprint(void *aux, const char *pnp)
1288 {
1289 struct skc_attach_args *sa = aux;
1290
1291 if (pnp)
1292 aprint_normal("msk port %c at %s",
1293 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1294 else
1295 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1296 return (UNCONF);
1297 }
1298
1299 /*
1300 * Attach the interface. Allocate softc structures, do ifmedia
1301 * setup and ethernet/BPF attach.
1302 */
1303 void
1304 mskc_attach(device_t parent, device_t self, void *aux)
1305 {
1306 struct sk_softc *sc = device_private(self);
1307 struct pci_attach_args *pa = aux;
1308 struct skc_attach_args skca;
1309 pci_chipset_tag_t pc = pa->pa_pc;
1310 pcireg_t command, memtype;
1311 pci_intr_handle_t ih;
1312 const char *intrstr = NULL;
1313 int rc, sk_nodenum;
1314 u_int8_t hw, pmd;
1315 const char *revstr = NULL;
1316 const struct sysctlnode *node;
1317 void *kva;
1318 char intrbuf[PCI_INTRSTR_LEN];
1319
1320 DPRINTFN(2, ("begin mskc_attach\n"));
1321
1322 sc->sk_dev = self;
1323 /*
1324 * Handle power management nonsense.
1325 */
1326 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1327
1328 if (command == 0x01) {
1329 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1330 if (command & SK_PSTATE_MASK) {
1331 u_int32_t iobase, membase, irq;
1332
1333 /* Save important PCI config data. */
1334 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1335 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1336 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1337
1338 /* Reset the power state. */
1339 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1340 "mode -- setting to D0\n",
1341 command & SK_PSTATE_MASK);
1342 command &= 0xFFFFFFFC;
1343 pci_conf_write(pc, pa->pa_tag,
1344 SK_PCI_PWRMGMTCTRL, command);
1345
1346 /* Restore PCI config data. */
1347 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1348 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1349 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1350 }
1351 }
1352
1353 /*
1354 * Map control/status registers.
1355 */
1356 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1357 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1358 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1359 aprint_error(": can't map mem space\n");
1360 return;
1361 }
1362
1363 sc->sc_dmatag = pa->pa_dmat;
1364
1365 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1366 command |= PCI_COMMAND_MASTER_ENABLE;
1367 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1368
1369 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1370 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1371
1372 /* bail out here if chip is not recognized */
1373 if (!(SK_IS_YUKON2(sc))) {
1374 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1375 goto fail_1;
1376 }
1377 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1378
1379 /* Allocate interrupt */
1380 if (pci_intr_map(pa, &ih)) {
1381 aprint_error(": couldn't map interrupt\n");
1382 goto fail_1;
1383 }
1384
1385 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
1386 sc->sk_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, msk_intr,
1387 sc, device_xname(sc->sk_dev));
1388 if (sc->sk_intrhand == NULL) {
1389 aprint_error(": couldn't establish interrupt");
1390 if (intrstr != NULL)
1391 aprint_error(" at %s", intrstr);
1392 aprint_error("\n");
1393 goto fail_1;
1394 }
1395 sc->sk_pc = pc;
1396
1397 if (bus_dmamem_alloc(sc->sc_dmatag,
1398 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1399 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1400 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1401 aprint_error(": can't alloc status buffers\n");
1402 goto fail_2;
1403 }
1404
1405 if (bus_dmamem_map(sc->sc_dmatag,
1406 &sc->sk_status_seg, sc->sk_status_nseg,
1407 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1408 &kva, BUS_DMA_NOWAIT)) {
1409 aprint_error(": can't map dma buffers (%zu bytes)\n",
1410 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1411 goto fail_3;
1412 }
1413 if (bus_dmamap_create(sc->sc_dmatag,
1414 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1415 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1416 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1417 aprint_error(": can't create dma map\n");
1418 goto fail_4;
1419 }
1420 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1421 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1422 NULL, BUS_DMA_NOWAIT)) {
1423 aprint_error(": can't load dma map\n");
1424 goto fail_5;
1425 }
1426 sc->sk_status_ring = (struct msk_status_desc *)kva;
1427
1428 sc->sk_int_mod = SK_IM_DEFAULT;
1429 sc->sk_int_mod_pending = 0;
1430
1431 /* Reset the adapter. */
1432 mskc_reset(sc);
1433
1434 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1435 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1436
1437 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1438 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1439 sc->sk_fibertype = 1;
1440
1441 switch (sc->sk_type) {
1442 case SK_YUKON_XL:
1443 sc->sk_name = "Yukon-2 XL";
1444 break;
1445 case SK_YUKON_EC_U:
1446 sc->sk_name = "Yukon-2 EC Ultra";
1447 break;
1448 case SK_YUKON_EX:
1449 sc->sk_name = "Yukon-2 Extreme";
1450 break;
1451 case SK_YUKON_EC:
1452 sc->sk_name = "Yukon-2 EC";
1453 break;
1454 case SK_YUKON_FE:
1455 sc->sk_name = "Yukon-2 FE";
1456 break;
1457 case SK_YUKON_FE_P:
1458 sc->sk_name = "Yukon-2 FE+";
1459 break;
1460 case SK_YUKON_SUPR:
1461 sc->sk_name = "Yukon-2 Supreme";
1462 break;
1463 case SK_YUKON_ULTRA2:
1464 sc->sk_name = "Yukon-2 Ultra 2";
1465 break;
1466 case SK_YUKON_OPTIMA:
1467 sc->sk_name = "Yukon-2 Optima";
1468 break;
1469 case SK_YUKON_PRM:
1470 sc->sk_name = "Yukon-2 Optima Prime";
1471 break;
1472 case SK_YUKON_OPTIMA2:
1473 sc->sk_name = "Yukon-2 Optima 2";
1474 break;
1475 default:
1476 sc->sk_name = "Yukon (Unknown)";
1477 }
1478
1479 if (sc->sk_type == SK_YUKON_XL) {
1480 switch (sc->sk_rev) {
1481 case SK_YUKON_XL_REV_A0:
1482 revstr = "A0";
1483 break;
1484 case SK_YUKON_XL_REV_A1:
1485 revstr = "A1";
1486 break;
1487 case SK_YUKON_XL_REV_A2:
1488 revstr = "A2";
1489 break;
1490 case SK_YUKON_XL_REV_A3:
1491 revstr = "A3";
1492 break;
1493 default:
1494 break;
1495 }
1496 }
1497
1498 if (sc->sk_type == SK_YUKON_EC) {
1499 switch (sc->sk_rev) {
1500 case SK_YUKON_EC_REV_A1:
1501 revstr = "A1";
1502 break;
1503 case SK_YUKON_EC_REV_A2:
1504 revstr = "A2";
1505 break;
1506 case SK_YUKON_EC_REV_A3:
1507 revstr = "A3";
1508 break;
1509 default:
1510 break;
1511 }
1512 }
1513
1514 if (sc->sk_type == SK_YUKON_FE) {
1515 switch (sc->sk_rev) {
1516 case SK_YUKON_FE_REV_A1:
1517 revstr = "A1";
1518 break;
1519 case SK_YUKON_FE_REV_A2:
1520 revstr = "A2";
1521 break;
1522 default:
1523 break;
1524 }
1525 }
1526
1527 if (sc->sk_type == SK_YUKON_EC_U) {
1528 switch (sc->sk_rev) {
1529 case SK_YUKON_EC_U_REV_A0:
1530 revstr = "A0";
1531 break;
1532 case SK_YUKON_EC_U_REV_A1:
1533 revstr = "A1";
1534 break;
1535 case SK_YUKON_EC_U_REV_B0:
1536 revstr = "B0";
1537 break;
1538 case SK_YUKON_EC_U_REV_B1:
1539 revstr = "B1";
1540 break;
1541 default:
1542 break;
1543 }
1544 }
1545
1546 if (sc->sk_type == SK_YUKON_FE) {
1547 switch (sc->sk_rev) {
1548 case SK_YUKON_FE_REV_A1:
1549 revstr = "A1";
1550 break;
1551 case SK_YUKON_FE_REV_A2:
1552 revstr = "A2";
1553 break;
1554 default:
1555 ;
1556 }
1557 }
1558
1559 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1560 revstr = "A0";
1561
1562 if (sc->sk_type == SK_YUKON_EX) {
1563 switch (sc->sk_rev) {
1564 case SK_YUKON_EX_REV_A0:
1565 revstr = "A0";
1566 break;
1567 case SK_YUKON_EX_REV_B0:
1568 revstr = "B0";
1569 break;
1570 default:
1571 ;
1572 }
1573 }
1574
1575 if (sc->sk_type == SK_YUKON_SUPR) {
1576 switch (sc->sk_rev) {
1577 case SK_YUKON_SUPR_REV_A0:
1578 revstr = "A0";
1579 break;
1580 case SK_YUKON_SUPR_REV_B0:
1581 revstr = "B0";
1582 break;
1583 case SK_YUKON_SUPR_REV_B1:
1584 revstr = "B1";
1585 break;
1586 default:
1587 ;
1588 }
1589 }
1590
1591 if (sc->sk_type == SK_YUKON_PRM) {
1592 switch (sc->sk_rev) {
1593 case SK_YUKON_PRM_REV_Z1:
1594 revstr = "Z1";
1595 break;
1596 case SK_YUKON_PRM_REV_A0:
1597 revstr = "A0";
1598 break;
1599 default:
1600 ;
1601 }
1602 }
1603
1604 /* Announce the product name. */
1605 aprint_normal(", %s", sc->sk_name);
1606 if (revstr != NULL)
1607 aprint_normal(" rev. %s", revstr);
1608 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1609
1610 sc->sk_macs = 1;
1611
1612 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1613 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1614 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1615 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1616 sc->sk_macs++;
1617 }
1618
1619 skca.skc_port = SK_PORT_A;
1620 skca.skc_type = sc->sk_type;
1621 skca.skc_rev = sc->sk_rev;
1622 (void)config_found(sc->sk_dev, &skca, mskcprint);
1623
1624 if (sc->sk_macs > 1) {
1625 skca.skc_port = SK_PORT_B;
1626 skca.skc_type = sc->sk_type;
1627 skca.skc_rev = sc->sk_rev;
1628 (void)config_found(sc->sk_dev, &skca, mskcprint);
1629 }
1630
1631 /* Turn on the 'driver is loaded' LED. */
1632 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1633
1634 /* skc sysctl setup */
1635
1636 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1637 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1638 SYSCTL_DESCR("mskc per-controller controls"),
1639 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1640 CTL_EOL)) != 0) {
1641 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1642 goto fail_6;
1643 }
1644
1645 sk_nodenum = node->sysctl_num;
1646
1647 /* interrupt moderation time in usecs */
1648 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1649 CTLFLAG_READWRITE,
1650 CTLTYPE_INT, "int_mod",
1651 SYSCTL_DESCR("msk interrupt moderation timer"),
1652 msk_sysctl_handler, 0, (void *)sc,
1653 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1654 CTL_EOL)) != 0) {
1655 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1656 goto fail_6;
1657 }
1658
1659 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1660 aprint_error_dev(self, "couldn't establish power handler\n");
1661
1662 return;
1663
1664 fail_6:
1665 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1666 fail_4:
1667 bus_dmamem_unmap(sc->sc_dmatag, kva,
1668 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1669 fail_3:
1670 bus_dmamem_free(sc->sc_dmatag,
1671 &sc->sk_status_seg, sc->sk_status_nseg);
1672 sc->sk_status_nseg = 0;
1673 fail_5:
1674 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1675 fail_2:
1676 pci_intr_disestablish(pc, sc->sk_intrhand);
1677 sc->sk_intrhand = NULL;
1678 fail_1:
1679 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1680 sc->sk_bsize = 0;
1681 }
1682
1683 int
1684 mskc_detach(device_t self, int flags)
1685 {
1686 struct sk_softc *sc = device_private(self);
1687 int rv;
1688
1689 if (sc->sk_intrhand) {
1690 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1691 sc->sk_intrhand = NULL;
1692 }
1693
1694 rv = config_detach_children(self, flags);
1695 if (rv != 0)
1696 return (rv);
1697
1698 if (sc->sk_status_nseg > 0) {
1699 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1700 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1701 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1702 bus_dmamem_free(sc->sc_dmatag,
1703 &sc->sk_status_seg, sc->sk_status_nseg);
1704 }
1705
1706 if (sc->sk_bsize > 0)
1707 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1708
1709 return(0);
1710 }
1711
1712 int
1713 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1714 {
1715 struct sk_softc *sc = sc_if->sk_softc;
1716 struct msk_tx_desc *f = NULL;
1717 u_int32_t frag, cur;
1718 int i;
1719 struct sk_txmap_entry *entry;
1720 bus_dmamap_t txmap;
1721
1722 DPRINTFN(2, ("msk_encap\n"));
1723
1724 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1725 if (entry == NULL) {
1726 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1727 return (ENOBUFS);
1728 }
1729 txmap = entry->dmamap;
1730
1731 cur = frag = *txidx;
1732
1733 #ifdef MSK_DEBUG
1734 if (mskdebug >= 2)
1735 msk_dump_mbuf(m_head);
1736 #endif
1737
1738 /*
1739 * Start packing the mbufs in this chain into
1740 * the fragment pointers. Stop when we run out
1741 * of fragments or hit the end of the mbuf chain.
1742 */
1743 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1744 BUS_DMA_NOWAIT)) {
1745 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1746 return (ENOBUFS);
1747 }
1748
1749 if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) {
1750 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1751 bus_dmamap_unload(sc->sc_dmatag, txmap);
1752 return (ENOBUFS);
1753 }
1754
1755 DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs));
1756
1757 /* Sync the DMA map. */
1758 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1759 BUS_DMASYNC_PREWRITE);
1760
1761 for (i = 0; i < txmap->dm_nsegs; i++) {
1762 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1763 f->sk_addr = htole32(txmap->dm_segs[i].ds_addr);
1764 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1765 f->sk_ctl = 0;
1766 if (i == 0)
1767 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1768 else
1769 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1770 cur = frag;
1771 SK_INC(frag, MSK_TX_RING_CNT);
1772 }
1773
1774 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1775 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1776
1777 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1778 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1779
1780 /* Sync descriptors before handing to chip */
1781 MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs,
1782 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1783
1784 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1785
1786 /* Sync first descriptor to hand it off */
1787 MSK_CDTXSYNC(sc_if, *txidx, 1,
1788 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1789
1790 sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs;
1791
1792 #ifdef MSK_DEBUG
1793 if (mskdebug >= 2) {
1794 struct msk_tx_desc *le;
1795 u_int32_t idx;
1796 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1797 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1798 msk_dump_txdesc(le, idx);
1799 }
1800 }
1801 #endif
1802
1803 *txidx = frag;
1804
1805 DPRINTFN(2, ("msk_encap: completed successfully\n"));
1806
1807 return (0);
1808 }
1809
1810 void
1811 msk_start(struct ifnet *ifp)
1812 {
1813 struct sk_if_softc *sc_if = ifp->if_softc;
1814 struct mbuf *m_head = NULL;
1815 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1816 int pkts = 0;
1817
1818 DPRINTFN(2, ("msk_start\n"));
1819
1820 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1821 IFQ_POLL(&ifp->if_snd, m_head);
1822 if (m_head == NULL)
1823 break;
1824
1825 /*
1826 * Pack the data into the transmit ring. If we
1827 * don't have room, set the OACTIVE flag and wait
1828 * for the NIC to drain the ring.
1829 */
1830 if (msk_encap(sc_if, m_head, &idx)) {
1831 ifp->if_flags |= IFF_OACTIVE;
1832 break;
1833 }
1834
1835 /* now we are committed to transmit the packet */
1836 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1837 pkts++;
1838
1839 /*
1840 * If there's a BPF listener, bounce a copy of this frame
1841 * to him.
1842 */
1843 bpf_mtap(ifp, m_head, BPF_D_OUT);
1844 }
1845 if (pkts == 0)
1846 return;
1847
1848 /* Transmit */
1849 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1850 sc_if->sk_cdata.sk_tx_prod = idx;
1851 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1852
1853 /* Set a timeout in case the chip goes out to lunch. */
1854 ifp->if_timer = 5;
1855 }
1856 }
1857
1858 void
1859 msk_watchdog(struct ifnet *ifp)
1860 {
1861 struct sk_if_softc *sc_if = ifp->if_softc;
1862
1863 /*
1864 * Reclaim first as there is a possibility of losing Tx completion
1865 * interrupts.
1866 */
1867 msk_txeof(sc_if);
1868 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1869 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1870
1871 ifp->if_oerrors++;
1872
1873 /* XXX Resets both ports; we shouldn't do that. */
1874 mskc_reset(sc_if->sk_softc);
1875 msk_reset(sc_if);
1876 msk_init(ifp);
1877 }
1878 }
1879
1880 static bool
1881 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1882 {
1883 struct sk_softc *sc = device_private(dv);
1884
1885 DPRINTFN(2, ("mskc_suspend\n"));
1886
1887 /* Turn off the 'driver is loaded' LED. */
1888 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1889
1890 return true;
1891 }
1892
1893 static bool
1894 mskc_resume(device_t dv, const pmf_qual_t *qual)
1895 {
1896 struct sk_softc *sc = device_private(dv);
1897
1898 DPRINTFN(2, ("mskc_resume\n"));
1899
1900 mskc_reset(sc);
1901 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1902
1903 return true;
1904 }
1905
1906 static __inline int
1907 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
1908 {
1909 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
1910 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
1911 YU_RXSTAT_JABBER)) != 0 ||
1912 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
1913 YU_RXSTAT_BYTES(stat) != len)
1914 return (0);
1915
1916 return (1);
1917 }
1918
1919 void
1920 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
1921 {
1922 struct sk_softc *sc = sc_if->sk_softc;
1923 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1924 struct mbuf *m;
1925 struct sk_chain *cur_rx;
1926 int cur, total_len = len;
1927 bus_dmamap_t dmamap;
1928
1929 DPRINTFN(2, ("msk_rxeof\n"));
1930
1931 cur = sc_if->sk_cdata.sk_rx_cons;
1932
1933 /* Sync the descriptor */
1934 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1935
1936 cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur];
1937 if (cur_rx->sk_mbuf == NULL)
1938 return;
1939
1940 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
1941 SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT);
1942 sc_if->sk_cdata.sk_rx_cnt--;
1943
1944 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
1945 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1946
1947 m = cur_rx->sk_mbuf;
1948 cur_rx->sk_mbuf = NULL;
1949
1950 if (total_len < SK_MIN_FRAMELEN ||
1951 total_len > ETHER_MAX_LEN_JUMBO ||
1952 msk_rxvalid(sc, rxstat, total_len) == 0) {
1953 ifp->if_ierrors++;
1954 m_freem(m);
1955 return;
1956 }
1957
1958 m_set_rcvif(m, ifp);
1959 m->m_pkthdr.len = m->m_len = total_len;
1960
1961 /* pass it on. */
1962 if_percpuq_enqueue(ifp->if_percpuq, m);
1963 }
1964
1965 void
1966 msk_txeof(struct sk_if_softc *sc_if)
1967 {
1968 struct sk_softc *sc = sc_if->sk_softc;
1969 struct msk_tx_desc *cur_tx;
1970 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1971 u_int32_t idx, reg, sk_ctl;
1972 struct sk_txmap_entry *entry;
1973
1974 DPRINTFN(2, ("msk_txeof\n"));
1975
1976 if (sc_if->sk_port == SK_PORT_A)
1977 reg = SK_STAT_BMU_TXA1_RIDX;
1978 else
1979 reg = SK_STAT_BMU_TXA2_RIDX;
1980
1981 /*
1982 * Go through our tx ring and free mbufs for those
1983 * frames that have been sent.
1984 */
1985 idx = sc_if->sk_cdata.sk_tx_cons;
1986 while (idx != sk_win_read_2(sc, reg)) {
1987 MSK_CDTXSYNC(sc_if, idx, 1,
1988 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1989
1990 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
1991 sk_ctl = cur_tx->sk_ctl;
1992 #ifdef MSK_DEBUG
1993 if (mskdebug >= 2)
1994 msk_dump_txdesc(cur_tx, idx);
1995 #endif
1996 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
1997 ifp->if_opackets++;
1998 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
1999 entry = sc_if->sk_cdata.sk_tx_map[idx];
2000
2001 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2002 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2003
2004 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2005 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2006
2007 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2008 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2009 link);
2010 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2011 }
2012 sc_if->sk_cdata.sk_tx_cnt--;
2013 SK_INC(idx, MSK_TX_RING_CNT);
2014 }
2015 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2016
2017 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2018 ifp->if_flags &= ~IFF_OACTIVE;
2019
2020 sc_if->sk_cdata.sk_tx_cons = idx;
2021 }
2022
2023 void
2024 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2025 {
2026 /* Make sure to not completely wrap around */
2027 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2028 if (msk_newbuf(sc_if,
2029 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2030 goto schedretry;
2031 }
2032 }
2033
2034 return;
2035
2036 schedretry:
2037 /* Try later */
2038 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2039 }
2040
2041 static void
2042 msk_fill_rx_tick(void *xsc_if)
2043 {
2044 struct sk_if_softc *sc_if = xsc_if;
2045 int s, rx_prod;
2046
2047 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2048
2049 s = splnet();
2050 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2051 msk_fill_rx_ring(sc_if);
2052 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2053 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2054 sc_if->sk_cdata.sk_rx_prod);
2055 }
2056 splx(s);
2057 }
2058
2059 void
2060 msk_tick(void *xsc_if)
2061 {
2062 struct sk_if_softc *sc_if = xsc_if;
2063 struct mii_data *mii = &sc_if->sk_mii;
2064 int s;
2065
2066 s = splnet();
2067 mii_tick(mii);
2068 splx(s);
2069
2070 callout_schedule(&sc_if->sk_tick_ch, hz);
2071 }
2072
2073 void
2074 msk_intr_yukon(struct sk_if_softc *sc_if)
2075 {
2076 u_int8_t status;
2077
2078 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2079 /* RX overrun */
2080 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2081 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2082 SK_RFCTL_RX_FIFO_OVER);
2083 }
2084 /* TX underrun */
2085 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2086 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2087 SK_TFCTL_TX_FIFO_UNDER);
2088 }
2089
2090 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2091 }
2092
2093 int
2094 msk_intr(void *xsc)
2095 {
2096 struct sk_softc *sc = xsc;
2097 struct sk_if_softc *sc_if;
2098 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2099 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2100 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2101 int claimed = 0;
2102 u_int32_t status;
2103 struct msk_status_desc *cur_st;
2104
2105 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2106 if (status == 0xffffffff)
2107 return (0);
2108 if (status == 0) {
2109 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2110 return (0);
2111 }
2112
2113 status = CSR_READ_4(sc, SK_ISR);
2114
2115 if (sc_if0 != NULL)
2116 ifp0 = &sc_if0->sk_ethercom.ec_if;
2117 if (sc_if1 != NULL)
2118 ifp1 = &sc_if1->sk_ethercom.ec_if;
2119
2120 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2121 (ifp0->if_flags & IFF_RUNNING)) {
2122 msk_intr_yukon(sc_if0);
2123 }
2124
2125 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2126 (ifp1->if_flags & IFF_RUNNING)) {
2127 msk_intr_yukon(sc_if1);
2128 }
2129
2130 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2131 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2132 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2133
2134 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2135 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2136 switch (cur_st->sk_opcode) {
2137 case SK_Y2_STOPC_RXSTAT:
2138 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2139 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2140 letoh32(cur_st->sk_status));
2141 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2142 msk_fill_rx_tick(sc_if);
2143 break;
2144 case SK_Y2_STOPC_TXSTAT:
2145 if (sc_if0)
2146 msk_txeof(sc_if0);
2147 if (sc_if1)
2148 msk_txeof(sc_if1);
2149 break;
2150 default:
2151 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2152 break;
2153 }
2154 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2155
2156 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2157 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2158 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2159 }
2160
2161 if (status & SK_Y2_IMR_BMU) {
2162 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2163 claimed = 1;
2164 }
2165
2166 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2167
2168 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2169 if_schedule_deferred_start(ifp0);
2170 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2171 if_schedule_deferred_start(ifp1);
2172
2173 KASSERT(sc->rnd_attached > 0);
2174 rnd_add_uint32(&sc->rnd_source, status);
2175
2176 if (sc->sk_int_mod_pending)
2177 msk_update_int_mod(sc, 1);
2178
2179 return claimed;
2180 }
2181
2182 void
2183 msk_init_yukon(struct sk_if_softc *sc_if)
2184 {
2185 u_int32_t v;
2186 u_int16_t reg;
2187 struct sk_softc *sc;
2188 int i;
2189
2190 sc = sc_if->sk_softc;
2191
2192 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2193 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2194
2195 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2196
2197 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2198 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2199
2200 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2201
2202 /* unused read of the interrupt source register */
2203 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2204 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2205
2206 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2207 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2208 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2209
2210 /* MIB Counter Clear Mode set */
2211 reg |= YU_PAR_MIB_CLR;
2212 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2213 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2214 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2215
2216 /* MIB Counter Clear Mode clear */
2217 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2218 reg &= ~YU_PAR_MIB_CLR;
2219 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2220
2221 /* receive control reg */
2222 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2223 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2224
2225 /* transmit control register */
2226 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2227
2228 /* transmit flow control register */
2229 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2230
2231 /* transmit parameter register */
2232 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2233 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2234 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2235
2236 /* serial mode register */
2237 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2238 reg = YU_SMR_DATA_BLIND(0x1c) |
2239 YU_SMR_MFL_VLAN |
2240 YU_SMR_IPG_DATA(0x1e);
2241
2242 if (sc->sk_type != SK_YUKON_FE &&
2243 sc->sk_type != SK_YUKON_FE_P)
2244 reg |= YU_SMR_MFL_JUMBO;
2245
2246 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2247
2248 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2249 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2250 /* msk_attach calls me before ether_ifattach so check null */
2251 if (ifp != NULL && ifp->if_sadl != NULL)
2252 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2253 sizeof(sc_if->sk_enaddr));
2254 /* Setup Yukon's address */
2255 for (i = 0; i < 3; i++) {
2256 /* Write Source Address 1 (unicast filter) */
2257 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2258 sc_if->sk_enaddr[i * 2] |
2259 sc_if->sk_enaddr[i * 2 + 1] << 8);
2260 }
2261
2262 for (i = 0; i < 3; i++) {
2263 reg = sk_win_read_2(sc_if->sk_softc,
2264 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2265 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2266 }
2267
2268 /* Set promiscuous mode */
2269 msk_setpromisc(sc_if);
2270
2271 /* Set multicast filter */
2272 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2273 msk_setmulti(sc_if);
2274
2275 /* enable interrupt mask for counter overflows */
2276 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2277 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2278 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2279 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2280
2281 /* Configure RX MAC FIFO Flush Mask */
2282 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2283 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2284 YU_RXSTAT_JABBER;
2285 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2286
2287 /* Configure RX MAC FIFO */
2288 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2289 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2290 SK_RFCTL_FIFO_FLUSH_ON);
2291
2292 /* Increase flush threshold to 64 bytes */
2293 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2294 SK_RFCTL_FIFO_THRESHOLD + 1);
2295
2296 /* Configure TX MAC FIFO */
2297 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2298 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2299
2300 #if 1
2301 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2302 #endif
2303 DPRINTFN(6, ("msk_init_yukon: end\n"));
2304 }
2305
2306 /*
2307 * Note that to properly initialize any part of the GEnesis chip,
2308 * you first have to take it out of reset mode.
2309 */
2310 int
2311 msk_init(struct ifnet *ifp)
2312 {
2313 struct sk_if_softc *sc_if = ifp->if_softc;
2314 struct sk_softc *sc = sc_if->sk_softc;
2315 int rc = 0, s;
2316 uint32_t imr, imtimer_ticks;
2317
2318
2319 DPRINTFN(2, ("msk_init\n"));
2320
2321 s = splnet();
2322
2323 /* Cancel pending I/O and free all RX/TX buffers. */
2324 msk_stop(ifp, 1);
2325
2326 /* Configure I2C registers */
2327
2328 /* Configure XMAC(s) */
2329 msk_init_yukon(sc_if);
2330 if ((rc = ether_mediachange(ifp)) != 0)
2331 goto out;
2332
2333 /* Configure transmit arbiter(s) */
2334 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2335 #if 0
2336 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2337 #endif
2338
2339 /* Configure RAMbuffers */
2340 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2341 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2342 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2343 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2344 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2345 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2346
2347 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2348 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2349 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2350 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2351 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2352 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2353 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2354
2355 /* Configure BMUs */
2356 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2357 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2358 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2359 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2360
2361 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2362 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2363 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2364 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2365
2366 /* Make sure the sync transmit queue is disabled. */
2367 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2368
2369 /* Init descriptors */
2370 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2371 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2372 "memory for rx buffers\n");
2373 msk_stop(ifp, 1);
2374 splx(s);
2375 return ENOBUFS;
2376 }
2377
2378 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2379 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2380 "memory for tx buffers\n");
2381 msk_stop(ifp, 1);
2382 splx(s);
2383 return ENOBUFS;
2384 }
2385
2386 /* Set interrupt moderation if changed via sysctl. */
2387 switch (sc->sk_type) {
2388 case SK_YUKON_EC:
2389 case SK_YUKON_EC_U:
2390 case SK_YUKON_EX:
2391 case SK_YUKON_SUPR:
2392 case SK_YUKON_ULTRA2:
2393 case SK_YUKON_OPTIMA:
2394 case SK_YUKON_PRM:
2395 case SK_YUKON_OPTIMA2:
2396 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2397 break;
2398 case SK_YUKON_FE:
2399 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2400 break;
2401 case SK_YUKON_FE_P:
2402 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2403 break;
2404 case SK_YUKON_XL:
2405 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2406 break;
2407 default:
2408 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2409 }
2410 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2411 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2412 sk_win_write_4(sc, SK_IMTIMERINIT,
2413 SK_IM_USECS(sc->sk_int_mod));
2414 aprint_verbose_dev(sc->sk_dev,
2415 "interrupt moderation is %d us\n", sc->sk_int_mod);
2416 }
2417
2418 /* Initialize prefetch engine. */
2419 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2420 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2421 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2422 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2423 MSK_RX_RING_ADDR(sc_if, 0));
2424 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2425 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2426 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2427 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2428
2429 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2430 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2431 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2432 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2433 MSK_TX_RING_ADDR(sc_if, 0));
2434 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2435 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2436 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2437 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2438
2439 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2440 sc_if->sk_cdata.sk_rx_prod);
2441
2442 /* Configure interrupt handling */
2443 if (sc_if->sk_port == SK_PORT_A)
2444 sc->sk_intrmask |= SK_Y2_INTRS1;
2445 else
2446 sc->sk_intrmask |= SK_Y2_INTRS2;
2447 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2448 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2449
2450 ifp->if_flags |= IFF_RUNNING;
2451 ifp->if_flags &= ~IFF_OACTIVE;
2452
2453 callout_schedule(&sc_if->sk_tick_ch, hz);
2454
2455 out:
2456 splx(s);
2457 return rc;
2458 }
2459
2460 /*
2461 * Note: the logic of second parameter is inverted compared to OpenBSD
2462 * code, since this code uses the function as if_stop hook too.
2463 */
2464 void
2465 msk_stop(struct ifnet *ifp, int disable)
2466 {
2467 struct sk_if_softc *sc_if = ifp->if_softc;
2468 struct sk_softc *sc = sc_if->sk_softc;
2469 struct sk_txmap_entry *dma;
2470 int i;
2471
2472 DPRINTFN(2, ("msk_stop\n"));
2473
2474 callout_stop(&sc_if->sk_tick_ch);
2475 callout_stop(&sc_if->sk_tick_rx);
2476
2477 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2478
2479 /* Stop transfer of Tx descriptors */
2480
2481 /* Stop transfer of Rx descriptors */
2482
2483 if (disable) {
2484 /* Turn off various components of this interface. */
2485 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2486 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2487 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2488 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2489 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2490 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2491 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2492 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2493 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2494 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2495 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2496
2497 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2498 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2499
2500 /* Disable interrupts */
2501 if (sc_if->sk_port == SK_PORT_A)
2502 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2503 else
2504 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2505 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2506 }
2507
2508 /* Free RX and TX mbufs still in the queues. */
2509 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2510 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2511 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2512 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2513 }
2514 }
2515
2516 sc_if->sk_cdata.sk_rx_prod = 0;
2517 sc_if->sk_cdata.sk_rx_cons = 0;
2518 sc_if->sk_cdata.sk_rx_cnt = 0;
2519
2520 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2521 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2522 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2523 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2524 #if 1
2525 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2526 sc_if->sk_cdata.sk_tx_map[i], link);
2527 sc_if->sk_cdata.sk_tx_map[i] = 0;
2528 #endif
2529 }
2530 }
2531
2532 #if 1
2533 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2534 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2535 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2536 free(dma, M_DEVBUF);
2537 }
2538 #endif
2539 }
2540
2541 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2542 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2543
2544 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2545 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2546
2547 #ifdef MSK_DEBUG
2548 void
2549 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2550 {
2551 #define DESC_PRINT(X) \
2552 if (X) \
2553 printf("txdesc[%d]." #X "=%#x\n", \
2554 idx, X);
2555
2556 DESC_PRINT(letoh32(le->sk_addr));
2557 DESC_PRINT(letoh16(le->sk_len));
2558 DESC_PRINT(le->sk_ctl);
2559 DESC_PRINT(le->sk_opcode);
2560 #undef DESC_PRINT
2561 }
2562
2563 void
2564 msk_dump_bytes(const char *data, int len)
2565 {
2566 int c, i, j;
2567
2568 for (i = 0; i < len; i += 16) {
2569 printf("%08x ", i);
2570 c = len - i;
2571 if (c > 16) c = 16;
2572
2573 for (j = 0; j < c; j++) {
2574 printf("%02x ", data[i + j] & 0xff);
2575 if ((j & 0xf) == 7 && j > 0)
2576 printf(" ");
2577 }
2578
2579 for (; j < 16; j++)
2580 printf(" ");
2581 printf(" ");
2582
2583 for (j = 0; j < c; j++) {
2584 int ch = data[i + j] & 0xff;
2585 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2586 }
2587
2588 printf("\n");
2589
2590 if (c < 16)
2591 break;
2592 }
2593 }
2594
2595 void
2596 msk_dump_mbuf(struct mbuf *m)
2597 {
2598 int count = m->m_pkthdr.len;
2599
2600 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2601
2602 while (count > 0 && m) {
2603 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2604 m, m->m_data, m->m_len);
2605 msk_dump_bytes(mtod(m, char *), m->m_len);
2606
2607 count -= m->m_len;
2608 m = m->m_next;
2609 }
2610 }
2611 #endif
2612
2613 static int
2614 msk_sysctl_handler(SYSCTLFN_ARGS)
2615 {
2616 int error, t;
2617 struct sysctlnode node;
2618 struct sk_softc *sc;
2619
2620 node = *rnode;
2621 sc = node.sysctl_data;
2622 t = sc->sk_int_mod;
2623 node.sysctl_data = &t;
2624 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2625 if (error || newp == NULL)
2626 return error;
2627
2628 if (t < SK_IM_MIN || t > SK_IM_MAX)
2629 return EINVAL;
2630
2631 /* update the softc with sysctl-changed value, and mark
2632 for hardware update */
2633 sc->sk_int_mod = t;
2634 sc->sk_int_mod_pending = 1;
2635 return 0;
2636 }
2637
2638 /*
2639 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2640 * set up in mskc_attach()
2641 */
2642 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2643 {
2644 int rc;
2645 const struct sysctlnode *node;
2646
2647 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2648 0, CTLTYPE_NODE, "msk",
2649 SYSCTL_DESCR("msk interface controls"),
2650 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2651 goto err;
2652 }
2653
2654 msk_root_num = node->sysctl_num;
2655 return;
2656
2657 err:
2658 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2659 }
2660