if_msk.c revision 1.82 1 /* $NetBSD: if_msk.c,v 1.82 2018/12/27 08:13:50 mrg Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.82 2018/12/27 08:13:50 mrg Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int);
128 void msk_miibus_writereg(device_t, int, int, int);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n,x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
155
156 /* supported device vendors */
157 static const struct msk_product {
158 pci_vendor_id_t msk_vendor;
159 pci_product_id_t msk_product;
160 } msk_products[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
199 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 { 0, 0 }
203 };
204
205 static inline u_int32_t
206 sk_win_read_4(struct sk_softc *sc, u_int32_t reg)
207 {
208 return CSR_READ_4(sc, reg);
209 }
210
211 static inline u_int16_t
212 sk_win_read_2(struct sk_softc *sc, u_int32_t reg)
213 {
214 return CSR_READ_2(sc, reg);
215 }
216
217 static inline u_int8_t
218 sk_win_read_1(struct sk_softc *sc, u_int32_t reg)
219 {
220 return CSR_READ_1(sc, reg);
221 }
222
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x)
225 {
226 CSR_WRITE_4(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x)
231 {
232 CSR_WRITE_2(sc, reg, x);
233 }
234
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x)
237 {
238 CSR_WRITE_1(sc, reg, x);
239 }
240
241 int
242 msk_miibus_readreg(device_t dev, int phy, int reg)
243 {
244 struct sk_if_softc *sc_if = device_private(dev);
245 u_int16_t val;
246 int i;
247
248 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250
251 for (i = 0; i < SK_TIMEOUT; i++) {
252 DELAY(1);
253 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 if (val & YU_SMICR_READ_VALID)
255 break;
256 }
257
258 if (i == SK_TIMEOUT) {
259 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 return (0);
261 }
262
263 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
264 SK_TIMEOUT));
265
266 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
267
268 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
269 phy, reg, val));
270
271 return (val);
272 }
273
274 void
275 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
276 {
277 struct sk_if_softc *sc_if = device_private(dev);
278 int i;
279
280 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
281 phy, reg, val));
282
283 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
284 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
285 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
286
287 for (i = 0; i < SK_TIMEOUT; i++) {
288 DELAY(1);
289 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
290 break;
291 }
292
293 if (i == SK_TIMEOUT)
294 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
295 }
296
297 void
298 msk_miibus_statchg(struct ifnet *ifp)
299 {
300 struct sk_if_softc *sc_if = ifp->if_softc;
301 struct mii_data *mii = &sc_if->sk_mii;
302 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
303 int gpcr;
304
305 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
306 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
307
308 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
309 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
310 /* Set speed. */
311 gpcr |= YU_GPCR_SPEED_DIS;
312 switch (IFM_SUBTYPE(mii->mii_media_active)) {
313 case IFM_1000_SX:
314 case IFM_1000_LX:
315 case IFM_1000_CX:
316 case IFM_1000_T:
317 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
318 break;
319 case IFM_100_TX:
320 gpcr |= YU_GPCR_SPEED;
321 break;
322 }
323
324 /* Set duplex. */
325 gpcr |= YU_GPCR_DPLX_DIS;
326 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
327 gpcr |= YU_GPCR_DUPLEX;
328
329 /* Disable flow control. */
330 gpcr |= YU_GPCR_FCTL_DIS;
331 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
332 }
333
334 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
335
336 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
337 SK_YU_READ_2(sc_if, YUKON_GPCR)));
338 }
339
340 void
341 msk_setmulti(struct sk_if_softc *sc_if)
342 {
343 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
344 u_int32_t hashes[2] = { 0, 0 };
345 int h;
346 struct ethercom *ec = &sc_if->sk_ethercom;
347 struct ether_multi *enm;
348 struct ether_multistep step;
349 u_int16_t reg;
350
351 /* First, zot all the existing filters. */
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
356
357
358 /* Now program new ones. */
359 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
360 reg |= YU_RCR_UFLEN;
361 allmulti:
362 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
363 if ((ifp->if_flags & IFF_PROMISC) != 0)
364 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
365 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
366 hashes[0] = 0xFFFFFFFF;
367 hashes[1] = 0xFFFFFFFF;
368 }
369 } else {
370 /* First find the tail of the list. */
371 ETHER_FIRST_MULTI(step, ec, enm);
372 while (enm != NULL) {
373 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
374 ETHER_ADDR_LEN)) {
375 ifp->if_flags |= IFF_ALLMULTI;
376 goto allmulti;
377 }
378 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
379 ((1 << SK_HASH_BITS) - 1);
380 if (h < 32)
381 hashes[0] |= (1 << h);
382 else
383 hashes[1] |= (1 << (h - 32));
384
385 ETHER_NEXT_MULTI(step, enm);
386 }
387 reg |= YU_RCR_MUFLEN;
388 }
389
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
395 }
396
397 void
398 msk_setpromisc(struct sk_if_softc *sc_if)
399 {
400 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
401
402 if (ifp->if_flags & IFF_PROMISC)
403 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
404 YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 else
406 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 }
409
410 int
411 msk_init_rx_ring(struct sk_if_softc *sc_if)
412 {
413 struct msk_chain_data *cd = &sc_if->sk_cdata;
414 struct msk_ring_data *rd = sc_if->sk_rdata;
415 struct msk_rx_desc *r;
416 int i, nexti;
417
418 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
419
420 for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
422 if (i == (MSK_RX_RING_CNT - 1))
423 nexti = 0;
424 else
425 nexti = i + 1;
426 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
427 }
428
429 sc_if->sk_cdata.sk_rx_prod = 0;
430 sc_if->sk_cdata.sk_rx_cons = 0;
431 sc_if->sk_cdata.sk_rx_cnt = 0;
432 sc_if->sk_cdata.sk_rx_hiaddr = 0;
433
434 /* Mark the first ring element to initialize the high address. */
435 sc_if->sk_cdata.sk_rx_hiaddr = 0;
436 r = &rd->sk_rx_ring[cd->sk_rx_prod];
437 r->sk_addr = htole32(cd->sk_rx_hiaddr);
438 r->sk_len = 0;
439 r->sk_ctl = 0;
440 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
441 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
442 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
443 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
444 sc_if->sk_cdata.sk_rx_cnt++;
445
446 msk_fill_rx_ring(sc_if);
447 return (0);
448 }
449
450 int
451 msk_init_tx_ring(struct sk_if_softc *sc_if)
452 {
453 struct sk_softc *sc = sc_if->sk_softc;
454 struct msk_chain_data *cd = &sc_if->sk_cdata;
455 struct msk_ring_data *rd = sc_if->sk_rdata;
456 struct msk_tx_desc *t;
457 bus_dmamap_t dmamap;
458 struct sk_txmap_entry *entry;
459 int i, nexti;
460
461 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
462
463 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
464 for (i = 0; i < MSK_TX_RING_CNT; i++) {
465 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
466 if (i == (MSK_TX_RING_CNT - 1))
467 nexti = 0;
468 else
469 nexti = i + 1;
470 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
471
472 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
473 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
474 return (ENOBUFS);
475
476 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
477 if (!entry) {
478 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
479 return (ENOBUFS);
480 }
481 entry->dmamap = dmamap;
482 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
483 }
484
485 sc_if->sk_cdata.sk_tx_prod = 0;
486 sc_if->sk_cdata.sk_tx_cons = 0;
487 sc_if->sk_cdata.sk_tx_cnt = 0;
488 sc_if->sk_cdata.sk_tx_hiaddr = 0;
489
490 /* Mark the first ring element to initialize the high address. */
491 sc_if->sk_cdata.sk_tx_hiaddr = 0;
492 t = &rd->sk_tx_ring[cd->sk_tx_prod];
493 t->sk_addr = htole32(cd->sk_tx_hiaddr);
494 t->sk_len = 0;
495 t->sk_ctl = 0;
496 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
497 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
498 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
499 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
500 sc_if->sk_cdata.sk_tx_cnt++;
501
502 return (0);
503 }
504
505 int
506 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
507 {
508 struct mbuf *m_new = NULL;
509 struct sk_chain *c;
510 struct msk_rx_desc *r;
511 void *buf = NULL;
512 bus_addr_t addr;
513
514 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
515 if (m_new == NULL)
516 return (ENOBUFS);
517
518 /* Allocate the jumbo buffer */
519 buf = msk_jalloc(sc_if);
520 if (buf == NULL) {
521 m_freem(m_new);
522 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
523 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
524 return (ENOBUFS);
525 }
526
527 /* Attach the buffer to the mbuf */
528 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
529 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
530
531 m_adj(m_new, ETHER_ALIGN);
532
533 addr = dmamap->dm_segs[0].ds_addr +
534 ((vaddr_t)m_new->m_data -
535 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
536
537 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
538 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
539 r = c->sk_le;
540 c->sk_mbuf = NULL;
541 r->sk_addr = htole32(MSK_ADDR_HI(addr));
542 r->sk_len = 0;
543 r->sk_ctl = 0;
544 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
545 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
546
547 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
548 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
549
550 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
551 sc_if->sk_cdata.sk_rx_cnt++;
552
553 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
554 sc_if->sk_ethercom.ec_if.if_xname, (unsigned)MSK_ADDR_HI(addr)));
555 }
556
557 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
558 r = c->sk_le;
559 c->sk_mbuf = m_new;
560 r->sk_addr = htole32(MSK_ADDR_LO(addr));
561 r->sk_len = htole16(SK_JLEN);
562 r->sk_ctl = 0;
563 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
564
565 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
566 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
567
568 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
569 sc_if->sk_cdata.sk_rx_cnt++;
570
571 return (0);
572 }
573
574 /*
575 * Memory management for jumbo frames.
576 */
577
578 int
579 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
580 {
581 struct sk_softc *sc = sc_if->sk_softc;
582 char *ptr, *kva;
583 int i, state, error;
584 struct sk_jpool_entry *entry;
585
586 state = error = 0;
587
588 /* Grab a big chunk o' storage. */
589 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
590 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
591 BUS_DMA_NOWAIT)) {
592 aprint_error(": can't alloc rx buffers");
593 return (ENOBUFS);
594 }
595
596 state = 1;
597 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
598 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
599 BUS_DMA_NOWAIT)) {
600 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
601 error = ENOBUFS;
602 goto out;
603 }
604
605 state = 2;
606 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
607 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
608 aprint_error(": can't create dma map");
609 error = ENOBUFS;
610 goto out;
611 }
612
613 state = 3;
614 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
615 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
616 aprint_error(": can't load dma map");
617 error = ENOBUFS;
618 goto out;
619 }
620
621 state = 4;
622 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
623 DPRINTFN(1,("msk_jumbo_buf = %p\n", (void *)sc_if->sk_cdata.sk_jumbo_buf));
624
625 LIST_INIT(&sc_if->sk_jfree_listhead);
626 LIST_INIT(&sc_if->sk_jinuse_listhead);
627 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
628
629 /*
630 * Now divide it up into 9K pieces and save the addresses
631 * in an array.
632 */
633 ptr = sc_if->sk_cdata.sk_jumbo_buf;
634 for (i = 0; i < MSK_JSLOTS; i++) {
635 sc_if->sk_cdata.sk_jslots[i] = ptr;
636 ptr += SK_JLEN;
637 entry = malloc(sizeof(struct sk_jpool_entry),
638 M_DEVBUF, M_NOWAIT);
639 if (entry == NULL) {
640 sc_if->sk_cdata.sk_jumbo_buf = NULL;
641 aprint_error(": no memory for jumbo buffer queue!");
642 error = ENOBUFS;
643 goto out;
644 }
645 entry->slot = i;
646 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
647 entry, jpool_entries);
648 }
649 out:
650 if (error != 0) {
651 switch (state) {
652 case 4:
653 bus_dmamap_unload(sc->sc_dmatag,
654 sc_if->sk_cdata.sk_rx_jumbo_map);
655 case 3:
656 bus_dmamap_destroy(sc->sc_dmatag,
657 sc_if->sk_cdata.sk_rx_jumbo_map);
658 case 2:
659 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
660 case 1:
661 bus_dmamem_free(sc->sc_dmatag,
662 &sc_if->sk_cdata.sk_jumbo_seg,
663 sc_if->sk_cdata.sk_jumbo_nseg);
664 break;
665 default:
666 break;
667 }
668 }
669
670 return error;
671 }
672
673 static void
674 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
675 {
676 struct sk_softc *sc = sc_if->sk_softc;
677
678 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
679 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
680 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
681 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
682 sc_if->sk_cdata.sk_jumbo_nseg);
683 }
684
685 /*
686 * Allocate a jumbo buffer.
687 */
688 void *
689 msk_jalloc(struct sk_if_softc *sc_if)
690 {
691 struct sk_jpool_entry *entry;
692
693 mutex_enter(&sc_if->sk_jpool_mtx);
694 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
695
696 if (entry == NULL) {
697 mutex_exit(&sc_if->sk_jpool_mtx);
698 return NULL;
699 }
700
701 LIST_REMOVE(entry, jpool_entries);
702 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
703 mutex_exit(&sc_if->sk_jpool_mtx);
704 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
705 }
706
707 /*
708 * Release a jumbo buffer.
709 */
710 void
711 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
712 {
713 struct sk_jpool_entry *entry;
714 struct sk_if_softc *sc;
715 int i;
716
717 /* Extract the softc struct pointer. */
718 sc = (struct sk_if_softc *)arg;
719
720 if (sc == NULL)
721 panic("msk_jfree: can't find softc pointer!");
722
723 /* calculate the slot this buffer belongs to */
724 i = ((vaddr_t)buf
725 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
726
727 if ((i < 0) || (i >= MSK_JSLOTS))
728 panic("msk_jfree: asked to free buffer that we don't manage!");
729
730 mutex_enter(&sc->sk_jpool_mtx);
731 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
732 if (entry == NULL)
733 panic("msk_jfree: buffer not in use!");
734 entry->slot = i;
735 LIST_REMOVE(entry, jpool_entries);
736 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
737 mutex_exit(&sc->sk_jpool_mtx);
738
739 if (__predict_true(m != NULL))
740 pool_cache_put(mb_cache, m);
741
742 /* Now that we know we have a free RX buffer, refill if running out */
743 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
744 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
745 callout_schedule(&sc->sk_tick_rx, 0);
746 }
747
748 int
749 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
750 {
751 struct sk_if_softc *sc = ifp->if_softc;
752 int s, error;
753
754 s = splnet();
755
756 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
757 switch (cmd) {
758 case SIOCSIFFLAGS:
759 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
760 break;
761
762 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
763 case IFF_RUNNING:
764 msk_stop(ifp, 1);
765 break;
766 case IFF_UP:
767 msk_init(ifp);
768 break;
769 case IFF_UP | IFF_RUNNING:
770 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
771 msk_setpromisc(sc);
772 msk_setmulti(sc);
773 } else
774 msk_init(ifp);
775 break;
776 }
777 sc->sk_if_flags = ifp->if_flags;
778 break;
779 default:
780 error = ether_ioctl(ifp, cmd, data);
781 if (error == ENETRESET) {
782 error = 0;
783 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
784 ;
785 else if (ifp->if_flags & IFF_RUNNING) {
786 /*
787 * Multicast list has changed; set the hardware
788 * filter accordingly.
789 */
790 msk_setmulti(sc);
791 }
792 }
793 break;
794 }
795
796 splx(s);
797 return error;
798 }
799
800 void
801 msk_update_int_mod(struct sk_softc *sc, int verbose)
802 {
803 u_int32_t imtimer_ticks;
804
805 /*
806 * Configure interrupt moderation. The moderation timer
807 * defers interrupts specified in the interrupt moderation
808 * timer mask based on the timeout specified in the interrupt
809 * moderation timer init register. Each bit in the timer
810 * register represents one tick, so to specify a timeout in
811 * microseconds, we have to multiply by the correct number of
812 * ticks-per-microsecond.
813 */
814 switch (sc->sk_type) {
815 case SK_YUKON_EC:
816 case SK_YUKON_EC_U:
817 case SK_YUKON_EX:
818 case SK_YUKON_SUPR:
819 case SK_YUKON_ULTRA2:
820 case SK_YUKON_OPTIMA:
821 case SK_YUKON_PRM:
822 case SK_YUKON_OPTIMA2:
823 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
824 break;
825 case SK_YUKON_FE:
826 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
827 break;
828 case SK_YUKON_FE_P:
829 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
830 break;
831 case SK_YUKON_XL:
832 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
833 break;
834 default:
835 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
836 }
837 if (verbose)
838 aprint_verbose_dev(sc->sk_dev,
839 "interrupt moderation is %d us\n", sc->sk_int_mod);
840 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
841 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
842 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
843 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
844 sc->sk_int_mod_pending = 0;
845 }
846
847 static int
848 msk_lookup(const struct pci_attach_args *pa)
849 {
850 const struct msk_product *pmsk;
851
852 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
853 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
854 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
855 return 1;
856 }
857 return 0;
858 }
859
860 /*
861 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
862 * IDs against our list and return a device name if we find a match.
863 */
864 int
865 mskc_probe(device_t parent, cfdata_t match, void *aux)
866 {
867 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
868
869 return msk_lookup(pa);
870 }
871
872 /*
873 * Force the GEnesis into reset, then bring it out of reset.
874 */
875 void
876 mskc_reset(struct sk_softc *sc)
877 {
878 u_int32_t imtimer_ticks, reg1;
879 int reg;
880
881 DPRINTFN(2, ("mskc_reset\n"));
882
883 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
884 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
885
886 DELAY(1000);
887 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
888 DELAY(2);
889 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
890 sk_win_write_1(sc, SK_TESTCTL1, 2);
891
892 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
893 sc->sk_type >= SK_YUKON_FE_P) {
894 uint32_t our;
895
896 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
897
898 /* enable all clocks. */
899 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
900 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
901 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
902 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
903 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
904 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
905 /* Set all bits to 0 except bits 15..12 */
906 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
907 /* Set to default value */
908 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
909
910 /*
911 * Disable status race, workaround for Yukon EC Ultra &
912 * Yukon EX.
913 */
914 reg1 = sk_win_read_4(sc, SK_GPIO);
915 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
916 sk_win_write_4(sc, SK_GPIO, reg1);
917 sk_win_read_4(sc, SK_GPIO);
918 }
919
920 /* release PHY from PowerDown/Coma mode. */
921 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
922 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
923 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
924 else
925 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
926 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
927
928 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
929 sk_win_write_1(sc, SK_Y2_CLKGATE,
930 SK_Y2_CLKGATE_LINK1_GATE_DIS |
931 SK_Y2_CLKGATE_LINK2_GATE_DIS |
932 SK_Y2_CLKGATE_LINK1_CORE_DIS |
933 SK_Y2_CLKGATE_LINK2_CORE_DIS |
934 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
935 else
936 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
937
938 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
939 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
940 DELAY(1000);
941 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
942 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
943
944 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
945 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
946 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
947 }
948
949 sk_win_write_1(sc, SK_TESTCTL1, 1);
950
951 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
952 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
953 CSR_READ_2(sc, SK_LINK_CTRL)));
954
955 /* Disable ASF */
956 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
957 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
958
959 /* Clear I2C IRQ noise */
960 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
961
962 /* Disable hardware timer */
963 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
964 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
965
966 /* Disable descriptor polling */
967 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
968
969 /* Disable time stamps */
970 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
971 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
972
973 /* Enable RAM interface */
974 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
975 for (reg = SK_TO0;reg <= SK_TO11; reg++)
976 sk_win_write_1(sc, reg, 36);
977 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
978 for (reg = SK_TO0;reg <= SK_TO11; reg++)
979 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
980
981 /*
982 * Configure interrupt moderation. The moderation timer
983 * defers interrupts specified in the interrupt moderation
984 * timer mask based on the timeout specified in the interrupt
985 * moderation timer init register. Each bit in the timer
986 * register represents one tick, so to specify a timeout in
987 * microseconds, we have to multiply by the correct number of
988 * ticks-per-microsecond.
989 */
990 switch (sc->sk_type) {
991 case SK_YUKON_EC:
992 case SK_YUKON_EC_U:
993 case SK_YUKON_EX:
994 case SK_YUKON_SUPR:
995 case SK_YUKON_ULTRA2:
996 case SK_YUKON_OPTIMA:
997 case SK_YUKON_PRM:
998 case SK_YUKON_OPTIMA2:
999 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1000 break;
1001 case SK_YUKON_FE:
1002 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1003 break;
1004 case SK_YUKON_FE_P:
1005 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1006 break;
1007 case SK_YUKON_XL:
1008 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1009 break;
1010 default:
1011 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1012 break;
1013 }
1014
1015 /* Reset status ring. */
1016 memset(sc->sk_status_ring, 0,
1017 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1018 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1019 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1020 sc->sk_status_idx = 0;
1021
1022 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1023 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1024
1025 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1026 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1027 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1028 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1029 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1030 if (sc->sk_type == SK_YUKON_EC &&
1031 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1032 /* WA for dev. #4.3 */
1033 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, SK_STAT_BMU_TXTHIDX_MSK);
1034 /* WA for dev. #4.18 */
1035 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1036 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1037 } else {
1038 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1039 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1040 if (sc->sk_type == SK_YUKON_XL)
1041 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1042 else
1043 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1044 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1045 }
1046
1047 #if 0
1048 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1049 #endif
1050 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1051
1052 /* Enable status unit. */
1053 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1054
1055 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1056 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1057 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1058
1059 msk_update_int_mod(sc, 0);
1060 }
1061
1062 int
1063 msk_probe(device_t parent, cfdata_t match, void *aux)
1064 {
1065 struct skc_attach_args *sa = aux;
1066
1067 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1068 return (0);
1069
1070 switch (sa->skc_type) {
1071 case SK_YUKON_XL:
1072 case SK_YUKON_EC_U:
1073 case SK_YUKON_EX:
1074 case SK_YUKON_EC:
1075 case SK_YUKON_FE:
1076 case SK_YUKON_FE_P:
1077 case SK_YUKON_SUPR:
1078 case SK_YUKON_ULTRA2:
1079 case SK_YUKON_OPTIMA:
1080 case SK_YUKON_PRM:
1081 case SK_YUKON_OPTIMA2:
1082 return (1);
1083 }
1084
1085 return (0);
1086 }
1087
1088 void
1089 msk_reset(struct sk_if_softc *sc_if)
1090 {
1091 /* GMAC and GPHY Reset */
1092 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1093 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1094 DELAY(1000);
1095 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1096 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1097 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1098 }
1099
1100 static bool
1101 msk_resume(device_t dv, const pmf_qual_t *qual)
1102 {
1103 struct sk_if_softc *sc_if = device_private(dv);
1104
1105 msk_init_yukon(sc_if);
1106 return true;
1107 }
1108
1109 /*
1110 * Each XMAC chip is attached as a separate logical IP interface.
1111 * Single port cards will have only one logical interface of course.
1112 */
1113 void
1114 msk_attach(device_t parent, device_t self, void *aux)
1115 {
1116 struct sk_if_softc *sc_if = device_private(self);
1117 struct sk_softc *sc = device_private(parent);
1118 struct skc_attach_args *sa = aux;
1119 struct ifnet *ifp;
1120 void *kva;
1121 int i;
1122 u_int32_t chunk;
1123 int mii_flags;
1124
1125 sc_if->sk_dev = self;
1126 sc_if->sk_port = sa->skc_port;
1127 sc_if->sk_softc = sc;
1128 sc->sk_if[sa->skc_port] = sc_if;
1129
1130 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1131
1132 /*
1133 * Get station address for this interface. Note that
1134 * dual port cards actually come with three station
1135 * addresses: one for each port, plus an extra. The
1136 * extra one is used by the SysKonnect driver software
1137 * as a 'virtual' station address for when both ports
1138 * are operating in failover mode. Currently we don't
1139 * use this extra address.
1140 */
1141 for (i = 0; i < ETHER_ADDR_LEN; i++)
1142 sc_if->sk_enaddr[i] =
1143 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1144
1145 aprint_normal(": Ethernet address %s\n",
1146 ether_sprintf(sc_if->sk_enaddr));
1147
1148 /*
1149 * Set up RAM buffer addresses. The Yukon2 has a small amount
1150 * of SRAM on it, somewhere between 4K and 48K. We need to
1151 * divide this up between the transmitter and receiver. We
1152 * give the receiver 2/3 of the memory (rounded down), and the
1153 * transmitter whatever remains.
1154 */
1155 if (sc->sk_ramsize) {
1156 chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff;
1157 sc_if->sk_rx_ramstart = 0;
1158 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1159 chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk;
1160 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1161 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1162
1163 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1164 " tx_ramstart=%#x tx_ramend=%#x\n",
1165 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1166 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1167 }
1168
1169 /* Allocate the descriptor queues. */
1170 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1171 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1172 BUS_DMA_NOWAIT)) {
1173 aprint_error(": can't alloc rx buffers\n");
1174 goto fail;
1175 }
1176 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1177 sc_if->sk_ring_nseg,
1178 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1179 aprint_error(": can't map dma buffers (%zu bytes)\n",
1180 sizeof(struct msk_ring_data));
1181 goto fail_1;
1182 }
1183 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1184 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1185 &sc_if->sk_ring_map)) {
1186 aprint_error(": can't create dma map\n");
1187 goto fail_2;
1188 }
1189 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1190 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1191 aprint_error(": can't load dma map\n");
1192 goto fail_3;
1193 }
1194 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1195 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1196
1197 if (sc->sk_type != SK_YUKON_FE &&
1198 sc->sk_type != SK_YUKON_FE_P)
1199 sc_if->sk_pktlen = SK_JLEN;
1200 else
1201 sc_if->sk_pktlen = MCLBYTES;
1202
1203 /* Try to allocate memory for jumbo buffers. */
1204 if (msk_alloc_jumbo_mem(sc_if)) {
1205 aprint_error(": jumbo buffer allocation failed\n");
1206 goto fail_3;
1207 }
1208
1209 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1210 if (sc->sk_type != SK_YUKON_FE &&
1211 sc->sk_type != SK_YUKON_FE_P)
1212 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1213
1214 ifp = &sc_if->sk_ethercom.ec_if;
1215 ifp->if_softc = sc_if;
1216 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1217 ifp->if_ioctl = msk_ioctl;
1218 ifp->if_start = msk_start;
1219 ifp->if_stop = msk_stop;
1220 ifp->if_init = msk_init;
1221 ifp->if_watchdog = msk_watchdog;
1222 ifp->if_baudrate = 1000000000;
1223 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1224 IFQ_SET_READY(&ifp->if_snd);
1225 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1226
1227 msk_reset(sc_if);
1228
1229 /*
1230 * Do miibus setup.
1231 */
1232 msk_init_yukon(sc_if);
1233
1234 DPRINTFN(2, ("msk_attach: 1\n"));
1235
1236 sc_if->sk_mii.mii_ifp = ifp;
1237 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1238 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1239 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1240
1241 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1242 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1243 ether_mediachange, ether_mediastatus);
1244 mii_flags = MIIF_DOPAUSE;
1245 if (sc->sk_fibertype)
1246 mii_flags |= MIIF_HAVEFIBER;
1247 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1248 MII_OFFSET_ANY, mii_flags);
1249 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1250 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1251 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1252 0, NULL);
1253 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1254 } else
1255 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1256
1257 callout_init(&sc_if->sk_tick_ch, 0);
1258 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1259 callout_schedule(&sc_if->sk_tick_ch, hz);
1260
1261 callout_init(&sc_if->sk_tick_rx, 0);
1262 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1263
1264 /*
1265 * Call MI attach routines.
1266 */
1267 if_attach(ifp);
1268 if_deferred_start_init(ifp, NULL);
1269 ether_ifattach(ifp, sc_if->sk_enaddr);
1270
1271 if (pmf_device_register(self, NULL, msk_resume))
1272 pmf_class_network_register(self, ifp);
1273 else
1274 aprint_error_dev(self, "couldn't establish power handler\n");
1275
1276 if (sc->rnd_attached++ == 0) {
1277 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1278 RND_TYPE_NET, RND_FLAG_DEFAULT);
1279 }
1280
1281 DPRINTFN(2, ("msk_attach: end\n"));
1282 return;
1283
1284 fail_3:
1285 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1286 fail_2:
1287 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1288 fail_1:
1289 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1290 fail:
1291 sc->sk_if[sa->skc_port] = NULL;
1292 }
1293
1294 int
1295 msk_detach(device_t self, int flags)
1296 {
1297 struct sk_if_softc *sc_if = device_private(self);
1298 struct sk_softc *sc = sc_if->sk_softc;
1299 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1300
1301 if (sc->sk_if[sc_if->sk_port] == NULL)
1302 return (0);
1303
1304 msk_stop(ifp, 1);
1305
1306 if (--sc->rnd_attached == 0)
1307 rnd_detach_source(&sc->rnd_source);
1308
1309 callout_halt(&sc_if->sk_tick_ch, NULL);
1310 callout_destroy(&sc_if->sk_tick_ch);
1311
1312 callout_halt(&sc_if->sk_tick_rx, NULL);
1313 callout_destroy(&sc_if->sk_tick_rx);
1314
1315 /* Detach any PHYs we might have. */
1316 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1317 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1318
1319 /* Delete any remaining media. */
1320 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1321
1322 pmf_device_deregister(self);
1323
1324 ether_ifdetach(ifp);
1325 if_detach(ifp);
1326
1327 msk_free_jumbo_mem(sc_if);
1328
1329 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1330 sizeof(struct msk_ring_data));
1331 bus_dmamem_free(sc->sc_dmatag,
1332 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1333 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1334 sc->sk_if[sc_if->sk_port] = NULL;
1335
1336 return (0);
1337 }
1338
1339 int
1340 mskcprint(void *aux, const char *pnp)
1341 {
1342 struct skc_attach_args *sa = aux;
1343
1344 if (pnp)
1345 aprint_normal("msk port %c at %s",
1346 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1347 else
1348 aprint_normal(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1349 return (UNCONF);
1350 }
1351
1352 /*
1353 * Attach the interface. Allocate softc structures, do ifmedia
1354 * setup and ethernet/BPF attach.
1355 */
1356 void
1357 mskc_attach(device_t parent, device_t self, void *aux)
1358 {
1359 struct sk_softc *sc = device_private(self);
1360 struct pci_attach_args *pa = aux;
1361 struct skc_attach_args skca;
1362 pci_chipset_tag_t pc = pa->pa_pc;
1363 pcireg_t command, memtype;
1364 const char *intrstr = NULL;
1365 int rc, sk_nodenum;
1366 u_int8_t hw, pmd;
1367 const char *revstr = NULL;
1368 const struct sysctlnode *node;
1369 void *kva;
1370 char intrbuf[PCI_INTRSTR_LEN];
1371
1372 DPRINTFN(2, ("begin mskc_attach\n"));
1373
1374 sc->sk_dev = self;
1375 /*
1376 * Handle power management nonsense.
1377 */
1378 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1379
1380 if (command == 0x01) {
1381 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1382 if (command & SK_PSTATE_MASK) {
1383 u_int32_t iobase, membase, irq;
1384
1385 /* Save important PCI config data. */
1386 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1387 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1388 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1389
1390 /* Reset the power state. */
1391 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1392 "mode -- setting to D0\n",
1393 command & SK_PSTATE_MASK);
1394 command &= 0xFFFFFFFC;
1395 pci_conf_write(pc, pa->pa_tag,
1396 SK_PCI_PWRMGMTCTRL, command);
1397
1398 /* Restore PCI config data. */
1399 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1400 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1401 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1402 }
1403 }
1404
1405 /*
1406 * Map control/status registers.
1407 */
1408 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1409 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1410 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1411 aprint_error(": can't map mem space\n");
1412 return;
1413 }
1414
1415 if (pci_dma64_available(pa))
1416 sc->sc_dmatag = pa->pa_dmat64;
1417 else
1418 sc->sc_dmatag = pa->pa_dmat;
1419
1420 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1421 command |= PCI_COMMAND_MASTER_ENABLE;
1422 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1423
1424 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1425 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1426
1427 /* bail out here if chip is not recognized */
1428 if (!(SK_IS_YUKON2(sc))) {
1429 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1430 goto fail_1;
1431 }
1432 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1433
1434 /* Allocate interrupt */
1435 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1436 aprint_error(": couldn't map interrupt\n");
1437 goto fail_1;
1438 }
1439
1440 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1441 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1442 msk_intr, sc, device_xname(sc->sk_dev));
1443 if (sc->sk_intrhand == NULL) {
1444 aprint_error(": couldn't establish interrupt");
1445 if (intrstr != NULL)
1446 aprint_error(" at %s", intrstr);
1447 aprint_error("\n");
1448 goto fail_1;
1449 }
1450 sc->sk_pc = pc;
1451
1452 if (bus_dmamem_alloc(sc->sc_dmatag,
1453 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1454 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1455 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1456 aprint_error(": can't alloc status buffers\n");
1457 goto fail_2;
1458 }
1459
1460 if (bus_dmamem_map(sc->sc_dmatag,
1461 &sc->sk_status_seg, sc->sk_status_nseg,
1462 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1463 &kva, BUS_DMA_NOWAIT)) {
1464 aprint_error(": can't map dma buffers (%zu bytes)\n",
1465 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1466 goto fail_3;
1467 }
1468 if (bus_dmamap_create(sc->sc_dmatag,
1469 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1470 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1471 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1472 aprint_error(": can't create dma map\n");
1473 goto fail_4;
1474 }
1475 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1476 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1477 NULL, BUS_DMA_NOWAIT)) {
1478 aprint_error(": can't load dma map\n");
1479 goto fail_5;
1480 }
1481 sc->sk_status_ring = (struct msk_status_desc *)kva;
1482
1483 sc->sk_int_mod = SK_IM_DEFAULT;
1484 sc->sk_int_mod_pending = 0;
1485
1486 /* Reset the adapter. */
1487 mskc_reset(sc);
1488
1489 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1490 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1491
1492 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1493 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1494 sc->sk_fibertype = 1;
1495
1496 switch (sc->sk_type) {
1497 case SK_YUKON_XL:
1498 sc->sk_name = "Yukon-2 XL";
1499 break;
1500 case SK_YUKON_EC_U:
1501 sc->sk_name = "Yukon-2 EC Ultra";
1502 break;
1503 case SK_YUKON_EX:
1504 sc->sk_name = "Yukon-2 Extreme";
1505 break;
1506 case SK_YUKON_EC:
1507 sc->sk_name = "Yukon-2 EC";
1508 break;
1509 case SK_YUKON_FE:
1510 sc->sk_name = "Yukon-2 FE";
1511 break;
1512 case SK_YUKON_FE_P:
1513 sc->sk_name = "Yukon-2 FE+";
1514 break;
1515 case SK_YUKON_SUPR:
1516 sc->sk_name = "Yukon-2 Supreme";
1517 break;
1518 case SK_YUKON_ULTRA2:
1519 sc->sk_name = "Yukon-2 Ultra 2";
1520 break;
1521 case SK_YUKON_OPTIMA:
1522 sc->sk_name = "Yukon-2 Optima";
1523 break;
1524 case SK_YUKON_PRM:
1525 sc->sk_name = "Yukon-2 Optima Prime";
1526 break;
1527 case SK_YUKON_OPTIMA2:
1528 sc->sk_name = "Yukon-2 Optima 2";
1529 break;
1530 default:
1531 sc->sk_name = "Yukon (Unknown)";
1532 }
1533
1534 if (sc->sk_type == SK_YUKON_XL) {
1535 switch (sc->sk_rev) {
1536 case SK_YUKON_XL_REV_A0:
1537 revstr = "A0";
1538 break;
1539 case SK_YUKON_XL_REV_A1:
1540 revstr = "A1";
1541 break;
1542 case SK_YUKON_XL_REV_A2:
1543 revstr = "A2";
1544 break;
1545 case SK_YUKON_XL_REV_A3:
1546 revstr = "A3";
1547 break;
1548 default:
1549 break;
1550 }
1551 }
1552
1553 if (sc->sk_type == SK_YUKON_EC) {
1554 switch (sc->sk_rev) {
1555 case SK_YUKON_EC_REV_A1:
1556 revstr = "A1";
1557 break;
1558 case SK_YUKON_EC_REV_A2:
1559 revstr = "A2";
1560 break;
1561 case SK_YUKON_EC_REV_A3:
1562 revstr = "A3";
1563 break;
1564 default:
1565 break;
1566 }
1567 }
1568
1569 if (sc->sk_type == SK_YUKON_FE) {
1570 switch (sc->sk_rev) {
1571 case SK_YUKON_FE_REV_A1:
1572 revstr = "A1";
1573 break;
1574 case SK_YUKON_FE_REV_A2:
1575 revstr = "A2";
1576 break;
1577 default:
1578 break;
1579 }
1580 }
1581
1582 if (sc->sk_type == SK_YUKON_EC_U) {
1583 switch (sc->sk_rev) {
1584 case SK_YUKON_EC_U_REV_A0:
1585 revstr = "A0";
1586 break;
1587 case SK_YUKON_EC_U_REV_A1:
1588 revstr = "A1";
1589 break;
1590 case SK_YUKON_EC_U_REV_B0:
1591 revstr = "B0";
1592 break;
1593 case SK_YUKON_EC_U_REV_B1:
1594 revstr = "B1";
1595 break;
1596 default:
1597 break;
1598 }
1599 }
1600
1601 if (sc->sk_type == SK_YUKON_FE) {
1602 switch (sc->sk_rev) {
1603 case SK_YUKON_FE_REV_A1:
1604 revstr = "A1";
1605 break;
1606 case SK_YUKON_FE_REV_A2:
1607 revstr = "A2";
1608 break;
1609 default:
1610 ;
1611 }
1612 }
1613
1614 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1615 revstr = "A0";
1616
1617 if (sc->sk_type == SK_YUKON_EX) {
1618 switch (sc->sk_rev) {
1619 case SK_YUKON_EX_REV_A0:
1620 revstr = "A0";
1621 break;
1622 case SK_YUKON_EX_REV_B0:
1623 revstr = "B0";
1624 break;
1625 default:
1626 ;
1627 }
1628 }
1629
1630 if (sc->sk_type == SK_YUKON_SUPR) {
1631 switch (sc->sk_rev) {
1632 case SK_YUKON_SUPR_REV_A0:
1633 revstr = "A0";
1634 break;
1635 case SK_YUKON_SUPR_REV_B0:
1636 revstr = "B0";
1637 break;
1638 case SK_YUKON_SUPR_REV_B1:
1639 revstr = "B1";
1640 break;
1641 default:
1642 ;
1643 }
1644 }
1645
1646 if (sc->sk_type == SK_YUKON_PRM) {
1647 switch (sc->sk_rev) {
1648 case SK_YUKON_PRM_REV_Z1:
1649 revstr = "Z1";
1650 break;
1651 case SK_YUKON_PRM_REV_A0:
1652 revstr = "A0";
1653 break;
1654 default:
1655 ;
1656 }
1657 }
1658
1659 /* Announce the product name. */
1660 aprint_normal(", %s", sc->sk_name);
1661 if (revstr != NULL)
1662 aprint_normal(" rev. %s", revstr);
1663 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1664
1665 sc->sk_macs = 1;
1666
1667 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1668 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1669 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1670 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1671 sc->sk_macs++;
1672 }
1673
1674 skca.skc_port = SK_PORT_A;
1675 skca.skc_type = sc->sk_type;
1676 skca.skc_rev = sc->sk_rev;
1677 (void)config_found(sc->sk_dev, &skca, mskcprint);
1678
1679 if (sc->sk_macs > 1) {
1680 skca.skc_port = SK_PORT_B;
1681 skca.skc_type = sc->sk_type;
1682 skca.skc_rev = sc->sk_rev;
1683 (void)config_found(sc->sk_dev, &skca, mskcprint);
1684 }
1685
1686 /* Turn on the 'driver is loaded' LED. */
1687 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1688
1689 /* skc sysctl setup */
1690
1691 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1692 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1693 SYSCTL_DESCR("mskc per-controller controls"),
1694 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1695 CTL_EOL)) != 0) {
1696 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1697 goto fail_6;
1698 }
1699
1700 sk_nodenum = node->sysctl_num;
1701
1702 /* interrupt moderation time in usecs */
1703 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1704 CTLFLAG_READWRITE,
1705 CTLTYPE_INT, "int_mod",
1706 SYSCTL_DESCR("msk interrupt moderation timer"),
1707 msk_sysctl_handler, 0, (void *)sc,
1708 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1709 CTL_EOL)) != 0) {
1710 aprint_normal_dev(sc->sk_dev, "couldn't create int_mod sysctl node\n");
1711 goto fail_6;
1712 }
1713
1714 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1715 aprint_error_dev(self, "couldn't establish power handler\n");
1716
1717 return;
1718
1719 fail_6:
1720 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1721 fail_4:
1722 bus_dmamem_unmap(sc->sc_dmatag, kva,
1723 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1724 fail_3:
1725 bus_dmamem_free(sc->sc_dmatag,
1726 &sc->sk_status_seg, sc->sk_status_nseg);
1727 sc->sk_status_nseg = 0;
1728 fail_5:
1729 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1730 fail_2:
1731 pci_intr_disestablish(pc, sc->sk_intrhand);
1732 sc->sk_intrhand = NULL;
1733 fail_1:
1734 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1735 sc->sk_bsize = 0;
1736 }
1737
1738 int
1739 mskc_detach(device_t self, int flags)
1740 {
1741 struct sk_softc *sc = device_private(self);
1742 int rv;
1743
1744 if (sc->sk_intrhand) {
1745 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1746 sc->sk_intrhand = NULL;
1747 }
1748
1749 if (sc->sk_pihp != NULL) {
1750 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1751 sc->sk_pihp = NULL;
1752 }
1753
1754 rv = config_detach_children(self, flags);
1755 if (rv != 0)
1756 return (rv);
1757
1758 if (sc->sk_status_nseg > 0) {
1759 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1760 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1761 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1762 bus_dmamem_free(sc->sc_dmatag,
1763 &sc->sk_status_seg, sc->sk_status_nseg);
1764 }
1765
1766 if (sc->sk_bsize > 0)
1767 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1768
1769 return(0);
1770 }
1771
1772 int
1773 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx)
1774 {
1775 struct sk_softc *sc = sc_if->sk_softc;
1776 struct msk_tx_desc *f = NULL;
1777 u_int32_t frag, cur, hiaddr, old_hiaddr, total;
1778 u_int32_t entries = 0;
1779 size_t i;
1780 struct sk_txmap_entry *entry;
1781 bus_dmamap_t txmap;
1782 bus_addr_t addr;
1783
1784 DPRINTFN(2, ("msk_encap\n"));
1785
1786 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1787 if (entry == NULL) {
1788 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1789 return (ENOBUFS);
1790 }
1791 txmap = entry->dmamap;
1792
1793 cur = frag = *txidx;
1794
1795 #ifdef MSK_DEBUG
1796 if (mskdebug >= 2)
1797 msk_dump_mbuf(m_head);
1798 #endif
1799
1800 /*
1801 * Start packing the mbufs in this chain into
1802 * the fragment pointers. Stop when we run out
1803 * of fragments or hit the end of the mbuf chain.
1804 */
1805 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1806 BUS_DMA_NOWAIT)) {
1807 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1808 return (ENOBUFS);
1809 }
1810
1811 /* Count how many tx descriptors needed. */
1812 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1813 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1814 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1815 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1816 total++;
1817 }
1818 total++;
1819 }
1820
1821 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1822 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1823 bus_dmamap_unload(sc->sc_dmatag, txmap);
1824 return (ENOBUFS);
1825 }
1826
1827 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1828 txmap->dm_nsegs, total));
1829
1830 /* Sync the DMA map. */
1831 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1832 BUS_DMASYNC_PREWRITE);
1833
1834 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1835 for (i = 0; i < txmap->dm_nsegs; i++) {
1836 addr = txmap->dm_segs[i].ds_addr;
1837 DPRINTFN(2, ("msk_encap: addr %llx\n",
1838 (unsigned long long)addr));
1839 hiaddr = MSK_ADDR_HI(addr);
1840
1841 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1842 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1843 f->sk_addr = htole32(hiaddr);
1844 f->sk_len = 0;
1845 f->sk_ctl = 0;
1846 if (i == 0)
1847 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1848 else
1849 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1850 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1851 SK_INC(frag, MSK_TX_RING_CNT);
1852 entries++;
1853 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1854 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1855 }
1856
1857 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1858 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1859 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1860 f->sk_ctl = 0;
1861 if (i == 0) {
1862 if (hiaddr != old_hiaddr)
1863 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1864 else
1865 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1866 } else
1867 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1868 cur = frag;
1869 SK_INC(frag, MSK_TX_RING_CNT);
1870 entries++;
1871 }
1872 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1873
1874 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1875 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1876
1877 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1878 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1879
1880 /* Sync descriptors before handing to chip */
1881 MSK_CDTXSYNC(sc_if, *txidx, entries,
1882 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1883
1884 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1885
1886 /* Sync first descriptor to hand it off */
1887 MSK_CDTXSYNC(sc_if, *txidx, 1,
1888 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1889
1890 sc_if->sk_cdata.sk_tx_cnt += entries;
1891
1892 #ifdef MSK_DEBUG
1893 if (mskdebug >= 2) {
1894 struct msk_tx_desc *le;
1895 u_int32_t idx;
1896 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1897 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1898 msk_dump_txdesc(le, idx);
1899 }
1900 }
1901 #endif
1902
1903 *txidx = frag;
1904
1905 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1906
1907 return (0);
1908 }
1909
1910 void
1911 msk_start(struct ifnet *ifp)
1912 {
1913 struct sk_if_softc *sc_if = ifp->if_softc;
1914 struct mbuf *m_head = NULL;
1915 u_int32_t idx = sc_if->sk_cdata.sk_tx_prod;
1916 int pkts = 0;
1917
1918 DPRINTFN(2, ("msk_start\n"));
1919
1920 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1921 IFQ_POLL(&ifp->if_snd, m_head);
1922 if (m_head == NULL)
1923 break;
1924
1925 /*
1926 * Pack the data into the transmit ring. If we
1927 * don't have room, set the OACTIVE flag and wait
1928 * for the NIC to drain the ring.
1929 */
1930 if (msk_encap(sc_if, m_head, &idx)) {
1931 ifp->if_flags |= IFF_OACTIVE;
1932 break;
1933 }
1934
1935 /* now we are committed to transmit the packet */
1936 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1937 pkts++;
1938
1939 /*
1940 * If there's a BPF listener, bounce a copy of this frame
1941 * to him.
1942 */
1943 bpf_mtap(ifp, m_head, BPF_D_OUT);
1944 }
1945 if (pkts == 0)
1946 return;
1947
1948 /* Transmit */
1949 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1950 sc_if->sk_cdata.sk_tx_prod = idx;
1951 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1952
1953 /* Set a timeout in case the chip goes out to lunch. */
1954 ifp->if_timer = 5;
1955 }
1956 }
1957
1958 void
1959 msk_watchdog(struct ifnet *ifp)
1960 {
1961 struct sk_if_softc *sc_if = ifp->if_softc;
1962
1963 /*
1964 * Reclaim first as there is a possibility of losing Tx completion
1965 * interrupts.
1966 */
1967 msk_txeof(sc_if);
1968 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1969 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1970
1971 ifp->if_oerrors++;
1972
1973 /* XXX Resets both ports; we shouldn't do that. */
1974 mskc_reset(sc_if->sk_softc);
1975 msk_reset(sc_if);
1976 msk_init(ifp);
1977 }
1978 }
1979
1980 static bool
1981 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1982 {
1983 struct sk_softc *sc = device_private(dv);
1984
1985 DPRINTFN(2, ("mskc_suspend\n"));
1986
1987 /* Turn off the 'driver is loaded' LED. */
1988 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1989
1990 return true;
1991 }
1992
1993 static bool
1994 mskc_resume(device_t dv, const pmf_qual_t *qual)
1995 {
1996 struct sk_softc *sc = device_private(dv);
1997
1998 DPRINTFN(2, ("mskc_resume\n"));
1999
2000 mskc_reset(sc);
2001 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2002
2003 return true;
2004 }
2005
2006 static __inline int
2007 msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len)
2008 {
2009 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2010 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2011 YU_RXSTAT_JABBER)) != 0 ||
2012 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2013 YU_RXSTAT_BYTES(stat) != len)
2014 return (0);
2015
2016 return (1);
2017 }
2018
2019 void
2020 msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat)
2021 {
2022 struct sk_softc *sc = sc_if->sk_softc;
2023 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2024 struct mbuf *m;
2025 unsigned cur, prod, tail, total_len = len;
2026 bus_dmamap_t dmamap;
2027
2028 cur = sc_if->sk_cdata.sk_rx_cons;
2029 prod = sc_if->sk_cdata.sk_rx_prod;
2030
2031 /* Sync the descriptor */
2032 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2033
2034 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod, sc_if->sk_cdata.sk_rx_cnt));
2035
2036 while (prod != cur) {
2037 tail = cur;
2038 SK_INC(cur, MSK_RX_RING_CNT);
2039
2040 sc_if->sk_cdata.sk_rx_cnt--;
2041 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2042 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2043 if (m != NULL)
2044 break; /* found it */
2045 }
2046 sc_if->sk_cdata.sk_rx_cons = cur;
2047 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur, sc_if->sk_cdata.sk_rx_cnt, m));
2048
2049 if (m == NULL)
2050 return;
2051
2052 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2053
2054 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2055 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2056
2057 if (total_len < SK_MIN_FRAMELEN ||
2058 total_len > ETHER_MAX_LEN_JUMBO ||
2059 msk_rxvalid(sc, rxstat, total_len) == 0) {
2060 ifp->if_ierrors++;
2061 m_freem(m);
2062 return;
2063 }
2064
2065 m_set_rcvif(m, ifp);
2066 m->m_pkthdr.len = m->m_len = total_len;
2067
2068 /* pass it on. */
2069 if_percpuq_enqueue(ifp->if_percpuq, m);
2070 }
2071
2072 void
2073 msk_txeof(struct sk_if_softc *sc_if)
2074 {
2075 struct sk_softc *sc = sc_if->sk_softc;
2076 struct msk_tx_desc *cur_tx;
2077 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2078 u_int32_t idx, reg, sk_ctl;
2079 struct sk_txmap_entry *entry;
2080
2081 DPRINTFN(2, ("msk_txeof\n"));
2082
2083 if (sc_if->sk_port == SK_PORT_A)
2084 reg = SK_STAT_BMU_TXA1_RIDX;
2085 else
2086 reg = SK_STAT_BMU_TXA2_RIDX;
2087
2088 /*
2089 * Go through our tx ring and free mbufs for those
2090 * frames that have been sent.
2091 */
2092 idx = sc_if->sk_cdata.sk_tx_cons;
2093 while (idx != sk_win_read_2(sc, reg)) {
2094 MSK_CDTXSYNC(sc_if, idx, 1,
2095 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2096
2097 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2098 sk_ctl = cur_tx->sk_ctl;
2099 #ifdef MSK_DEBUG
2100 if (mskdebug >= 2)
2101 msk_dump_txdesc(cur_tx, idx);
2102 #endif
2103 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2104 ifp->if_opackets++;
2105 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2106 entry = sc_if->sk_cdata.sk_tx_map[idx];
2107
2108 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2109 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2110
2111 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2112 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2113
2114 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2115 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2116 link);
2117 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2118 }
2119 sc_if->sk_cdata.sk_tx_cnt--;
2120 SK_INC(idx, MSK_TX_RING_CNT);
2121 }
2122 if (idx == sc_if->sk_cdata.sk_tx_cons)
2123 return;
2124
2125 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2126
2127 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2128 ifp->if_flags &= ~IFF_OACTIVE;
2129
2130 sc_if->sk_cdata.sk_tx_cons = idx;
2131 }
2132
2133 void
2134 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2135 {
2136 /* Make sure to not completely wrap around */
2137 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2138 if (msk_newbuf(sc_if,
2139 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2140 goto schedretry;
2141 }
2142 }
2143
2144 return;
2145
2146 schedretry:
2147 /* Try later */
2148 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2149 }
2150
2151 static void
2152 msk_fill_rx_tick(void *xsc_if)
2153 {
2154 struct sk_if_softc *sc_if = xsc_if;
2155 int s, rx_prod;
2156
2157 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2158
2159 s = splnet();
2160 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2161 msk_fill_rx_ring(sc_if);
2162 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2163 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2164 sc_if->sk_cdata.sk_rx_prod);
2165 }
2166 splx(s);
2167 }
2168
2169 void
2170 msk_tick(void *xsc_if)
2171 {
2172 struct sk_if_softc *sc_if = xsc_if;
2173 struct mii_data *mii = &sc_if->sk_mii;
2174 int s;
2175
2176 s = splnet();
2177 mii_tick(mii);
2178 splx(s);
2179
2180 callout_schedule(&sc_if->sk_tick_ch, hz);
2181 }
2182
2183 void
2184 msk_intr_yukon(struct sk_if_softc *sc_if)
2185 {
2186 u_int8_t status;
2187
2188 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2189 /* RX overrun */
2190 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2191 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2192 SK_RFCTL_RX_FIFO_OVER);
2193 }
2194 /* TX underrun */
2195 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2196 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2197 SK_TFCTL_TX_FIFO_UNDER);
2198 }
2199
2200 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2201 }
2202
2203 int
2204 msk_intr(void *xsc)
2205 {
2206 struct sk_softc *sc = xsc;
2207 struct sk_if_softc *sc_if;
2208 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2209 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2210 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2211 int claimed = 0;
2212 u_int32_t status;
2213 struct msk_status_desc *cur_st;
2214
2215 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2216 if (status == 0xffffffff)
2217 return (0);
2218 if (status == 0) {
2219 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2220 return (0);
2221 }
2222
2223 status = CSR_READ_4(sc, SK_ISR);
2224
2225 if (sc_if0 != NULL)
2226 ifp0 = &sc_if0->sk_ethercom.ec_if;
2227 if (sc_if1 != NULL)
2228 ifp1 = &sc_if1->sk_ethercom.ec_if;
2229
2230 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2231 (ifp0->if_flags & IFF_RUNNING)) {
2232 msk_intr_yukon(sc_if0);
2233 }
2234
2235 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2236 (ifp1->if_flags & IFF_RUNNING)) {
2237 msk_intr_yukon(sc_if1);
2238 }
2239
2240 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2241 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2242 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2243
2244 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2245 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2246 switch (cur_st->sk_opcode) {
2247 case SK_Y2_STOPC_RXSTAT:
2248 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2249 if (sc_if) {
2250 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2251 letoh32(cur_st->sk_status));
2252 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2253 msk_fill_rx_tick(sc_if);
2254 }
2255 break;
2256 case SK_Y2_STOPC_TXSTAT:
2257 if (sc_if0)
2258 msk_txeof(sc_if0);
2259 if (sc_if1)
2260 msk_txeof(sc_if1);
2261 break;
2262 default:
2263 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2264 break;
2265 }
2266 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2267
2268 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2269 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2270 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2271 }
2272
2273 if (status & SK_Y2_IMR_BMU) {
2274 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2275 claimed = 1;
2276 }
2277
2278 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2279
2280 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2281 if_schedule_deferred_start(ifp0);
2282 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2283 if_schedule_deferred_start(ifp1);
2284
2285 KASSERT(sc->rnd_attached > 0);
2286 rnd_add_uint32(&sc->rnd_source, status);
2287
2288 if (sc->sk_int_mod_pending)
2289 msk_update_int_mod(sc, 1);
2290
2291 return claimed;
2292 }
2293
2294 void
2295 msk_init_yukon(struct sk_if_softc *sc_if)
2296 {
2297 u_int32_t v;
2298 u_int16_t reg;
2299 struct sk_softc *sc;
2300 int i;
2301
2302 sc = sc_if->sk_softc;
2303
2304 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2305 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2306
2307 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2308
2309 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2310 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2311
2312 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2313
2314 /* unused read of the interrupt source register */
2315 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2316 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2317
2318 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2319 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2320 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2321
2322 /* MIB Counter Clear Mode set */
2323 reg |= YU_PAR_MIB_CLR;
2324 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2325 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2326 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2327
2328 /* MIB Counter Clear Mode clear */
2329 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2330 reg &= ~YU_PAR_MIB_CLR;
2331 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2332
2333 /* receive control reg */
2334 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2335 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2336
2337 /* transmit control register */
2338 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2339
2340 /* transmit flow control register */
2341 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2342
2343 /* transmit parameter register */
2344 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2345 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2346 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2347
2348 /* serial mode register */
2349 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2350 reg = YU_SMR_DATA_BLIND(0x1c) |
2351 YU_SMR_MFL_VLAN |
2352 YU_SMR_IPG_DATA(0x1e);
2353
2354 if (sc->sk_type != SK_YUKON_FE &&
2355 sc->sk_type != SK_YUKON_FE_P)
2356 reg |= YU_SMR_MFL_JUMBO;
2357
2358 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2359
2360 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2361 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2362 /* msk_attach calls me before ether_ifattach so check null */
2363 if (ifp != NULL && ifp->if_sadl != NULL)
2364 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2365 sizeof(sc_if->sk_enaddr));
2366 /* Setup Yukon's address */
2367 for (i = 0; i < 3; i++) {
2368 /* Write Source Address 1 (unicast filter) */
2369 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2370 sc_if->sk_enaddr[i * 2] |
2371 sc_if->sk_enaddr[i * 2 + 1] << 8);
2372 }
2373
2374 for (i = 0; i < 3; i++) {
2375 reg = sk_win_read_2(sc_if->sk_softc,
2376 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2377 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2378 }
2379
2380 /* Set promiscuous mode */
2381 msk_setpromisc(sc_if);
2382
2383 /* Set multicast filter */
2384 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2385 msk_setmulti(sc_if);
2386
2387 /* enable interrupt mask for counter overflows */
2388 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2389 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2390 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2391 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2392
2393 /* Configure RX MAC FIFO Flush Mask */
2394 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2395 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2396 YU_RXSTAT_JABBER;
2397 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2398
2399 /* Configure RX MAC FIFO */
2400 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2401 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2402 SK_RFCTL_FIFO_FLUSH_ON);
2403
2404 /* Increase flush threshold to 64 bytes */
2405 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2406 SK_RFCTL_FIFO_THRESHOLD + 1);
2407
2408 /* Configure TX MAC FIFO */
2409 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2410 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2411
2412 #if 1
2413 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2414 #endif
2415 DPRINTFN(6, ("msk_init_yukon: end\n"));
2416 }
2417
2418 /*
2419 * Note that to properly initialize any part of the GEnesis chip,
2420 * you first have to take it out of reset mode.
2421 */
2422 int
2423 msk_init(struct ifnet *ifp)
2424 {
2425 struct sk_if_softc *sc_if = ifp->if_softc;
2426 struct sk_softc *sc = sc_if->sk_softc;
2427 int rc = 0, s;
2428 uint32_t imr, imtimer_ticks;
2429
2430
2431 DPRINTFN(2, ("msk_init\n"));
2432
2433 s = splnet();
2434
2435 /* Cancel pending I/O and free all RX/TX buffers. */
2436 msk_stop(ifp, 1);
2437
2438 /* Configure I2C registers */
2439
2440 /* Configure XMAC(s) */
2441 msk_init_yukon(sc_if);
2442 if ((rc = ether_mediachange(ifp)) != 0)
2443 goto out;
2444
2445 /* Configure transmit arbiter(s) */
2446 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2447 #if 0
2448 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2449 #endif
2450
2451 if (sc->sk_ramsize) {
2452 /* Configure RAMbuffers */
2453 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2454 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2455 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2456 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2457 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2458 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2459
2460 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2461 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2462 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2463 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2464 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2465 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2466 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2467 }
2468
2469 /* Configure BMUs */
2470 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2471 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2472 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2473 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2474
2475 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2476 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2477 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2478 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2479
2480 /* Make sure the sync transmit queue is disabled. */
2481 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2482
2483 /* Init descriptors */
2484 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2485 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2486 "memory for rx buffers\n");
2487 msk_stop(ifp, 1);
2488 splx(s);
2489 return ENOBUFS;
2490 }
2491
2492 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2493 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2494 "memory for tx buffers\n");
2495 msk_stop(ifp, 1);
2496 splx(s);
2497 return ENOBUFS;
2498 }
2499
2500 /* Set interrupt moderation if changed via sysctl. */
2501 switch (sc->sk_type) {
2502 case SK_YUKON_EC:
2503 case SK_YUKON_EC_U:
2504 case SK_YUKON_EX:
2505 case SK_YUKON_SUPR:
2506 case SK_YUKON_ULTRA2:
2507 case SK_YUKON_OPTIMA:
2508 case SK_YUKON_PRM:
2509 case SK_YUKON_OPTIMA2:
2510 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2511 break;
2512 case SK_YUKON_FE:
2513 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2514 break;
2515 case SK_YUKON_FE_P:
2516 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2517 break;
2518 case SK_YUKON_XL:
2519 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2520 break;
2521 default:
2522 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2523 }
2524 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2525 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2526 sk_win_write_4(sc, SK_IMTIMERINIT,
2527 SK_IM_USECS(sc->sk_int_mod));
2528 aprint_verbose_dev(sc->sk_dev,
2529 "interrupt moderation is %d us\n", sc->sk_int_mod);
2530 }
2531
2532 /* Initialize prefetch engine. */
2533 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2534 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2535 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2536 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2537 MSK_RX_RING_ADDR(sc_if, 0));
2538 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2539 (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2540 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2541 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2542
2543 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2544 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2545 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2546 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2547 MSK_TX_RING_ADDR(sc_if, 0));
2548 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2549 (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2550 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2551 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2552
2553 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2554 sc_if->sk_cdata.sk_rx_prod);
2555
2556 /* Configure interrupt handling */
2557 if (sc_if->sk_port == SK_PORT_A)
2558 sc->sk_intrmask |= SK_Y2_INTRS1;
2559 else
2560 sc->sk_intrmask |= SK_Y2_INTRS2;
2561 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2562 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2563
2564 ifp->if_flags |= IFF_RUNNING;
2565 ifp->if_flags &= ~IFF_OACTIVE;
2566
2567 callout_schedule(&sc_if->sk_tick_ch, hz);
2568
2569 out:
2570 splx(s);
2571 return rc;
2572 }
2573
2574 /*
2575 * Note: the logic of second parameter is inverted compared to OpenBSD
2576 * code, since this code uses the function as if_stop hook too.
2577 */
2578 void
2579 msk_stop(struct ifnet *ifp, int disable)
2580 {
2581 struct sk_if_softc *sc_if = ifp->if_softc;
2582 struct sk_softc *sc = sc_if->sk_softc;
2583 struct sk_txmap_entry *dma;
2584 int i;
2585
2586 DPRINTFN(2, ("msk_stop\n"));
2587
2588 callout_stop(&sc_if->sk_tick_ch);
2589 callout_stop(&sc_if->sk_tick_rx);
2590
2591 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2592
2593 /* Stop transfer of Tx descriptors */
2594
2595 /* Stop transfer of Rx descriptors */
2596
2597 if (disable) {
2598 /* Turn off various components of this interface. */
2599 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2600 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2601 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2602 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2603 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2604 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2605 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2606 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2607 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2608 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2609 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2610
2611 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2612 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2613
2614 /* Disable interrupts */
2615 if (sc_if->sk_port == SK_PORT_A)
2616 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2617 else
2618 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2619 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2620 }
2621
2622 /* Free RX and TX mbufs still in the queues. */
2623 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2624 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2625 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2626 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2627 }
2628 }
2629
2630 sc_if->sk_cdata.sk_rx_prod = 0;
2631 sc_if->sk_cdata.sk_rx_cons = 0;
2632 sc_if->sk_cdata.sk_rx_cnt = 0;
2633
2634 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2635 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2636 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2637 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2638 #if 1
2639 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2640 sc_if->sk_cdata.sk_tx_map[i], link);
2641 sc_if->sk_cdata.sk_tx_map[i] = 0;
2642 #endif
2643 }
2644 }
2645
2646 #if 1
2647 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2648 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2649 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2650 free(dma, M_DEVBUF);
2651 }
2652 #endif
2653 }
2654
2655 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2656 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2657
2658 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2659 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2660
2661 #ifdef MSK_DEBUG
2662 void
2663 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2664 {
2665 #define DESC_PRINT(X) \
2666 if (X) \
2667 printf("txdesc[%d]." #X "=%#x\n", \
2668 idx, X);
2669
2670 DESC_PRINT(letoh32(le->sk_addr));
2671 DESC_PRINT(letoh16(le->sk_len));
2672 DESC_PRINT(le->sk_ctl);
2673 DESC_PRINT(le->sk_opcode);
2674 #undef DESC_PRINT
2675 }
2676
2677 void
2678 msk_dump_bytes(const char *data, int len)
2679 {
2680 int c, i, j;
2681
2682 for (i = 0; i < len; i += 16) {
2683 printf("%08x ", i);
2684 c = len - i;
2685 if (c > 16) c = 16;
2686
2687 for (j = 0; j < c; j++) {
2688 printf("%02x ", data[i + j] & 0xff);
2689 if ((j & 0xf) == 7 && j > 0)
2690 printf(" ");
2691 }
2692
2693 for (; j < 16; j++)
2694 printf(" ");
2695 printf(" ");
2696
2697 for (j = 0; j < c; j++) {
2698 int ch = data[i + j] & 0xff;
2699 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2700 }
2701
2702 printf("\n");
2703
2704 if (c < 16)
2705 break;
2706 }
2707 }
2708
2709 void
2710 msk_dump_mbuf(struct mbuf *m)
2711 {
2712 int count = m->m_pkthdr.len;
2713
2714 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2715
2716 while (count > 0 && m) {
2717 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2718 m, m->m_data, m->m_len);
2719 if (mskdebug >= 4)
2720 msk_dump_bytes(mtod(m, char *), m->m_len);
2721
2722 count -= m->m_len;
2723 m = m->m_next;
2724 }
2725 }
2726 #endif
2727
2728 static int
2729 msk_sysctl_handler(SYSCTLFN_ARGS)
2730 {
2731 int error, t;
2732 struct sysctlnode node;
2733 struct sk_softc *sc;
2734
2735 node = *rnode;
2736 sc = node.sysctl_data;
2737 t = sc->sk_int_mod;
2738 node.sysctl_data = &t;
2739 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2740 if (error || newp == NULL)
2741 return error;
2742
2743 if (t < SK_IM_MIN || t > SK_IM_MAX)
2744 return EINVAL;
2745
2746 /* update the softc with sysctl-changed value, and mark
2747 for hardware update */
2748 sc->sk_int_mod = t;
2749 sc->sk_int_mod_pending = 1;
2750 return 0;
2751 }
2752
2753 /*
2754 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2755 * set up in mskc_attach()
2756 */
2757 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2758 {
2759 int rc;
2760 const struct sysctlnode *node;
2761
2762 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2763 0, CTLTYPE_NODE, "msk",
2764 SYSCTL_DESCR("msk interface controls"),
2765 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2766 goto err;
2767 }
2768
2769 msk_root_num = node->sysctl_num;
2770 return;
2771
2772 err:
2773 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2774 }
2775