if_msk.c revision 1.83 1 /* $NetBSD: if_msk.c,v 1.83 2019/01/08 06:29:35 msaitoh Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.83 2019/01/08 06:29:35 msaitoh Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int);
128 void msk_miibus_writereg(device_t, int, int, int);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n,x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
155
156 /* supported device vendors */
157 static const struct msk_product {
158 pci_vendor_id_t msk_vendor;
159 pci_product_id_t msk_product;
160 } msk_products[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
199 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 { 0, 0 }
203 };
204
205 static inline uint32_t
206 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
207 {
208 return CSR_READ_4(sc, reg);
209 }
210
211 static inline uint16_t
212 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
213 {
214 return CSR_READ_2(sc, reg);
215 }
216
217 static inline uint8_t
218 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
219 {
220 return CSR_READ_1(sc, reg);
221 }
222
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
225 {
226 CSR_WRITE_4(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
231 {
232 CSR_WRITE_2(sc, reg, x);
233 }
234
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
237 {
238 CSR_WRITE_1(sc, reg, x);
239 }
240
241 int
242 msk_miibus_readreg(device_t dev, int phy, int reg)
243 {
244 struct sk_if_softc *sc_if = device_private(dev);
245 uint16_t val;
246 int i;
247
248 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250
251 for (i = 0; i < SK_TIMEOUT; i++) {
252 DELAY(1);
253 val = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 if (val & YU_SMICR_READ_VALID)
255 break;
256 }
257
258 if (i == SK_TIMEOUT) {
259 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 return (0);
261 }
262
263 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i,
264 SK_TIMEOUT));
265
266 val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
267
268 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n",
269 phy, reg, val));
270
271 return (val);
272 }
273
274 void
275 msk_miibus_writereg(device_t dev, int phy, int reg, int val)
276 {
277 struct sk_if_softc *sc_if = device_private(dev);
278 int i;
279
280 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n",
281 phy, reg, val));
282
283 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
284 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
285 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
286
287 for (i = 0; i < SK_TIMEOUT; i++) {
288 DELAY(1);
289 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
290 break;
291 }
292
293 if (i == SK_TIMEOUT)
294 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
295 }
296
297 void
298 msk_miibus_statchg(struct ifnet *ifp)
299 {
300 struct sk_if_softc *sc_if = ifp->if_softc;
301 struct mii_data *mii = &sc_if->sk_mii;
302 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
303 int gpcr;
304
305 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
306 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
307
308 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
309 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
310 /* Set speed. */
311 gpcr |= YU_GPCR_SPEED_DIS;
312 switch (IFM_SUBTYPE(mii->mii_media_active)) {
313 case IFM_1000_SX:
314 case IFM_1000_LX:
315 case IFM_1000_CX:
316 case IFM_1000_T:
317 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
318 break;
319 case IFM_100_TX:
320 gpcr |= YU_GPCR_SPEED;
321 break;
322 }
323
324 /* Set duplex. */
325 gpcr |= YU_GPCR_DPLX_DIS;
326 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
327 gpcr |= YU_GPCR_DUPLEX;
328
329 /* Disable flow control. */
330 gpcr |= YU_GPCR_FCTL_DIS;
331 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
332 }
333
334 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
335
336 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
337 SK_YU_READ_2(sc_if, YUKON_GPCR)));
338 }
339
340 void
341 msk_setmulti(struct sk_if_softc *sc_if)
342 {
343 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
344 uint32_t hashes[2] = { 0, 0 };
345 int h;
346 struct ethercom *ec = &sc_if->sk_ethercom;
347 struct ether_multi *enm;
348 struct ether_multistep step;
349 uint16_t reg;
350
351 /* First, zot all the existing filters. */
352 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
353 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
354 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
356
357
358 /* Now program new ones. */
359 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
360 reg |= YU_RCR_UFLEN;
361 allmulti:
362 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
363 if ((ifp->if_flags & IFF_PROMISC) != 0)
364 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
365 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
366 hashes[0] = 0xFFFFFFFF;
367 hashes[1] = 0xFFFFFFFF;
368 }
369 } else {
370 /* First find the tail of the list. */
371 ETHER_FIRST_MULTI(step, ec, enm);
372 while (enm != NULL) {
373 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
374 ETHER_ADDR_LEN)) {
375 ifp->if_flags |= IFF_ALLMULTI;
376 goto allmulti;
377 }
378 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
379 ((1 << SK_HASH_BITS) - 1);
380 if (h < 32)
381 hashes[0] |= (1 << h);
382 else
383 hashes[1] |= (1 << (h - 32));
384
385 ETHER_NEXT_MULTI(step, enm);
386 }
387 reg |= YU_RCR_MUFLEN;
388 }
389
390 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
391 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
392 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
395 }
396
397 void
398 msk_setpromisc(struct sk_if_softc *sc_if)
399 {
400 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
401
402 if (ifp->if_flags & IFF_PROMISC)
403 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
404 YU_RCR_UFLEN | YU_RCR_MUFLEN);
405 else
406 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 }
409
410 int
411 msk_init_rx_ring(struct sk_if_softc *sc_if)
412 {
413 struct msk_chain_data *cd = &sc_if->sk_cdata;
414 struct msk_ring_data *rd = sc_if->sk_rdata;
415 struct msk_rx_desc *r;
416 int i, nexti;
417
418 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
419
420 for (i = 0; i < MSK_RX_RING_CNT; i++) {
421 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
422 if (i == (MSK_RX_RING_CNT - 1))
423 nexti = 0;
424 else
425 nexti = i + 1;
426 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
427 }
428
429 sc_if->sk_cdata.sk_rx_prod = 0;
430 sc_if->sk_cdata.sk_rx_cons = 0;
431 sc_if->sk_cdata.sk_rx_cnt = 0;
432 sc_if->sk_cdata.sk_rx_hiaddr = 0;
433
434 /* Mark the first ring element to initialize the high address. */
435 sc_if->sk_cdata.sk_rx_hiaddr = 0;
436 r = &rd->sk_rx_ring[cd->sk_rx_prod];
437 r->sk_addr = htole32(cd->sk_rx_hiaddr);
438 r->sk_len = 0;
439 r->sk_ctl = 0;
440 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
441 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
442 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
443 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
444 sc_if->sk_cdata.sk_rx_cnt++;
445
446 msk_fill_rx_ring(sc_if);
447 return (0);
448 }
449
450 int
451 msk_init_tx_ring(struct sk_if_softc *sc_if)
452 {
453 struct sk_softc *sc = sc_if->sk_softc;
454 struct msk_chain_data *cd = &sc_if->sk_cdata;
455 struct msk_ring_data *rd = sc_if->sk_rdata;
456 struct msk_tx_desc *t;
457 bus_dmamap_t dmamap;
458 struct sk_txmap_entry *entry;
459 int i, nexti;
460
461 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
462
463 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
464 for (i = 0; i < MSK_TX_RING_CNT; i++) {
465 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
466 if (i == (MSK_TX_RING_CNT - 1))
467 nexti = 0;
468 else
469 nexti = i + 1;
470 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
471
472 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
473 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
474 return (ENOBUFS);
475
476 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
477 if (!entry) {
478 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
479 return (ENOBUFS);
480 }
481 entry->dmamap = dmamap;
482 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
483 }
484
485 sc_if->sk_cdata.sk_tx_prod = 0;
486 sc_if->sk_cdata.sk_tx_cons = 0;
487 sc_if->sk_cdata.sk_tx_cnt = 0;
488 sc_if->sk_cdata.sk_tx_hiaddr = 0;
489
490 /* Mark the first ring element to initialize the high address. */
491 sc_if->sk_cdata.sk_tx_hiaddr = 0;
492 t = &rd->sk_tx_ring[cd->sk_tx_prod];
493 t->sk_addr = htole32(cd->sk_tx_hiaddr);
494 t->sk_len = 0;
495 t->sk_ctl = 0;
496 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
497 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
498 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
499 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
500 sc_if->sk_cdata.sk_tx_cnt++;
501
502 return (0);
503 }
504
505 int
506 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
507 {
508 struct mbuf *m_new = NULL;
509 struct sk_chain *c;
510 struct msk_rx_desc *r;
511 void *buf = NULL;
512 bus_addr_t addr;
513
514 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
515 if (m_new == NULL)
516 return (ENOBUFS);
517
518 /* Allocate the jumbo buffer */
519 buf = msk_jalloc(sc_if);
520 if (buf == NULL) {
521 m_freem(m_new);
522 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
523 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
524 return (ENOBUFS);
525 }
526
527 /* Attach the buffer to the mbuf */
528 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
529 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
530
531 m_adj(m_new, ETHER_ALIGN);
532
533 addr = dmamap->dm_segs[0].ds_addr +
534 ((vaddr_t)m_new->m_data -
535 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
536
537 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
538 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
539 r = c->sk_le;
540 c->sk_mbuf = NULL;
541 r->sk_addr = htole32(MSK_ADDR_HI(addr));
542 r->sk_len = 0;
543 r->sk_ctl = 0;
544 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
545 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
546
547 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
548 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
549
550 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
551 sc_if->sk_cdata.sk_rx_cnt++;
552
553 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
554 sc_if->sk_ethercom.ec_if.if_xname,
555 (unsigned)MSK_ADDR_HI(addr)));
556 }
557
558 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
559 r = c->sk_le;
560 c->sk_mbuf = m_new;
561 r->sk_addr = htole32(MSK_ADDR_LO(addr));
562 r->sk_len = htole16(SK_JLEN);
563 r->sk_ctl = 0;
564 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
565
566 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
567 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
568
569 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
570 sc_if->sk_cdata.sk_rx_cnt++;
571
572 return (0);
573 }
574
575 /*
576 * Memory management for jumbo frames.
577 */
578
579 int
580 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
581 {
582 struct sk_softc *sc = sc_if->sk_softc;
583 char *ptr, *kva;
584 int i, state, error;
585 struct sk_jpool_entry *entry;
586
587 state = error = 0;
588
589 /* Grab a big chunk o' storage. */
590 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
591 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
592 BUS_DMA_NOWAIT)) {
593 aprint_error(": can't alloc rx buffers");
594 return (ENOBUFS);
595 }
596
597 state = 1;
598 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
599 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
600 BUS_DMA_NOWAIT)) {
601 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
602 error = ENOBUFS;
603 goto out;
604 }
605
606 state = 2;
607 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
608 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
609 aprint_error(": can't create dma map");
610 error = ENOBUFS;
611 goto out;
612 }
613
614 state = 3;
615 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
616 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
617 aprint_error(": can't load dma map");
618 error = ENOBUFS;
619 goto out;
620 }
621
622 state = 4;
623 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
624 DPRINTFN(1,("msk_jumbo_buf = %p\n",
625 (void *)sc_if->sk_cdata.sk_jumbo_buf));
626
627 LIST_INIT(&sc_if->sk_jfree_listhead);
628 LIST_INIT(&sc_if->sk_jinuse_listhead);
629 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
630
631 /*
632 * Now divide it up into 9K pieces and save the addresses
633 * in an array.
634 */
635 ptr = sc_if->sk_cdata.sk_jumbo_buf;
636 for (i = 0; i < MSK_JSLOTS; i++) {
637 sc_if->sk_cdata.sk_jslots[i] = ptr;
638 ptr += SK_JLEN;
639 entry = malloc(sizeof(struct sk_jpool_entry),
640 M_DEVBUF, M_NOWAIT);
641 if (entry == NULL) {
642 sc_if->sk_cdata.sk_jumbo_buf = NULL;
643 aprint_error(": no memory for jumbo buffer queue!");
644 error = ENOBUFS;
645 goto out;
646 }
647 entry->slot = i;
648 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
649 entry, jpool_entries);
650 }
651 out:
652 if (error != 0) {
653 switch (state) {
654 case 4:
655 bus_dmamap_unload(sc->sc_dmatag,
656 sc_if->sk_cdata.sk_rx_jumbo_map);
657 case 3:
658 bus_dmamap_destroy(sc->sc_dmatag,
659 sc_if->sk_cdata.sk_rx_jumbo_map);
660 case 2:
661 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
662 case 1:
663 bus_dmamem_free(sc->sc_dmatag,
664 &sc_if->sk_cdata.sk_jumbo_seg,
665 sc_if->sk_cdata.sk_jumbo_nseg);
666 break;
667 default:
668 break;
669 }
670 }
671
672 return error;
673 }
674
675 static void
676 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
677 {
678 struct sk_softc *sc = sc_if->sk_softc;
679
680 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
681 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
682 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
683 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
684 sc_if->sk_cdata.sk_jumbo_nseg);
685 }
686
687 /*
688 * Allocate a jumbo buffer.
689 */
690 void *
691 msk_jalloc(struct sk_if_softc *sc_if)
692 {
693 struct sk_jpool_entry *entry;
694
695 mutex_enter(&sc_if->sk_jpool_mtx);
696 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
697
698 if (entry == NULL) {
699 mutex_exit(&sc_if->sk_jpool_mtx);
700 return NULL;
701 }
702
703 LIST_REMOVE(entry, jpool_entries);
704 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
705 mutex_exit(&sc_if->sk_jpool_mtx);
706 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
707 }
708
709 /*
710 * Release a jumbo buffer.
711 */
712 void
713 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
714 {
715 struct sk_jpool_entry *entry;
716 struct sk_if_softc *sc;
717 int i;
718
719 /* Extract the softc struct pointer. */
720 sc = (struct sk_if_softc *)arg;
721
722 if (sc == NULL)
723 panic("msk_jfree: can't find softc pointer!");
724
725 /* calculate the slot this buffer belongs to */
726 i = ((vaddr_t)buf
727 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
728
729 if ((i < 0) || (i >= MSK_JSLOTS))
730 panic("msk_jfree: asked to free buffer that we don't manage!");
731
732 mutex_enter(&sc->sk_jpool_mtx);
733 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
734 if (entry == NULL)
735 panic("msk_jfree: buffer not in use!");
736 entry->slot = i;
737 LIST_REMOVE(entry, jpool_entries);
738 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
739 mutex_exit(&sc->sk_jpool_mtx);
740
741 if (__predict_true(m != NULL))
742 pool_cache_put(mb_cache, m);
743
744 /* Now that we know we have a free RX buffer, refill if running out */
745 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
746 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
747 callout_schedule(&sc->sk_tick_rx, 0);
748 }
749
750 int
751 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
752 {
753 struct sk_if_softc *sc = ifp->if_softc;
754 int s, error;
755
756 s = splnet();
757
758 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
759 switch (cmd) {
760 case SIOCSIFFLAGS:
761 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
762 break;
763
764 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
765 case IFF_RUNNING:
766 msk_stop(ifp, 1);
767 break;
768 case IFF_UP:
769 msk_init(ifp);
770 break;
771 case IFF_UP | IFF_RUNNING:
772 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
773 msk_setpromisc(sc);
774 msk_setmulti(sc);
775 } else
776 msk_init(ifp);
777 break;
778 }
779 sc->sk_if_flags = ifp->if_flags;
780 break;
781 default:
782 error = ether_ioctl(ifp, cmd, data);
783 if (error == ENETRESET) {
784 error = 0;
785 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
786 ;
787 else if (ifp->if_flags & IFF_RUNNING) {
788 /*
789 * Multicast list has changed; set the hardware
790 * filter accordingly.
791 */
792 msk_setmulti(sc);
793 }
794 }
795 break;
796 }
797
798 splx(s);
799 return error;
800 }
801
802 void
803 msk_update_int_mod(struct sk_softc *sc, int verbose)
804 {
805 uint32_t imtimer_ticks;
806
807 /*
808 * Configure interrupt moderation. The moderation timer
809 * defers interrupts specified in the interrupt moderation
810 * timer mask based on the timeout specified in the interrupt
811 * moderation timer init register. Each bit in the timer
812 * register represents one tick, so to specify a timeout in
813 * microseconds, we have to multiply by the correct number of
814 * ticks-per-microsecond.
815 */
816 switch (sc->sk_type) {
817 case SK_YUKON_EC:
818 case SK_YUKON_EC_U:
819 case SK_YUKON_EX:
820 case SK_YUKON_SUPR:
821 case SK_YUKON_ULTRA2:
822 case SK_YUKON_OPTIMA:
823 case SK_YUKON_PRM:
824 case SK_YUKON_OPTIMA2:
825 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
826 break;
827 case SK_YUKON_FE:
828 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
829 break;
830 case SK_YUKON_FE_P:
831 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
832 break;
833 case SK_YUKON_XL:
834 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
835 break;
836 default:
837 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
838 }
839 if (verbose)
840 aprint_verbose_dev(sc->sk_dev,
841 "interrupt moderation is %d us\n", sc->sk_int_mod);
842 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
843 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
844 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
845 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
846 sc->sk_int_mod_pending = 0;
847 }
848
849 static int
850 msk_lookup(const struct pci_attach_args *pa)
851 {
852 const struct msk_product *pmsk;
853
854 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
855 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
856 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
857 return 1;
858 }
859 return 0;
860 }
861
862 /*
863 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
864 * IDs against our list and return a device name if we find a match.
865 */
866 int
867 mskc_probe(device_t parent, cfdata_t match, void *aux)
868 {
869 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
870
871 return msk_lookup(pa);
872 }
873
874 /*
875 * Force the GEnesis into reset, then bring it out of reset.
876 */
877 void
878 mskc_reset(struct sk_softc *sc)
879 {
880 uint32_t imtimer_ticks, reg1;
881 int reg;
882
883 DPRINTFN(2, ("mskc_reset\n"));
884
885 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
886 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
887
888 DELAY(1000);
889 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
890 DELAY(2);
891 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
892 sk_win_write_1(sc, SK_TESTCTL1, 2);
893
894 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
895 sc->sk_type >= SK_YUKON_FE_P) {
896 uint32_t our;
897
898 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
899
900 /* enable all clocks. */
901 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
902 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
903 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
904 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
905 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
906 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
907 /* Set all bits to 0 except bits 15..12 */
908 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
909 /* Set to default value */
910 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
911
912 /*
913 * Disable status race, workaround for Yukon EC Ultra &
914 * Yukon EX.
915 */
916 reg1 = sk_win_read_4(sc, SK_GPIO);
917 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
918 sk_win_write_4(sc, SK_GPIO, reg1);
919 sk_win_read_4(sc, SK_GPIO);
920 }
921
922 /* release PHY from PowerDown/Coma mode. */
923 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
924 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
925 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
926 else
927 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
928 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
929
930 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
931 sk_win_write_1(sc, SK_Y2_CLKGATE,
932 SK_Y2_CLKGATE_LINK1_GATE_DIS |
933 SK_Y2_CLKGATE_LINK2_GATE_DIS |
934 SK_Y2_CLKGATE_LINK1_CORE_DIS |
935 SK_Y2_CLKGATE_LINK2_CORE_DIS |
936 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
937 else
938 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
939
940 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
941 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
942 DELAY(1000);
943 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
944 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
945
946 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
947 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
948 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
949 }
950
951 sk_win_write_1(sc, SK_TESTCTL1, 1);
952
953 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
954 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
955 CSR_READ_2(sc, SK_LINK_CTRL)));
956
957 /* Disable ASF */
958 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
959 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
960
961 /* Clear I2C IRQ noise */
962 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
963
964 /* Disable hardware timer */
965 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
966 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
967
968 /* Disable descriptor polling */
969 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
970
971 /* Disable time stamps */
972 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
973 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
974
975 /* Enable RAM interface */
976 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
977 for (reg = SK_TO0;reg <= SK_TO11; reg++)
978 sk_win_write_1(sc, reg, 36);
979 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
980 for (reg = SK_TO0;reg <= SK_TO11; reg++)
981 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
982
983 /*
984 * Configure interrupt moderation. The moderation timer
985 * defers interrupts specified in the interrupt moderation
986 * timer mask based on the timeout specified in the interrupt
987 * moderation timer init register. Each bit in the timer
988 * register represents one tick, so to specify a timeout in
989 * microseconds, we have to multiply by the correct number of
990 * ticks-per-microsecond.
991 */
992 switch (sc->sk_type) {
993 case SK_YUKON_EC:
994 case SK_YUKON_EC_U:
995 case SK_YUKON_EX:
996 case SK_YUKON_SUPR:
997 case SK_YUKON_ULTRA2:
998 case SK_YUKON_OPTIMA:
999 case SK_YUKON_PRM:
1000 case SK_YUKON_OPTIMA2:
1001 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1002 break;
1003 case SK_YUKON_FE:
1004 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1005 break;
1006 case SK_YUKON_FE_P:
1007 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1008 break;
1009 case SK_YUKON_XL:
1010 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1011 break;
1012 default:
1013 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1014 break;
1015 }
1016
1017 /* Reset status ring. */
1018 memset(sc->sk_status_ring, 0,
1019 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1020 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1021 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1022 sc->sk_status_idx = 0;
1023
1024 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1025 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1026
1027 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1028 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1029 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1030 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1031 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1032 if (sc->sk_type == SK_YUKON_EC &&
1033 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1034 /* WA for dev. #4.3 */
1035 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1036 SK_STAT_BMU_TXTHIDX_MSK);
1037 /* WA for dev. #4.18 */
1038 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1039 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1040 } else {
1041 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1042 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1043 if (sc->sk_type == SK_YUKON_XL)
1044 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1045 else
1046 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1047 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1048 }
1049
1050 #if 0
1051 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1052 #endif
1053 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1054
1055 /* Enable status unit. */
1056 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1057
1058 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1059 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1060 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1061
1062 msk_update_int_mod(sc, 0);
1063 }
1064
1065 int
1066 msk_probe(device_t parent, cfdata_t match, void *aux)
1067 {
1068 struct skc_attach_args *sa = aux;
1069
1070 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1071 return (0);
1072
1073 switch (sa->skc_type) {
1074 case SK_YUKON_XL:
1075 case SK_YUKON_EC_U:
1076 case SK_YUKON_EX:
1077 case SK_YUKON_EC:
1078 case SK_YUKON_FE:
1079 case SK_YUKON_FE_P:
1080 case SK_YUKON_SUPR:
1081 case SK_YUKON_ULTRA2:
1082 case SK_YUKON_OPTIMA:
1083 case SK_YUKON_PRM:
1084 case SK_YUKON_OPTIMA2:
1085 return (1);
1086 }
1087
1088 return (0);
1089 }
1090
1091 void
1092 msk_reset(struct sk_if_softc *sc_if)
1093 {
1094 /* GMAC and GPHY Reset */
1095 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1096 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1097 DELAY(1000);
1098 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1099 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1100 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1101 }
1102
1103 static bool
1104 msk_resume(device_t dv, const pmf_qual_t *qual)
1105 {
1106 struct sk_if_softc *sc_if = device_private(dv);
1107
1108 msk_init_yukon(sc_if);
1109 return true;
1110 }
1111
1112 /*
1113 * Each XMAC chip is attached as a separate logical IP interface.
1114 * Single port cards will have only one logical interface of course.
1115 */
1116 void
1117 msk_attach(device_t parent, device_t self, void *aux)
1118 {
1119 struct sk_if_softc *sc_if = device_private(self);
1120 struct sk_softc *sc = device_private(parent);
1121 struct skc_attach_args *sa = aux;
1122 struct ifnet *ifp;
1123 void *kva;
1124 int i;
1125 uint32_t chunk;
1126 int mii_flags;
1127
1128 sc_if->sk_dev = self;
1129 sc_if->sk_port = sa->skc_port;
1130 sc_if->sk_softc = sc;
1131 sc->sk_if[sa->skc_port] = sc_if;
1132
1133 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1134
1135 /*
1136 * Get station address for this interface. Note that
1137 * dual port cards actually come with three station
1138 * addresses: one for each port, plus an extra. The
1139 * extra one is used by the SysKonnect driver software
1140 * as a 'virtual' station address for when both ports
1141 * are operating in failover mode. Currently we don't
1142 * use this extra address.
1143 */
1144 for (i = 0; i < ETHER_ADDR_LEN; i++)
1145 sc_if->sk_enaddr[i] =
1146 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1147
1148 aprint_normal(": Ethernet address %s\n",
1149 ether_sprintf(sc_if->sk_enaddr));
1150
1151 /*
1152 * Set up RAM buffer addresses. The Yukon2 has a small amount
1153 * of SRAM on it, somewhere between 4K and 48K. We need to
1154 * divide this up between the transmitter and receiver. We
1155 * give the receiver 2/3 of the memory (rounded down), and the
1156 * transmitter whatever remains.
1157 */
1158 if (sc->sk_ramsize) {
1159 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1160 sc_if->sk_rx_ramstart = 0;
1161 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1162 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1163 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1164 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1165
1166 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1167 " tx_ramstart=%#x tx_ramend=%#x\n",
1168 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1169 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1170 }
1171
1172 /* Allocate the descriptor queues. */
1173 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1174 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1175 BUS_DMA_NOWAIT)) {
1176 aprint_error(": can't alloc rx buffers\n");
1177 goto fail;
1178 }
1179 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1180 sc_if->sk_ring_nseg,
1181 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1182 aprint_error(": can't map dma buffers (%zu bytes)\n",
1183 sizeof(struct msk_ring_data));
1184 goto fail_1;
1185 }
1186 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1187 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1188 &sc_if->sk_ring_map)) {
1189 aprint_error(": can't create dma map\n");
1190 goto fail_2;
1191 }
1192 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1193 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1194 aprint_error(": can't load dma map\n");
1195 goto fail_3;
1196 }
1197 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1198 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1199
1200 if (sc->sk_type != SK_YUKON_FE &&
1201 sc->sk_type != SK_YUKON_FE_P)
1202 sc_if->sk_pktlen = SK_JLEN;
1203 else
1204 sc_if->sk_pktlen = MCLBYTES;
1205
1206 /* Try to allocate memory for jumbo buffers. */
1207 if (msk_alloc_jumbo_mem(sc_if)) {
1208 aprint_error(": jumbo buffer allocation failed\n");
1209 goto fail_3;
1210 }
1211
1212 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1213 if (sc->sk_type != SK_YUKON_FE &&
1214 sc->sk_type != SK_YUKON_FE_P)
1215 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1216
1217 ifp = &sc_if->sk_ethercom.ec_if;
1218 ifp->if_softc = sc_if;
1219 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1220 ifp->if_ioctl = msk_ioctl;
1221 ifp->if_start = msk_start;
1222 ifp->if_stop = msk_stop;
1223 ifp->if_init = msk_init;
1224 ifp->if_watchdog = msk_watchdog;
1225 ifp->if_baudrate = 1000000000;
1226 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1227 IFQ_SET_READY(&ifp->if_snd);
1228 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1229
1230 msk_reset(sc_if);
1231
1232 /*
1233 * Do miibus setup.
1234 */
1235 msk_init_yukon(sc_if);
1236
1237 DPRINTFN(2, ("msk_attach: 1\n"));
1238
1239 sc_if->sk_mii.mii_ifp = ifp;
1240 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1241 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1242 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1243
1244 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1245 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1246 ether_mediachange, ether_mediastatus);
1247 mii_flags = MIIF_DOPAUSE;
1248 if (sc->sk_fibertype)
1249 mii_flags |= MIIF_HAVEFIBER;
1250 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1251 MII_OFFSET_ANY, mii_flags);
1252 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1253 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1254 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1255 0, NULL);
1256 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1257 } else
1258 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1259
1260 callout_init(&sc_if->sk_tick_ch, 0);
1261 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1262 callout_schedule(&sc_if->sk_tick_ch, hz);
1263
1264 callout_init(&sc_if->sk_tick_rx, 0);
1265 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1266
1267 /*
1268 * Call MI attach routines.
1269 */
1270 if_attach(ifp);
1271 if_deferred_start_init(ifp, NULL);
1272 ether_ifattach(ifp, sc_if->sk_enaddr);
1273
1274 if (pmf_device_register(self, NULL, msk_resume))
1275 pmf_class_network_register(self, ifp);
1276 else
1277 aprint_error_dev(self, "couldn't establish power handler\n");
1278
1279 if (sc->rnd_attached++ == 0) {
1280 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1281 RND_TYPE_NET, RND_FLAG_DEFAULT);
1282 }
1283
1284 DPRINTFN(2, ("msk_attach: end\n"));
1285 return;
1286
1287 fail_3:
1288 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1289 fail_2:
1290 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1291 fail_1:
1292 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1293 fail:
1294 sc->sk_if[sa->skc_port] = NULL;
1295 }
1296
1297 int
1298 msk_detach(device_t self, int flags)
1299 {
1300 struct sk_if_softc *sc_if = device_private(self);
1301 struct sk_softc *sc = sc_if->sk_softc;
1302 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1303
1304 if (sc->sk_if[sc_if->sk_port] == NULL)
1305 return (0);
1306
1307 msk_stop(ifp, 1);
1308
1309 if (--sc->rnd_attached == 0)
1310 rnd_detach_source(&sc->rnd_source);
1311
1312 callout_halt(&sc_if->sk_tick_ch, NULL);
1313 callout_destroy(&sc_if->sk_tick_ch);
1314
1315 callout_halt(&sc_if->sk_tick_rx, NULL);
1316 callout_destroy(&sc_if->sk_tick_rx);
1317
1318 /* Detach any PHYs we might have. */
1319 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1320 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1321
1322 /* Delete any remaining media. */
1323 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1324
1325 pmf_device_deregister(self);
1326
1327 ether_ifdetach(ifp);
1328 if_detach(ifp);
1329
1330 msk_free_jumbo_mem(sc_if);
1331
1332 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1333 sizeof(struct msk_ring_data));
1334 bus_dmamem_free(sc->sc_dmatag,
1335 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1336 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 sc->sk_if[sc_if->sk_port] = NULL;
1338
1339 return (0);
1340 }
1341
1342 int
1343 mskcprint(void *aux, const char *pnp)
1344 {
1345 struct skc_attach_args *sa = aux;
1346
1347 if (pnp)
1348 aprint_normal("msk port %c at %s",
1349 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1350 else
1351 aprint_normal(" port %c",
1352 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1353 return (UNCONF);
1354 }
1355
1356 /*
1357 * Attach the interface. Allocate softc structures, do ifmedia
1358 * setup and ethernet/BPF attach.
1359 */
1360 void
1361 mskc_attach(device_t parent, device_t self, void *aux)
1362 {
1363 struct sk_softc *sc = device_private(self);
1364 struct pci_attach_args *pa = aux;
1365 struct skc_attach_args skca;
1366 pci_chipset_tag_t pc = pa->pa_pc;
1367 pcireg_t command, memtype;
1368 const char *intrstr = NULL;
1369 int rc, sk_nodenum;
1370 uint8_t hw, pmd;
1371 const char *revstr = NULL;
1372 const struct sysctlnode *node;
1373 void *kva;
1374 char intrbuf[PCI_INTRSTR_LEN];
1375
1376 DPRINTFN(2, ("begin mskc_attach\n"));
1377
1378 sc->sk_dev = self;
1379 /*
1380 * Handle power management nonsense.
1381 */
1382 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1383
1384 if (command == 0x01) {
1385 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1386 if (command & SK_PSTATE_MASK) {
1387 uint32_t iobase, membase, irq;
1388
1389 /* Save important PCI config data. */
1390 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1391 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1392 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1393
1394 /* Reset the power state. */
1395 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1396 "mode -- setting to D0\n",
1397 command & SK_PSTATE_MASK);
1398 command &= 0xFFFFFFFC;
1399 pci_conf_write(pc, pa->pa_tag,
1400 SK_PCI_PWRMGMTCTRL, command);
1401
1402 /* Restore PCI config data. */
1403 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1404 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1405 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1406 }
1407 }
1408
1409 /*
1410 * Map control/status registers.
1411 */
1412 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1413 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1414 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1415 aprint_error(": can't map mem space\n");
1416 return;
1417 }
1418
1419 if (pci_dma64_available(pa))
1420 sc->sc_dmatag = pa->pa_dmat64;
1421 else
1422 sc->sc_dmatag = pa->pa_dmat;
1423
1424 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1425 command |= PCI_COMMAND_MASTER_ENABLE;
1426 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1427
1428 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1429 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1430
1431 /* bail out here if chip is not recognized */
1432 if (!(SK_IS_YUKON2(sc))) {
1433 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1434 goto fail_1;
1435 }
1436 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1437
1438 /* Allocate interrupt */
1439 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1440 aprint_error(": couldn't map interrupt\n");
1441 goto fail_1;
1442 }
1443
1444 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1445 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1446 msk_intr, sc, device_xname(sc->sk_dev));
1447 if (sc->sk_intrhand == NULL) {
1448 aprint_error(": couldn't establish interrupt");
1449 if (intrstr != NULL)
1450 aprint_error(" at %s", intrstr);
1451 aprint_error("\n");
1452 goto fail_1;
1453 }
1454 sc->sk_pc = pc;
1455
1456 if (bus_dmamem_alloc(sc->sc_dmatag,
1457 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1458 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1459 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1460 aprint_error(": can't alloc status buffers\n");
1461 goto fail_2;
1462 }
1463
1464 if (bus_dmamem_map(sc->sc_dmatag,
1465 &sc->sk_status_seg, sc->sk_status_nseg,
1466 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1467 &kva, BUS_DMA_NOWAIT)) {
1468 aprint_error(": can't map dma buffers (%zu bytes)\n",
1469 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1470 goto fail_3;
1471 }
1472 if (bus_dmamap_create(sc->sc_dmatag,
1473 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1474 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1475 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1476 aprint_error(": can't create dma map\n");
1477 goto fail_4;
1478 }
1479 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1480 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1481 NULL, BUS_DMA_NOWAIT)) {
1482 aprint_error(": can't load dma map\n");
1483 goto fail_5;
1484 }
1485 sc->sk_status_ring = (struct msk_status_desc *)kva;
1486
1487 sc->sk_int_mod = SK_IM_DEFAULT;
1488 sc->sk_int_mod_pending = 0;
1489
1490 /* Reset the adapter. */
1491 mskc_reset(sc);
1492
1493 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1494 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1495
1496 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1497 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1498 sc->sk_fibertype = 1;
1499
1500 switch (sc->sk_type) {
1501 case SK_YUKON_XL:
1502 sc->sk_name = "Yukon-2 XL";
1503 break;
1504 case SK_YUKON_EC_U:
1505 sc->sk_name = "Yukon-2 EC Ultra";
1506 break;
1507 case SK_YUKON_EX:
1508 sc->sk_name = "Yukon-2 Extreme";
1509 break;
1510 case SK_YUKON_EC:
1511 sc->sk_name = "Yukon-2 EC";
1512 break;
1513 case SK_YUKON_FE:
1514 sc->sk_name = "Yukon-2 FE";
1515 break;
1516 case SK_YUKON_FE_P:
1517 sc->sk_name = "Yukon-2 FE+";
1518 break;
1519 case SK_YUKON_SUPR:
1520 sc->sk_name = "Yukon-2 Supreme";
1521 break;
1522 case SK_YUKON_ULTRA2:
1523 sc->sk_name = "Yukon-2 Ultra 2";
1524 break;
1525 case SK_YUKON_OPTIMA:
1526 sc->sk_name = "Yukon-2 Optima";
1527 break;
1528 case SK_YUKON_PRM:
1529 sc->sk_name = "Yukon-2 Optima Prime";
1530 break;
1531 case SK_YUKON_OPTIMA2:
1532 sc->sk_name = "Yukon-2 Optima 2";
1533 break;
1534 default:
1535 sc->sk_name = "Yukon (Unknown)";
1536 }
1537
1538 if (sc->sk_type == SK_YUKON_XL) {
1539 switch (sc->sk_rev) {
1540 case SK_YUKON_XL_REV_A0:
1541 revstr = "A0";
1542 break;
1543 case SK_YUKON_XL_REV_A1:
1544 revstr = "A1";
1545 break;
1546 case SK_YUKON_XL_REV_A2:
1547 revstr = "A2";
1548 break;
1549 case SK_YUKON_XL_REV_A3:
1550 revstr = "A3";
1551 break;
1552 default:
1553 break;
1554 }
1555 }
1556
1557 if (sc->sk_type == SK_YUKON_EC) {
1558 switch (sc->sk_rev) {
1559 case SK_YUKON_EC_REV_A1:
1560 revstr = "A1";
1561 break;
1562 case SK_YUKON_EC_REV_A2:
1563 revstr = "A2";
1564 break;
1565 case SK_YUKON_EC_REV_A3:
1566 revstr = "A3";
1567 break;
1568 default:
1569 break;
1570 }
1571 }
1572
1573 if (sc->sk_type == SK_YUKON_FE) {
1574 switch (sc->sk_rev) {
1575 case SK_YUKON_FE_REV_A1:
1576 revstr = "A1";
1577 break;
1578 case SK_YUKON_FE_REV_A2:
1579 revstr = "A2";
1580 break;
1581 default:
1582 break;
1583 }
1584 }
1585
1586 if (sc->sk_type == SK_YUKON_EC_U) {
1587 switch (sc->sk_rev) {
1588 case SK_YUKON_EC_U_REV_A0:
1589 revstr = "A0";
1590 break;
1591 case SK_YUKON_EC_U_REV_A1:
1592 revstr = "A1";
1593 break;
1594 case SK_YUKON_EC_U_REV_B0:
1595 revstr = "B0";
1596 break;
1597 case SK_YUKON_EC_U_REV_B1:
1598 revstr = "B1";
1599 break;
1600 default:
1601 break;
1602 }
1603 }
1604
1605 if (sc->sk_type == SK_YUKON_FE) {
1606 switch (sc->sk_rev) {
1607 case SK_YUKON_FE_REV_A1:
1608 revstr = "A1";
1609 break;
1610 case SK_YUKON_FE_REV_A2:
1611 revstr = "A2";
1612 break;
1613 default:
1614 ;
1615 }
1616 }
1617
1618 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1619 revstr = "A0";
1620
1621 if (sc->sk_type == SK_YUKON_EX) {
1622 switch (sc->sk_rev) {
1623 case SK_YUKON_EX_REV_A0:
1624 revstr = "A0";
1625 break;
1626 case SK_YUKON_EX_REV_B0:
1627 revstr = "B0";
1628 break;
1629 default:
1630 ;
1631 }
1632 }
1633
1634 if (sc->sk_type == SK_YUKON_SUPR) {
1635 switch (sc->sk_rev) {
1636 case SK_YUKON_SUPR_REV_A0:
1637 revstr = "A0";
1638 break;
1639 case SK_YUKON_SUPR_REV_B0:
1640 revstr = "B0";
1641 break;
1642 case SK_YUKON_SUPR_REV_B1:
1643 revstr = "B1";
1644 break;
1645 default:
1646 ;
1647 }
1648 }
1649
1650 if (sc->sk_type == SK_YUKON_PRM) {
1651 switch (sc->sk_rev) {
1652 case SK_YUKON_PRM_REV_Z1:
1653 revstr = "Z1";
1654 break;
1655 case SK_YUKON_PRM_REV_A0:
1656 revstr = "A0";
1657 break;
1658 default:
1659 ;
1660 }
1661 }
1662
1663 /* Announce the product name. */
1664 aprint_normal(", %s", sc->sk_name);
1665 if (revstr != NULL)
1666 aprint_normal(" rev. %s", revstr);
1667 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1668
1669 sc->sk_macs = 1;
1670
1671 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1672 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1673 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1674 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1675 sc->sk_macs++;
1676 }
1677
1678 skca.skc_port = SK_PORT_A;
1679 skca.skc_type = sc->sk_type;
1680 skca.skc_rev = sc->sk_rev;
1681 (void)config_found(sc->sk_dev, &skca, mskcprint);
1682
1683 if (sc->sk_macs > 1) {
1684 skca.skc_port = SK_PORT_B;
1685 skca.skc_type = sc->sk_type;
1686 skca.skc_rev = sc->sk_rev;
1687 (void)config_found(sc->sk_dev, &skca, mskcprint);
1688 }
1689
1690 /* Turn on the 'driver is loaded' LED. */
1691 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1692
1693 /* skc sysctl setup */
1694
1695 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1696 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1697 SYSCTL_DESCR("mskc per-controller controls"),
1698 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1699 CTL_EOL)) != 0) {
1700 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1701 goto fail_6;
1702 }
1703
1704 sk_nodenum = node->sysctl_num;
1705
1706 /* interrupt moderation time in usecs */
1707 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1708 CTLFLAG_READWRITE,
1709 CTLTYPE_INT, "int_mod",
1710 SYSCTL_DESCR("msk interrupt moderation timer"),
1711 msk_sysctl_handler, 0, (void *)sc,
1712 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1713 CTL_EOL)) != 0) {
1714 aprint_normal_dev(sc->sk_dev,
1715 "couldn't create int_mod sysctl node\n");
1716 goto fail_6;
1717 }
1718
1719 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1720 aprint_error_dev(self, "couldn't establish power handler\n");
1721
1722 return;
1723
1724 fail_6:
1725 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1726 fail_4:
1727 bus_dmamem_unmap(sc->sc_dmatag, kva,
1728 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1729 fail_3:
1730 bus_dmamem_free(sc->sc_dmatag,
1731 &sc->sk_status_seg, sc->sk_status_nseg);
1732 sc->sk_status_nseg = 0;
1733 fail_5:
1734 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1735 fail_2:
1736 pci_intr_disestablish(pc, sc->sk_intrhand);
1737 sc->sk_intrhand = NULL;
1738 fail_1:
1739 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1740 sc->sk_bsize = 0;
1741 }
1742
1743 int
1744 mskc_detach(device_t self, int flags)
1745 {
1746 struct sk_softc *sc = device_private(self);
1747 int rv;
1748
1749 if (sc->sk_intrhand) {
1750 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1751 sc->sk_intrhand = NULL;
1752 }
1753
1754 if (sc->sk_pihp != NULL) {
1755 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1756 sc->sk_pihp = NULL;
1757 }
1758
1759 rv = config_detach_children(self, flags);
1760 if (rv != 0)
1761 return (rv);
1762
1763 if (sc->sk_status_nseg > 0) {
1764 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1765 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1766 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1767 bus_dmamem_free(sc->sc_dmatag,
1768 &sc->sk_status_seg, sc->sk_status_nseg);
1769 }
1770
1771 if (sc->sk_bsize > 0)
1772 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1773
1774 return(0);
1775 }
1776
1777 int
1778 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1779 {
1780 struct sk_softc *sc = sc_if->sk_softc;
1781 struct msk_tx_desc *f = NULL;
1782 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1783 uint32_t entries = 0;
1784 size_t i;
1785 struct sk_txmap_entry *entry;
1786 bus_dmamap_t txmap;
1787 bus_addr_t addr;
1788
1789 DPRINTFN(2, ("msk_encap\n"));
1790
1791 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1792 if (entry == NULL) {
1793 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1794 return (ENOBUFS);
1795 }
1796 txmap = entry->dmamap;
1797
1798 cur = frag = *txidx;
1799
1800 #ifdef MSK_DEBUG
1801 if (mskdebug >= 2)
1802 msk_dump_mbuf(m_head);
1803 #endif
1804
1805 /*
1806 * Start packing the mbufs in this chain into
1807 * the fragment pointers. Stop when we run out
1808 * of fragments or hit the end of the mbuf chain.
1809 */
1810 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1811 BUS_DMA_NOWAIT)) {
1812 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1813 return (ENOBUFS);
1814 }
1815
1816 /* Count how many tx descriptors needed. */
1817 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1818 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1819 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1820 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1821 total++;
1822 }
1823 total++;
1824 }
1825
1826 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1827 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1828 bus_dmamap_unload(sc->sc_dmatag, txmap);
1829 return (ENOBUFS);
1830 }
1831
1832 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1833 txmap->dm_nsegs, total));
1834
1835 /* Sync the DMA map. */
1836 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1837 BUS_DMASYNC_PREWRITE);
1838
1839 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1840 for (i = 0; i < txmap->dm_nsegs; i++) {
1841 addr = txmap->dm_segs[i].ds_addr;
1842 DPRINTFN(2, ("msk_encap: addr %llx\n",
1843 (unsigned long long)addr));
1844 hiaddr = MSK_ADDR_HI(addr);
1845
1846 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1847 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1848 f->sk_addr = htole32(hiaddr);
1849 f->sk_len = 0;
1850 f->sk_ctl = 0;
1851 if (i == 0)
1852 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1853 else
1854 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1855 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1856 SK_INC(frag, MSK_TX_RING_CNT);
1857 entries++;
1858 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1859 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1860 }
1861
1862 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1863 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1864 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1865 f->sk_ctl = 0;
1866 if (i == 0) {
1867 if (hiaddr != old_hiaddr)
1868 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1869 else
1870 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1871 } else
1872 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1873 cur = frag;
1874 SK_INC(frag, MSK_TX_RING_CNT);
1875 entries++;
1876 }
1877 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1878
1879 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1880 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1881
1882 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1883 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1884
1885 /* Sync descriptors before handing to chip */
1886 MSK_CDTXSYNC(sc_if, *txidx, entries,
1887 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1888
1889 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1890
1891 /* Sync first descriptor to hand it off */
1892 MSK_CDTXSYNC(sc_if, *txidx, 1,
1893 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1894
1895 sc_if->sk_cdata.sk_tx_cnt += entries;
1896
1897 #ifdef MSK_DEBUG
1898 if (mskdebug >= 2) {
1899 struct msk_tx_desc *le;
1900 uint32_t idx;
1901 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1902 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1903 msk_dump_txdesc(le, idx);
1904 }
1905 }
1906 #endif
1907
1908 *txidx = frag;
1909
1910 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1911
1912 return (0);
1913 }
1914
1915 void
1916 msk_start(struct ifnet *ifp)
1917 {
1918 struct sk_if_softc *sc_if = ifp->if_softc;
1919 struct mbuf *m_head = NULL;
1920 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1921 int pkts = 0;
1922
1923 DPRINTFN(2, ("msk_start\n"));
1924
1925 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1926 IFQ_POLL(&ifp->if_snd, m_head);
1927 if (m_head == NULL)
1928 break;
1929
1930 /*
1931 * Pack the data into the transmit ring. If we
1932 * don't have room, set the OACTIVE flag and wait
1933 * for the NIC to drain the ring.
1934 */
1935 if (msk_encap(sc_if, m_head, &idx)) {
1936 ifp->if_flags |= IFF_OACTIVE;
1937 break;
1938 }
1939
1940 /* now we are committed to transmit the packet */
1941 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1942 pkts++;
1943
1944 /*
1945 * If there's a BPF listener, bounce a copy of this frame
1946 * to him.
1947 */
1948 bpf_mtap(ifp, m_head, BPF_D_OUT);
1949 }
1950 if (pkts == 0)
1951 return;
1952
1953 /* Transmit */
1954 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1955 sc_if->sk_cdata.sk_tx_prod = idx;
1956 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1957
1958 /* Set a timeout in case the chip goes out to lunch. */
1959 ifp->if_timer = 5;
1960 }
1961 }
1962
1963 void
1964 msk_watchdog(struct ifnet *ifp)
1965 {
1966 struct sk_if_softc *sc_if = ifp->if_softc;
1967
1968 /*
1969 * Reclaim first as there is a possibility of losing Tx completion
1970 * interrupts.
1971 */
1972 msk_txeof(sc_if);
1973 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1974 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1975
1976 ifp->if_oerrors++;
1977
1978 /* XXX Resets both ports; we shouldn't do that. */
1979 mskc_reset(sc_if->sk_softc);
1980 msk_reset(sc_if);
1981 msk_init(ifp);
1982 }
1983 }
1984
1985 static bool
1986 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1987 {
1988 struct sk_softc *sc = device_private(dv);
1989
1990 DPRINTFN(2, ("mskc_suspend\n"));
1991
1992 /* Turn off the 'driver is loaded' LED. */
1993 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1994
1995 return true;
1996 }
1997
1998 static bool
1999 mskc_resume(device_t dv, const pmf_qual_t *qual)
2000 {
2001 struct sk_softc *sc = device_private(dv);
2002
2003 DPRINTFN(2, ("mskc_resume\n"));
2004
2005 mskc_reset(sc);
2006 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2007
2008 return true;
2009 }
2010
2011 static __inline int
2012 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2013 {
2014 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2015 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2016 YU_RXSTAT_JABBER)) != 0 ||
2017 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2018 YU_RXSTAT_BYTES(stat) != len)
2019 return (0);
2020
2021 return (1);
2022 }
2023
2024 void
2025 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2026 {
2027 struct sk_softc *sc = sc_if->sk_softc;
2028 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2029 struct mbuf *m;
2030 unsigned cur, prod, tail, total_len = len;
2031 bus_dmamap_t dmamap;
2032
2033 cur = sc_if->sk_cdata.sk_rx_cons;
2034 prod = sc_if->sk_cdata.sk_rx_prod;
2035
2036 /* Sync the descriptor */
2037 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2038
2039 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2040 sc_if->sk_cdata.sk_rx_cnt));
2041
2042 while (prod != cur) {
2043 tail = cur;
2044 SK_INC(cur, MSK_RX_RING_CNT);
2045
2046 sc_if->sk_cdata.sk_rx_cnt--;
2047 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2048 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2049 if (m != NULL)
2050 break; /* found it */
2051 }
2052 sc_if->sk_cdata.sk_rx_cons = cur;
2053 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2054 sc_if->sk_cdata.sk_rx_cnt, m));
2055
2056 if (m == NULL)
2057 return;
2058
2059 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2060
2061 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2062 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2063
2064 if (total_len < SK_MIN_FRAMELEN ||
2065 total_len > ETHER_MAX_LEN_JUMBO ||
2066 msk_rxvalid(sc, rxstat, total_len) == 0) {
2067 ifp->if_ierrors++;
2068 m_freem(m);
2069 return;
2070 }
2071
2072 m_set_rcvif(m, ifp);
2073 m->m_pkthdr.len = m->m_len = total_len;
2074
2075 /* pass it on. */
2076 if_percpuq_enqueue(ifp->if_percpuq, m);
2077 }
2078
2079 void
2080 msk_txeof(struct sk_if_softc *sc_if)
2081 {
2082 struct sk_softc *sc = sc_if->sk_softc;
2083 struct msk_tx_desc *cur_tx;
2084 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2085 uint32_t idx, reg, sk_ctl;
2086 struct sk_txmap_entry *entry;
2087
2088 DPRINTFN(2, ("msk_txeof\n"));
2089
2090 if (sc_if->sk_port == SK_PORT_A)
2091 reg = SK_STAT_BMU_TXA1_RIDX;
2092 else
2093 reg = SK_STAT_BMU_TXA2_RIDX;
2094
2095 /*
2096 * Go through our tx ring and free mbufs for those
2097 * frames that have been sent.
2098 */
2099 idx = sc_if->sk_cdata.sk_tx_cons;
2100 while (idx != sk_win_read_2(sc, reg)) {
2101 MSK_CDTXSYNC(sc_if, idx, 1,
2102 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2103
2104 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2105 sk_ctl = cur_tx->sk_ctl;
2106 #ifdef MSK_DEBUG
2107 if (mskdebug >= 2)
2108 msk_dump_txdesc(cur_tx, idx);
2109 #endif
2110 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2111 ifp->if_opackets++;
2112 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2113 entry = sc_if->sk_cdata.sk_tx_map[idx];
2114
2115 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2116 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2117
2118 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2119 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2120
2121 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2122 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2123 link);
2124 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2125 }
2126 sc_if->sk_cdata.sk_tx_cnt--;
2127 SK_INC(idx, MSK_TX_RING_CNT);
2128 }
2129 if (idx == sc_if->sk_cdata.sk_tx_cons)
2130 return;
2131
2132 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2133
2134 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2135 ifp->if_flags &= ~IFF_OACTIVE;
2136
2137 sc_if->sk_cdata.sk_tx_cons = idx;
2138 }
2139
2140 void
2141 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2142 {
2143 /* Make sure to not completely wrap around */
2144 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2145 if (msk_newbuf(sc_if,
2146 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2147 goto schedretry;
2148 }
2149 }
2150
2151 return;
2152
2153 schedretry:
2154 /* Try later */
2155 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2156 }
2157
2158 static void
2159 msk_fill_rx_tick(void *xsc_if)
2160 {
2161 struct sk_if_softc *sc_if = xsc_if;
2162 int s, rx_prod;
2163
2164 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2165
2166 s = splnet();
2167 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2168 msk_fill_rx_ring(sc_if);
2169 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2170 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2171 sc_if->sk_cdata.sk_rx_prod);
2172 }
2173 splx(s);
2174 }
2175
2176 void
2177 msk_tick(void *xsc_if)
2178 {
2179 struct sk_if_softc *sc_if = xsc_if;
2180 struct mii_data *mii = &sc_if->sk_mii;
2181 int s;
2182
2183 s = splnet();
2184 mii_tick(mii);
2185 splx(s);
2186
2187 callout_schedule(&sc_if->sk_tick_ch, hz);
2188 }
2189
2190 void
2191 msk_intr_yukon(struct sk_if_softc *sc_if)
2192 {
2193 uint8_t status;
2194
2195 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2196 /* RX overrun */
2197 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2198 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2199 SK_RFCTL_RX_FIFO_OVER);
2200 }
2201 /* TX underrun */
2202 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2203 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2204 SK_TFCTL_TX_FIFO_UNDER);
2205 }
2206
2207 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2208 }
2209
2210 int
2211 msk_intr(void *xsc)
2212 {
2213 struct sk_softc *sc = xsc;
2214 struct sk_if_softc *sc_if;
2215 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2216 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2217 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2218 int claimed = 0;
2219 uint32_t status;
2220 struct msk_status_desc *cur_st;
2221
2222 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2223 if (status == 0xffffffff)
2224 return (0);
2225 if (status == 0) {
2226 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2227 return (0);
2228 }
2229
2230 status = CSR_READ_4(sc, SK_ISR);
2231
2232 if (sc_if0 != NULL)
2233 ifp0 = &sc_if0->sk_ethercom.ec_if;
2234 if (sc_if1 != NULL)
2235 ifp1 = &sc_if1->sk_ethercom.ec_if;
2236
2237 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2238 (ifp0->if_flags & IFF_RUNNING)) {
2239 msk_intr_yukon(sc_if0);
2240 }
2241
2242 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2243 (ifp1->if_flags & IFF_RUNNING)) {
2244 msk_intr_yukon(sc_if1);
2245 }
2246
2247 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2248 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2249 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2250
2251 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2252 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2253 switch (cur_st->sk_opcode) {
2254 case SK_Y2_STOPC_RXSTAT:
2255 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2256 if (sc_if) {
2257 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2258 letoh32(cur_st->sk_status));
2259 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2260 msk_fill_rx_tick(sc_if);
2261 }
2262 break;
2263 case SK_Y2_STOPC_TXSTAT:
2264 if (sc_if0)
2265 msk_txeof(sc_if0);
2266 if (sc_if1)
2267 msk_txeof(sc_if1);
2268 break;
2269 default:
2270 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2271 break;
2272 }
2273 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2274
2275 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2276 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2277 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2278 }
2279
2280 if (status & SK_Y2_IMR_BMU) {
2281 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2282 claimed = 1;
2283 }
2284
2285 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2286
2287 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2288 if_schedule_deferred_start(ifp0);
2289 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2290 if_schedule_deferred_start(ifp1);
2291
2292 KASSERT(sc->rnd_attached > 0);
2293 rnd_add_uint32(&sc->rnd_source, status);
2294
2295 if (sc->sk_int_mod_pending)
2296 msk_update_int_mod(sc, 1);
2297
2298 return claimed;
2299 }
2300
2301 void
2302 msk_init_yukon(struct sk_if_softc *sc_if)
2303 {
2304 uint32_t v;
2305 uint16_t reg;
2306 struct sk_softc *sc;
2307 int i;
2308
2309 sc = sc_if->sk_softc;
2310
2311 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2312 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2313
2314 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2315
2316 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2317 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2318
2319 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2320
2321 /* unused read of the interrupt source register */
2322 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2323 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2324
2325 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2326 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2327 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2328
2329 /* MIB Counter Clear Mode set */
2330 reg |= YU_PAR_MIB_CLR;
2331 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2332 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2333 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2334
2335 /* MIB Counter Clear Mode clear */
2336 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2337 reg &= ~YU_PAR_MIB_CLR;
2338 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2339
2340 /* receive control reg */
2341 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2342 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2343
2344 /* transmit control register */
2345 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2346
2347 /* transmit flow control register */
2348 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2349
2350 /* transmit parameter register */
2351 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2352 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2353 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2354
2355 /* serial mode register */
2356 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2357 reg = YU_SMR_DATA_BLIND(0x1c) |
2358 YU_SMR_MFL_VLAN |
2359 YU_SMR_IPG_DATA(0x1e);
2360
2361 if (sc->sk_type != SK_YUKON_FE &&
2362 sc->sk_type != SK_YUKON_FE_P)
2363 reg |= YU_SMR_MFL_JUMBO;
2364
2365 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2366
2367 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2368 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2369 /* msk_attach calls me before ether_ifattach so check null */
2370 if (ifp != NULL && ifp->if_sadl != NULL)
2371 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2372 sizeof(sc_if->sk_enaddr));
2373 /* Setup Yukon's address */
2374 for (i = 0; i < 3; i++) {
2375 /* Write Source Address 1 (unicast filter) */
2376 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2377 sc_if->sk_enaddr[i * 2] |
2378 sc_if->sk_enaddr[i * 2 + 1] << 8);
2379 }
2380
2381 for (i = 0; i < 3; i++) {
2382 reg = sk_win_read_2(sc_if->sk_softc,
2383 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2384 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2385 }
2386
2387 /* Set promiscuous mode */
2388 msk_setpromisc(sc_if);
2389
2390 /* Set multicast filter */
2391 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2392 msk_setmulti(sc_if);
2393
2394 /* enable interrupt mask for counter overflows */
2395 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2396 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2397 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2398 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2399
2400 /* Configure RX MAC FIFO Flush Mask */
2401 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2402 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2403 YU_RXSTAT_JABBER;
2404 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2405
2406 /* Configure RX MAC FIFO */
2407 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2408 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2409 SK_RFCTL_FIFO_FLUSH_ON);
2410
2411 /* Increase flush threshold to 64 bytes */
2412 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2413 SK_RFCTL_FIFO_THRESHOLD + 1);
2414
2415 /* Configure TX MAC FIFO */
2416 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2417 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2418
2419 #if 1
2420 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2421 #endif
2422 DPRINTFN(6, ("msk_init_yukon: end\n"));
2423 }
2424
2425 /*
2426 * Note that to properly initialize any part of the GEnesis chip,
2427 * you first have to take it out of reset mode.
2428 */
2429 int
2430 msk_init(struct ifnet *ifp)
2431 {
2432 struct sk_if_softc *sc_if = ifp->if_softc;
2433 struct sk_softc *sc = sc_if->sk_softc;
2434 int rc = 0, s;
2435 uint32_t imr, imtimer_ticks;
2436
2437
2438 DPRINTFN(2, ("msk_init\n"));
2439
2440 s = splnet();
2441
2442 /* Cancel pending I/O and free all RX/TX buffers. */
2443 msk_stop(ifp, 1);
2444
2445 /* Configure I2C registers */
2446
2447 /* Configure XMAC(s) */
2448 msk_init_yukon(sc_if);
2449 if ((rc = ether_mediachange(ifp)) != 0)
2450 goto out;
2451
2452 /* Configure transmit arbiter(s) */
2453 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2454 #if 0
2455 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2456 #endif
2457
2458 if (sc->sk_ramsize) {
2459 /* Configure RAMbuffers */
2460 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2461 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2462 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2463 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2464 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2465 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2466
2467 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2468 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2469 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2470 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2471 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2472 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2473 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2474 }
2475
2476 /* Configure BMUs */
2477 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2478 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2479 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2480 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2481
2482 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2483 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2484 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2485 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2486
2487 /* Make sure the sync transmit queue is disabled. */
2488 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2489
2490 /* Init descriptors */
2491 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2492 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2493 "memory for rx buffers\n");
2494 msk_stop(ifp, 1);
2495 splx(s);
2496 return ENOBUFS;
2497 }
2498
2499 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2500 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2501 "memory for tx buffers\n");
2502 msk_stop(ifp, 1);
2503 splx(s);
2504 return ENOBUFS;
2505 }
2506
2507 /* Set interrupt moderation if changed via sysctl. */
2508 switch (sc->sk_type) {
2509 case SK_YUKON_EC:
2510 case SK_YUKON_EC_U:
2511 case SK_YUKON_EX:
2512 case SK_YUKON_SUPR:
2513 case SK_YUKON_ULTRA2:
2514 case SK_YUKON_OPTIMA:
2515 case SK_YUKON_PRM:
2516 case SK_YUKON_OPTIMA2:
2517 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2518 break;
2519 case SK_YUKON_FE:
2520 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2521 break;
2522 case SK_YUKON_FE_P:
2523 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2524 break;
2525 case SK_YUKON_XL:
2526 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2527 break;
2528 default:
2529 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2530 }
2531 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2532 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2533 sk_win_write_4(sc, SK_IMTIMERINIT,
2534 SK_IM_USECS(sc->sk_int_mod));
2535 aprint_verbose_dev(sc->sk_dev,
2536 "interrupt moderation is %d us\n", sc->sk_int_mod);
2537 }
2538
2539 /* Initialize prefetch engine. */
2540 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2541 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2542 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2543 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2544 MSK_RX_RING_ADDR(sc_if, 0));
2545 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2546 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2547 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2548 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2549
2550 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2551 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2552 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2553 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2554 MSK_TX_RING_ADDR(sc_if, 0));
2555 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2556 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2557 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2558 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2559
2560 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2561 sc_if->sk_cdata.sk_rx_prod);
2562
2563 /* Configure interrupt handling */
2564 if (sc_if->sk_port == SK_PORT_A)
2565 sc->sk_intrmask |= SK_Y2_INTRS1;
2566 else
2567 sc->sk_intrmask |= SK_Y2_INTRS2;
2568 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2569 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2570
2571 ifp->if_flags |= IFF_RUNNING;
2572 ifp->if_flags &= ~IFF_OACTIVE;
2573
2574 callout_schedule(&sc_if->sk_tick_ch, hz);
2575
2576 out:
2577 splx(s);
2578 return rc;
2579 }
2580
2581 /*
2582 * Note: the logic of second parameter is inverted compared to OpenBSD
2583 * code, since this code uses the function as if_stop hook too.
2584 */
2585 void
2586 msk_stop(struct ifnet *ifp, int disable)
2587 {
2588 struct sk_if_softc *sc_if = ifp->if_softc;
2589 struct sk_softc *sc = sc_if->sk_softc;
2590 struct sk_txmap_entry *dma;
2591 int i;
2592
2593 DPRINTFN(2, ("msk_stop\n"));
2594
2595 callout_stop(&sc_if->sk_tick_ch);
2596 callout_stop(&sc_if->sk_tick_rx);
2597
2598 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2599
2600 /* Stop transfer of Tx descriptors */
2601
2602 /* Stop transfer of Rx descriptors */
2603
2604 if (disable) {
2605 /* Turn off various components of this interface. */
2606 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2607 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2608 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2609 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2610 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2611 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2612 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2613 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2614 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2615 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2616 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2617
2618 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2619 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2620
2621 /* Disable interrupts */
2622 if (sc_if->sk_port == SK_PORT_A)
2623 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2624 else
2625 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2626 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2627 }
2628
2629 /* Free RX and TX mbufs still in the queues. */
2630 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2631 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2632 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2633 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2634 }
2635 }
2636
2637 sc_if->sk_cdata.sk_rx_prod = 0;
2638 sc_if->sk_cdata.sk_rx_cons = 0;
2639 sc_if->sk_cdata.sk_rx_cnt = 0;
2640
2641 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2642 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2643 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2644 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2645 #if 1
2646 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2647 sc_if->sk_cdata.sk_tx_map[i], link);
2648 sc_if->sk_cdata.sk_tx_map[i] = 0;
2649 #endif
2650 }
2651 }
2652
2653 #if 1
2654 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2655 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2656 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2657 free(dma, M_DEVBUF);
2658 }
2659 #endif
2660 }
2661
2662 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2663 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2664
2665 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2666 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2667
2668 #ifdef MSK_DEBUG
2669 void
2670 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2671 {
2672 #define DESC_PRINT(X) \
2673 if (X) \
2674 printf("txdesc[%d]." #X "=%#x\n", \
2675 idx, X);
2676
2677 DESC_PRINT(letoh32(le->sk_addr));
2678 DESC_PRINT(letoh16(le->sk_len));
2679 DESC_PRINT(le->sk_ctl);
2680 DESC_PRINT(le->sk_opcode);
2681 #undef DESC_PRINT
2682 }
2683
2684 void
2685 msk_dump_bytes(const char *data, int len)
2686 {
2687 int c, i, j;
2688
2689 for (i = 0; i < len; i += 16) {
2690 printf("%08x ", i);
2691 c = len - i;
2692 if (c > 16) c = 16;
2693
2694 for (j = 0; j < c; j++) {
2695 printf("%02x ", data[i + j] & 0xff);
2696 if ((j & 0xf) == 7 && j > 0)
2697 printf(" ");
2698 }
2699
2700 for (; j < 16; j++)
2701 printf(" ");
2702 printf(" ");
2703
2704 for (j = 0; j < c; j++) {
2705 int ch = data[i + j] & 0xff;
2706 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2707 }
2708
2709 printf("\n");
2710
2711 if (c < 16)
2712 break;
2713 }
2714 }
2715
2716 void
2717 msk_dump_mbuf(struct mbuf *m)
2718 {
2719 int count = m->m_pkthdr.len;
2720
2721 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2722
2723 while (count > 0 && m) {
2724 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2725 m, m->m_data, m->m_len);
2726 if (mskdebug >= 4)
2727 msk_dump_bytes(mtod(m, char *), m->m_len);
2728
2729 count -= m->m_len;
2730 m = m->m_next;
2731 }
2732 }
2733 #endif
2734
2735 static int
2736 msk_sysctl_handler(SYSCTLFN_ARGS)
2737 {
2738 int error, t;
2739 struct sysctlnode node;
2740 struct sk_softc *sc;
2741
2742 node = *rnode;
2743 sc = node.sysctl_data;
2744 t = sc->sk_int_mod;
2745 node.sysctl_data = &t;
2746 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2747 if (error || newp == NULL)
2748 return error;
2749
2750 if (t < SK_IM_MIN || t > SK_IM_MAX)
2751 return EINVAL;
2752
2753 /* update the softc with sysctl-changed value, and mark
2754 for hardware update */
2755 sc->sk_int_mod = t;
2756 sc->sk_int_mod_pending = 1;
2757 return 0;
2758 }
2759
2760 /*
2761 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2762 * set up in mskc_attach()
2763 */
2764 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2765 {
2766 int rc;
2767 const struct sysctlnode *node;
2768
2769 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2770 0, CTLTYPE_NODE, "msk",
2771 SYSCTL_DESCR("msk interface controls"),
2772 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2773 goto err;
2774 }
2775
2776 msk_root_num = node->sysctl_num;
2777 return;
2778
2779 err:
2780 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2781 }
2782