if_msk.c revision 1.84 1 /* $NetBSD: if_msk.c,v 1.84 2019/01/22 03:42:27 msaitoh Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.84 2019/01/22 03:42:27 msaitoh Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int, uint16_t *);
128 int msk_miibus_writereg(device_t, int, int, uint16_t);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n,x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
155
156 /* supported device vendors */
157 static const struct msk_product {
158 pci_vendor_id_t msk_vendor;
159 pci_product_id_t msk_product;
160 } msk_products[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
199 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 { 0, 0 }
203 };
204
205 static inline uint32_t
206 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
207 {
208 return CSR_READ_4(sc, reg);
209 }
210
211 static inline uint16_t
212 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
213 {
214 return CSR_READ_2(sc, reg);
215 }
216
217 static inline uint8_t
218 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
219 {
220 return CSR_READ_1(sc, reg);
221 }
222
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
225 {
226 CSR_WRITE_4(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
231 {
232 CSR_WRITE_2(sc, reg, x);
233 }
234
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
237 {
238 CSR_WRITE_1(sc, reg, x);
239 }
240
241 int
242 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
243 {
244 struct sk_if_softc *sc_if = device_private(dev);
245 uint16_t data;
246 int i;
247
248 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250
251 for (i = 0; i < SK_TIMEOUT; i++) {
252 DELAY(1);
253 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 if (data & YU_SMICR_READ_VALID)
255 break;
256 }
257
258 if (i == SK_TIMEOUT) {
259 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 return ETIMEDOUT;
261 }
262
263 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
264
265 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
266
267 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
268 phy, reg, *val));
269
270 return 0;
271 }
272
273 int
274 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
275 {
276 struct sk_if_softc *sc_if = device_private(dev);
277 int i;
278
279 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
280 phy, reg, val));
281
282 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
283 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
284 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
285
286 for (i = 0; i < SK_TIMEOUT; i++) {
287 DELAY(1);
288 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
289 break;
290 }
291
292 if (i == SK_TIMEOUT) {
293 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
294 return ETIMEDOUT;
295 }
296
297 return 0;
298 }
299
300 void
301 msk_miibus_statchg(struct ifnet *ifp)
302 {
303 struct sk_if_softc *sc_if = ifp->if_softc;
304 struct mii_data *mii = &sc_if->sk_mii;
305 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
306 int gpcr;
307
308 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
309 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
310
311 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
312 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
313 /* Set speed. */
314 gpcr |= YU_GPCR_SPEED_DIS;
315 switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 case IFM_1000_SX:
317 case IFM_1000_LX:
318 case IFM_1000_CX:
319 case IFM_1000_T:
320 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
321 break;
322 case IFM_100_TX:
323 gpcr |= YU_GPCR_SPEED;
324 break;
325 }
326
327 /* Set duplex. */
328 gpcr |= YU_GPCR_DPLX_DIS;
329 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
330 gpcr |= YU_GPCR_DUPLEX;
331
332 /* Disable flow control. */
333 gpcr |= YU_GPCR_FCTL_DIS;
334 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
335 }
336
337 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
338
339 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
340 SK_YU_READ_2(sc_if, YUKON_GPCR)));
341 }
342
343 void
344 msk_setmulti(struct sk_if_softc *sc_if)
345 {
346 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
347 uint32_t hashes[2] = { 0, 0 };
348 int h;
349 struct ethercom *ec = &sc_if->sk_ethercom;
350 struct ether_multi *enm;
351 struct ether_multistep step;
352 uint16_t reg;
353
354 /* First, zot all the existing filters. */
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
358 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
359
360
361 /* Now program new ones. */
362 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
363 reg |= YU_RCR_UFLEN;
364 allmulti:
365 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
366 if ((ifp->if_flags & IFF_PROMISC) != 0)
367 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
368 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
369 hashes[0] = 0xFFFFFFFF;
370 hashes[1] = 0xFFFFFFFF;
371 }
372 } else {
373 /* First find the tail of the list. */
374 ETHER_FIRST_MULTI(step, ec, enm);
375 while (enm != NULL) {
376 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 goto allmulti;
380 }
381 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
382 ((1 << SK_HASH_BITS) - 1);
383 if (h < 32)
384 hashes[0] |= (1 << h);
385 else
386 hashes[1] |= (1 << (h - 32));
387
388 ETHER_NEXT_MULTI(step, enm);
389 }
390 reg |= YU_RCR_MUFLEN;
391 }
392
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
398 }
399
400 void
401 msk_setpromisc(struct sk_if_softc *sc_if)
402 {
403 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
404
405 if (ifp->if_flags & IFF_PROMISC)
406 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 else
409 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
410 YU_RCR_UFLEN | YU_RCR_MUFLEN);
411 }
412
413 int
414 msk_init_rx_ring(struct sk_if_softc *sc_if)
415 {
416 struct msk_chain_data *cd = &sc_if->sk_cdata;
417 struct msk_ring_data *rd = sc_if->sk_rdata;
418 struct msk_rx_desc *r;
419 int i, nexti;
420
421 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
422
423 for (i = 0; i < MSK_RX_RING_CNT; i++) {
424 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
425 if (i == (MSK_RX_RING_CNT - 1))
426 nexti = 0;
427 else
428 nexti = i + 1;
429 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
430 }
431
432 sc_if->sk_cdata.sk_rx_prod = 0;
433 sc_if->sk_cdata.sk_rx_cons = 0;
434 sc_if->sk_cdata.sk_rx_cnt = 0;
435 sc_if->sk_cdata.sk_rx_hiaddr = 0;
436
437 /* Mark the first ring element to initialize the high address. */
438 sc_if->sk_cdata.sk_rx_hiaddr = 0;
439 r = &rd->sk_rx_ring[cd->sk_rx_prod];
440 r->sk_addr = htole32(cd->sk_rx_hiaddr);
441 r->sk_len = 0;
442 r->sk_ctl = 0;
443 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
444 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
445 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
446 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
447 sc_if->sk_cdata.sk_rx_cnt++;
448
449 msk_fill_rx_ring(sc_if);
450 return (0);
451 }
452
453 int
454 msk_init_tx_ring(struct sk_if_softc *sc_if)
455 {
456 struct sk_softc *sc = sc_if->sk_softc;
457 struct msk_chain_data *cd = &sc_if->sk_cdata;
458 struct msk_ring_data *rd = sc_if->sk_rdata;
459 struct msk_tx_desc *t;
460 bus_dmamap_t dmamap;
461 struct sk_txmap_entry *entry;
462 int i, nexti;
463
464 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
465
466 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
467 for (i = 0; i < MSK_TX_RING_CNT; i++) {
468 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
469 if (i == (MSK_TX_RING_CNT - 1))
470 nexti = 0;
471 else
472 nexti = i + 1;
473 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
474
475 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
476 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
477 return (ENOBUFS);
478
479 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
480 if (!entry) {
481 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
482 return (ENOBUFS);
483 }
484 entry->dmamap = dmamap;
485 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
486 }
487
488 sc_if->sk_cdata.sk_tx_prod = 0;
489 sc_if->sk_cdata.sk_tx_cons = 0;
490 sc_if->sk_cdata.sk_tx_cnt = 0;
491 sc_if->sk_cdata.sk_tx_hiaddr = 0;
492
493 /* Mark the first ring element to initialize the high address. */
494 sc_if->sk_cdata.sk_tx_hiaddr = 0;
495 t = &rd->sk_tx_ring[cd->sk_tx_prod];
496 t->sk_addr = htole32(cd->sk_tx_hiaddr);
497 t->sk_len = 0;
498 t->sk_ctl = 0;
499 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
500 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
501 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
502 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
503 sc_if->sk_cdata.sk_tx_cnt++;
504
505 return (0);
506 }
507
508 int
509 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
510 {
511 struct mbuf *m_new = NULL;
512 struct sk_chain *c;
513 struct msk_rx_desc *r;
514 void *buf = NULL;
515 bus_addr_t addr;
516
517 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
518 if (m_new == NULL)
519 return (ENOBUFS);
520
521 /* Allocate the jumbo buffer */
522 buf = msk_jalloc(sc_if);
523 if (buf == NULL) {
524 m_freem(m_new);
525 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
526 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
527 return (ENOBUFS);
528 }
529
530 /* Attach the buffer to the mbuf */
531 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
532 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
533
534 m_adj(m_new, ETHER_ALIGN);
535
536 addr = dmamap->dm_segs[0].ds_addr +
537 ((vaddr_t)m_new->m_data -
538 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
539
540 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
541 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
542 r = c->sk_le;
543 c->sk_mbuf = NULL;
544 r->sk_addr = htole32(MSK_ADDR_HI(addr));
545 r->sk_len = 0;
546 r->sk_ctl = 0;
547 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
548 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
549
550 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
551 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
552
553 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
554 sc_if->sk_cdata.sk_rx_cnt++;
555
556 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
557 sc_if->sk_ethercom.ec_if.if_xname,
558 (unsigned)MSK_ADDR_HI(addr)));
559 }
560
561 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
562 r = c->sk_le;
563 c->sk_mbuf = m_new;
564 r->sk_addr = htole32(MSK_ADDR_LO(addr));
565 r->sk_len = htole16(SK_JLEN);
566 r->sk_ctl = 0;
567 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
568
569 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
570 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
571
572 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
573 sc_if->sk_cdata.sk_rx_cnt++;
574
575 return (0);
576 }
577
578 /*
579 * Memory management for jumbo frames.
580 */
581
582 int
583 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
584 {
585 struct sk_softc *sc = sc_if->sk_softc;
586 char *ptr, *kva;
587 int i, state, error;
588 struct sk_jpool_entry *entry;
589
590 state = error = 0;
591
592 /* Grab a big chunk o' storage. */
593 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
594 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
595 BUS_DMA_NOWAIT)) {
596 aprint_error(": can't alloc rx buffers");
597 return (ENOBUFS);
598 }
599
600 state = 1;
601 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
602 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
603 BUS_DMA_NOWAIT)) {
604 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
605 error = ENOBUFS;
606 goto out;
607 }
608
609 state = 2;
610 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
611 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
612 aprint_error(": can't create dma map");
613 error = ENOBUFS;
614 goto out;
615 }
616
617 state = 3;
618 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
619 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
620 aprint_error(": can't load dma map");
621 error = ENOBUFS;
622 goto out;
623 }
624
625 state = 4;
626 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
627 DPRINTFN(1,("msk_jumbo_buf = %p\n",
628 (void *)sc_if->sk_cdata.sk_jumbo_buf));
629
630 LIST_INIT(&sc_if->sk_jfree_listhead);
631 LIST_INIT(&sc_if->sk_jinuse_listhead);
632 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
633
634 /*
635 * Now divide it up into 9K pieces and save the addresses
636 * in an array.
637 */
638 ptr = sc_if->sk_cdata.sk_jumbo_buf;
639 for (i = 0; i < MSK_JSLOTS; i++) {
640 sc_if->sk_cdata.sk_jslots[i] = ptr;
641 ptr += SK_JLEN;
642 entry = malloc(sizeof(struct sk_jpool_entry),
643 M_DEVBUF, M_NOWAIT);
644 if (entry == NULL) {
645 sc_if->sk_cdata.sk_jumbo_buf = NULL;
646 aprint_error(": no memory for jumbo buffer queue!");
647 error = ENOBUFS;
648 goto out;
649 }
650 entry->slot = i;
651 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
652 entry, jpool_entries);
653 }
654 out:
655 if (error != 0) {
656 switch (state) {
657 case 4:
658 bus_dmamap_unload(sc->sc_dmatag,
659 sc_if->sk_cdata.sk_rx_jumbo_map);
660 case 3:
661 bus_dmamap_destroy(sc->sc_dmatag,
662 sc_if->sk_cdata.sk_rx_jumbo_map);
663 case 2:
664 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
665 case 1:
666 bus_dmamem_free(sc->sc_dmatag,
667 &sc_if->sk_cdata.sk_jumbo_seg,
668 sc_if->sk_cdata.sk_jumbo_nseg);
669 break;
670 default:
671 break;
672 }
673 }
674
675 return error;
676 }
677
678 static void
679 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
680 {
681 struct sk_softc *sc = sc_if->sk_softc;
682
683 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
684 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
685 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
686 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
687 sc_if->sk_cdata.sk_jumbo_nseg);
688 }
689
690 /*
691 * Allocate a jumbo buffer.
692 */
693 void *
694 msk_jalloc(struct sk_if_softc *sc_if)
695 {
696 struct sk_jpool_entry *entry;
697
698 mutex_enter(&sc_if->sk_jpool_mtx);
699 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
700
701 if (entry == NULL) {
702 mutex_exit(&sc_if->sk_jpool_mtx);
703 return NULL;
704 }
705
706 LIST_REMOVE(entry, jpool_entries);
707 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
708 mutex_exit(&sc_if->sk_jpool_mtx);
709 return (sc_if->sk_cdata.sk_jslots[entry->slot]);
710 }
711
712 /*
713 * Release a jumbo buffer.
714 */
715 void
716 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
717 {
718 struct sk_jpool_entry *entry;
719 struct sk_if_softc *sc;
720 int i;
721
722 /* Extract the softc struct pointer. */
723 sc = (struct sk_if_softc *)arg;
724
725 if (sc == NULL)
726 panic("msk_jfree: can't find softc pointer!");
727
728 /* calculate the slot this buffer belongs to */
729 i = ((vaddr_t)buf
730 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
731
732 if ((i < 0) || (i >= MSK_JSLOTS))
733 panic("msk_jfree: asked to free buffer that we don't manage!");
734
735 mutex_enter(&sc->sk_jpool_mtx);
736 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
737 if (entry == NULL)
738 panic("msk_jfree: buffer not in use!");
739 entry->slot = i;
740 LIST_REMOVE(entry, jpool_entries);
741 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
742 mutex_exit(&sc->sk_jpool_mtx);
743
744 if (__predict_true(m != NULL))
745 pool_cache_put(mb_cache, m);
746
747 /* Now that we know we have a free RX buffer, refill if running out */
748 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
749 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
750 callout_schedule(&sc->sk_tick_rx, 0);
751 }
752
753 int
754 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
755 {
756 struct sk_if_softc *sc = ifp->if_softc;
757 int s, error;
758
759 s = splnet();
760
761 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
762 switch (cmd) {
763 case SIOCSIFFLAGS:
764 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
765 break;
766
767 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
768 case IFF_RUNNING:
769 msk_stop(ifp, 1);
770 break;
771 case IFF_UP:
772 msk_init(ifp);
773 break;
774 case IFF_UP | IFF_RUNNING:
775 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
776 msk_setpromisc(sc);
777 msk_setmulti(sc);
778 } else
779 msk_init(ifp);
780 break;
781 }
782 sc->sk_if_flags = ifp->if_flags;
783 break;
784 default:
785 error = ether_ioctl(ifp, cmd, data);
786 if (error == ENETRESET) {
787 error = 0;
788 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
789 ;
790 else if (ifp->if_flags & IFF_RUNNING) {
791 /*
792 * Multicast list has changed; set the hardware
793 * filter accordingly.
794 */
795 msk_setmulti(sc);
796 }
797 }
798 break;
799 }
800
801 splx(s);
802 return error;
803 }
804
805 void
806 msk_update_int_mod(struct sk_softc *sc, int verbose)
807 {
808 uint32_t imtimer_ticks;
809
810 /*
811 * Configure interrupt moderation. The moderation timer
812 * defers interrupts specified in the interrupt moderation
813 * timer mask based on the timeout specified in the interrupt
814 * moderation timer init register. Each bit in the timer
815 * register represents one tick, so to specify a timeout in
816 * microseconds, we have to multiply by the correct number of
817 * ticks-per-microsecond.
818 */
819 switch (sc->sk_type) {
820 case SK_YUKON_EC:
821 case SK_YUKON_EC_U:
822 case SK_YUKON_EX:
823 case SK_YUKON_SUPR:
824 case SK_YUKON_ULTRA2:
825 case SK_YUKON_OPTIMA:
826 case SK_YUKON_PRM:
827 case SK_YUKON_OPTIMA2:
828 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
829 break;
830 case SK_YUKON_FE:
831 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
832 break;
833 case SK_YUKON_FE_P:
834 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
835 break;
836 case SK_YUKON_XL:
837 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
838 break;
839 default:
840 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
841 }
842 if (verbose)
843 aprint_verbose_dev(sc->sk_dev,
844 "interrupt moderation is %d us\n", sc->sk_int_mod);
845 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
846 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
847 SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
848 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
849 sc->sk_int_mod_pending = 0;
850 }
851
852 static int
853 msk_lookup(const struct pci_attach_args *pa)
854 {
855 const struct msk_product *pmsk;
856
857 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
858 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
859 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
860 return 1;
861 }
862 return 0;
863 }
864
865 /*
866 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
867 * IDs against our list and return a device name if we find a match.
868 */
869 int
870 mskc_probe(device_t parent, cfdata_t match, void *aux)
871 {
872 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
873
874 return msk_lookup(pa);
875 }
876
877 /*
878 * Force the GEnesis into reset, then bring it out of reset.
879 */
880 void
881 mskc_reset(struct sk_softc *sc)
882 {
883 uint32_t imtimer_ticks, reg1;
884 int reg;
885
886 DPRINTFN(2, ("mskc_reset\n"));
887
888 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
889 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
890
891 DELAY(1000);
892 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
893 DELAY(2);
894 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
895 sk_win_write_1(sc, SK_TESTCTL1, 2);
896
897 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
898 sc->sk_type >= SK_YUKON_FE_P) {
899 uint32_t our;
900
901 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
902
903 /* enable all clocks. */
904 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
905 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
906 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST|
907 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN|
908 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY|
909 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
910 /* Set all bits to 0 except bits 15..12 */
911 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
912 /* Set to default value */
913 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
914
915 /*
916 * Disable status race, workaround for Yukon EC Ultra &
917 * Yukon EX.
918 */
919 reg1 = sk_win_read_4(sc, SK_GPIO);
920 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
921 sk_win_write_4(sc, SK_GPIO, reg1);
922 sk_win_read_4(sc, SK_GPIO);
923 }
924
925 /* release PHY from PowerDown/Coma mode. */
926 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
927 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
928 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
929 else
930 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
931 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
932
933 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
934 sk_win_write_1(sc, SK_Y2_CLKGATE,
935 SK_Y2_CLKGATE_LINK1_GATE_DIS |
936 SK_Y2_CLKGATE_LINK2_GATE_DIS |
937 SK_Y2_CLKGATE_LINK1_CORE_DIS |
938 SK_Y2_CLKGATE_LINK2_CORE_DIS |
939 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
940 else
941 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
942
943 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
944 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
945 DELAY(1000);
946 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
947 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
948
949 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
950 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
951 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
952 }
953
954 sk_win_write_1(sc, SK_TESTCTL1, 1);
955
956 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
957 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
958 CSR_READ_2(sc, SK_LINK_CTRL)));
959
960 /* Disable ASF */
961 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
962 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
963
964 /* Clear I2C IRQ noise */
965 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
966
967 /* Disable hardware timer */
968 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
969 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
970
971 /* Disable descriptor polling */
972 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
973
974 /* Disable time stamps */
975 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
976 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
977
978 /* Enable RAM interface */
979 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
980 for (reg = SK_TO0;reg <= SK_TO11; reg++)
981 sk_win_write_1(sc, reg, 36);
982 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
983 for (reg = SK_TO0;reg <= SK_TO11; reg++)
984 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
985
986 /*
987 * Configure interrupt moderation. The moderation timer
988 * defers interrupts specified in the interrupt moderation
989 * timer mask based on the timeout specified in the interrupt
990 * moderation timer init register. Each bit in the timer
991 * register represents one tick, so to specify a timeout in
992 * microseconds, we have to multiply by the correct number of
993 * ticks-per-microsecond.
994 */
995 switch (sc->sk_type) {
996 case SK_YUKON_EC:
997 case SK_YUKON_EC_U:
998 case SK_YUKON_EX:
999 case SK_YUKON_SUPR:
1000 case SK_YUKON_ULTRA2:
1001 case SK_YUKON_OPTIMA:
1002 case SK_YUKON_PRM:
1003 case SK_YUKON_OPTIMA2:
1004 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1005 break;
1006 case SK_YUKON_FE:
1007 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1008 break;
1009 case SK_YUKON_FE_P:
1010 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1011 break;
1012 case SK_YUKON_XL:
1013 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1014 break;
1015 default:
1016 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1017 break;
1018 }
1019
1020 /* Reset status ring. */
1021 memset(sc->sk_status_ring, 0,
1022 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1023 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1024 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1025 sc->sk_status_idx = 0;
1026
1027 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1028 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1029
1030 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1031 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1032 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1033 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1034 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1035 if (sc->sk_type == SK_YUKON_EC &&
1036 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1037 /* WA for dev. #4.3 */
1038 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1039 SK_STAT_BMU_TXTHIDX_MSK);
1040 /* WA for dev. #4.18 */
1041 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1042 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1043 } else {
1044 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1045 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1046 if (sc->sk_type == SK_YUKON_XL)
1047 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1048 else
1049 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1050 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1051 }
1052
1053 #if 0
1054 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1055 #endif
1056 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1057
1058 /* Enable status unit. */
1059 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1060
1061 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1062 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1063 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1064
1065 msk_update_int_mod(sc, 0);
1066 }
1067
1068 int
1069 msk_probe(device_t parent, cfdata_t match, void *aux)
1070 {
1071 struct skc_attach_args *sa = aux;
1072
1073 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1074 return (0);
1075
1076 switch (sa->skc_type) {
1077 case SK_YUKON_XL:
1078 case SK_YUKON_EC_U:
1079 case SK_YUKON_EX:
1080 case SK_YUKON_EC:
1081 case SK_YUKON_FE:
1082 case SK_YUKON_FE_P:
1083 case SK_YUKON_SUPR:
1084 case SK_YUKON_ULTRA2:
1085 case SK_YUKON_OPTIMA:
1086 case SK_YUKON_PRM:
1087 case SK_YUKON_OPTIMA2:
1088 return (1);
1089 }
1090
1091 return (0);
1092 }
1093
1094 void
1095 msk_reset(struct sk_if_softc *sc_if)
1096 {
1097 /* GMAC and GPHY Reset */
1098 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1099 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1100 DELAY(1000);
1101 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1102 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1103 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1104 }
1105
1106 static bool
1107 msk_resume(device_t dv, const pmf_qual_t *qual)
1108 {
1109 struct sk_if_softc *sc_if = device_private(dv);
1110
1111 msk_init_yukon(sc_if);
1112 return true;
1113 }
1114
1115 /*
1116 * Each XMAC chip is attached as a separate logical IP interface.
1117 * Single port cards will have only one logical interface of course.
1118 */
1119 void
1120 msk_attach(device_t parent, device_t self, void *aux)
1121 {
1122 struct sk_if_softc *sc_if = device_private(self);
1123 struct sk_softc *sc = device_private(parent);
1124 struct skc_attach_args *sa = aux;
1125 struct ifnet *ifp;
1126 void *kva;
1127 int i;
1128 uint32_t chunk;
1129 int mii_flags;
1130
1131 sc_if->sk_dev = self;
1132 sc_if->sk_port = sa->skc_port;
1133 sc_if->sk_softc = sc;
1134 sc->sk_if[sa->skc_port] = sc_if;
1135
1136 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1137
1138 /*
1139 * Get station address for this interface. Note that
1140 * dual port cards actually come with three station
1141 * addresses: one for each port, plus an extra. The
1142 * extra one is used by the SysKonnect driver software
1143 * as a 'virtual' station address for when both ports
1144 * are operating in failover mode. Currently we don't
1145 * use this extra address.
1146 */
1147 for (i = 0; i < ETHER_ADDR_LEN; i++)
1148 sc_if->sk_enaddr[i] =
1149 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1150
1151 aprint_normal(": Ethernet address %s\n",
1152 ether_sprintf(sc_if->sk_enaddr));
1153
1154 /*
1155 * Set up RAM buffer addresses. The Yukon2 has a small amount
1156 * of SRAM on it, somewhere between 4K and 48K. We need to
1157 * divide this up between the transmitter and receiver. We
1158 * give the receiver 2/3 of the memory (rounded down), and the
1159 * transmitter whatever remains.
1160 */
1161 if (sc->sk_ramsize) {
1162 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1163 sc_if->sk_rx_ramstart = 0;
1164 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1165 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1166 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1167 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1168
1169 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1170 " tx_ramstart=%#x tx_ramend=%#x\n",
1171 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1172 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1173 }
1174
1175 /* Allocate the descriptor queues. */
1176 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1177 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1178 BUS_DMA_NOWAIT)) {
1179 aprint_error(": can't alloc rx buffers\n");
1180 goto fail;
1181 }
1182 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1183 sc_if->sk_ring_nseg,
1184 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1185 aprint_error(": can't map dma buffers (%zu bytes)\n",
1186 sizeof(struct msk_ring_data));
1187 goto fail_1;
1188 }
1189 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1190 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1191 &sc_if->sk_ring_map)) {
1192 aprint_error(": can't create dma map\n");
1193 goto fail_2;
1194 }
1195 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1196 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1197 aprint_error(": can't load dma map\n");
1198 goto fail_3;
1199 }
1200 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1201 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1202
1203 if (sc->sk_type != SK_YUKON_FE &&
1204 sc->sk_type != SK_YUKON_FE_P)
1205 sc_if->sk_pktlen = SK_JLEN;
1206 else
1207 sc_if->sk_pktlen = MCLBYTES;
1208
1209 /* Try to allocate memory for jumbo buffers. */
1210 if (msk_alloc_jumbo_mem(sc_if)) {
1211 aprint_error(": jumbo buffer allocation failed\n");
1212 goto fail_3;
1213 }
1214
1215 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1216 if (sc->sk_type != SK_YUKON_FE &&
1217 sc->sk_type != SK_YUKON_FE_P)
1218 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1219
1220 ifp = &sc_if->sk_ethercom.ec_if;
1221 ifp->if_softc = sc_if;
1222 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1223 ifp->if_ioctl = msk_ioctl;
1224 ifp->if_start = msk_start;
1225 ifp->if_stop = msk_stop;
1226 ifp->if_init = msk_init;
1227 ifp->if_watchdog = msk_watchdog;
1228 ifp->if_baudrate = 1000000000;
1229 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1230 IFQ_SET_READY(&ifp->if_snd);
1231 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1232
1233 msk_reset(sc_if);
1234
1235 /*
1236 * Do miibus setup.
1237 */
1238 msk_init_yukon(sc_if);
1239
1240 DPRINTFN(2, ("msk_attach: 1\n"));
1241
1242 sc_if->sk_mii.mii_ifp = ifp;
1243 sc_if->sk_mii.mii_readreg = msk_miibus_readreg;
1244 sc_if->sk_mii.mii_writereg = msk_miibus_writereg;
1245 sc_if->sk_mii.mii_statchg = msk_miibus_statchg;
1246
1247 sc_if->sk_ethercom.ec_mii = &sc_if->sk_mii;
1248 ifmedia_init(&sc_if->sk_mii.mii_media, 0,
1249 ether_mediachange, ether_mediastatus);
1250 mii_flags = MIIF_DOPAUSE;
1251 if (sc->sk_fibertype)
1252 mii_flags |= MIIF_HAVEFIBER;
1253 mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0,
1254 MII_OFFSET_ANY, mii_flags);
1255 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) {
1256 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1257 ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL,
1258 0, NULL);
1259 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL);
1260 } else
1261 ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO);
1262
1263 callout_init(&sc_if->sk_tick_ch, 0);
1264 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1265 callout_schedule(&sc_if->sk_tick_ch, hz);
1266
1267 callout_init(&sc_if->sk_tick_rx, 0);
1268 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1269
1270 /*
1271 * Call MI attach routines.
1272 */
1273 if_attach(ifp);
1274 if_deferred_start_init(ifp, NULL);
1275 ether_ifattach(ifp, sc_if->sk_enaddr);
1276
1277 if (pmf_device_register(self, NULL, msk_resume))
1278 pmf_class_network_register(self, ifp);
1279 else
1280 aprint_error_dev(self, "couldn't establish power handler\n");
1281
1282 if (sc->rnd_attached++ == 0) {
1283 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1284 RND_TYPE_NET, RND_FLAG_DEFAULT);
1285 }
1286
1287 DPRINTFN(2, ("msk_attach: end\n"));
1288 return;
1289
1290 fail_3:
1291 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1292 fail_2:
1293 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1294 fail_1:
1295 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1296 fail:
1297 sc->sk_if[sa->skc_port] = NULL;
1298 }
1299
1300 int
1301 msk_detach(device_t self, int flags)
1302 {
1303 struct sk_if_softc *sc_if = device_private(self);
1304 struct sk_softc *sc = sc_if->sk_softc;
1305 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1306
1307 if (sc->sk_if[sc_if->sk_port] == NULL)
1308 return (0);
1309
1310 msk_stop(ifp, 1);
1311
1312 if (--sc->rnd_attached == 0)
1313 rnd_detach_source(&sc->rnd_source);
1314
1315 callout_halt(&sc_if->sk_tick_ch, NULL);
1316 callout_destroy(&sc_if->sk_tick_ch);
1317
1318 callout_halt(&sc_if->sk_tick_rx, NULL);
1319 callout_destroy(&sc_if->sk_tick_rx);
1320
1321 /* Detach any PHYs we might have. */
1322 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1323 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1324
1325 /* Delete any remaining media. */
1326 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1327
1328 pmf_device_deregister(self);
1329
1330 ether_ifdetach(ifp);
1331 if_detach(ifp);
1332
1333 msk_free_jumbo_mem(sc_if);
1334
1335 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1336 sizeof(struct msk_ring_data));
1337 bus_dmamem_free(sc->sc_dmatag,
1338 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1339 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1340 sc->sk_if[sc_if->sk_port] = NULL;
1341
1342 return (0);
1343 }
1344
1345 int
1346 mskcprint(void *aux, const char *pnp)
1347 {
1348 struct skc_attach_args *sa = aux;
1349
1350 if (pnp)
1351 aprint_normal("msk port %c at %s",
1352 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1353 else
1354 aprint_normal(" port %c",
1355 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1356 return (UNCONF);
1357 }
1358
1359 /*
1360 * Attach the interface. Allocate softc structures, do ifmedia
1361 * setup and ethernet/BPF attach.
1362 */
1363 void
1364 mskc_attach(device_t parent, device_t self, void *aux)
1365 {
1366 struct sk_softc *sc = device_private(self);
1367 struct pci_attach_args *pa = aux;
1368 struct skc_attach_args skca;
1369 pci_chipset_tag_t pc = pa->pa_pc;
1370 pcireg_t command, memtype;
1371 const char *intrstr = NULL;
1372 int rc, sk_nodenum;
1373 uint8_t hw, pmd;
1374 const char *revstr = NULL;
1375 const struct sysctlnode *node;
1376 void *kva;
1377 char intrbuf[PCI_INTRSTR_LEN];
1378
1379 DPRINTFN(2, ("begin mskc_attach\n"));
1380
1381 sc->sk_dev = self;
1382 /*
1383 * Handle power management nonsense.
1384 */
1385 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1386
1387 if (command == 0x01) {
1388 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1389 if (command & SK_PSTATE_MASK) {
1390 uint32_t iobase, membase, irq;
1391
1392 /* Save important PCI config data. */
1393 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1394 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1395 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1396
1397 /* Reset the power state. */
1398 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1399 "mode -- setting to D0\n",
1400 command & SK_PSTATE_MASK);
1401 command &= 0xFFFFFFFC;
1402 pci_conf_write(pc, pa->pa_tag,
1403 SK_PCI_PWRMGMTCTRL, command);
1404
1405 /* Restore PCI config data. */
1406 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1407 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1408 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1409 }
1410 }
1411
1412 /*
1413 * Map control/status registers.
1414 */
1415 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1416 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1417 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1418 aprint_error(": can't map mem space\n");
1419 return;
1420 }
1421
1422 if (pci_dma64_available(pa))
1423 sc->sc_dmatag = pa->pa_dmat64;
1424 else
1425 sc->sc_dmatag = pa->pa_dmat;
1426
1427 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1428 command |= PCI_COMMAND_MASTER_ENABLE;
1429 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1430
1431 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1432 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1433
1434 /* bail out here if chip is not recognized */
1435 if (!(SK_IS_YUKON2(sc))) {
1436 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1437 goto fail_1;
1438 }
1439 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1440
1441 /* Allocate interrupt */
1442 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1443 aprint_error(": couldn't map interrupt\n");
1444 goto fail_1;
1445 }
1446
1447 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1448 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1449 msk_intr, sc, device_xname(sc->sk_dev));
1450 if (sc->sk_intrhand == NULL) {
1451 aprint_error(": couldn't establish interrupt");
1452 if (intrstr != NULL)
1453 aprint_error(" at %s", intrstr);
1454 aprint_error("\n");
1455 goto fail_1;
1456 }
1457 sc->sk_pc = pc;
1458
1459 if (bus_dmamem_alloc(sc->sc_dmatag,
1460 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1461 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1462 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1463 aprint_error(": can't alloc status buffers\n");
1464 goto fail_2;
1465 }
1466
1467 if (bus_dmamem_map(sc->sc_dmatag,
1468 &sc->sk_status_seg, sc->sk_status_nseg,
1469 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1470 &kva, BUS_DMA_NOWAIT)) {
1471 aprint_error(": can't map dma buffers (%zu bytes)\n",
1472 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1473 goto fail_3;
1474 }
1475 if (bus_dmamap_create(sc->sc_dmatag,
1476 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1477 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1478 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1479 aprint_error(": can't create dma map\n");
1480 goto fail_4;
1481 }
1482 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1483 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1484 NULL, BUS_DMA_NOWAIT)) {
1485 aprint_error(": can't load dma map\n");
1486 goto fail_5;
1487 }
1488 sc->sk_status_ring = (struct msk_status_desc *)kva;
1489
1490 sc->sk_int_mod = SK_IM_DEFAULT;
1491 sc->sk_int_mod_pending = 0;
1492
1493 /* Reset the adapter. */
1494 mskc_reset(sc);
1495
1496 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1497 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1498
1499 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1500 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1501 sc->sk_fibertype = 1;
1502
1503 switch (sc->sk_type) {
1504 case SK_YUKON_XL:
1505 sc->sk_name = "Yukon-2 XL";
1506 break;
1507 case SK_YUKON_EC_U:
1508 sc->sk_name = "Yukon-2 EC Ultra";
1509 break;
1510 case SK_YUKON_EX:
1511 sc->sk_name = "Yukon-2 Extreme";
1512 break;
1513 case SK_YUKON_EC:
1514 sc->sk_name = "Yukon-2 EC";
1515 break;
1516 case SK_YUKON_FE:
1517 sc->sk_name = "Yukon-2 FE";
1518 break;
1519 case SK_YUKON_FE_P:
1520 sc->sk_name = "Yukon-2 FE+";
1521 break;
1522 case SK_YUKON_SUPR:
1523 sc->sk_name = "Yukon-2 Supreme";
1524 break;
1525 case SK_YUKON_ULTRA2:
1526 sc->sk_name = "Yukon-2 Ultra 2";
1527 break;
1528 case SK_YUKON_OPTIMA:
1529 sc->sk_name = "Yukon-2 Optima";
1530 break;
1531 case SK_YUKON_PRM:
1532 sc->sk_name = "Yukon-2 Optima Prime";
1533 break;
1534 case SK_YUKON_OPTIMA2:
1535 sc->sk_name = "Yukon-2 Optima 2";
1536 break;
1537 default:
1538 sc->sk_name = "Yukon (Unknown)";
1539 }
1540
1541 if (sc->sk_type == SK_YUKON_XL) {
1542 switch (sc->sk_rev) {
1543 case SK_YUKON_XL_REV_A0:
1544 revstr = "A0";
1545 break;
1546 case SK_YUKON_XL_REV_A1:
1547 revstr = "A1";
1548 break;
1549 case SK_YUKON_XL_REV_A2:
1550 revstr = "A2";
1551 break;
1552 case SK_YUKON_XL_REV_A3:
1553 revstr = "A3";
1554 break;
1555 default:
1556 break;
1557 }
1558 }
1559
1560 if (sc->sk_type == SK_YUKON_EC) {
1561 switch (sc->sk_rev) {
1562 case SK_YUKON_EC_REV_A1:
1563 revstr = "A1";
1564 break;
1565 case SK_YUKON_EC_REV_A2:
1566 revstr = "A2";
1567 break;
1568 case SK_YUKON_EC_REV_A3:
1569 revstr = "A3";
1570 break;
1571 default:
1572 break;
1573 }
1574 }
1575
1576 if (sc->sk_type == SK_YUKON_FE) {
1577 switch (sc->sk_rev) {
1578 case SK_YUKON_FE_REV_A1:
1579 revstr = "A1";
1580 break;
1581 case SK_YUKON_FE_REV_A2:
1582 revstr = "A2";
1583 break;
1584 default:
1585 break;
1586 }
1587 }
1588
1589 if (sc->sk_type == SK_YUKON_EC_U) {
1590 switch (sc->sk_rev) {
1591 case SK_YUKON_EC_U_REV_A0:
1592 revstr = "A0";
1593 break;
1594 case SK_YUKON_EC_U_REV_A1:
1595 revstr = "A1";
1596 break;
1597 case SK_YUKON_EC_U_REV_B0:
1598 revstr = "B0";
1599 break;
1600 case SK_YUKON_EC_U_REV_B1:
1601 revstr = "B1";
1602 break;
1603 default:
1604 break;
1605 }
1606 }
1607
1608 if (sc->sk_type == SK_YUKON_FE) {
1609 switch (sc->sk_rev) {
1610 case SK_YUKON_FE_REV_A1:
1611 revstr = "A1";
1612 break;
1613 case SK_YUKON_FE_REV_A2:
1614 revstr = "A2";
1615 break;
1616 default:
1617 ;
1618 }
1619 }
1620
1621 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1622 revstr = "A0";
1623
1624 if (sc->sk_type == SK_YUKON_EX) {
1625 switch (sc->sk_rev) {
1626 case SK_YUKON_EX_REV_A0:
1627 revstr = "A0";
1628 break;
1629 case SK_YUKON_EX_REV_B0:
1630 revstr = "B0";
1631 break;
1632 default:
1633 ;
1634 }
1635 }
1636
1637 if (sc->sk_type == SK_YUKON_SUPR) {
1638 switch (sc->sk_rev) {
1639 case SK_YUKON_SUPR_REV_A0:
1640 revstr = "A0";
1641 break;
1642 case SK_YUKON_SUPR_REV_B0:
1643 revstr = "B0";
1644 break;
1645 case SK_YUKON_SUPR_REV_B1:
1646 revstr = "B1";
1647 break;
1648 default:
1649 ;
1650 }
1651 }
1652
1653 if (sc->sk_type == SK_YUKON_PRM) {
1654 switch (sc->sk_rev) {
1655 case SK_YUKON_PRM_REV_Z1:
1656 revstr = "Z1";
1657 break;
1658 case SK_YUKON_PRM_REV_A0:
1659 revstr = "A0";
1660 break;
1661 default:
1662 ;
1663 }
1664 }
1665
1666 /* Announce the product name. */
1667 aprint_normal(", %s", sc->sk_name);
1668 if (revstr != NULL)
1669 aprint_normal(" rev. %s", revstr);
1670 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1671
1672 sc->sk_macs = 1;
1673
1674 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1675 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1676 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1677 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1678 sc->sk_macs++;
1679 }
1680
1681 skca.skc_port = SK_PORT_A;
1682 skca.skc_type = sc->sk_type;
1683 skca.skc_rev = sc->sk_rev;
1684 (void)config_found(sc->sk_dev, &skca, mskcprint);
1685
1686 if (sc->sk_macs > 1) {
1687 skca.skc_port = SK_PORT_B;
1688 skca.skc_type = sc->sk_type;
1689 skca.skc_rev = sc->sk_rev;
1690 (void)config_found(sc->sk_dev, &skca, mskcprint);
1691 }
1692
1693 /* Turn on the 'driver is loaded' LED. */
1694 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1695
1696 /* skc sysctl setup */
1697
1698 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1699 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1700 SYSCTL_DESCR("mskc per-controller controls"),
1701 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1702 CTL_EOL)) != 0) {
1703 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1704 goto fail_6;
1705 }
1706
1707 sk_nodenum = node->sysctl_num;
1708
1709 /* interrupt moderation time in usecs */
1710 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1711 CTLFLAG_READWRITE,
1712 CTLTYPE_INT, "int_mod",
1713 SYSCTL_DESCR("msk interrupt moderation timer"),
1714 msk_sysctl_handler, 0, (void *)sc,
1715 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1716 CTL_EOL)) != 0) {
1717 aprint_normal_dev(sc->sk_dev,
1718 "couldn't create int_mod sysctl node\n");
1719 goto fail_6;
1720 }
1721
1722 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1723 aprint_error_dev(self, "couldn't establish power handler\n");
1724
1725 return;
1726
1727 fail_6:
1728 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1729 fail_4:
1730 bus_dmamem_unmap(sc->sc_dmatag, kva,
1731 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1732 fail_3:
1733 bus_dmamem_free(sc->sc_dmatag,
1734 &sc->sk_status_seg, sc->sk_status_nseg);
1735 sc->sk_status_nseg = 0;
1736 fail_5:
1737 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1738 fail_2:
1739 pci_intr_disestablish(pc, sc->sk_intrhand);
1740 sc->sk_intrhand = NULL;
1741 fail_1:
1742 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1743 sc->sk_bsize = 0;
1744 }
1745
1746 int
1747 mskc_detach(device_t self, int flags)
1748 {
1749 struct sk_softc *sc = device_private(self);
1750 int rv;
1751
1752 if (sc->sk_intrhand) {
1753 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1754 sc->sk_intrhand = NULL;
1755 }
1756
1757 if (sc->sk_pihp != NULL) {
1758 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1759 sc->sk_pihp = NULL;
1760 }
1761
1762 rv = config_detach_children(self, flags);
1763 if (rv != 0)
1764 return (rv);
1765
1766 if (sc->sk_status_nseg > 0) {
1767 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1768 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1769 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1770 bus_dmamem_free(sc->sc_dmatag,
1771 &sc->sk_status_seg, sc->sk_status_nseg);
1772 }
1773
1774 if (sc->sk_bsize > 0)
1775 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1776
1777 return(0);
1778 }
1779
1780 int
1781 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1782 {
1783 struct sk_softc *sc = sc_if->sk_softc;
1784 struct msk_tx_desc *f = NULL;
1785 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1786 uint32_t entries = 0;
1787 size_t i;
1788 struct sk_txmap_entry *entry;
1789 bus_dmamap_t txmap;
1790 bus_addr_t addr;
1791
1792 DPRINTFN(2, ("msk_encap\n"));
1793
1794 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1795 if (entry == NULL) {
1796 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1797 return (ENOBUFS);
1798 }
1799 txmap = entry->dmamap;
1800
1801 cur = frag = *txidx;
1802
1803 #ifdef MSK_DEBUG
1804 if (mskdebug >= 2)
1805 msk_dump_mbuf(m_head);
1806 #endif
1807
1808 /*
1809 * Start packing the mbufs in this chain into
1810 * the fragment pointers. Stop when we run out
1811 * of fragments or hit the end of the mbuf chain.
1812 */
1813 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1814 BUS_DMA_NOWAIT)) {
1815 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1816 return (ENOBUFS);
1817 }
1818
1819 /* Count how many tx descriptors needed. */
1820 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1821 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1822 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1823 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1824 total++;
1825 }
1826 total++;
1827 }
1828
1829 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1830 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1831 bus_dmamap_unload(sc->sc_dmatag, txmap);
1832 return (ENOBUFS);
1833 }
1834
1835 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1836 txmap->dm_nsegs, total));
1837
1838 /* Sync the DMA map. */
1839 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1840 BUS_DMASYNC_PREWRITE);
1841
1842 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1843 for (i = 0; i < txmap->dm_nsegs; i++) {
1844 addr = txmap->dm_segs[i].ds_addr;
1845 DPRINTFN(2, ("msk_encap: addr %llx\n",
1846 (unsigned long long)addr));
1847 hiaddr = MSK_ADDR_HI(addr);
1848
1849 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1850 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1851 f->sk_addr = htole32(hiaddr);
1852 f->sk_len = 0;
1853 f->sk_ctl = 0;
1854 if (i == 0)
1855 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1856 else
1857 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1858 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1859 SK_INC(frag, MSK_TX_RING_CNT);
1860 entries++;
1861 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1862 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1863 }
1864
1865 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1866 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1867 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1868 f->sk_ctl = 0;
1869 if (i == 0) {
1870 if (hiaddr != old_hiaddr)
1871 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1872 else
1873 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1874 } else
1875 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1876 cur = frag;
1877 SK_INC(frag, MSK_TX_RING_CNT);
1878 entries++;
1879 }
1880 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1881
1882 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1883 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1884
1885 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1886 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1887
1888 /* Sync descriptors before handing to chip */
1889 MSK_CDTXSYNC(sc_if, *txidx, entries,
1890 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1891
1892 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1893
1894 /* Sync first descriptor to hand it off */
1895 MSK_CDTXSYNC(sc_if, *txidx, 1,
1896 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1897
1898 sc_if->sk_cdata.sk_tx_cnt += entries;
1899
1900 #ifdef MSK_DEBUG
1901 if (mskdebug >= 2) {
1902 struct msk_tx_desc *le;
1903 uint32_t idx;
1904 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1905 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1906 msk_dump_txdesc(le, idx);
1907 }
1908 }
1909 #endif
1910
1911 *txidx = frag;
1912
1913 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1914
1915 return (0);
1916 }
1917
1918 void
1919 msk_start(struct ifnet *ifp)
1920 {
1921 struct sk_if_softc *sc_if = ifp->if_softc;
1922 struct mbuf *m_head = NULL;
1923 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1924 int pkts = 0;
1925
1926 DPRINTFN(2, ("msk_start\n"));
1927
1928 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1929 IFQ_POLL(&ifp->if_snd, m_head);
1930 if (m_head == NULL)
1931 break;
1932
1933 /*
1934 * Pack the data into the transmit ring. If we
1935 * don't have room, set the OACTIVE flag and wait
1936 * for the NIC to drain the ring.
1937 */
1938 if (msk_encap(sc_if, m_head, &idx)) {
1939 ifp->if_flags |= IFF_OACTIVE;
1940 break;
1941 }
1942
1943 /* now we are committed to transmit the packet */
1944 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1945 pkts++;
1946
1947 /*
1948 * If there's a BPF listener, bounce a copy of this frame
1949 * to him.
1950 */
1951 bpf_mtap(ifp, m_head, BPF_D_OUT);
1952 }
1953 if (pkts == 0)
1954 return;
1955
1956 /* Transmit */
1957 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1958 sc_if->sk_cdata.sk_tx_prod = idx;
1959 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1960
1961 /* Set a timeout in case the chip goes out to lunch. */
1962 ifp->if_timer = 5;
1963 }
1964 }
1965
1966 void
1967 msk_watchdog(struct ifnet *ifp)
1968 {
1969 struct sk_if_softc *sc_if = ifp->if_softc;
1970
1971 /*
1972 * Reclaim first as there is a possibility of losing Tx completion
1973 * interrupts.
1974 */
1975 msk_txeof(sc_if);
1976 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1977 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1978
1979 ifp->if_oerrors++;
1980
1981 /* XXX Resets both ports; we shouldn't do that. */
1982 mskc_reset(sc_if->sk_softc);
1983 msk_reset(sc_if);
1984 msk_init(ifp);
1985 }
1986 }
1987
1988 static bool
1989 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1990 {
1991 struct sk_softc *sc = device_private(dv);
1992
1993 DPRINTFN(2, ("mskc_suspend\n"));
1994
1995 /* Turn off the 'driver is loaded' LED. */
1996 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1997
1998 return true;
1999 }
2000
2001 static bool
2002 mskc_resume(device_t dv, const pmf_qual_t *qual)
2003 {
2004 struct sk_softc *sc = device_private(dv);
2005
2006 DPRINTFN(2, ("mskc_resume\n"));
2007
2008 mskc_reset(sc);
2009 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2010
2011 return true;
2012 }
2013
2014 static __inline int
2015 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2016 {
2017 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2018 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2019 YU_RXSTAT_JABBER)) != 0 ||
2020 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2021 YU_RXSTAT_BYTES(stat) != len)
2022 return (0);
2023
2024 return (1);
2025 }
2026
2027 void
2028 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2029 {
2030 struct sk_softc *sc = sc_if->sk_softc;
2031 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2032 struct mbuf *m;
2033 unsigned cur, prod, tail, total_len = len;
2034 bus_dmamap_t dmamap;
2035
2036 cur = sc_if->sk_cdata.sk_rx_cons;
2037 prod = sc_if->sk_cdata.sk_rx_prod;
2038
2039 /* Sync the descriptor */
2040 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2041
2042 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2043 sc_if->sk_cdata.sk_rx_cnt));
2044
2045 while (prod != cur) {
2046 tail = cur;
2047 SK_INC(cur, MSK_RX_RING_CNT);
2048
2049 sc_if->sk_cdata.sk_rx_cnt--;
2050 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2051 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2052 if (m != NULL)
2053 break; /* found it */
2054 }
2055 sc_if->sk_cdata.sk_rx_cons = cur;
2056 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2057 sc_if->sk_cdata.sk_rx_cnt, m));
2058
2059 if (m == NULL)
2060 return;
2061
2062 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2063
2064 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2065 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2066
2067 if (total_len < SK_MIN_FRAMELEN ||
2068 total_len > ETHER_MAX_LEN_JUMBO ||
2069 msk_rxvalid(sc, rxstat, total_len) == 0) {
2070 ifp->if_ierrors++;
2071 m_freem(m);
2072 return;
2073 }
2074
2075 m_set_rcvif(m, ifp);
2076 m->m_pkthdr.len = m->m_len = total_len;
2077
2078 /* pass it on. */
2079 if_percpuq_enqueue(ifp->if_percpuq, m);
2080 }
2081
2082 void
2083 msk_txeof(struct sk_if_softc *sc_if)
2084 {
2085 struct sk_softc *sc = sc_if->sk_softc;
2086 struct msk_tx_desc *cur_tx;
2087 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2088 uint32_t idx, reg, sk_ctl;
2089 struct sk_txmap_entry *entry;
2090
2091 DPRINTFN(2, ("msk_txeof\n"));
2092
2093 if (sc_if->sk_port == SK_PORT_A)
2094 reg = SK_STAT_BMU_TXA1_RIDX;
2095 else
2096 reg = SK_STAT_BMU_TXA2_RIDX;
2097
2098 /*
2099 * Go through our tx ring and free mbufs for those
2100 * frames that have been sent.
2101 */
2102 idx = sc_if->sk_cdata.sk_tx_cons;
2103 while (idx != sk_win_read_2(sc, reg)) {
2104 MSK_CDTXSYNC(sc_if, idx, 1,
2105 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2106
2107 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2108 sk_ctl = cur_tx->sk_ctl;
2109 #ifdef MSK_DEBUG
2110 if (mskdebug >= 2)
2111 msk_dump_txdesc(cur_tx, idx);
2112 #endif
2113 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2114 ifp->if_opackets++;
2115 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2116 entry = sc_if->sk_cdata.sk_tx_map[idx];
2117
2118 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2119 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2120
2121 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2122 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2123
2124 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2125 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2126 link);
2127 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2128 }
2129 sc_if->sk_cdata.sk_tx_cnt--;
2130 SK_INC(idx, MSK_TX_RING_CNT);
2131 }
2132 if (idx == sc_if->sk_cdata.sk_tx_cons)
2133 return;
2134
2135 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2136
2137 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2138 ifp->if_flags &= ~IFF_OACTIVE;
2139
2140 sc_if->sk_cdata.sk_tx_cons = idx;
2141 }
2142
2143 void
2144 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2145 {
2146 /* Make sure to not completely wrap around */
2147 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2148 if (msk_newbuf(sc_if,
2149 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2150 goto schedretry;
2151 }
2152 }
2153
2154 return;
2155
2156 schedretry:
2157 /* Try later */
2158 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2159 }
2160
2161 static void
2162 msk_fill_rx_tick(void *xsc_if)
2163 {
2164 struct sk_if_softc *sc_if = xsc_if;
2165 int s, rx_prod;
2166
2167 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2168
2169 s = splnet();
2170 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2171 msk_fill_rx_ring(sc_if);
2172 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2173 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2174 sc_if->sk_cdata.sk_rx_prod);
2175 }
2176 splx(s);
2177 }
2178
2179 void
2180 msk_tick(void *xsc_if)
2181 {
2182 struct sk_if_softc *sc_if = xsc_if;
2183 struct mii_data *mii = &sc_if->sk_mii;
2184 int s;
2185
2186 s = splnet();
2187 mii_tick(mii);
2188 splx(s);
2189
2190 callout_schedule(&sc_if->sk_tick_ch, hz);
2191 }
2192
2193 void
2194 msk_intr_yukon(struct sk_if_softc *sc_if)
2195 {
2196 uint8_t status;
2197
2198 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2199 /* RX overrun */
2200 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2201 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2202 SK_RFCTL_RX_FIFO_OVER);
2203 }
2204 /* TX underrun */
2205 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2206 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2207 SK_TFCTL_TX_FIFO_UNDER);
2208 }
2209
2210 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2211 }
2212
2213 int
2214 msk_intr(void *xsc)
2215 {
2216 struct sk_softc *sc = xsc;
2217 struct sk_if_softc *sc_if;
2218 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2219 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2220 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2221 int claimed = 0;
2222 uint32_t status;
2223 struct msk_status_desc *cur_st;
2224
2225 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2226 if (status == 0xffffffff)
2227 return (0);
2228 if (status == 0) {
2229 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2230 return (0);
2231 }
2232
2233 status = CSR_READ_4(sc, SK_ISR);
2234
2235 if (sc_if0 != NULL)
2236 ifp0 = &sc_if0->sk_ethercom.ec_if;
2237 if (sc_if1 != NULL)
2238 ifp1 = &sc_if1->sk_ethercom.ec_if;
2239
2240 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2241 (ifp0->if_flags & IFF_RUNNING)) {
2242 msk_intr_yukon(sc_if0);
2243 }
2244
2245 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2246 (ifp1->if_flags & IFF_RUNNING)) {
2247 msk_intr_yukon(sc_if1);
2248 }
2249
2250 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2251 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2252 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2253
2254 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2255 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2256 switch (cur_st->sk_opcode) {
2257 case SK_Y2_STOPC_RXSTAT:
2258 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2259 if (sc_if) {
2260 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2261 letoh32(cur_st->sk_status));
2262 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2263 msk_fill_rx_tick(sc_if);
2264 }
2265 break;
2266 case SK_Y2_STOPC_TXSTAT:
2267 if (sc_if0)
2268 msk_txeof(sc_if0);
2269 if (sc_if1)
2270 msk_txeof(sc_if1);
2271 break;
2272 default:
2273 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2274 break;
2275 }
2276 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2277
2278 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2279 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
2280 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2281 }
2282
2283 if (status & SK_Y2_IMR_BMU) {
2284 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2285 claimed = 1;
2286 }
2287
2288 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2289
2290 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2291 if_schedule_deferred_start(ifp0);
2292 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2293 if_schedule_deferred_start(ifp1);
2294
2295 KASSERT(sc->rnd_attached > 0);
2296 rnd_add_uint32(&sc->rnd_source, status);
2297
2298 if (sc->sk_int_mod_pending)
2299 msk_update_int_mod(sc, 1);
2300
2301 return claimed;
2302 }
2303
2304 void
2305 msk_init_yukon(struct sk_if_softc *sc_if)
2306 {
2307 uint32_t v;
2308 uint16_t reg;
2309 struct sk_softc *sc;
2310 int i;
2311
2312 sc = sc_if->sk_softc;
2313
2314 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2315 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2316
2317 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2318
2319 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2320 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2321
2322 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2323
2324 /* unused read of the interrupt source register */
2325 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2326 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2327
2328 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2329 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2330 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2331
2332 /* MIB Counter Clear Mode set */
2333 reg |= YU_PAR_MIB_CLR;
2334 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2335 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2336 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2337
2338 /* MIB Counter Clear Mode clear */
2339 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2340 reg &= ~YU_PAR_MIB_CLR;
2341 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2342
2343 /* receive control reg */
2344 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2345 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2346
2347 /* transmit control register */
2348 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2349
2350 /* transmit flow control register */
2351 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2352
2353 /* transmit parameter register */
2354 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2355 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2356 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2357
2358 /* serial mode register */
2359 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2360 reg = YU_SMR_DATA_BLIND(0x1c) |
2361 YU_SMR_MFL_VLAN |
2362 YU_SMR_IPG_DATA(0x1e);
2363
2364 if (sc->sk_type != SK_YUKON_FE &&
2365 sc->sk_type != SK_YUKON_FE_P)
2366 reg |= YU_SMR_MFL_JUMBO;
2367
2368 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2369
2370 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2371 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2372 /* msk_attach calls me before ether_ifattach so check null */
2373 if (ifp != NULL && ifp->if_sadl != NULL)
2374 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2375 sizeof(sc_if->sk_enaddr));
2376 /* Setup Yukon's address */
2377 for (i = 0; i < 3; i++) {
2378 /* Write Source Address 1 (unicast filter) */
2379 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2380 sc_if->sk_enaddr[i * 2] |
2381 sc_if->sk_enaddr[i * 2 + 1] << 8);
2382 }
2383
2384 for (i = 0; i < 3; i++) {
2385 reg = sk_win_read_2(sc_if->sk_softc,
2386 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2387 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2388 }
2389
2390 /* Set promiscuous mode */
2391 msk_setpromisc(sc_if);
2392
2393 /* Set multicast filter */
2394 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2395 msk_setmulti(sc_if);
2396
2397 /* enable interrupt mask for counter overflows */
2398 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2399 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2400 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2401 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2402
2403 /* Configure RX MAC FIFO Flush Mask */
2404 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2405 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2406 YU_RXSTAT_JABBER;
2407 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2408
2409 /* Configure RX MAC FIFO */
2410 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2411 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2412 SK_RFCTL_FIFO_FLUSH_ON);
2413
2414 /* Increase flush threshold to 64 bytes */
2415 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2416 SK_RFCTL_FIFO_THRESHOLD + 1);
2417
2418 /* Configure TX MAC FIFO */
2419 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2420 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2421
2422 #if 1
2423 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2424 #endif
2425 DPRINTFN(6, ("msk_init_yukon: end\n"));
2426 }
2427
2428 /*
2429 * Note that to properly initialize any part of the GEnesis chip,
2430 * you first have to take it out of reset mode.
2431 */
2432 int
2433 msk_init(struct ifnet *ifp)
2434 {
2435 struct sk_if_softc *sc_if = ifp->if_softc;
2436 struct sk_softc *sc = sc_if->sk_softc;
2437 int rc = 0, s;
2438 uint32_t imr, imtimer_ticks;
2439
2440
2441 DPRINTFN(2, ("msk_init\n"));
2442
2443 s = splnet();
2444
2445 /* Cancel pending I/O and free all RX/TX buffers. */
2446 msk_stop(ifp, 1);
2447
2448 /* Configure I2C registers */
2449
2450 /* Configure XMAC(s) */
2451 msk_init_yukon(sc_if);
2452 if ((rc = ether_mediachange(ifp)) != 0)
2453 goto out;
2454
2455 /* Configure transmit arbiter(s) */
2456 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2457 #if 0
2458 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
2459 #endif
2460
2461 if (sc->sk_ramsize) {
2462 /* Configure RAMbuffers */
2463 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2464 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2465 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2466 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2467 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2468 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2469
2470 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2471 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2472 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2473 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2474 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2475 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2476 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2477 }
2478
2479 /* Configure BMUs */
2480 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2481 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2482 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2483 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2484
2485 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2486 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2487 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2488 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2489
2490 /* Make sure the sync transmit queue is disabled. */
2491 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2492
2493 /* Init descriptors */
2494 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2495 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2496 "memory for rx buffers\n");
2497 msk_stop(ifp, 1);
2498 splx(s);
2499 return ENOBUFS;
2500 }
2501
2502 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2503 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2504 "memory for tx buffers\n");
2505 msk_stop(ifp, 1);
2506 splx(s);
2507 return ENOBUFS;
2508 }
2509
2510 /* Set interrupt moderation if changed via sysctl. */
2511 switch (sc->sk_type) {
2512 case SK_YUKON_EC:
2513 case SK_YUKON_EC_U:
2514 case SK_YUKON_EX:
2515 case SK_YUKON_SUPR:
2516 case SK_YUKON_ULTRA2:
2517 case SK_YUKON_OPTIMA:
2518 case SK_YUKON_PRM:
2519 case SK_YUKON_OPTIMA2:
2520 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2521 break;
2522 case SK_YUKON_FE:
2523 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2524 break;
2525 case SK_YUKON_FE_P:
2526 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2527 break;
2528 case SK_YUKON_XL:
2529 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2530 break;
2531 default:
2532 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2533 }
2534 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2535 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2536 sk_win_write_4(sc, SK_IMTIMERINIT,
2537 SK_IM_USECS(sc->sk_int_mod));
2538 aprint_verbose_dev(sc->sk_dev,
2539 "interrupt moderation is %d us\n", sc->sk_int_mod);
2540 }
2541
2542 /* Initialize prefetch engine. */
2543 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2544 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2545 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2546 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2547 MSK_RX_RING_ADDR(sc_if, 0));
2548 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2549 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2550 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2551 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2552
2553 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2554 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2555 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2556 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2557 MSK_TX_RING_ADDR(sc_if, 0));
2558 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2559 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2560 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2561 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2562
2563 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2564 sc_if->sk_cdata.sk_rx_prod);
2565
2566 /* Configure interrupt handling */
2567 if (sc_if->sk_port == SK_PORT_A)
2568 sc->sk_intrmask |= SK_Y2_INTRS1;
2569 else
2570 sc->sk_intrmask |= SK_Y2_INTRS2;
2571 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2572 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2573
2574 ifp->if_flags |= IFF_RUNNING;
2575 ifp->if_flags &= ~IFF_OACTIVE;
2576
2577 callout_schedule(&sc_if->sk_tick_ch, hz);
2578
2579 out:
2580 splx(s);
2581 return rc;
2582 }
2583
2584 /*
2585 * Note: the logic of second parameter is inverted compared to OpenBSD
2586 * code, since this code uses the function as if_stop hook too.
2587 */
2588 void
2589 msk_stop(struct ifnet *ifp, int disable)
2590 {
2591 struct sk_if_softc *sc_if = ifp->if_softc;
2592 struct sk_softc *sc = sc_if->sk_softc;
2593 struct sk_txmap_entry *dma;
2594 int i;
2595
2596 DPRINTFN(2, ("msk_stop\n"));
2597
2598 callout_stop(&sc_if->sk_tick_ch);
2599 callout_stop(&sc_if->sk_tick_rx);
2600
2601 ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
2602
2603 /* Stop transfer of Tx descriptors */
2604
2605 /* Stop transfer of Rx descriptors */
2606
2607 if (disable) {
2608 /* Turn off various components of this interface. */
2609 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2610 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2611 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2612 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2613 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2614 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
2615 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2616 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2617 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2618 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2619 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2620
2621 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2622 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2623
2624 /* Disable interrupts */
2625 if (sc_if->sk_port == SK_PORT_A)
2626 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2627 else
2628 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2629 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2630 }
2631
2632 /* Free RX and TX mbufs still in the queues. */
2633 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2634 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2635 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2636 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2637 }
2638 }
2639
2640 sc_if->sk_cdata.sk_rx_prod = 0;
2641 sc_if->sk_cdata.sk_rx_cons = 0;
2642 sc_if->sk_cdata.sk_rx_cnt = 0;
2643
2644 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2645 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2646 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2647 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2648 #if 1
2649 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2650 sc_if->sk_cdata.sk_tx_map[i], link);
2651 sc_if->sk_cdata.sk_tx_map[i] = 0;
2652 #endif
2653 }
2654 }
2655
2656 #if 1
2657 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2658 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2659 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2660 free(dma, M_DEVBUF);
2661 }
2662 #endif
2663 }
2664
2665 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2666 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2667
2668 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2669 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2670
2671 #ifdef MSK_DEBUG
2672 void
2673 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2674 {
2675 #define DESC_PRINT(X) \
2676 if (X) \
2677 printf("txdesc[%d]." #X "=%#x\n", \
2678 idx, X);
2679
2680 DESC_PRINT(letoh32(le->sk_addr));
2681 DESC_PRINT(letoh16(le->sk_len));
2682 DESC_PRINT(le->sk_ctl);
2683 DESC_PRINT(le->sk_opcode);
2684 #undef DESC_PRINT
2685 }
2686
2687 void
2688 msk_dump_bytes(const char *data, int len)
2689 {
2690 int c, i, j;
2691
2692 for (i = 0; i < len; i += 16) {
2693 printf("%08x ", i);
2694 c = len - i;
2695 if (c > 16) c = 16;
2696
2697 for (j = 0; j < c; j++) {
2698 printf("%02x ", data[i + j] & 0xff);
2699 if ((j & 0xf) == 7 && j > 0)
2700 printf(" ");
2701 }
2702
2703 for (; j < 16; j++)
2704 printf(" ");
2705 printf(" ");
2706
2707 for (j = 0; j < c; j++) {
2708 int ch = data[i + j] & 0xff;
2709 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2710 }
2711
2712 printf("\n");
2713
2714 if (c < 16)
2715 break;
2716 }
2717 }
2718
2719 void
2720 msk_dump_mbuf(struct mbuf *m)
2721 {
2722 int count = m->m_pkthdr.len;
2723
2724 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2725
2726 while (count > 0 && m) {
2727 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2728 m, m->m_data, m->m_len);
2729 if (mskdebug >= 4)
2730 msk_dump_bytes(mtod(m, char *), m->m_len);
2731
2732 count -= m->m_len;
2733 m = m->m_next;
2734 }
2735 }
2736 #endif
2737
2738 static int
2739 msk_sysctl_handler(SYSCTLFN_ARGS)
2740 {
2741 int error, t;
2742 struct sysctlnode node;
2743 struct sk_softc *sc;
2744
2745 node = *rnode;
2746 sc = node.sysctl_data;
2747 t = sc->sk_int_mod;
2748 node.sysctl_data = &t;
2749 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2750 if (error || newp == NULL)
2751 return error;
2752
2753 if (t < SK_IM_MIN || t > SK_IM_MAX)
2754 return EINVAL;
2755
2756 /* update the softc with sysctl-changed value, and mark
2757 for hardware update */
2758 sc->sk_int_mod = t;
2759 sc->sk_int_mod_pending = 1;
2760 return 0;
2761 }
2762
2763 /*
2764 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2765 * set up in mskc_attach()
2766 */
2767 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2768 {
2769 int rc;
2770 const struct sysctlnode *node;
2771
2772 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2773 0, CTLTYPE_NODE, "msk",
2774 SYSCTL_DESCR("msk interface controls"),
2775 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2776 goto err;
2777 }
2778
2779 msk_root_num = node->sysctl_num;
2780 return;
2781
2782 err:
2783 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2784 }
2785