if_msk.c revision 1.89 1 /* $NetBSD: if_msk.c,v 1.89 2019/05/23 13:10:52 msaitoh Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.89 2019/05/23 13:10:52 msaitoh Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int, uint16_t *);
128 int msk_miibus_writereg(device_t, int, int, uint16_t);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n, x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
155
156 /* supported device vendors */
157 static const struct msk_product {
158 pci_vendor_id_t msk_vendor;
159 pci_product_id_t msk_product;
160 } msk_products[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
199 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 { 0, 0 }
203 };
204
205 static inline uint32_t
206 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
207 {
208 return CSR_READ_4(sc, reg);
209 }
210
211 static inline uint16_t
212 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
213 {
214 return CSR_READ_2(sc, reg);
215 }
216
217 static inline uint8_t
218 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
219 {
220 return CSR_READ_1(sc, reg);
221 }
222
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
225 {
226 CSR_WRITE_4(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
231 {
232 CSR_WRITE_2(sc, reg, x);
233 }
234
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
237 {
238 CSR_WRITE_1(sc, reg, x);
239 }
240
241 int
242 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
243 {
244 struct sk_if_softc *sc_if = device_private(dev);
245 uint16_t data;
246 int i;
247
248 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250
251 for (i = 0; i < SK_TIMEOUT; i++) {
252 DELAY(1);
253 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 if (data & YU_SMICR_READ_VALID)
255 break;
256 }
257
258 if (i == SK_TIMEOUT) {
259 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 return ETIMEDOUT;
261 }
262
263 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
264
265 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
266
267 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
268 phy, reg, *val));
269
270 return 0;
271 }
272
273 int
274 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
275 {
276 struct sk_if_softc *sc_if = device_private(dev);
277 int i;
278
279 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
280 phy, reg, val));
281
282 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
283 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
284 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
285
286 for (i = 0; i < SK_TIMEOUT; i++) {
287 DELAY(1);
288 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
289 break;
290 }
291
292 if (i == SK_TIMEOUT) {
293 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
294 return ETIMEDOUT;
295 }
296
297 return 0;
298 }
299
300 void
301 msk_miibus_statchg(struct ifnet *ifp)
302 {
303 struct sk_if_softc *sc_if = ifp->if_softc;
304 struct mii_data *mii = &sc_if->sk_mii;
305 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
306 int gpcr;
307
308 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
309 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
310
311 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
312 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
313 /* Set speed. */
314 gpcr |= YU_GPCR_SPEED_DIS;
315 switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 case IFM_1000_SX:
317 case IFM_1000_LX:
318 case IFM_1000_CX:
319 case IFM_1000_T:
320 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
321 break;
322 case IFM_100_TX:
323 gpcr |= YU_GPCR_SPEED;
324 break;
325 }
326
327 /* Set duplex. */
328 gpcr |= YU_GPCR_DPLX_DIS;
329 if ((mii->mii_media_active & IFM_FDX) != 0)
330 gpcr |= YU_GPCR_DUPLEX;
331
332 /* Disable flow control. */
333 gpcr |= YU_GPCR_FCTL_DIS;
334 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
335 }
336
337 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
338
339 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
340 SK_YU_READ_2(sc_if, YUKON_GPCR)));
341 }
342
343 void
344 msk_setmulti(struct sk_if_softc *sc_if)
345 {
346 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
347 uint32_t hashes[2] = { 0, 0 };
348 int h;
349 struct ethercom *ec = &sc_if->sk_ethercom;
350 struct ether_multi *enm;
351 struct ether_multistep step;
352 uint16_t reg;
353
354 /* First, zot all the existing filters. */
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
358 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
359
360
361 /* Now program new ones. */
362 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
363 reg |= YU_RCR_UFLEN;
364 allmulti:
365 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
366 if ((ifp->if_flags & IFF_PROMISC) != 0)
367 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
368 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
369 hashes[0] = 0xFFFFFFFF;
370 hashes[1] = 0xFFFFFFFF;
371 }
372 } else {
373 /* First find the tail of the list. */
374 ETHER_FIRST_MULTI(step, ec, enm);
375 while (enm != NULL) {
376 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
377 ETHER_ADDR_LEN)) {
378 ifp->if_flags |= IFF_ALLMULTI;
379 goto allmulti;
380 }
381 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
382 ((1 << SK_HASH_BITS) - 1);
383 if (h < 32)
384 hashes[0] |= (1 << h);
385 else
386 hashes[1] |= (1 << (h - 32));
387
388 ETHER_NEXT_MULTI(step, enm);
389 }
390 reg |= YU_RCR_MUFLEN;
391 }
392
393 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
394 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
395 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
398 }
399
400 void
401 msk_setpromisc(struct sk_if_softc *sc_if)
402 {
403 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
404
405 if (ifp->if_flags & IFF_PROMISC)
406 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
407 YU_RCR_UFLEN | YU_RCR_MUFLEN);
408 else
409 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
410 YU_RCR_UFLEN | YU_RCR_MUFLEN);
411 }
412
413 int
414 msk_init_rx_ring(struct sk_if_softc *sc_if)
415 {
416 struct msk_chain_data *cd = &sc_if->sk_cdata;
417 struct msk_ring_data *rd = sc_if->sk_rdata;
418 struct msk_rx_desc *r;
419 int i, nexti;
420
421 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
422
423 for (i = 0; i < MSK_RX_RING_CNT; i++) {
424 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
425 if (i == (MSK_RX_RING_CNT - 1))
426 nexti = 0;
427 else
428 nexti = i + 1;
429 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
430 }
431
432 sc_if->sk_cdata.sk_rx_prod = 0;
433 sc_if->sk_cdata.sk_rx_cons = 0;
434 sc_if->sk_cdata.sk_rx_cnt = 0;
435 sc_if->sk_cdata.sk_rx_hiaddr = 0;
436
437 /* Mark the first ring element to initialize the high address. */
438 sc_if->sk_cdata.sk_rx_hiaddr = 0;
439 r = &rd->sk_rx_ring[cd->sk_rx_prod];
440 r->sk_addr = htole32(cd->sk_rx_hiaddr);
441 r->sk_len = 0;
442 r->sk_ctl = 0;
443 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
444 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
445 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
446 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
447 sc_if->sk_cdata.sk_rx_cnt++;
448
449 msk_fill_rx_ring(sc_if);
450 return 0;
451 }
452
453 int
454 msk_init_tx_ring(struct sk_if_softc *sc_if)
455 {
456 struct sk_softc *sc = sc_if->sk_softc;
457 struct msk_chain_data *cd = &sc_if->sk_cdata;
458 struct msk_ring_data *rd = sc_if->sk_rdata;
459 struct msk_tx_desc *t;
460 bus_dmamap_t dmamap;
461 struct sk_txmap_entry *entry;
462 int i, nexti;
463
464 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
465
466 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
467 for (i = 0; i < MSK_TX_RING_CNT; i++) {
468 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
469 if (i == (MSK_TX_RING_CNT - 1))
470 nexti = 0;
471 else
472 nexti = i + 1;
473 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
474
475 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
476 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
477 return ENOBUFS;
478
479 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
480 if (!entry) {
481 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
482 return ENOBUFS;
483 }
484 entry->dmamap = dmamap;
485 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
486 }
487
488 sc_if->sk_cdata.sk_tx_prod = 0;
489 sc_if->sk_cdata.sk_tx_cons = 0;
490 sc_if->sk_cdata.sk_tx_cnt = 0;
491 sc_if->sk_cdata.sk_tx_hiaddr = 0;
492
493 /* Mark the first ring element to initialize the high address. */
494 sc_if->sk_cdata.sk_tx_hiaddr = 0;
495 t = &rd->sk_tx_ring[cd->sk_tx_prod];
496 t->sk_addr = htole32(cd->sk_tx_hiaddr);
497 t->sk_len = 0;
498 t->sk_ctl = 0;
499 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
500 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
501 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
502 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
503 sc_if->sk_cdata.sk_tx_cnt++;
504
505 return 0;
506 }
507
508 int
509 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
510 {
511 struct mbuf *m_new = NULL;
512 struct sk_chain *c;
513 struct msk_rx_desc *r;
514 void *buf = NULL;
515 bus_addr_t addr;
516
517 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
518 if (m_new == NULL)
519 return ENOBUFS;
520
521 /* Allocate the jumbo buffer */
522 buf = msk_jalloc(sc_if);
523 if (buf == NULL) {
524 m_freem(m_new);
525 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
526 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
527 return ENOBUFS;
528 }
529
530 /* Attach the buffer to the mbuf */
531 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
532 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
533
534 m_adj(m_new, ETHER_ALIGN);
535
536 addr = dmamap->dm_segs[0].ds_addr +
537 ((vaddr_t)m_new->m_data -
538 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
539
540 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
541 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
542 r = c->sk_le;
543 c->sk_mbuf = NULL;
544 r->sk_addr = htole32(MSK_ADDR_HI(addr));
545 r->sk_len = 0;
546 r->sk_ctl = 0;
547 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
548 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
549
550 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
551 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
552
553 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
554 sc_if->sk_cdata.sk_rx_cnt++;
555
556 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
557 sc_if->sk_ethercom.ec_if.if_xname,
558 (unsigned)MSK_ADDR_HI(addr)));
559 }
560
561 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
562 r = c->sk_le;
563 c->sk_mbuf = m_new;
564 r->sk_addr = htole32(MSK_ADDR_LO(addr));
565 r->sk_len = htole16(SK_JLEN);
566 r->sk_ctl = 0;
567 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
568
569 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
570 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
571
572 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
573 sc_if->sk_cdata.sk_rx_cnt++;
574
575 return 0;
576 }
577
578 /*
579 * Memory management for jumbo frames.
580 */
581
582 int
583 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
584 {
585 struct sk_softc *sc = sc_if->sk_softc;
586 char *ptr, *kva;
587 int i, state, error;
588 struct sk_jpool_entry *entry;
589
590 state = error = 0;
591
592 /* Grab a big chunk o' storage. */
593 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
594 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
595 BUS_DMA_NOWAIT)) {
596 aprint_error(": can't alloc rx buffers");
597 return ENOBUFS;
598 }
599
600 state = 1;
601 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
602 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
603 BUS_DMA_NOWAIT)) {
604 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
605 error = ENOBUFS;
606 goto out;
607 }
608
609 state = 2;
610 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
611 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
612 aprint_error(": can't create dma map");
613 error = ENOBUFS;
614 goto out;
615 }
616
617 state = 3;
618 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
619 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
620 aprint_error(": can't load dma map");
621 error = ENOBUFS;
622 goto out;
623 }
624
625 state = 4;
626 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
627 DPRINTFN(1,("msk_jumbo_buf = %p\n",
628 (void *)sc_if->sk_cdata.sk_jumbo_buf));
629
630 LIST_INIT(&sc_if->sk_jfree_listhead);
631 LIST_INIT(&sc_if->sk_jinuse_listhead);
632 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
633
634 /*
635 * Now divide it up into 9K pieces and save the addresses
636 * in an array.
637 */
638 ptr = sc_if->sk_cdata.sk_jumbo_buf;
639 for (i = 0; i < MSK_JSLOTS; i++) {
640 sc_if->sk_cdata.sk_jslots[i] = ptr;
641 ptr += SK_JLEN;
642 entry = malloc(sizeof(struct sk_jpool_entry),
643 M_DEVBUF, M_NOWAIT);
644 if (entry == NULL) {
645 sc_if->sk_cdata.sk_jumbo_buf = NULL;
646 aprint_error(": no memory for jumbo buffer queue!");
647 error = ENOBUFS;
648 goto out;
649 }
650 entry->slot = i;
651 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
652 entry, jpool_entries);
653 }
654 out:
655 if (error != 0) {
656 switch (state) {
657 case 4:
658 bus_dmamap_unload(sc->sc_dmatag,
659 sc_if->sk_cdata.sk_rx_jumbo_map);
660 /* FALLTHROUGH */
661 case 3:
662 bus_dmamap_destroy(sc->sc_dmatag,
663 sc_if->sk_cdata.sk_rx_jumbo_map);
664 /* FALLTHROUGH */
665 case 2:
666 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
667 /* FALLTHROUGH */
668 case 1:
669 bus_dmamem_free(sc->sc_dmatag,
670 &sc_if->sk_cdata.sk_jumbo_seg,
671 sc_if->sk_cdata.sk_jumbo_nseg);
672 break;
673 default:
674 break;
675 }
676 }
677
678 return error;
679 }
680
681 static void
682 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
683 {
684 struct sk_softc *sc = sc_if->sk_softc;
685
686 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
687 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
688 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
689 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
690 sc_if->sk_cdata.sk_jumbo_nseg);
691 }
692
693 /*
694 * Allocate a jumbo buffer.
695 */
696 void *
697 msk_jalloc(struct sk_if_softc *sc_if)
698 {
699 struct sk_jpool_entry *entry;
700
701 mutex_enter(&sc_if->sk_jpool_mtx);
702 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
703
704 if (entry == NULL) {
705 mutex_exit(&sc_if->sk_jpool_mtx);
706 return NULL;
707 }
708
709 LIST_REMOVE(entry, jpool_entries);
710 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
711 mutex_exit(&sc_if->sk_jpool_mtx);
712 return sc_if->sk_cdata.sk_jslots[entry->slot];
713 }
714
715 /*
716 * Release a jumbo buffer.
717 */
718 void
719 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
720 {
721 struct sk_jpool_entry *entry;
722 struct sk_if_softc *sc;
723 int i;
724
725 /* Extract the softc struct pointer. */
726 sc = (struct sk_if_softc *)arg;
727
728 if (sc == NULL)
729 panic("msk_jfree: can't find softc pointer!");
730
731 /* calculate the slot this buffer belongs to */
732 i = ((vaddr_t)buf
733 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
734
735 if ((i < 0) || (i >= MSK_JSLOTS))
736 panic("msk_jfree: asked to free buffer that we don't manage!");
737
738 mutex_enter(&sc->sk_jpool_mtx);
739 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
740 if (entry == NULL)
741 panic("msk_jfree: buffer not in use!");
742 entry->slot = i;
743 LIST_REMOVE(entry, jpool_entries);
744 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
745 mutex_exit(&sc->sk_jpool_mtx);
746
747 if (__predict_true(m != NULL))
748 pool_cache_put(mb_cache, m);
749
750 /* Now that we know we have a free RX buffer, refill if running out */
751 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
752 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
753 callout_schedule(&sc->sk_tick_rx, 0);
754 }
755
756 int
757 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
758 {
759 struct sk_if_softc *sc = ifp->if_softc;
760 int s, error;
761
762 s = splnet();
763
764 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
765 switch (cmd) {
766 case SIOCSIFFLAGS:
767 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
768 break;
769
770 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
771 case IFF_RUNNING:
772 msk_stop(ifp, 1);
773 break;
774 case IFF_UP:
775 msk_init(ifp);
776 break;
777 case IFF_UP | IFF_RUNNING:
778 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
779 msk_setpromisc(sc);
780 msk_setmulti(sc);
781 } else
782 msk_init(ifp);
783 break;
784 }
785 sc->sk_if_flags = ifp->if_flags;
786 break;
787 default:
788 error = ether_ioctl(ifp, cmd, data);
789 if (error == ENETRESET) {
790 error = 0;
791 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
792 ;
793 else if (ifp->if_flags & IFF_RUNNING) {
794 /*
795 * Multicast list has changed; set the hardware
796 * filter accordingly.
797 */
798 msk_setmulti(sc);
799 }
800 }
801 break;
802 }
803
804 splx(s);
805 return error;
806 }
807
808 void
809 msk_update_int_mod(struct sk_softc *sc, int verbose)
810 {
811 uint32_t imtimer_ticks;
812
813 /*
814 * Configure interrupt moderation. The moderation timer
815 * defers interrupts specified in the interrupt moderation
816 * timer mask based on the timeout specified in the interrupt
817 * moderation timer init register. Each bit in the timer
818 * register represents one tick, so to specify a timeout in
819 * microseconds, we have to multiply by the correct number of
820 * ticks-per-microsecond.
821 */
822 switch (sc->sk_type) {
823 case SK_YUKON_EC:
824 case SK_YUKON_EC_U:
825 case SK_YUKON_EX:
826 case SK_YUKON_SUPR:
827 case SK_YUKON_ULTRA2:
828 case SK_YUKON_OPTIMA:
829 case SK_YUKON_PRM:
830 case SK_YUKON_OPTIMA2:
831 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
832 break;
833 case SK_YUKON_FE:
834 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
835 break;
836 case SK_YUKON_FE_P:
837 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
838 break;
839 case SK_YUKON_XL:
840 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
841 break;
842 default:
843 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
844 }
845 if (verbose)
846 aprint_verbose_dev(sc->sk_dev,
847 "interrupt moderation is %d us\n", sc->sk_int_mod);
848 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
849 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
850 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
851 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
852 sc->sk_int_mod_pending = 0;
853 }
854
855 static int
856 msk_lookup(const struct pci_attach_args *pa)
857 {
858 const struct msk_product *pmsk;
859
860 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
861 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
862 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
863 return 1;
864 }
865 return 0;
866 }
867
868 /*
869 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
870 * IDs against our list and return a device name if we find a match.
871 */
872 int
873 mskc_probe(device_t parent, cfdata_t match, void *aux)
874 {
875 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
876
877 return msk_lookup(pa);
878 }
879
880 /*
881 * Force the GEnesis into reset, then bring it out of reset.
882 */
883 void
884 mskc_reset(struct sk_softc *sc)
885 {
886 uint32_t imtimer_ticks, reg1;
887 int reg;
888
889 DPRINTFN(2, ("mskc_reset\n"));
890
891 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
892 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
893
894 DELAY(1000);
895 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
896 DELAY(2);
897 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
898 sk_win_write_1(sc, SK_TESTCTL1, 2);
899
900 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
901 sc->sk_type >= SK_YUKON_FE_P) {
902 uint32_t our;
903
904 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
905
906 /* enable all clocks. */
907 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
908 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
909 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
910 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
911 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
912 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
913 /* Set all bits to 0 except bits 15..12 */
914 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
915 /* Set to default value */
916 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
917
918 /*
919 * Disable status race, workaround for Yukon EC Ultra &
920 * Yukon EX.
921 */
922 reg1 = sk_win_read_4(sc, SK_GPIO);
923 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
924 sk_win_write_4(sc, SK_GPIO, reg1);
925 sk_win_read_4(sc, SK_GPIO);
926 }
927
928 /* release PHY from PowerDown/Coma mode. */
929 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
930 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
931 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
932 else
933 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
934 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
935
936 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
937 sk_win_write_1(sc, SK_Y2_CLKGATE,
938 SK_Y2_CLKGATE_LINK1_GATE_DIS |
939 SK_Y2_CLKGATE_LINK2_GATE_DIS |
940 SK_Y2_CLKGATE_LINK1_CORE_DIS |
941 SK_Y2_CLKGATE_LINK2_CORE_DIS |
942 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
943 else
944 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
945
946 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
947 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
948 DELAY(1000);
949 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
950 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
951
952 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
953 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
954 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
955 }
956
957 sk_win_write_1(sc, SK_TESTCTL1, 1);
958
959 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
960 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
961 CSR_READ_2(sc, SK_LINK_CTRL)));
962
963 /* Disable ASF */
964 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
965 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
966
967 /* Clear I2C IRQ noise */
968 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
969
970 /* Disable hardware timer */
971 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
972 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
973
974 /* Disable descriptor polling */
975 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
976
977 /* Disable time stamps */
978 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
979 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
980
981 /* Enable RAM interface */
982 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
983 for (reg = SK_TO0;reg <= SK_TO11; reg++)
984 sk_win_write_1(sc, reg, 36);
985 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
986 for (reg = SK_TO0;reg <= SK_TO11; reg++)
987 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
988
989 /*
990 * Configure interrupt moderation. The moderation timer
991 * defers interrupts specified in the interrupt moderation
992 * timer mask based on the timeout specified in the interrupt
993 * moderation timer init register. Each bit in the timer
994 * register represents one tick, so to specify a timeout in
995 * microseconds, we have to multiply by the correct number of
996 * ticks-per-microsecond.
997 */
998 switch (sc->sk_type) {
999 case SK_YUKON_EC:
1000 case SK_YUKON_EC_U:
1001 case SK_YUKON_EX:
1002 case SK_YUKON_SUPR:
1003 case SK_YUKON_ULTRA2:
1004 case SK_YUKON_OPTIMA:
1005 case SK_YUKON_PRM:
1006 case SK_YUKON_OPTIMA2:
1007 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1008 break;
1009 case SK_YUKON_FE:
1010 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1011 break;
1012 case SK_YUKON_FE_P:
1013 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1014 break;
1015 case SK_YUKON_XL:
1016 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1017 break;
1018 default:
1019 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1020 break;
1021 }
1022
1023 /* Reset status ring. */
1024 memset(sc->sk_status_ring, 0,
1025 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1026 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1027 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1028 sc->sk_status_idx = 0;
1029
1030 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1031 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1032
1033 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1034 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1035 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1036 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1037 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1038 if (sc->sk_type == SK_YUKON_EC &&
1039 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1040 /* WA for dev. #4.3 */
1041 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1042 SK_STAT_BMU_TXTHIDX_MSK);
1043 /* WA for dev. #4.18 */
1044 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1045 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1046 } else {
1047 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1048 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1049 if (sc->sk_type == SK_YUKON_XL)
1050 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1051 else
1052 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1053 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1054 }
1055
1056 #if 0
1057 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1058 #endif
1059 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1060
1061 /* Enable status unit. */
1062 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1063
1064 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1065 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1066 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1067
1068 msk_update_int_mod(sc, 0);
1069 }
1070
1071 int
1072 msk_probe(device_t parent, cfdata_t match, void *aux)
1073 {
1074 struct skc_attach_args *sa = aux;
1075
1076 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1077 return 0;
1078
1079 switch (sa->skc_type) {
1080 case SK_YUKON_XL:
1081 case SK_YUKON_EC_U:
1082 case SK_YUKON_EX:
1083 case SK_YUKON_EC:
1084 case SK_YUKON_FE:
1085 case SK_YUKON_FE_P:
1086 case SK_YUKON_SUPR:
1087 case SK_YUKON_ULTRA2:
1088 case SK_YUKON_OPTIMA:
1089 case SK_YUKON_PRM:
1090 case SK_YUKON_OPTIMA2:
1091 return 1;
1092 }
1093
1094 return 0;
1095 }
1096
1097 void
1098 msk_reset(struct sk_if_softc *sc_if)
1099 {
1100 /* GMAC and GPHY Reset */
1101 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1102 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1103 DELAY(1000);
1104 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1105 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1106 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1107 }
1108
1109 static bool
1110 msk_resume(device_t dv, const pmf_qual_t *qual)
1111 {
1112 struct sk_if_softc *sc_if = device_private(dv);
1113
1114 msk_init_yukon(sc_if);
1115 return true;
1116 }
1117
1118 /*
1119 * Each XMAC chip is attached as a separate logical IP interface.
1120 * Single port cards will have only one logical interface of course.
1121 */
1122 void
1123 msk_attach(device_t parent, device_t self, void *aux)
1124 {
1125 struct sk_if_softc *sc_if = device_private(self);
1126 struct sk_softc *sc = device_private(parent);
1127 struct skc_attach_args *sa = aux;
1128 struct ifnet *ifp;
1129 struct mii_data * const mii = &sc_if->sk_mii;
1130 void *kva;
1131 int i;
1132 uint32_t chunk;
1133 int mii_flags;
1134
1135 sc_if->sk_dev = self;
1136 sc_if->sk_port = sa->skc_port;
1137 sc_if->sk_softc = sc;
1138 sc->sk_if[sa->skc_port] = sc_if;
1139
1140 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1141
1142 /*
1143 * Get station address for this interface. Note that
1144 * dual port cards actually come with three station
1145 * addresses: one for each port, plus an extra. The
1146 * extra one is used by the SysKonnect driver software
1147 * as a 'virtual' station address for when both ports
1148 * are operating in failover mode. Currently we don't
1149 * use this extra address.
1150 */
1151 for (i = 0; i < ETHER_ADDR_LEN; i++)
1152 sc_if->sk_enaddr[i] =
1153 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1154
1155 aprint_normal(": Ethernet address %s\n",
1156 ether_sprintf(sc_if->sk_enaddr));
1157
1158 /*
1159 * Set up RAM buffer addresses. The Yukon2 has a small amount
1160 * of SRAM on it, somewhere between 4K and 48K. We need to
1161 * divide this up between the transmitter and receiver. We
1162 * give the receiver 2/3 of the memory (rounded down), and the
1163 * transmitter whatever remains.
1164 */
1165 if (sc->sk_ramsize) {
1166 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1167 sc_if->sk_rx_ramstart = 0;
1168 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1169 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1170 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1171 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1172
1173 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1174 " tx_ramstart=%#x tx_ramend=%#x\n",
1175 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1176 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1177 }
1178
1179 /* Allocate the descriptor queues. */
1180 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1181 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1182 BUS_DMA_NOWAIT)) {
1183 aprint_error(": can't alloc rx buffers\n");
1184 goto fail;
1185 }
1186 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1187 sc_if->sk_ring_nseg,
1188 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1189 aprint_error(": can't map dma buffers (%zu bytes)\n",
1190 sizeof(struct msk_ring_data));
1191 goto fail_1;
1192 }
1193 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1194 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1195 &sc_if->sk_ring_map)) {
1196 aprint_error(": can't create dma map\n");
1197 goto fail_2;
1198 }
1199 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1200 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1201 aprint_error(": can't load dma map\n");
1202 goto fail_3;
1203 }
1204 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1205 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1206
1207 if (sc->sk_type != SK_YUKON_FE &&
1208 sc->sk_type != SK_YUKON_FE_P)
1209 sc_if->sk_pktlen = SK_JLEN;
1210 else
1211 sc_if->sk_pktlen = MCLBYTES;
1212
1213 /* Try to allocate memory for jumbo buffers. */
1214 if (msk_alloc_jumbo_mem(sc_if)) {
1215 aprint_error(": jumbo buffer allocation failed\n");
1216 goto fail_3;
1217 }
1218
1219 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1220 if (sc->sk_type != SK_YUKON_FE &&
1221 sc->sk_type != SK_YUKON_FE_P)
1222 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1223
1224 ifp = &sc_if->sk_ethercom.ec_if;
1225 ifp->if_softc = sc_if;
1226 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1227 ifp->if_ioctl = msk_ioctl;
1228 ifp->if_start = msk_start;
1229 ifp->if_stop = msk_stop;
1230 ifp->if_init = msk_init;
1231 ifp->if_watchdog = msk_watchdog;
1232 ifp->if_baudrate = 1000000000;
1233 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1234 IFQ_SET_READY(&ifp->if_snd);
1235 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1236
1237 msk_reset(sc_if);
1238
1239 /*
1240 * Do miibus setup.
1241 */
1242 msk_init_yukon(sc_if);
1243
1244 DPRINTFN(2, ("msk_attach: 1\n"));
1245
1246 mii->mii_ifp = ifp;
1247 mii->mii_readreg = msk_miibus_readreg;
1248 mii->mii_writereg = msk_miibus_writereg;
1249 mii->mii_statchg = msk_miibus_statchg;
1250
1251 sc_if->sk_ethercom.ec_mii = mii;
1252 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1253 mii_flags = MIIF_DOPAUSE;
1254 if (sc->sk_fibertype)
1255 mii_flags |= MIIF_HAVEFIBER;
1256 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1257 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1258 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1259 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1260 0, NULL);
1261 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1262 } else
1263 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1264
1265 callout_init(&sc_if->sk_tick_ch, 0);
1266 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1267 callout_schedule(&sc_if->sk_tick_ch, hz);
1268
1269 callout_init(&sc_if->sk_tick_rx, 0);
1270 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1271
1272 /*
1273 * Call MI attach routines.
1274 */
1275 if_attach(ifp);
1276 if_deferred_start_init(ifp, NULL);
1277 ether_ifattach(ifp, sc_if->sk_enaddr);
1278
1279 if (pmf_device_register(self, NULL, msk_resume))
1280 pmf_class_network_register(self, ifp);
1281 else
1282 aprint_error_dev(self, "couldn't establish power handler\n");
1283
1284 if (sc->rnd_attached++ == 0) {
1285 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1286 RND_TYPE_NET, RND_FLAG_DEFAULT);
1287 }
1288
1289 DPRINTFN(2, ("msk_attach: end\n"));
1290 return;
1291
1292 fail_3:
1293 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1294 fail_2:
1295 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1296 fail_1:
1297 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1298 fail:
1299 sc->sk_if[sa->skc_port] = NULL;
1300 }
1301
1302 int
1303 msk_detach(device_t self, int flags)
1304 {
1305 struct sk_if_softc *sc_if = device_private(self);
1306 struct sk_softc *sc = sc_if->sk_softc;
1307 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1308
1309 if (sc->sk_if[sc_if->sk_port] == NULL)
1310 return 0;
1311
1312 msk_stop(ifp, 1);
1313
1314 if (--sc->rnd_attached == 0)
1315 rnd_detach_source(&sc->rnd_source);
1316
1317 callout_halt(&sc_if->sk_tick_ch, NULL);
1318 callout_destroy(&sc_if->sk_tick_ch);
1319
1320 callout_halt(&sc_if->sk_tick_rx, NULL);
1321 callout_destroy(&sc_if->sk_tick_rx);
1322
1323 /* Detach any PHYs we might have. */
1324 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1325 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1326
1327 /* Delete any remaining media. */
1328 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1329
1330 pmf_device_deregister(self);
1331
1332 ether_ifdetach(ifp);
1333 if_detach(ifp);
1334
1335 msk_free_jumbo_mem(sc_if);
1336
1337 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1338 sizeof(struct msk_ring_data));
1339 bus_dmamem_free(sc->sc_dmatag,
1340 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1341 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1342 sc->sk_if[sc_if->sk_port] = NULL;
1343
1344 return 0;
1345 }
1346
1347 int
1348 mskcprint(void *aux, const char *pnp)
1349 {
1350 struct skc_attach_args *sa = aux;
1351
1352 if (pnp)
1353 aprint_normal("msk port %c at %s",
1354 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1355 else
1356 aprint_normal(" port %c",
1357 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1358 return UNCONF;
1359 }
1360
1361 /*
1362 * Attach the interface. Allocate softc structures, do ifmedia
1363 * setup and ethernet/BPF attach.
1364 */
1365 void
1366 mskc_attach(device_t parent, device_t self, void *aux)
1367 {
1368 struct sk_softc *sc = device_private(self);
1369 struct pci_attach_args *pa = aux;
1370 struct skc_attach_args skca;
1371 pci_chipset_tag_t pc = pa->pa_pc;
1372 pcireg_t command, memtype;
1373 const char *intrstr = NULL;
1374 int rc, sk_nodenum;
1375 uint8_t hw, pmd;
1376 const char *revstr = NULL;
1377 const struct sysctlnode *node;
1378 void *kva;
1379 char intrbuf[PCI_INTRSTR_LEN];
1380
1381 DPRINTFN(2, ("begin mskc_attach\n"));
1382
1383 sc->sk_dev = self;
1384 /*
1385 * Handle power management nonsense.
1386 */
1387 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1388
1389 if (command == 0x01) {
1390 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1391 if (command & SK_PSTATE_MASK) {
1392 uint32_t iobase, membase, irq;
1393
1394 /* Save important PCI config data. */
1395 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1396 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1397 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1398
1399 /* Reset the power state. */
1400 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1401 "mode -- setting to D0\n",
1402 command & SK_PSTATE_MASK);
1403 command &= 0xFFFFFFFC;
1404 pci_conf_write(pc, pa->pa_tag,
1405 SK_PCI_PWRMGMTCTRL, command);
1406
1407 /* Restore PCI config data. */
1408 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1409 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1410 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1411 }
1412 }
1413
1414 /*
1415 * Map control/status registers.
1416 */
1417 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1418 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1419 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1420 aprint_error(": can't map mem space\n");
1421 return;
1422 }
1423
1424 if (pci_dma64_available(pa))
1425 sc->sc_dmatag = pa->pa_dmat64;
1426 else
1427 sc->sc_dmatag = pa->pa_dmat;
1428
1429 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1430 command |= PCI_COMMAND_MASTER_ENABLE;
1431 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1432
1433 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1434 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1435
1436 /* bail out here if chip is not recognized */
1437 if (!(SK_IS_YUKON2(sc))) {
1438 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1439 goto fail_1;
1440 }
1441 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1442
1443 /* Allocate interrupt */
1444 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1445 aprint_error(": couldn't map interrupt\n");
1446 goto fail_1;
1447 }
1448
1449 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1450 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1451 msk_intr, sc, device_xname(sc->sk_dev));
1452 if (sc->sk_intrhand == NULL) {
1453 aprint_error(": couldn't establish interrupt");
1454 if (intrstr != NULL)
1455 aprint_error(" at %s", intrstr);
1456 aprint_error("\n");
1457 goto fail_1;
1458 }
1459 sc->sk_pc = pc;
1460
1461 if (bus_dmamem_alloc(sc->sc_dmatag,
1462 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1463 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1464 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1465 aprint_error(": can't alloc status buffers\n");
1466 goto fail_2;
1467 }
1468
1469 if (bus_dmamem_map(sc->sc_dmatag,
1470 &sc->sk_status_seg, sc->sk_status_nseg,
1471 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1472 &kva, BUS_DMA_NOWAIT)) {
1473 aprint_error(": can't map dma buffers (%zu bytes)\n",
1474 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1475 goto fail_3;
1476 }
1477 if (bus_dmamap_create(sc->sc_dmatag,
1478 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1479 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1480 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1481 aprint_error(": can't create dma map\n");
1482 goto fail_4;
1483 }
1484 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1485 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1486 NULL, BUS_DMA_NOWAIT)) {
1487 aprint_error(": can't load dma map\n");
1488 goto fail_5;
1489 }
1490 sc->sk_status_ring = (struct msk_status_desc *)kva;
1491
1492 sc->sk_int_mod = SK_IM_DEFAULT;
1493 sc->sk_int_mod_pending = 0;
1494
1495 /* Reset the adapter. */
1496 mskc_reset(sc);
1497
1498 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1499 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1500
1501 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1502 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1503 sc->sk_fibertype = 1;
1504
1505 switch (sc->sk_type) {
1506 case SK_YUKON_XL:
1507 sc->sk_name = "Yukon-2 XL";
1508 break;
1509 case SK_YUKON_EC_U:
1510 sc->sk_name = "Yukon-2 EC Ultra";
1511 break;
1512 case SK_YUKON_EX:
1513 sc->sk_name = "Yukon-2 Extreme";
1514 break;
1515 case SK_YUKON_EC:
1516 sc->sk_name = "Yukon-2 EC";
1517 break;
1518 case SK_YUKON_FE:
1519 sc->sk_name = "Yukon-2 FE";
1520 break;
1521 case SK_YUKON_FE_P:
1522 sc->sk_name = "Yukon-2 FE+";
1523 break;
1524 case SK_YUKON_SUPR:
1525 sc->sk_name = "Yukon-2 Supreme";
1526 break;
1527 case SK_YUKON_ULTRA2:
1528 sc->sk_name = "Yukon-2 Ultra 2";
1529 break;
1530 case SK_YUKON_OPTIMA:
1531 sc->sk_name = "Yukon-2 Optima";
1532 break;
1533 case SK_YUKON_PRM:
1534 sc->sk_name = "Yukon-2 Optima Prime";
1535 break;
1536 case SK_YUKON_OPTIMA2:
1537 sc->sk_name = "Yukon-2 Optima 2";
1538 break;
1539 default:
1540 sc->sk_name = "Yukon (Unknown)";
1541 }
1542
1543 if (sc->sk_type == SK_YUKON_XL) {
1544 switch (sc->sk_rev) {
1545 case SK_YUKON_XL_REV_A0:
1546 revstr = "A0";
1547 break;
1548 case SK_YUKON_XL_REV_A1:
1549 revstr = "A1";
1550 break;
1551 case SK_YUKON_XL_REV_A2:
1552 revstr = "A2";
1553 break;
1554 case SK_YUKON_XL_REV_A3:
1555 revstr = "A3";
1556 break;
1557 default:
1558 break;
1559 }
1560 }
1561
1562 if (sc->sk_type == SK_YUKON_EC) {
1563 switch (sc->sk_rev) {
1564 case SK_YUKON_EC_REV_A1:
1565 revstr = "A1";
1566 break;
1567 case SK_YUKON_EC_REV_A2:
1568 revstr = "A2";
1569 break;
1570 case SK_YUKON_EC_REV_A3:
1571 revstr = "A3";
1572 break;
1573 default:
1574 break;
1575 }
1576 }
1577
1578 if (sc->sk_type == SK_YUKON_FE) {
1579 switch (sc->sk_rev) {
1580 case SK_YUKON_FE_REV_A1:
1581 revstr = "A1";
1582 break;
1583 case SK_YUKON_FE_REV_A2:
1584 revstr = "A2";
1585 break;
1586 default:
1587 break;
1588 }
1589 }
1590
1591 if (sc->sk_type == SK_YUKON_EC_U) {
1592 switch (sc->sk_rev) {
1593 case SK_YUKON_EC_U_REV_A0:
1594 revstr = "A0";
1595 break;
1596 case SK_YUKON_EC_U_REV_A1:
1597 revstr = "A1";
1598 break;
1599 case SK_YUKON_EC_U_REV_B0:
1600 revstr = "B0";
1601 break;
1602 case SK_YUKON_EC_U_REV_B1:
1603 revstr = "B1";
1604 break;
1605 default:
1606 break;
1607 }
1608 }
1609
1610 if (sc->sk_type == SK_YUKON_FE) {
1611 switch (sc->sk_rev) {
1612 case SK_YUKON_FE_REV_A1:
1613 revstr = "A1";
1614 break;
1615 case SK_YUKON_FE_REV_A2:
1616 revstr = "A2";
1617 break;
1618 default:
1619 ;
1620 }
1621 }
1622
1623 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1624 revstr = "A0";
1625
1626 if (sc->sk_type == SK_YUKON_EX) {
1627 switch (sc->sk_rev) {
1628 case SK_YUKON_EX_REV_A0:
1629 revstr = "A0";
1630 break;
1631 case SK_YUKON_EX_REV_B0:
1632 revstr = "B0";
1633 break;
1634 default:
1635 ;
1636 }
1637 }
1638
1639 if (sc->sk_type == SK_YUKON_SUPR) {
1640 switch (sc->sk_rev) {
1641 case SK_YUKON_SUPR_REV_A0:
1642 revstr = "A0";
1643 break;
1644 case SK_YUKON_SUPR_REV_B0:
1645 revstr = "B0";
1646 break;
1647 case SK_YUKON_SUPR_REV_B1:
1648 revstr = "B1";
1649 break;
1650 default:
1651 ;
1652 }
1653 }
1654
1655 if (sc->sk_type == SK_YUKON_PRM) {
1656 switch (sc->sk_rev) {
1657 case SK_YUKON_PRM_REV_Z1:
1658 revstr = "Z1";
1659 break;
1660 case SK_YUKON_PRM_REV_A0:
1661 revstr = "A0";
1662 break;
1663 default:
1664 ;
1665 }
1666 }
1667
1668 /* Announce the product name. */
1669 aprint_normal(", %s", sc->sk_name);
1670 if (revstr != NULL)
1671 aprint_normal(" rev. %s", revstr);
1672 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1673
1674 sc->sk_macs = 1;
1675
1676 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1677 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1678 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1679 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1680 sc->sk_macs++;
1681 }
1682
1683 skca.skc_port = SK_PORT_A;
1684 skca.skc_type = sc->sk_type;
1685 skca.skc_rev = sc->sk_rev;
1686 (void)config_found(sc->sk_dev, &skca, mskcprint);
1687
1688 if (sc->sk_macs > 1) {
1689 skca.skc_port = SK_PORT_B;
1690 skca.skc_type = sc->sk_type;
1691 skca.skc_rev = sc->sk_rev;
1692 (void)config_found(sc->sk_dev, &skca, mskcprint);
1693 }
1694
1695 /* Turn on the 'driver is loaded' LED. */
1696 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1697
1698 /* skc sysctl setup */
1699
1700 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1701 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1702 SYSCTL_DESCR("mskc per-controller controls"),
1703 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1704 CTL_EOL)) != 0) {
1705 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1706 goto fail_6;
1707 }
1708
1709 sk_nodenum = node->sysctl_num;
1710
1711 /* interrupt moderation time in usecs */
1712 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1713 CTLFLAG_READWRITE,
1714 CTLTYPE_INT, "int_mod",
1715 SYSCTL_DESCR("msk interrupt moderation timer"),
1716 msk_sysctl_handler, 0, (void *)sc,
1717 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1718 CTL_EOL)) != 0) {
1719 aprint_normal_dev(sc->sk_dev,
1720 "couldn't create int_mod sysctl node\n");
1721 goto fail_6;
1722 }
1723
1724 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1725 aprint_error_dev(self, "couldn't establish power handler\n");
1726
1727 return;
1728
1729 fail_6:
1730 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1731 fail_4:
1732 bus_dmamem_unmap(sc->sc_dmatag, kva,
1733 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1734 fail_3:
1735 bus_dmamem_free(sc->sc_dmatag,
1736 &sc->sk_status_seg, sc->sk_status_nseg);
1737 sc->sk_status_nseg = 0;
1738 fail_5:
1739 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1740 fail_2:
1741 pci_intr_disestablish(pc, sc->sk_intrhand);
1742 sc->sk_intrhand = NULL;
1743 fail_1:
1744 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1745 sc->sk_bsize = 0;
1746 }
1747
1748 int
1749 mskc_detach(device_t self, int flags)
1750 {
1751 struct sk_softc *sc = device_private(self);
1752 int rv;
1753
1754 if (sc->sk_intrhand) {
1755 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1756 sc->sk_intrhand = NULL;
1757 }
1758
1759 if (sc->sk_pihp != NULL) {
1760 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1761 sc->sk_pihp = NULL;
1762 }
1763
1764 rv = config_detach_children(self, flags);
1765 if (rv != 0)
1766 return rv;
1767
1768 if (sc->sk_status_nseg > 0) {
1769 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1770 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1771 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1772 bus_dmamem_free(sc->sc_dmatag,
1773 &sc->sk_status_seg, sc->sk_status_nseg);
1774 }
1775
1776 if (sc->sk_bsize > 0)
1777 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1778
1779 return 0;
1780 }
1781
1782 int
1783 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1784 {
1785 struct sk_softc *sc = sc_if->sk_softc;
1786 struct msk_tx_desc *f = NULL;
1787 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1788 uint32_t entries = 0;
1789 size_t i;
1790 struct sk_txmap_entry *entry;
1791 bus_dmamap_t txmap;
1792 bus_addr_t addr;
1793
1794 DPRINTFN(2, ("msk_encap\n"));
1795
1796 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1797 if (entry == NULL) {
1798 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1799 return ENOBUFS;
1800 }
1801 txmap = entry->dmamap;
1802
1803 cur = frag = *txidx;
1804
1805 #ifdef MSK_DEBUG
1806 if (mskdebug >= 2)
1807 msk_dump_mbuf(m_head);
1808 #endif
1809
1810 /*
1811 * Start packing the mbufs in this chain into
1812 * the fragment pointers. Stop when we run out
1813 * of fragments or hit the end of the mbuf chain.
1814 */
1815 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1816 BUS_DMA_NOWAIT)) {
1817 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1818 return ENOBUFS;
1819 }
1820
1821 /* Count how many tx descriptors needed. */
1822 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1823 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1824 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1825 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1826 total++;
1827 }
1828 total++;
1829 }
1830
1831 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1832 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1833 bus_dmamap_unload(sc->sc_dmatag, txmap);
1834 return ENOBUFS;
1835 }
1836
1837 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1838 txmap->dm_nsegs, total));
1839
1840 /* Sync the DMA map. */
1841 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1842 BUS_DMASYNC_PREWRITE);
1843
1844 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1845 for (i = 0; i < txmap->dm_nsegs; i++) {
1846 addr = txmap->dm_segs[i].ds_addr;
1847 DPRINTFN(2, ("msk_encap: addr %llx\n",
1848 (unsigned long long)addr));
1849 hiaddr = MSK_ADDR_HI(addr);
1850
1851 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1852 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1853 f->sk_addr = htole32(hiaddr);
1854 f->sk_len = 0;
1855 f->sk_ctl = 0;
1856 if (i == 0)
1857 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1858 else
1859 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1860 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1861 SK_INC(frag, MSK_TX_RING_CNT);
1862 entries++;
1863 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1864 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1865 }
1866
1867 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1868 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1869 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1870 f->sk_ctl = 0;
1871 if (i == 0) {
1872 if (hiaddr != old_hiaddr)
1873 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1874 else
1875 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1876 } else
1877 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1878 cur = frag;
1879 SK_INC(frag, MSK_TX_RING_CNT);
1880 entries++;
1881 }
1882 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1883
1884 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1885 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1886
1887 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1888 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1889
1890 /* Sync descriptors before handing to chip */
1891 MSK_CDTXSYNC(sc_if, *txidx, entries,
1892 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1893
1894 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1895
1896 /* Sync first descriptor to hand it off */
1897 MSK_CDTXSYNC(sc_if, *txidx, 1,
1898 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1899
1900 sc_if->sk_cdata.sk_tx_cnt += entries;
1901
1902 #ifdef MSK_DEBUG
1903 if (mskdebug >= 2) {
1904 struct msk_tx_desc *le;
1905 uint32_t idx;
1906 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1907 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1908 msk_dump_txdesc(le, idx);
1909 }
1910 }
1911 #endif
1912
1913 *txidx = frag;
1914
1915 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1916
1917 return 0;
1918 }
1919
1920 void
1921 msk_start(struct ifnet *ifp)
1922 {
1923 struct sk_if_softc *sc_if = ifp->if_softc;
1924 struct mbuf *m_head = NULL;
1925 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1926 int pkts = 0;
1927
1928 DPRINTFN(2, ("msk_start\n"));
1929
1930 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1931 IFQ_POLL(&ifp->if_snd, m_head);
1932 if (m_head == NULL)
1933 break;
1934
1935 /*
1936 * Pack the data into the transmit ring. If we
1937 * don't have room, set the OACTIVE flag and wait
1938 * for the NIC to drain the ring.
1939 */
1940 if (msk_encap(sc_if, m_head, &idx)) {
1941 ifp->if_flags |= IFF_OACTIVE;
1942 break;
1943 }
1944
1945 /* now we are committed to transmit the packet */
1946 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1947 pkts++;
1948
1949 /*
1950 * If there's a BPF listener, bounce a copy of this frame
1951 * to him.
1952 */
1953 bpf_mtap(ifp, m_head, BPF_D_OUT);
1954 }
1955 if (pkts == 0)
1956 return;
1957
1958 /* Transmit */
1959 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1960 sc_if->sk_cdata.sk_tx_prod = idx;
1961 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1962
1963 /* Set a timeout in case the chip goes out to lunch. */
1964 ifp->if_timer = 5;
1965 }
1966 }
1967
1968 void
1969 msk_watchdog(struct ifnet *ifp)
1970 {
1971 struct sk_if_softc *sc_if = ifp->if_softc;
1972
1973 /*
1974 * Reclaim first as there is a possibility of losing Tx completion
1975 * interrupts.
1976 */
1977 msk_txeof(sc_if);
1978 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1979 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1980
1981 ifp->if_oerrors++;
1982
1983 /* XXX Resets both ports; we shouldn't do that. */
1984 mskc_reset(sc_if->sk_softc);
1985 msk_reset(sc_if);
1986 msk_init(ifp);
1987 }
1988 }
1989
1990 static bool
1991 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1992 {
1993 struct sk_softc *sc = device_private(dv);
1994
1995 DPRINTFN(2, ("mskc_suspend\n"));
1996
1997 /* Turn off the 'driver is loaded' LED. */
1998 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1999
2000 return true;
2001 }
2002
2003 static bool
2004 mskc_resume(device_t dv, const pmf_qual_t *qual)
2005 {
2006 struct sk_softc *sc = device_private(dv);
2007
2008 DPRINTFN(2, ("mskc_resume\n"));
2009
2010 mskc_reset(sc);
2011 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2012
2013 return true;
2014 }
2015
2016 static __inline int
2017 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2018 {
2019 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2020 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2021 YU_RXSTAT_JABBER)) != 0 ||
2022 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2023 YU_RXSTAT_BYTES(stat) != len)
2024 return 0;
2025
2026 return 1;
2027 }
2028
2029 void
2030 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2031 {
2032 struct sk_softc *sc = sc_if->sk_softc;
2033 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2034 struct mbuf *m;
2035 unsigned cur, prod, tail, total_len = len;
2036 bus_dmamap_t dmamap;
2037
2038 cur = sc_if->sk_cdata.sk_rx_cons;
2039 prod = sc_if->sk_cdata.sk_rx_prod;
2040
2041 /* Sync the descriptor */
2042 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2043
2044 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2045 sc_if->sk_cdata.sk_rx_cnt));
2046
2047 while (prod != cur) {
2048 tail = cur;
2049 SK_INC(cur, MSK_RX_RING_CNT);
2050
2051 sc_if->sk_cdata.sk_rx_cnt--;
2052 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2053 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2054 if (m != NULL)
2055 break; /* found it */
2056 }
2057 sc_if->sk_cdata.sk_rx_cons = cur;
2058 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2059 sc_if->sk_cdata.sk_rx_cnt, m));
2060
2061 if (m == NULL)
2062 return;
2063
2064 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2065
2066 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2067 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2068
2069 if (total_len < SK_MIN_FRAMELEN ||
2070 total_len > ETHER_MAX_LEN_JUMBO ||
2071 msk_rxvalid(sc, rxstat, total_len) == 0) {
2072 ifp->if_ierrors++;
2073 m_freem(m);
2074 return;
2075 }
2076
2077 m_set_rcvif(m, ifp);
2078 m->m_pkthdr.len = m->m_len = total_len;
2079
2080 /* pass it on. */
2081 if_percpuq_enqueue(ifp->if_percpuq, m);
2082 }
2083
2084 void
2085 msk_txeof(struct sk_if_softc *sc_if)
2086 {
2087 struct sk_softc *sc = sc_if->sk_softc;
2088 struct msk_tx_desc *cur_tx;
2089 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2090 uint32_t idx, reg, sk_ctl;
2091 struct sk_txmap_entry *entry;
2092
2093 DPRINTFN(2, ("msk_txeof\n"));
2094
2095 if (sc_if->sk_port == SK_PORT_A)
2096 reg = SK_STAT_BMU_TXA1_RIDX;
2097 else
2098 reg = SK_STAT_BMU_TXA2_RIDX;
2099
2100 /*
2101 * Go through our tx ring and free mbufs for those
2102 * frames that have been sent.
2103 */
2104 idx = sc_if->sk_cdata.sk_tx_cons;
2105 while (idx != sk_win_read_2(sc, reg)) {
2106 MSK_CDTXSYNC(sc_if, idx, 1,
2107 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2108
2109 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2110 sk_ctl = cur_tx->sk_ctl;
2111 #ifdef MSK_DEBUG
2112 if (mskdebug >= 2)
2113 msk_dump_txdesc(cur_tx, idx);
2114 #endif
2115 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2116 ifp->if_opackets++;
2117 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2118 entry = sc_if->sk_cdata.sk_tx_map[idx];
2119
2120 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2121 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2122
2123 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2124 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2125
2126 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2127 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2128 link);
2129 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2130 }
2131 sc_if->sk_cdata.sk_tx_cnt--;
2132 SK_INC(idx, MSK_TX_RING_CNT);
2133 }
2134 if (idx == sc_if->sk_cdata.sk_tx_cons)
2135 return;
2136
2137 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2138
2139 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2140 ifp->if_flags &= ~IFF_OACTIVE;
2141
2142 sc_if->sk_cdata.sk_tx_cons = idx;
2143 }
2144
2145 void
2146 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2147 {
2148 /* Make sure to not completely wrap around */
2149 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2150 if (msk_newbuf(sc_if,
2151 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2152 goto schedretry;
2153 }
2154 }
2155
2156 return;
2157
2158 schedretry:
2159 /* Try later */
2160 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2161 }
2162
2163 static void
2164 msk_fill_rx_tick(void *xsc_if)
2165 {
2166 struct sk_if_softc *sc_if = xsc_if;
2167 int s, rx_prod;
2168
2169 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2170
2171 s = splnet();
2172 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2173 msk_fill_rx_ring(sc_if);
2174 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2175 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2176 sc_if->sk_cdata.sk_rx_prod);
2177 }
2178 splx(s);
2179 }
2180
2181 void
2182 msk_tick(void *xsc_if)
2183 {
2184 struct sk_if_softc *sc_if = xsc_if;
2185 struct mii_data *mii = &sc_if->sk_mii;
2186 int s;
2187
2188 s = splnet();
2189 mii_tick(mii);
2190 splx(s);
2191
2192 callout_schedule(&sc_if->sk_tick_ch, hz);
2193 }
2194
2195 void
2196 msk_intr_yukon(struct sk_if_softc *sc_if)
2197 {
2198 uint8_t status;
2199
2200 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2201 /* RX overrun */
2202 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2203 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2204 SK_RFCTL_RX_FIFO_OVER);
2205 }
2206 /* TX underrun */
2207 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2208 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2209 SK_TFCTL_TX_FIFO_UNDER);
2210 }
2211
2212 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2213 }
2214
2215 int
2216 msk_intr(void *xsc)
2217 {
2218 struct sk_softc *sc = xsc;
2219 struct sk_if_softc *sc_if;
2220 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2221 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2222 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2223 int claimed = 0;
2224 uint32_t status;
2225 struct msk_status_desc *cur_st;
2226
2227 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2228 if (status == 0xffffffff)
2229 return 0;
2230 if (status == 0) {
2231 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2232 return 0;
2233 }
2234
2235 status = CSR_READ_4(sc, SK_ISR);
2236
2237 if (sc_if0 != NULL)
2238 ifp0 = &sc_if0->sk_ethercom.ec_if;
2239 if (sc_if1 != NULL)
2240 ifp1 = &sc_if1->sk_ethercom.ec_if;
2241
2242 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2243 (ifp0->if_flags & IFF_RUNNING)) {
2244 msk_intr_yukon(sc_if0);
2245 }
2246
2247 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2248 (ifp1->if_flags & IFF_RUNNING)) {
2249 msk_intr_yukon(sc_if1);
2250 }
2251
2252 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2253 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2254 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2255
2256 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2257 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2258 switch (cur_st->sk_opcode) {
2259 case SK_Y2_STOPC_RXSTAT:
2260 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2261 if (sc_if) {
2262 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2263 letoh32(cur_st->sk_status));
2264 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2265 msk_fill_rx_tick(sc_if);
2266 }
2267 break;
2268 case SK_Y2_STOPC_TXSTAT:
2269 if (sc_if0)
2270 msk_txeof(sc_if0);
2271 if (sc_if1)
2272 msk_txeof(sc_if1);
2273 break;
2274 default:
2275 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2276 break;
2277 }
2278 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2279
2280 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2281 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2282 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2283 }
2284
2285 if (status & SK_Y2_IMR_BMU) {
2286 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2287 claimed = 1;
2288 }
2289
2290 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2291
2292 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2293 if_schedule_deferred_start(ifp0);
2294 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2295 if_schedule_deferred_start(ifp1);
2296
2297 KASSERT(sc->rnd_attached > 0);
2298 rnd_add_uint32(&sc->rnd_source, status);
2299
2300 if (sc->sk_int_mod_pending)
2301 msk_update_int_mod(sc, 1);
2302
2303 return claimed;
2304 }
2305
2306 void
2307 msk_init_yukon(struct sk_if_softc *sc_if)
2308 {
2309 uint32_t v;
2310 uint16_t reg;
2311 struct sk_softc *sc;
2312 int i;
2313
2314 sc = sc_if->sk_softc;
2315
2316 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2317 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2318
2319 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2320
2321 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2322 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2323
2324 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2325
2326 /* unused read of the interrupt source register */
2327 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2328 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2329
2330 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2331 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2332 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2333
2334 /* MIB Counter Clear Mode set */
2335 reg |= YU_PAR_MIB_CLR;
2336 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2337 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2338 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2339
2340 /* MIB Counter Clear Mode clear */
2341 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2342 reg &= ~YU_PAR_MIB_CLR;
2343 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2344
2345 /* receive control reg */
2346 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2347 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2348
2349 /* transmit control register */
2350 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2351
2352 /* transmit flow control register */
2353 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2354
2355 /* transmit parameter register */
2356 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2357 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2358 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2359
2360 /* serial mode register */
2361 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2362 reg = YU_SMR_DATA_BLIND(0x1c) |
2363 YU_SMR_MFL_VLAN |
2364 YU_SMR_IPG_DATA(0x1e);
2365
2366 if (sc->sk_type != SK_YUKON_FE &&
2367 sc->sk_type != SK_YUKON_FE_P)
2368 reg |= YU_SMR_MFL_JUMBO;
2369
2370 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2371
2372 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2373 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2374 /* msk_attach calls me before ether_ifattach so check null */
2375 if (ifp != NULL && ifp->if_sadl != NULL)
2376 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2377 sizeof(sc_if->sk_enaddr));
2378 /* Setup Yukon's address */
2379 for (i = 0; i < 3; i++) {
2380 /* Write Source Address 1 (unicast filter) */
2381 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2382 sc_if->sk_enaddr[i * 2] |
2383 sc_if->sk_enaddr[i * 2 + 1] << 8);
2384 }
2385
2386 for (i = 0; i < 3; i++) {
2387 reg = sk_win_read_2(sc_if->sk_softc,
2388 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2389 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2390 }
2391
2392 /* Set promiscuous mode */
2393 msk_setpromisc(sc_if);
2394
2395 /* Set multicast filter */
2396 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2397 msk_setmulti(sc_if);
2398
2399 /* enable interrupt mask for counter overflows */
2400 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2401 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2402 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2403 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2404
2405 /* Configure RX MAC FIFO Flush Mask */
2406 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2407 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2408 YU_RXSTAT_JABBER;
2409 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2410
2411 /* Configure RX MAC FIFO */
2412 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2413 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2414 SK_RFCTL_FIFO_FLUSH_ON);
2415
2416 /* Increase flush threshold to 64 bytes */
2417 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2418 SK_RFCTL_FIFO_THRESHOLD + 1);
2419
2420 /* Configure TX MAC FIFO */
2421 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2422 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2423
2424 #if 1
2425 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2426 #endif
2427 DPRINTFN(6, ("msk_init_yukon: end\n"));
2428 }
2429
2430 /*
2431 * Note that to properly initialize any part of the GEnesis chip,
2432 * you first have to take it out of reset mode.
2433 */
2434 int
2435 msk_init(struct ifnet *ifp)
2436 {
2437 struct sk_if_softc *sc_if = ifp->if_softc;
2438 struct sk_softc *sc = sc_if->sk_softc;
2439 int rc = 0, s;
2440 uint32_t imr, imtimer_ticks;
2441
2442
2443 DPRINTFN(2, ("msk_init\n"));
2444
2445 s = splnet();
2446
2447 /* Cancel pending I/O and free all RX/TX buffers. */
2448 msk_stop(ifp, 1);
2449
2450 /* Configure I2C registers */
2451
2452 /* Configure XMAC(s) */
2453 msk_init_yukon(sc_if);
2454 if ((rc = ether_mediachange(ifp)) != 0)
2455 goto out;
2456
2457 /* Configure transmit arbiter(s) */
2458 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2459 #if 0
2460 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2461 #endif
2462
2463 if (sc->sk_ramsize) {
2464 /* Configure RAMbuffers */
2465 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2466 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2467 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2468 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2469 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2470 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2471
2472 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2473 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2474 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2475 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2476 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2477 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2478 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2479 }
2480
2481 /* Configure BMUs */
2482 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2483 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2484 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2485 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2486
2487 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2488 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2489 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2490 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2491
2492 /* Make sure the sync transmit queue is disabled. */
2493 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2494
2495 /* Init descriptors */
2496 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2497 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2498 "memory for rx buffers\n");
2499 msk_stop(ifp, 1);
2500 splx(s);
2501 return ENOBUFS;
2502 }
2503
2504 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2505 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2506 "memory for tx buffers\n");
2507 msk_stop(ifp, 1);
2508 splx(s);
2509 return ENOBUFS;
2510 }
2511
2512 /* Set interrupt moderation if changed via sysctl. */
2513 switch (sc->sk_type) {
2514 case SK_YUKON_EC:
2515 case SK_YUKON_EC_U:
2516 case SK_YUKON_EX:
2517 case SK_YUKON_SUPR:
2518 case SK_YUKON_ULTRA2:
2519 case SK_YUKON_OPTIMA:
2520 case SK_YUKON_PRM:
2521 case SK_YUKON_OPTIMA2:
2522 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2523 break;
2524 case SK_YUKON_FE:
2525 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2526 break;
2527 case SK_YUKON_FE_P:
2528 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2529 break;
2530 case SK_YUKON_XL:
2531 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2532 break;
2533 default:
2534 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2535 }
2536 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2537 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2538 sk_win_write_4(sc, SK_IMTIMERINIT,
2539 SK_IM_USECS(sc->sk_int_mod));
2540 aprint_verbose_dev(sc->sk_dev,
2541 "interrupt moderation is %d us\n", sc->sk_int_mod);
2542 }
2543
2544 /* Initialize prefetch engine. */
2545 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2546 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2547 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2548 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2549 MSK_RX_RING_ADDR(sc_if, 0));
2550 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2551 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2552 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2553 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2554
2555 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2556 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2557 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2558 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2559 MSK_TX_RING_ADDR(sc_if, 0));
2560 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2561 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2562 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2563 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2564
2565 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2566 sc_if->sk_cdata.sk_rx_prod);
2567
2568 /* Configure interrupt handling */
2569 if (sc_if->sk_port == SK_PORT_A)
2570 sc->sk_intrmask |= SK_Y2_INTRS1;
2571 else
2572 sc->sk_intrmask |= SK_Y2_INTRS2;
2573 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2574 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2575
2576 ifp->if_flags |= IFF_RUNNING;
2577 ifp->if_flags &= ~IFF_OACTIVE;
2578
2579 callout_schedule(&sc_if->sk_tick_ch, hz);
2580
2581 out:
2582 splx(s);
2583 return rc;
2584 }
2585
2586 /*
2587 * Note: the logic of second parameter is inverted compared to OpenBSD
2588 * code, since this code uses the function as if_stop hook too.
2589 */
2590 void
2591 msk_stop(struct ifnet *ifp, int disable)
2592 {
2593 struct sk_if_softc *sc_if = ifp->if_softc;
2594 struct sk_softc *sc = sc_if->sk_softc;
2595 struct sk_txmap_entry *dma;
2596 int i;
2597
2598 DPRINTFN(2, ("msk_stop\n"));
2599
2600 callout_stop(&sc_if->sk_tick_ch);
2601 callout_stop(&sc_if->sk_tick_rx);
2602
2603 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2604
2605 /* Stop transfer of Tx descriptors */
2606
2607 /* Stop transfer of Rx descriptors */
2608
2609 if (disable) {
2610 /* Turn off various components of this interface. */
2611 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2612 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2613 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2614 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2615 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2616 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2617 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2618 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2619 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2620 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2621 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2622
2623 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2624 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2625
2626 /* Disable interrupts */
2627 if (sc_if->sk_port == SK_PORT_A)
2628 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2629 else
2630 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2631 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2632 }
2633
2634 /* Free RX and TX mbufs still in the queues. */
2635 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2636 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2637 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2638 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2639 }
2640 }
2641
2642 sc_if->sk_cdata.sk_rx_prod = 0;
2643 sc_if->sk_cdata.sk_rx_cons = 0;
2644 sc_if->sk_cdata.sk_rx_cnt = 0;
2645
2646 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2647 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2648 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2649 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2650 #if 1
2651 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2652 sc_if->sk_cdata.sk_tx_map[i], link);
2653 sc_if->sk_cdata.sk_tx_map[i] = 0;
2654 #endif
2655 }
2656 }
2657
2658 #if 1
2659 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2660 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2661 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2662 free(dma, M_DEVBUF);
2663 }
2664 #endif
2665 }
2666
2667 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2668 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2669
2670 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2671 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2672
2673 #ifdef MSK_DEBUG
2674 void
2675 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2676 {
2677 #define DESC_PRINT(X) \
2678 if (X) \
2679 printf("txdesc[%d]." #X "=%#x\n", \
2680 idx, X);
2681
2682 DESC_PRINT(letoh32(le->sk_addr));
2683 DESC_PRINT(letoh16(le->sk_len));
2684 DESC_PRINT(le->sk_ctl);
2685 DESC_PRINT(le->sk_opcode);
2686 #undef DESC_PRINT
2687 }
2688
2689 void
2690 msk_dump_bytes(const char *data, int len)
2691 {
2692 int c, i, j;
2693
2694 for (i = 0; i < len; i += 16) {
2695 printf("%08x ", i);
2696 c = len - i;
2697 if (c > 16) c = 16;
2698
2699 for (j = 0; j < c; j++) {
2700 printf("%02x ", data[i + j] & 0xff);
2701 if ((j & 0xf) == 7 && j > 0)
2702 printf(" ");
2703 }
2704
2705 for (; j < 16; j++)
2706 printf(" ");
2707 printf(" ");
2708
2709 for (j = 0; j < c; j++) {
2710 int ch = data[i + j] & 0xff;
2711 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2712 }
2713
2714 printf("\n");
2715
2716 if (c < 16)
2717 break;
2718 }
2719 }
2720
2721 void
2722 msk_dump_mbuf(struct mbuf *m)
2723 {
2724 int count = m->m_pkthdr.len;
2725
2726 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2727
2728 while (count > 0 && m) {
2729 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2730 m, m->m_data, m->m_len);
2731 if (mskdebug >= 4)
2732 msk_dump_bytes(mtod(m, char *), m->m_len);
2733
2734 count -= m->m_len;
2735 m = m->m_next;
2736 }
2737 }
2738 #endif
2739
2740 static int
2741 msk_sysctl_handler(SYSCTLFN_ARGS)
2742 {
2743 int error, t;
2744 struct sysctlnode node;
2745 struct sk_softc *sc;
2746
2747 node = *rnode;
2748 sc = node.sysctl_data;
2749 t = sc->sk_int_mod;
2750 node.sysctl_data = &t;
2751 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2752 if (error || newp == NULL)
2753 return error;
2754
2755 if (t < SK_IM_MIN || t > SK_IM_MAX)
2756 return EINVAL;
2757
2758 /* update the softc with sysctl-changed value, and mark
2759 for hardware update */
2760 sc->sk_int_mod = t;
2761 sc->sk_int_mod_pending = 1;
2762 return 0;
2763 }
2764
2765 /*
2766 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2767 * set up in mskc_attach()
2768 */
2769 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2770 {
2771 int rc;
2772 const struct sysctlnode *node;
2773
2774 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2775 0, CTLTYPE_NODE, "msk",
2776 SYSCTL_DESCR("msk interface controls"),
2777 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2778 goto err;
2779 }
2780
2781 msk_root_num = node->sysctl_num;
2782 return;
2783
2784 err:
2785 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2786 }
2787