if_msk.c revision 1.93 1 /* $NetBSD: if_msk.c,v 1.93 2019/11/10 21:16:36 chs Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.93 2019/11/10 21:16:36 chs Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 int mskc_probe(device_t, cfdata_t, void *);
96 void mskc_attach(device_t, device_t, void *);
97 int mskc_detach(device_t, int);
98 void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 int msk_probe(device_t, cfdata_t, void *);
102 void msk_attach(device_t, device_t, void *);
103 int msk_detach(device_t, int);
104 void msk_reset(struct sk_if_softc *);
105 int mskcprint(void *, const char *);
106 int msk_intr(void *);
107 void msk_intr_yukon(struct sk_if_softc *);
108 void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
109 void msk_txeof(struct sk_if_softc *);
110 int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
111 void msk_start(struct ifnet *);
112 int msk_ioctl(struct ifnet *, u_long, void *);
113 int msk_init(struct ifnet *);
114 void msk_init_yukon(struct sk_if_softc *);
115 void msk_stop(struct ifnet *, int);
116 void msk_watchdog(struct ifnet *);
117 int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 void *msk_jalloc(struct sk_if_softc *);
120 void msk_jfree(struct mbuf *, void *, size_t, void *);
121 int msk_init_rx_ring(struct sk_if_softc *);
122 int msk_init_tx_ring(struct sk_if_softc *);
123 void msk_fill_rx_ring(struct sk_if_softc *);
124
125 void msk_update_int_mod(struct sk_softc *, int);
126
127 int msk_miibus_readreg(device_t, int, int, uint16_t *);
128 int msk_miibus_writereg(device_t, int, int, uint16_t);
129 void msk_miibus_statchg(struct ifnet *);
130
131 void msk_setmulti(struct sk_if_softc *);
132 void msk_setpromisc(struct sk_if_softc *);
133 void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 void msk_dump_txdesc(struct msk_tx_desc *, int);
143 void msk_dump_mbuf(struct mbuf *);
144 void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n, x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
155
156 /* supported device vendors */
157 static const struct msk_product {
158 pci_vendor_id_t msk_vendor;
159 pci_product_id_t msk_product;
160 } msk_products[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
199 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 { 0, 0 }
203 };
204
205 static inline uint32_t
206 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
207 {
208 return CSR_READ_4(sc, reg);
209 }
210
211 static inline uint16_t
212 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
213 {
214 return CSR_READ_2(sc, reg);
215 }
216
217 static inline uint8_t
218 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
219 {
220 return CSR_READ_1(sc, reg);
221 }
222
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
225 {
226 CSR_WRITE_4(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
231 {
232 CSR_WRITE_2(sc, reg, x);
233 }
234
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
237 {
238 CSR_WRITE_1(sc, reg, x);
239 }
240
241 int
242 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
243 {
244 struct sk_if_softc *sc_if = device_private(dev);
245 uint16_t data;
246 int i;
247
248 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250
251 for (i = 0; i < SK_TIMEOUT; i++) {
252 DELAY(1);
253 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 if (data & YU_SMICR_READ_VALID)
255 break;
256 }
257
258 if (i == SK_TIMEOUT) {
259 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 return ETIMEDOUT;
261 }
262
263 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
264
265 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
266
267 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
268 phy, reg, *val));
269
270 return 0;
271 }
272
273 int
274 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
275 {
276 struct sk_if_softc *sc_if = device_private(dev);
277 int i;
278
279 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
280 phy, reg, val));
281
282 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
283 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
284 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
285
286 for (i = 0; i < SK_TIMEOUT; i++) {
287 DELAY(1);
288 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
289 break;
290 }
291
292 if (i == SK_TIMEOUT) {
293 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
294 return ETIMEDOUT;
295 }
296
297 return 0;
298 }
299
300 void
301 msk_miibus_statchg(struct ifnet *ifp)
302 {
303 struct sk_if_softc *sc_if = ifp->if_softc;
304 struct mii_data *mii = &sc_if->sk_mii;
305 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
306 int gpcr;
307
308 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
309 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
310
311 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
312 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
313 /* Set speed. */
314 gpcr |= YU_GPCR_SPEED_DIS;
315 switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 case IFM_1000_SX:
317 case IFM_1000_LX:
318 case IFM_1000_CX:
319 case IFM_1000_T:
320 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
321 break;
322 case IFM_100_TX:
323 gpcr |= YU_GPCR_SPEED;
324 break;
325 }
326
327 /* Set duplex. */
328 gpcr |= YU_GPCR_DPLX_DIS;
329 if ((mii->mii_media_active & IFM_FDX) != 0)
330 gpcr |= YU_GPCR_DUPLEX;
331
332 /* Disable flow control. */
333 gpcr |= YU_GPCR_FCTL_DIS;
334 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
335 }
336
337 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
338
339 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
340 SK_YU_READ_2(sc_if, YUKON_GPCR)));
341 }
342
343 void
344 msk_setmulti(struct sk_if_softc *sc_if)
345 {
346 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
347 uint32_t hashes[2] = { 0, 0 };
348 int h;
349 struct ethercom *ec = &sc_if->sk_ethercom;
350 struct ether_multi *enm;
351 struct ether_multistep step;
352 uint16_t reg;
353
354 /* First, zot all the existing filters. */
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
358 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
359
360
361 /* Now program new ones. */
362 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
363 reg |= YU_RCR_UFLEN;
364 allmulti:
365 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
366 if ((ifp->if_flags & IFF_PROMISC) != 0)
367 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
368 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
369 hashes[0] = 0xFFFFFFFF;
370 hashes[1] = 0xFFFFFFFF;
371 }
372 } else {
373 /* First find the tail of the list. */
374 ETHER_LOCK(ec);
375 ETHER_FIRST_MULTI(step, ec, enm);
376 while (enm != NULL) {
377 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
378 ETHER_ADDR_LEN)) {
379 ifp->if_flags |= IFF_ALLMULTI;
380 ETHER_UNLOCK(ec);
381 goto allmulti;
382 }
383 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
384 ((1 << SK_HASH_BITS) - 1);
385 if (h < 32)
386 hashes[0] |= (1 << h);
387 else
388 hashes[1] |= (1 << (h - 32));
389
390 ETHER_NEXT_MULTI(step, enm);
391 }
392 ETHER_UNLOCK(ec);
393 reg |= YU_RCR_MUFLEN;
394 }
395
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
399 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
400 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
401 }
402
403 void
404 msk_setpromisc(struct sk_if_softc *sc_if)
405 {
406 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
407
408 if (ifp->if_flags & IFF_PROMISC)
409 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
410 YU_RCR_UFLEN | YU_RCR_MUFLEN);
411 else
412 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
413 YU_RCR_UFLEN | YU_RCR_MUFLEN);
414 }
415
416 int
417 msk_init_rx_ring(struct sk_if_softc *sc_if)
418 {
419 struct msk_chain_data *cd = &sc_if->sk_cdata;
420 struct msk_ring_data *rd = sc_if->sk_rdata;
421 struct msk_rx_desc *r;
422 int i, nexti;
423
424 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
425
426 for (i = 0; i < MSK_RX_RING_CNT; i++) {
427 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
428 if (i == (MSK_RX_RING_CNT - 1))
429 nexti = 0;
430 else
431 nexti = i + 1;
432 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
433 }
434
435 sc_if->sk_cdata.sk_rx_prod = 0;
436 sc_if->sk_cdata.sk_rx_cons = 0;
437 sc_if->sk_cdata.sk_rx_cnt = 0;
438 sc_if->sk_cdata.sk_rx_hiaddr = 0;
439
440 /* Mark the first ring element to initialize the high address. */
441 sc_if->sk_cdata.sk_rx_hiaddr = 0;
442 r = &rd->sk_rx_ring[cd->sk_rx_prod];
443 r->sk_addr = htole32(cd->sk_rx_hiaddr);
444 r->sk_len = 0;
445 r->sk_ctl = 0;
446 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
447 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
448 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
449 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
450 sc_if->sk_cdata.sk_rx_cnt++;
451
452 msk_fill_rx_ring(sc_if);
453 return 0;
454 }
455
456 int
457 msk_init_tx_ring(struct sk_if_softc *sc_if)
458 {
459 struct sk_softc *sc = sc_if->sk_softc;
460 struct msk_chain_data *cd = &sc_if->sk_cdata;
461 struct msk_ring_data *rd = sc_if->sk_rdata;
462 struct msk_tx_desc *t;
463 bus_dmamap_t dmamap;
464 struct sk_txmap_entry *entry;
465 int i, nexti;
466
467 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
468
469 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
470 for (i = 0; i < MSK_TX_RING_CNT; i++) {
471 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
472 if (i == (MSK_TX_RING_CNT - 1))
473 nexti = 0;
474 else
475 nexti = i + 1;
476 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
477
478 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
479 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
480 return ENOBUFS;
481
482 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
483 if (!entry) {
484 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
485 return ENOBUFS;
486 }
487 entry->dmamap = dmamap;
488 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
489 }
490
491 sc_if->sk_cdata.sk_tx_prod = 0;
492 sc_if->sk_cdata.sk_tx_cons = 0;
493 sc_if->sk_cdata.sk_tx_cnt = 0;
494 sc_if->sk_cdata.sk_tx_hiaddr = 0;
495
496 /* Mark the first ring element to initialize the high address. */
497 sc_if->sk_cdata.sk_tx_hiaddr = 0;
498 t = &rd->sk_tx_ring[cd->sk_tx_prod];
499 t->sk_addr = htole32(cd->sk_tx_hiaddr);
500 t->sk_len = 0;
501 t->sk_ctl = 0;
502 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
503 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
504 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
505 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
506 sc_if->sk_cdata.sk_tx_cnt++;
507
508 return 0;
509 }
510
511 int
512 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
513 {
514 struct mbuf *m_new = NULL;
515 struct sk_chain *c;
516 struct msk_rx_desc *r;
517 void *buf = NULL;
518 bus_addr_t addr;
519
520 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
521 if (m_new == NULL)
522 return ENOBUFS;
523
524 /* Allocate the jumbo buffer */
525 buf = msk_jalloc(sc_if);
526 if (buf == NULL) {
527 m_freem(m_new);
528 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
529 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
530 return ENOBUFS;
531 }
532
533 /* Attach the buffer to the mbuf */
534 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
535 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
536
537 m_adj(m_new, ETHER_ALIGN);
538
539 addr = dmamap->dm_segs[0].ds_addr +
540 ((vaddr_t)m_new->m_data -
541 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
542
543 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
544 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
545 r = c->sk_le;
546 c->sk_mbuf = NULL;
547 r->sk_addr = htole32(MSK_ADDR_HI(addr));
548 r->sk_len = 0;
549 r->sk_ctl = 0;
550 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
551 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
552
553 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
554 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
555
556 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
557 sc_if->sk_cdata.sk_rx_cnt++;
558
559 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
560 sc_if->sk_ethercom.ec_if.if_xname,
561 (unsigned)MSK_ADDR_HI(addr)));
562 }
563
564 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
565 r = c->sk_le;
566 c->sk_mbuf = m_new;
567 r->sk_addr = htole32(MSK_ADDR_LO(addr));
568 r->sk_len = htole16(SK_JLEN);
569 r->sk_ctl = 0;
570 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
571
572 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
573 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
574
575 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
576 sc_if->sk_cdata.sk_rx_cnt++;
577
578 return 0;
579 }
580
581 /*
582 * Memory management for jumbo frames.
583 */
584
585 int
586 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
587 {
588 struct sk_softc *sc = sc_if->sk_softc;
589 char *ptr, *kva;
590 int i, state, error;
591 struct sk_jpool_entry *entry;
592
593 state = error = 0;
594
595 /* Grab a big chunk o' storage. */
596 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
597 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
598 BUS_DMA_NOWAIT)) {
599 aprint_error(": can't alloc rx buffers");
600 return ENOBUFS;
601 }
602
603 state = 1;
604 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
605 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
606 BUS_DMA_NOWAIT)) {
607 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
608 error = ENOBUFS;
609 goto out;
610 }
611
612 state = 2;
613 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
614 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
615 aprint_error(": can't create dma map");
616 error = ENOBUFS;
617 goto out;
618 }
619
620 state = 3;
621 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
622 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
623 aprint_error(": can't load dma map");
624 error = ENOBUFS;
625 goto out;
626 }
627
628 state = 4;
629 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
630 DPRINTFN(1,("msk_jumbo_buf = %p\n",
631 (void *)sc_if->sk_cdata.sk_jumbo_buf));
632
633 LIST_INIT(&sc_if->sk_jfree_listhead);
634 LIST_INIT(&sc_if->sk_jinuse_listhead);
635 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
636
637 /*
638 * Now divide it up into 9K pieces and save the addresses
639 * in an array.
640 */
641 ptr = sc_if->sk_cdata.sk_jumbo_buf;
642 for (i = 0; i < MSK_JSLOTS; i++) {
643 sc_if->sk_cdata.sk_jslots[i] = ptr;
644 ptr += SK_JLEN;
645 entry = malloc(sizeof(struct sk_jpool_entry),
646 M_DEVBUF, M_WAITOK);
647 entry->slot = i;
648 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
649 entry, jpool_entries);
650 }
651 out:
652 if (error != 0) {
653 switch (state) {
654 case 4:
655 bus_dmamap_unload(sc->sc_dmatag,
656 sc_if->sk_cdata.sk_rx_jumbo_map);
657 /* FALLTHROUGH */
658 case 3:
659 bus_dmamap_destroy(sc->sc_dmatag,
660 sc_if->sk_cdata.sk_rx_jumbo_map);
661 /* FALLTHROUGH */
662 case 2:
663 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
664 /* FALLTHROUGH */
665 case 1:
666 bus_dmamem_free(sc->sc_dmatag,
667 &sc_if->sk_cdata.sk_jumbo_seg,
668 sc_if->sk_cdata.sk_jumbo_nseg);
669 break;
670 default:
671 break;
672 }
673 }
674
675 return error;
676 }
677
678 static void
679 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
680 {
681 struct sk_softc *sc = sc_if->sk_softc;
682
683 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
684 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
685 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
686 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
687 sc_if->sk_cdata.sk_jumbo_nseg);
688 }
689
690 /*
691 * Allocate a jumbo buffer.
692 */
693 void *
694 msk_jalloc(struct sk_if_softc *sc_if)
695 {
696 struct sk_jpool_entry *entry;
697
698 mutex_enter(&sc_if->sk_jpool_mtx);
699 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
700
701 if (entry == NULL) {
702 mutex_exit(&sc_if->sk_jpool_mtx);
703 return NULL;
704 }
705
706 LIST_REMOVE(entry, jpool_entries);
707 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
708 mutex_exit(&sc_if->sk_jpool_mtx);
709 return sc_if->sk_cdata.sk_jslots[entry->slot];
710 }
711
712 /*
713 * Release a jumbo buffer.
714 */
715 void
716 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
717 {
718 struct sk_jpool_entry *entry;
719 struct sk_if_softc *sc;
720 int i;
721
722 /* Extract the softc struct pointer. */
723 sc = (struct sk_if_softc *)arg;
724
725 if (sc == NULL)
726 panic("msk_jfree: can't find softc pointer!");
727
728 /* calculate the slot this buffer belongs to */
729 i = ((vaddr_t)buf
730 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
731
732 if ((i < 0) || (i >= MSK_JSLOTS))
733 panic("msk_jfree: asked to free buffer that we don't manage!");
734
735 mutex_enter(&sc->sk_jpool_mtx);
736 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
737 if (entry == NULL)
738 panic("msk_jfree: buffer not in use!");
739 entry->slot = i;
740 LIST_REMOVE(entry, jpool_entries);
741 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
742 mutex_exit(&sc->sk_jpool_mtx);
743
744 if (__predict_true(m != NULL))
745 pool_cache_put(mb_cache, m);
746
747 /* Now that we know we have a free RX buffer, refill if running out */
748 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
749 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
750 callout_schedule(&sc->sk_tick_rx, 0);
751 }
752
753 int
754 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
755 {
756 struct sk_if_softc *sc = ifp->if_softc;
757 int s, error;
758
759 s = splnet();
760
761 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
762 switch (cmd) {
763 case SIOCSIFFLAGS:
764 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
765 break;
766
767 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
768 case IFF_RUNNING:
769 msk_stop(ifp, 1);
770 break;
771 case IFF_UP:
772 msk_init(ifp);
773 break;
774 case IFF_UP | IFF_RUNNING:
775 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
776 msk_setpromisc(sc);
777 msk_setmulti(sc);
778 } else
779 msk_init(ifp);
780 break;
781 }
782 sc->sk_if_flags = ifp->if_flags;
783 break;
784 default:
785 error = ether_ioctl(ifp, cmd, data);
786 if (error == ENETRESET) {
787 error = 0;
788 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
789 ;
790 else if (ifp->if_flags & IFF_RUNNING) {
791 /*
792 * Multicast list has changed; set the hardware
793 * filter accordingly.
794 */
795 msk_setmulti(sc);
796 }
797 }
798 break;
799 }
800
801 splx(s);
802 return error;
803 }
804
805 void
806 msk_update_int_mod(struct sk_softc *sc, int verbose)
807 {
808 uint32_t imtimer_ticks;
809
810 /*
811 * Configure interrupt moderation. The moderation timer
812 * defers interrupts specified in the interrupt moderation
813 * timer mask based on the timeout specified in the interrupt
814 * moderation timer init register. Each bit in the timer
815 * register represents one tick, so to specify a timeout in
816 * microseconds, we have to multiply by the correct number of
817 * ticks-per-microsecond.
818 */
819 switch (sc->sk_type) {
820 case SK_YUKON_EC:
821 case SK_YUKON_EC_U:
822 case SK_YUKON_EX:
823 case SK_YUKON_SUPR:
824 case SK_YUKON_ULTRA2:
825 case SK_YUKON_OPTIMA:
826 case SK_YUKON_PRM:
827 case SK_YUKON_OPTIMA2:
828 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
829 break;
830 case SK_YUKON_FE:
831 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
832 break;
833 case SK_YUKON_FE_P:
834 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
835 break;
836 case SK_YUKON_XL:
837 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
838 break;
839 default:
840 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
841 }
842 if (verbose)
843 aprint_verbose_dev(sc->sk_dev,
844 "interrupt moderation is %d us\n", sc->sk_int_mod);
845 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
846 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
847 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
848 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
849 sc->sk_int_mod_pending = 0;
850 }
851
852 static int
853 msk_lookup(const struct pci_attach_args *pa)
854 {
855 const struct msk_product *pmsk;
856
857 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
858 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
859 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
860 return 1;
861 }
862 return 0;
863 }
864
865 /*
866 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
867 * IDs against our list and return a device name if we find a match.
868 */
869 int
870 mskc_probe(device_t parent, cfdata_t match, void *aux)
871 {
872 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
873
874 return msk_lookup(pa);
875 }
876
877 /*
878 * Force the GEnesis into reset, then bring it out of reset.
879 */
880 void
881 mskc_reset(struct sk_softc *sc)
882 {
883 uint32_t imtimer_ticks, reg1;
884 int reg;
885
886 DPRINTFN(2, ("mskc_reset\n"));
887
888 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
889 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
890
891 DELAY(1000);
892 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
893 DELAY(2);
894 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
895 sk_win_write_1(sc, SK_TESTCTL1, 2);
896
897 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
898 sc->sk_type >= SK_YUKON_FE_P) {
899 uint32_t our;
900
901 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
902
903 /* enable all clocks. */
904 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
905 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
906 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
907 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
908 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
909 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
910 /* Set all bits to 0 except bits 15..12 */
911 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
912 /* Set to default value */
913 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
914
915 /*
916 * Disable status race, workaround for Yukon EC Ultra &
917 * Yukon EX.
918 */
919 reg1 = sk_win_read_4(sc, SK_GPIO);
920 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
921 sk_win_write_4(sc, SK_GPIO, reg1);
922 sk_win_read_4(sc, SK_GPIO);
923 }
924
925 /* release PHY from PowerDown/Coma mode. */
926 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
927 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
928 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
929 else
930 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
931 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
932
933 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
934 sk_win_write_1(sc, SK_Y2_CLKGATE,
935 SK_Y2_CLKGATE_LINK1_GATE_DIS |
936 SK_Y2_CLKGATE_LINK2_GATE_DIS |
937 SK_Y2_CLKGATE_LINK1_CORE_DIS |
938 SK_Y2_CLKGATE_LINK2_CORE_DIS |
939 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
940 else
941 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
942
943 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
944 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
945 DELAY(1000);
946 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
947 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
948
949 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
950 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
951 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
952 }
953
954 sk_win_write_1(sc, SK_TESTCTL1, 1);
955
956 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
957 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
958 CSR_READ_2(sc, SK_LINK_CTRL)));
959
960 /* Disable ASF */
961 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
962 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
963
964 /* Clear I2C IRQ noise */
965 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
966
967 /* Disable hardware timer */
968 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
969 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
970
971 /* Disable descriptor polling */
972 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
973
974 /* Disable time stamps */
975 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
976 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
977
978 /* Enable RAM interface */
979 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
980 for (reg = SK_TO0;reg <= SK_TO11; reg++)
981 sk_win_write_1(sc, reg, 36);
982 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
983 for (reg = SK_TO0;reg <= SK_TO11; reg++)
984 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
985
986 /*
987 * Configure interrupt moderation. The moderation timer
988 * defers interrupts specified in the interrupt moderation
989 * timer mask based on the timeout specified in the interrupt
990 * moderation timer init register. Each bit in the timer
991 * register represents one tick, so to specify a timeout in
992 * microseconds, we have to multiply by the correct number of
993 * ticks-per-microsecond.
994 */
995 switch (sc->sk_type) {
996 case SK_YUKON_EC:
997 case SK_YUKON_EC_U:
998 case SK_YUKON_EX:
999 case SK_YUKON_SUPR:
1000 case SK_YUKON_ULTRA2:
1001 case SK_YUKON_OPTIMA:
1002 case SK_YUKON_PRM:
1003 case SK_YUKON_OPTIMA2:
1004 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1005 break;
1006 case SK_YUKON_FE:
1007 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1008 break;
1009 case SK_YUKON_FE_P:
1010 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1011 break;
1012 case SK_YUKON_XL:
1013 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1014 break;
1015 default:
1016 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1017 break;
1018 }
1019
1020 /* Reset status ring. */
1021 memset(sc->sk_status_ring, 0,
1022 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1023 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1024 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1025 sc->sk_status_idx = 0;
1026
1027 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1028 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1029
1030 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1031 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1032 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1033 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1034 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1035 if (sc->sk_type == SK_YUKON_EC &&
1036 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1037 /* WA for dev. #4.3 */
1038 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1039 SK_STAT_BMU_TXTHIDX_MSK);
1040 /* WA for dev. #4.18 */
1041 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1042 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1043 } else {
1044 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1045 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1046 if (sc->sk_type == SK_YUKON_XL)
1047 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1048 else
1049 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1050 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1051 }
1052
1053 #if 0
1054 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1055 #endif
1056 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1057
1058 /* Enable status unit. */
1059 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1060
1061 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1062 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1063 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1064
1065 msk_update_int_mod(sc, 0);
1066 }
1067
1068 int
1069 msk_probe(device_t parent, cfdata_t match, void *aux)
1070 {
1071 struct skc_attach_args *sa = aux;
1072
1073 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1074 return 0;
1075
1076 switch (sa->skc_type) {
1077 case SK_YUKON_XL:
1078 case SK_YUKON_EC_U:
1079 case SK_YUKON_EX:
1080 case SK_YUKON_EC:
1081 case SK_YUKON_FE:
1082 case SK_YUKON_FE_P:
1083 case SK_YUKON_SUPR:
1084 case SK_YUKON_ULTRA2:
1085 case SK_YUKON_OPTIMA:
1086 case SK_YUKON_PRM:
1087 case SK_YUKON_OPTIMA2:
1088 return 1;
1089 }
1090
1091 return 0;
1092 }
1093
1094 void
1095 msk_reset(struct sk_if_softc *sc_if)
1096 {
1097 /* GMAC and GPHY Reset */
1098 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1099 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1100 DELAY(1000);
1101 SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1102 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1103 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1104 }
1105
1106 static bool
1107 msk_resume(device_t dv, const pmf_qual_t *qual)
1108 {
1109 struct sk_if_softc *sc_if = device_private(dv);
1110
1111 msk_init_yukon(sc_if);
1112 return true;
1113 }
1114
1115 /*
1116 * Each XMAC chip is attached as a separate logical IP interface.
1117 * Single port cards will have only one logical interface of course.
1118 */
1119 void
1120 msk_attach(device_t parent, device_t self, void *aux)
1121 {
1122 struct sk_if_softc *sc_if = device_private(self);
1123 struct sk_softc *sc = device_private(parent);
1124 struct skc_attach_args *sa = aux;
1125 struct ifnet *ifp;
1126 struct mii_data * const mii = &sc_if->sk_mii;
1127 void *kva;
1128 int i;
1129 uint32_t chunk;
1130 int mii_flags;
1131
1132 sc_if->sk_dev = self;
1133 sc_if->sk_port = sa->skc_port;
1134 sc_if->sk_softc = sc;
1135 sc->sk_if[sa->skc_port] = sc_if;
1136
1137 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1138
1139 /*
1140 * Get station address for this interface. Note that
1141 * dual port cards actually come with three station
1142 * addresses: one for each port, plus an extra. The
1143 * extra one is used by the SysKonnect driver software
1144 * as a 'virtual' station address for when both ports
1145 * are operating in failover mode. Currently we don't
1146 * use this extra address.
1147 */
1148 for (i = 0; i < ETHER_ADDR_LEN; i++)
1149 sc_if->sk_enaddr[i] =
1150 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1151
1152 aprint_normal(": Ethernet address %s\n",
1153 ether_sprintf(sc_if->sk_enaddr));
1154
1155 /*
1156 * Set up RAM buffer addresses. The Yukon2 has a small amount
1157 * of SRAM on it, somewhere between 4K and 48K. We need to
1158 * divide this up between the transmitter and receiver. We
1159 * give the receiver 2/3 of the memory (rounded down), and the
1160 * transmitter whatever remains.
1161 */
1162 if (sc->sk_ramsize) {
1163 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1164 sc_if->sk_rx_ramstart = 0;
1165 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1166 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1167 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1168 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1169
1170 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1171 " tx_ramstart=%#x tx_ramend=%#x\n",
1172 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1173 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1174 }
1175
1176 /* Allocate the descriptor queues. */
1177 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1178 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1179 BUS_DMA_NOWAIT)) {
1180 aprint_error(": can't alloc rx buffers\n");
1181 goto fail;
1182 }
1183 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1184 sc_if->sk_ring_nseg,
1185 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1186 aprint_error(": can't map dma buffers (%zu bytes)\n",
1187 sizeof(struct msk_ring_data));
1188 goto fail_1;
1189 }
1190 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1191 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1192 &sc_if->sk_ring_map)) {
1193 aprint_error(": can't create dma map\n");
1194 goto fail_2;
1195 }
1196 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1197 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1198 aprint_error(": can't load dma map\n");
1199 goto fail_3;
1200 }
1201 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1202 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1203
1204 if (sc->sk_type != SK_YUKON_FE &&
1205 sc->sk_type != SK_YUKON_FE_P)
1206 sc_if->sk_pktlen = SK_JLEN;
1207 else
1208 sc_if->sk_pktlen = MCLBYTES;
1209
1210 /* Try to allocate memory for jumbo buffers. */
1211 if (msk_alloc_jumbo_mem(sc_if)) {
1212 aprint_error(": jumbo buffer allocation failed\n");
1213 goto fail_3;
1214 }
1215
1216 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1217 if (sc->sk_type != SK_YUKON_FE &&
1218 sc->sk_type != SK_YUKON_FE_P)
1219 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1220
1221 ifp = &sc_if->sk_ethercom.ec_if;
1222 ifp->if_softc = sc_if;
1223 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1224 ifp->if_ioctl = msk_ioctl;
1225 ifp->if_start = msk_start;
1226 ifp->if_stop = msk_stop;
1227 ifp->if_init = msk_init;
1228 ifp->if_watchdog = msk_watchdog;
1229 ifp->if_baudrate = 1000000000;
1230 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1231 IFQ_SET_READY(&ifp->if_snd);
1232 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1233
1234 msk_reset(sc_if);
1235
1236 /*
1237 * Do miibus setup.
1238 */
1239 DPRINTFN(2, ("msk_attach: 1\n"));
1240
1241 mii->mii_ifp = ifp;
1242 mii->mii_readreg = msk_miibus_readreg;
1243 mii->mii_writereg = msk_miibus_writereg;
1244 mii->mii_statchg = msk_miibus_statchg;
1245
1246 sc_if->sk_ethercom.ec_mii = mii;
1247 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1248 mii_flags = MIIF_DOPAUSE;
1249 if (sc->sk_fibertype)
1250 mii_flags |= MIIF_HAVEFIBER;
1251 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1252 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1253 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1254 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1255 0, NULL);
1256 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1257 } else
1258 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1259
1260 callout_init(&sc_if->sk_tick_ch, 0);
1261 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1262 callout_schedule(&sc_if->sk_tick_ch, hz);
1263
1264 callout_init(&sc_if->sk_tick_rx, 0);
1265 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1266
1267 /*
1268 * Call MI attach routines.
1269 */
1270 if_attach(ifp);
1271 if_deferred_start_init(ifp, NULL);
1272 ether_ifattach(ifp, sc_if->sk_enaddr);
1273
1274 if (pmf_device_register(self, NULL, msk_resume))
1275 pmf_class_network_register(self, ifp);
1276 else
1277 aprint_error_dev(self, "couldn't establish power handler\n");
1278
1279 if (sc->rnd_attached++ == 0) {
1280 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1281 RND_TYPE_NET, RND_FLAG_DEFAULT);
1282 }
1283
1284 DPRINTFN(2, ("msk_attach: end\n"));
1285 return;
1286
1287 fail_3:
1288 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1289 fail_2:
1290 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1291 fail_1:
1292 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1293 fail:
1294 sc->sk_if[sa->skc_port] = NULL;
1295 }
1296
1297 int
1298 msk_detach(device_t self, int flags)
1299 {
1300 struct sk_if_softc *sc_if = device_private(self);
1301 struct sk_softc *sc = sc_if->sk_softc;
1302 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1303
1304 if (sc->sk_if[sc_if->sk_port] == NULL)
1305 return 0;
1306
1307 msk_stop(ifp, 1);
1308
1309 if (--sc->rnd_attached == 0)
1310 rnd_detach_source(&sc->rnd_source);
1311
1312 callout_halt(&sc_if->sk_tick_ch, NULL);
1313 callout_destroy(&sc_if->sk_tick_ch);
1314
1315 callout_halt(&sc_if->sk_tick_rx, NULL);
1316 callout_destroy(&sc_if->sk_tick_rx);
1317
1318 /* Detach any PHYs we might have. */
1319 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1320 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1321
1322 /* Delete any remaining media. */
1323 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1324
1325 pmf_device_deregister(self);
1326
1327 ether_ifdetach(ifp);
1328 if_detach(ifp);
1329
1330 msk_free_jumbo_mem(sc_if);
1331
1332 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1333 sizeof(struct msk_ring_data));
1334 bus_dmamem_free(sc->sc_dmatag,
1335 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1336 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1337 sc->sk_if[sc_if->sk_port] = NULL;
1338
1339 return 0;
1340 }
1341
1342 int
1343 mskcprint(void *aux, const char *pnp)
1344 {
1345 struct skc_attach_args *sa = aux;
1346
1347 if (pnp)
1348 aprint_normal("msk port %c at %s",
1349 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1350 else
1351 aprint_normal(" port %c",
1352 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1353 return UNCONF;
1354 }
1355
1356 /*
1357 * Attach the interface. Allocate softc structures, do ifmedia
1358 * setup and ethernet/BPF attach.
1359 */
1360 void
1361 mskc_attach(device_t parent, device_t self, void *aux)
1362 {
1363 struct sk_softc *sc = device_private(self);
1364 struct pci_attach_args *pa = aux;
1365 struct skc_attach_args skca;
1366 pci_chipset_tag_t pc = pa->pa_pc;
1367 pcireg_t command, memtype;
1368 const char *intrstr = NULL;
1369 int rc, sk_nodenum;
1370 uint8_t hw, pmd;
1371 const char *revstr = NULL;
1372 const struct sysctlnode *node;
1373 void *kva;
1374 char intrbuf[PCI_INTRSTR_LEN];
1375
1376 DPRINTFN(2, ("begin mskc_attach\n"));
1377
1378 sc->sk_dev = self;
1379 /*
1380 * Handle power management nonsense.
1381 */
1382 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1383
1384 if (command == 0x01) {
1385 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1386 if (command & SK_PSTATE_MASK) {
1387 uint32_t iobase, membase, irq;
1388
1389 /* Save important PCI config data. */
1390 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1391 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1392 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1393
1394 /* Reset the power state. */
1395 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1396 "mode -- setting to D0\n",
1397 command & SK_PSTATE_MASK);
1398 command &= 0xFFFFFFFC;
1399 pci_conf_write(pc, pa->pa_tag,
1400 SK_PCI_PWRMGMTCTRL, command);
1401
1402 /* Restore PCI config data. */
1403 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1404 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1405 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1406 }
1407 }
1408
1409 /*
1410 * Map control/status registers.
1411 */
1412 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1413 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1414 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1415 aprint_error(": can't map mem space\n");
1416 return;
1417 }
1418
1419 if (pci_dma64_available(pa))
1420 sc->sc_dmatag = pa->pa_dmat64;
1421 else
1422 sc->sc_dmatag = pa->pa_dmat;
1423
1424 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1425 command |= PCI_COMMAND_MASTER_ENABLE;
1426 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1427
1428 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1429 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1430
1431 /* bail out here if chip is not recognized */
1432 if (!(SK_IS_YUKON2(sc))) {
1433 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1434 goto fail_1;
1435 }
1436 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1437
1438 /* Allocate interrupt */
1439 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1440 aprint_error(": couldn't map interrupt\n");
1441 goto fail_1;
1442 }
1443
1444 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1445 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1446 msk_intr, sc, device_xname(sc->sk_dev));
1447 if (sc->sk_intrhand == NULL) {
1448 aprint_error(": couldn't establish interrupt");
1449 if (intrstr != NULL)
1450 aprint_error(" at %s", intrstr);
1451 aprint_error("\n");
1452 goto fail_1;
1453 }
1454 sc->sk_pc = pc;
1455
1456 if (bus_dmamem_alloc(sc->sc_dmatag,
1457 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1458 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1459 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1460 aprint_error(": can't alloc status buffers\n");
1461 goto fail_2;
1462 }
1463
1464 if (bus_dmamem_map(sc->sc_dmatag,
1465 &sc->sk_status_seg, sc->sk_status_nseg,
1466 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1467 &kva, BUS_DMA_NOWAIT)) {
1468 aprint_error(": can't map dma buffers (%zu bytes)\n",
1469 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1470 goto fail_3;
1471 }
1472 if (bus_dmamap_create(sc->sc_dmatag,
1473 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1474 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1475 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1476 aprint_error(": can't create dma map\n");
1477 goto fail_4;
1478 }
1479 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1480 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1481 NULL, BUS_DMA_NOWAIT)) {
1482 aprint_error(": can't load dma map\n");
1483 goto fail_5;
1484 }
1485 sc->sk_status_ring = (struct msk_status_desc *)kva;
1486
1487 sc->sk_int_mod = SK_IM_DEFAULT;
1488 sc->sk_int_mod_pending = 0;
1489
1490 /* Reset the adapter. */
1491 mskc_reset(sc);
1492
1493 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1494 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1495
1496 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1497 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1498 sc->sk_fibertype = 1;
1499
1500 switch (sc->sk_type) {
1501 case SK_YUKON_XL:
1502 sc->sk_name = "Yukon-2 XL";
1503 break;
1504 case SK_YUKON_EC_U:
1505 sc->sk_name = "Yukon-2 EC Ultra";
1506 break;
1507 case SK_YUKON_EX:
1508 sc->sk_name = "Yukon-2 Extreme";
1509 break;
1510 case SK_YUKON_EC:
1511 sc->sk_name = "Yukon-2 EC";
1512 break;
1513 case SK_YUKON_FE:
1514 sc->sk_name = "Yukon-2 FE";
1515 break;
1516 case SK_YUKON_FE_P:
1517 sc->sk_name = "Yukon-2 FE+";
1518 break;
1519 case SK_YUKON_SUPR:
1520 sc->sk_name = "Yukon-2 Supreme";
1521 break;
1522 case SK_YUKON_ULTRA2:
1523 sc->sk_name = "Yukon-2 Ultra 2";
1524 break;
1525 case SK_YUKON_OPTIMA:
1526 sc->sk_name = "Yukon-2 Optima";
1527 break;
1528 case SK_YUKON_PRM:
1529 sc->sk_name = "Yukon-2 Optima Prime";
1530 break;
1531 case SK_YUKON_OPTIMA2:
1532 sc->sk_name = "Yukon-2 Optima 2";
1533 break;
1534 default:
1535 sc->sk_name = "Yukon (Unknown)";
1536 }
1537
1538 if (sc->sk_type == SK_YUKON_XL) {
1539 switch (sc->sk_rev) {
1540 case SK_YUKON_XL_REV_A0:
1541 revstr = "A0";
1542 break;
1543 case SK_YUKON_XL_REV_A1:
1544 revstr = "A1";
1545 break;
1546 case SK_YUKON_XL_REV_A2:
1547 revstr = "A2";
1548 break;
1549 case SK_YUKON_XL_REV_A3:
1550 revstr = "A3";
1551 break;
1552 default:
1553 break;
1554 }
1555 }
1556
1557 if (sc->sk_type == SK_YUKON_EC) {
1558 switch (sc->sk_rev) {
1559 case SK_YUKON_EC_REV_A1:
1560 revstr = "A1";
1561 break;
1562 case SK_YUKON_EC_REV_A2:
1563 revstr = "A2";
1564 break;
1565 case SK_YUKON_EC_REV_A3:
1566 revstr = "A3";
1567 break;
1568 default:
1569 break;
1570 }
1571 }
1572
1573 if (sc->sk_type == SK_YUKON_FE) {
1574 switch (sc->sk_rev) {
1575 case SK_YUKON_FE_REV_A1:
1576 revstr = "A1";
1577 break;
1578 case SK_YUKON_FE_REV_A2:
1579 revstr = "A2";
1580 break;
1581 default:
1582 break;
1583 }
1584 }
1585
1586 if (sc->sk_type == SK_YUKON_EC_U) {
1587 switch (sc->sk_rev) {
1588 case SK_YUKON_EC_U_REV_A0:
1589 revstr = "A0";
1590 break;
1591 case SK_YUKON_EC_U_REV_A1:
1592 revstr = "A1";
1593 break;
1594 case SK_YUKON_EC_U_REV_B0:
1595 revstr = "B0";
1596 break;
1597 case SK_YUKON_EC_U_REV_B1:
1598 revstr = "B1";
1599 break;
1600 default:
1601 break;
1602 }
1603 }
1604
1605 if (sc->sk_type == SK_YUKON_FE) {
1606 switch (sc->sk_rev) {
1607 case SK_YUKON_FE_REV_A1:
1608 revstr = "A1";
1609 break;
1610 case SK_YUKON_FE_REV_A2:
1611 revstr = "A2";
1612 break;
1613 default:
1614 ;
1615 }
1616 }
1617
1618 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1619 revstr = "A0";
1620
1621 if (sc->sk_type == SK_YUKON_EX) {
1622 switch (sc->sk_rev) {
1623 case SK_YUKON_EX_REV_A0:
1624 revstr = "A0";
1625 break;
1626 case SK_YUKON_EX_REV_B0:
1627 revstr = "B0";
1628 break;
1629 default:
1630 ;
1631 }
1632 }
1633
1634 if (sc->sk_type == SK_YUKON_SUPR) {
1635 switch (sc->sk_rev) {
1636 case SK_YUKON_SUPR_REV_A0:
1637 revstr = "A0";
1638 break;
1639 case SK_YUKON_SUPR_REV_B0:
1640 revstr = "B0";
1641 break;
1642 case SK_YUKON_SUPR_REV_B1:
1643 revstr = "B1";
1644 break;
1645 default:
1646 ;
1647 }
1648 }
1649
1650 if (sc->sk_type == SK_YUKON_PRM) {
1651 switch (sc->sk_rev) {
1652 case SK_YUKON_PRM_REV_Z1:
1653 revstr = "Z1";
1654 break;
1655 case SK_YUKON_PRM_REV_A0:
1656 revstr = "A0";
1657 break;
1658 default:
1659 ;
1660 }
1661 }
1662
1663 /* Announce the product name. */
1664 aprint_normal(", %s", sc->sk_name);
1665 if (revstr != NULL)
1666 aprint_normal(" rev. %s", revstr);
1667 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1668
1669 sc->sk_macs = 1;
1670
1671 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1672 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1673 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1674 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1675 sc->sk_macs++;
1676 }
1677
1678 skca.skc_port = SK_PORT_A;
1679 skca.skc_type = sc->sk_type;
1680 skca.skc_rev = sc->sk_rev;
1681 (void)config_found(sc->sk_dev, &skca, mskcprint);
1682
1683 if (sc->sk_macs > 1) {
1684 skca.skc_port = SK_PORT_B;
1685 skca.skc_type = sc->sk_type;
1686 skca.skc_rev = sc->sk_rev;
1687 (void)config_found(sc->sk_dev, &skca, mskcprint);
1688 }
1689
1690 /* Turn on the 'driver is loaded' LED. */
1691 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1692
1693 /* skc sysctl setup */
1694
1695 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1696 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1697 SYSCTL_DESCR("mskc per-controller controls"),
1698 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1699 CTL_EOL)) != 0) {
1700 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1701 goto fail_6;
1702 }
1703
1704 sk_nodenum = node->sysctl_num;
1705
1706 /* interrupt moderation time in usecs */
1707 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1708 CTLFLAG_READWRITE,
1709 CTLTYPE_INT, "int_mod",
1710 SYSCTL_DESCR("msk interrupt moderation timer"),
1711 msk_sysctl_handler, 0, (void *)sc,
1712 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1713 CTL_EOL)) != 0) {
1714 aprint_normal_dev(sc->sk_dev,
1715 "couldn't create int_mod sysctl node\n");
1716 goto fail_6;
1717 }
1718
1719 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1720 aprint_error_dev(self, "couldn't establish power handler\n");
1721
1722 return;
1723
1724 fail_6:
1725 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1726 fail_4:
1727 bus_dmamem_unmap(sc->sc_dmatag, kva,
1728 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1729 fail_3:
1730 bus_dmamem_free(sc->sc_dmatag,
1731 &sc->sk_status_seg, sc->sk_status_nseg);
1732 sc->sk_status_nseg = 0;
1733 fail_5:
1734 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1735 fail_2:
1736 pci_intr_disestablish(pc, sc->sk_intrhand);
1737 sc->sk_intrhand = NULL;
1738 fail_1:
1739 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1740 sc->sk_bsize = 0;
1741 }
1742
1743 int
1744 mskc_detach(device_t self, int flags)
1745 {
1746 struct sk_softc *sc = device_private(self);
1747 int rv;
1748
1749 if (sc->sk_intrhand) {
1750 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1751 sc->sk_intrhand = NULL;
1752 }
1753
1754 if (sc->sk_pihp != NULL) {
1755 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1756 sc->sk_pihp = NULL;
1757 }
1758
1759 rv = config_detach_children(self, flags);
1760 if (rv != 0)
1761 return rv;
1762
1763 if (sc->sk_status_nseg > 0) {
1764 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1765 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1766 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1767 bus_dmamem_free(sc->sc_dmatag,
1768 &sc->sk_status_seg, sc->sk_status_nseg);
1769 }
1770
1771 if (sc->sk_bsize > 0)
1772 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1773
1774 return 0;
1775 }
1776
1777 int
1778 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1779 {
1780 struct sk_softc *sc = sc_if->sk_softc;
1781 struct msk_tx_desc *f = NULL;
1782 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1783 uint32_t entries = 0;
1784 size_t i;
1785 struct sk_txmap_entry *entry;
1786 bus_dmamap_t txmap;
1787 bus_addr_t addr;
1788
1789 DPRINTFN(2, ("msk_encap\n"));
1790
1791 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1792 if (entry == NULL) {
1793 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1794 return ENOBUFS;
1795 }
1796 txmap = entry->dmamap;
1797
1798 cur = frag = *txidx;
1799
1800 #ifdef MSK_DEBUG
1801 if (mskdebug >= 2)
1802 msk_dump_mbuf(m_head);
1803 #endif
1804
1805 /*
1806 * Start packing the mbufs in this chain into
1807 * the fragment pointers. Stop when we run out
1808 * of fragments or hit the end of the mbuf chain.
1809 */
1810 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1811 BUS_DMA_NOWAIT)) {
1812 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1813 return ENOBUFS;
1814 }
1815
1816 /* Count how many tx descriptors needed. */
1817 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1818 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1819 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1820 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1821 total++;
1822 }
1823 total++;
1824 }
1825
1826 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1827 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1828 bus_dmamap_unload(sc->sc_dmatag, txmap);
1829 return ENOBUFS;
1830 }
1831
1832 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1833 txmap->dm_nsegs, total));
1834
1835 /* Sync the DMA map. */
1836 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1837 BUS_DMASYNC_PREWRITE);
1838
1839 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1840 for (i = 0; i < txmap->dm_nsegs; i++) {
1841 addr = txmap->dm_segs[i].ds_addr;
1842 DPRINTFN(2, ("msk_encap: addr %llx\n",
1843 (unsigned long long)addr));
1844 hiaddr = MSK_ADDR_HI(addr);
1845
1846 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1847 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1848 f->sk_addr = htole32(hiaddr);
1849 f->sk_len = 0;
1850 f->sk_ctl = 0;
1851 if (i == 0)
1852 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1853 else
1854 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1855 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1856 SK_INC(frag, MSK_TX_RING_CNT);
1857 entries++;
1858 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1859 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1860 }
1861
1862 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1863 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1864 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1865 f->sk_ctl = 0;
1866 if (i == 0) {
1867 if (hiaddr != old_hiaddr)
1868 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1869 else
1870 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1871 } else
1872 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1873 cur = frag;
1874 SK_INC(frag, MSK_TX_RING_CNT);
1875 entries++;
1876 }
1877 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1878
1879 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1880 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1881
1882 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1883 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1884
1885 /* Sync descriptors before handing to chip */
1886 MSK_CDTXSYNC(sc_if, *txidx, entries,
1887 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1888
1889 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1890
1891 /* Sync first descriptor to hand it off */
1892 MSK_CDTXSYNC(sc_if, *txidx, 1,
1893 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1894
1895 sc_if->sk_cdata.sk_tx_cnt += entries;
1896
1897 #ifdef MSK_DEBUG
1898 if (mskdebug >= 2) {
1899 struct msk_tx_desc *le;
1900 uint32_t idx;
1901 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1902 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1903 msk_dump_txdesc(le, idx);
1904 }
1905 }
1906 #endif
1907
1908 *txidx = frag;
1909
1910 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1911
1912 return 0;
1913 }
1914
1915 void
1916 msk_start(struct ifnet *ifp)
1917 {
1918 struct sk_if_softc *sc_if = ifp->if_softc;
1919 struct mbuf *m_head = NULL;
1920 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1921 int pkts = 0;
1922
1923 DPRINTFN(2, ("msk_start\n"));
1924
1925 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1926 IFQ_POLL(&ifp->if_snd, m_head);
1927 if (m_head == NULL)
1928 break;
1929
1930 /*
1931 * Pack the data into the transmit ring. If we
1932 * don't have room, set the OACTIVE flag and wait
1933 * for the NIC to drain the ring.
1934 */
1935 if (msk_encap(sc_if, m_head, &idx)) {
1936 ifp->if_flags |= IFF_OACTIVE;
1937 break;
1938 }
1939
1940 /* now we are committed to transmit the packet */
1941 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1942 pkts++;
1943
1944 /*
1945 * If there's a BPF listener, bounce a copy of this frame
1946 * to him.
1947 */
1948 bpf_mtap(ifp, m_head, BPF_D_OUT);
1949 }
1950 if (pkts == 0)
1951 return;
1952
1953 /* Transmit */
1954 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1955 sc_if->sk_cdata.sk_tx_prod = idx;
1956 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1957
1958 /* Set a timeout in case the chip goes out to lunch. */
1959 ifp->if_timer = 5;
1960 }
1961 }
1962
1963 void
1964 msk_watchdog(struct ifnet *ifp)
1965 {
1966 struct sk_if_softc *sc_if = ifp->if_softc;
1967
1968 /*
1969 * Reclaim first as there is a possibility of losing Tx completion
1970 * interrupts.
1971 */
1972 msk_txeof(sc_if);
1973 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1974 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1975
1976 ifp->if_oerrors++;
1977
1978 /* XXX Resets both ports; we shouldn't do that. */
1979 mskc_reset(sc_if->sk_softc);
1980 msk_reset(sc_if);
1981 msk_init(ifp);
1982 }
1983 }
1984
1985 static bool
1986 mskc_suspend(device_t dv, const pmf_qual_t *qual)
1987 {
1988 struct sk_softc *sc = device_private(dv);
1989
1990 DPRINTFN(2, ("mskc_suspend\n"));
1991
1992 /* Turn off the 'driver is loaded' LED. */
1993 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
1994
1995 return true;
1996 }
1997
1998 static bool
1999 mskc_resume(device_t dv, const pmf_qual_t *qual)
2000 {
2001 struct sk_softc *sc = device_private(dv);
2002
2003 DPRINTFN(2, ("mskc_resume\n"));
2004
2005 mskc_reset(sc);
2006 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2007
2008 return true;
2009 }
2010
2011 static __inline int
2012 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2013 {
2014 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2015 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2016 YU_RXSTAT_JABBER)) != 0 ||
2017 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2018 YU_RXSTAT_BYTES(stat) != len)
2019 return 0;
2020
2021 return 1;
2022 }
2023
2024 void
2025 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2026 {
2027 struct sk_softc *sc = sc_if->sk_softc;
2028 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2029 struct mbuf *m;
2030 unsigned cur, prod, tail, total_len = len;
2031 bus_dmamap_t dmamap;
2032
2033 cur = sc_if->sk_cdata.sk_rx_cons;
2034 prod = sc_if->sk_cdata.sk_rx_prod;
2035
2036 /* Sync the descriptor */
2037 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2038
2039 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2040 sc_if->sk_cdata.sk_rx_cnt));
2041
2042 while (prod != cur) {
2043 tail = cur;
2044 SK_INC(cur, MSK_RX_RING_CNT);
2045
2046 sc_if->sk_cdata.sk_rx_cnt--;
2047 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2048 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2049 if (m != NULL)
2050 break; /* found it */
2051 }
2052 sc_if->sk_cdata.sk_rx_cons = cur;
2053 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2054 sc_if->sk_cdata.sk_rx_cnt, m));
2055
2056 if (m == NULL)
2057 return;
2058
2059 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2060
2061 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2062 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2063
2064 if (total_len < SK_MIN_FRAMELEN ||
2065 total_len > ETHER_MAX_LEN_JUMBO ||
2066 msk_rxvalid(sc, rxstat, total_len) == 0) {
2067 ifp->if_ierrors++;
2068 m_freem(m);
2069 return;
2070 }
2071
2072 m_set_rcvif(m, ifp);
2073 m->m_pkthdr.len = m->m_len = total_len;
2074
2075 /* pass it on. */
2076 if_percpuq_enqueue(ifp->if_percpuq, m);
2077 }
2078
2079 void
2080 msk_txeof(struct sk_if_softc *sc_if)
2081 {
2082 struct sk_softc *sc = sc_if->sk_softc;
2083 struct msk_tx_desc *cur_tx;
2084 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2085 uint32_t idx, reg, sk_ctl;
2086 struct sk_txmap_entry *entry;
2087
2088 DPRINTFN(2, ("msk_txeof\n"));
2089
2090 if (sc_if->sk_port == SK_PORT_A)
2091 reg = SK_STAT_BMU_TXA1_RIDX;
2092 else
2093 reg = SK_STAT_BMU_TXA2_RIDX;
2094
2095 /*
2096 * Go through our tx ring and free mbufs for those
2097 * frames that have been sent.
2098 */
2099 idx = sc_if->sk_cdata.sk_tx_cons;
2100 while (idx != sk_win_read_2(sc, reg)) {
2101 MSK_CDTXSYNC(sc_if, idx, 1,
2102 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2103
2104 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2105 sk_ctl = cur_tx->sk_ctl;
2106 #ifdef MSK_DEBUG
2107 if (mskdebug >= 2)
2108 msk_dump_txdesc(cur_tx, idx);
2109 #endif
2110 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2111 ifp->if_opackets++;
2112 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2113 entry = sc_if->sk_cdata.sk_tx_map[idx];
2114
2115 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2116 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2117
2118 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2119 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2120 link);
2121 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2122 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2123 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2124 }
2125 sc_if->sk_cdata.sk_tx_cnt--;
2126 SK_INC(idx, MSK_TX_RING_CNT);
2127 }
2128 if (idx == sc_if->sk_cdata.sk_tx_cons)
2129 return;
2130
2131 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2132
2133 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2134 ifp->if_flags &= ~IFF_OACTIVE;
2135
2136 sc_if->sk_cdata.sk_tx_cons = idx;
2137 }
2138
2139 void
2140 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2141 {
2142 /* Make sure to not completely wrap around */
2143 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2144 if (msk_newbuf(sc_if,
2145 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2146 goto schedretry;
2147 }
2148 }
2149
2150 return;
2151
2152 schedretry:
2153 /* Try later */
2154 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2155 }
2156
2157 static void
2158 msk_fill_rx_tick(void *xsc_if)
2159 {
2160 struct sk_if_softc *sc_if = xsc_if;
2161 int s, rx_prod;
2162
2163 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2164
2165 s = splnet();
2166 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2167 msk_fill_rx_ring(sc_if);
2168 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2169 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2170 sc_if->sk_cdata.sk_rx_prod);
2171 }
2172 splx(s);
2173 }
2174
2175 void
2176 msk_tick(void *xsc_if)
2177 {
2178 struct sk_if_softc *sc_if = xsc_if;
2179 struct mii_data *mii = &sc_if->sk_mii;
2180 int s;
2181
2182 s = splnet();
2183 mii_tick(mii);
2184 splx(s);
2185
2186 callout_schedule(&sc_if->sk_tick_ch, hz);
2187 }
2188
2189 void
2190 msk_intr_yukon(struct sk_if_softc *sc_if)
2191 {
2192 uint8_t status;
2193
2194 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2195 /* RX overrun */
2196 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2197 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2198 SK_RFCTL_RX_FIFO_OVER);
2199 }
2200 /* TX underrun */
2201 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2202 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2203 SK_TFCTL_TX_FIFO_UNDER);
2204 }
2205
2206 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2207 }
2208
2209 int
2210 msk_intr(void *xsc)
2211 {
2212 struct sk_softc *sc = xsc;
2213 struct sk_if_softc *sc_if;
2214 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2215 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2216 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2217 int claimed = 0;
2218 uint32_t status;
2219 struct msk_status_desc *cur_st;
2220
2221 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2222 if (status == 0xffffffff)
2223 return 0;
2224 if (status == 0) {
2225 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2226 return 0;
2227 }
2228
2229 status = CSR_READ_4(sc, SK_ISR);
2230
2231 if (sc_if0 != NULL)
2232 ifp0 = &sc_if0->sk_ethercom.ec_if;
2233 if (sc_if1 != NULL)
2234 ifp1 = &sc_if1->sk_ethercom.ec_if;
2235
2236 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2237 (ifp0->if_flags & IFF_RUNNING)) {
2238 msk_intr_yukon(sc_if0);
2239 }
2240
2241 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2242 (ifp1->if_flags & IFF_RUNNING)) {
2243 msk_intr_yukon(sc_if1);
2244 }
2245
2246 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2247 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2248 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2249
2250 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2251 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2252 switch (cur_st->sk_opcode) {
2253 case SK_Y2_STOPC_RXSTAT:
2254 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2255 if (sc_if) {
2256 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2257 letoh32(cur_st->sk_status));
2258 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2259 msk_fill_rx_tick(sc_if);
2260 }
2261 break;
2262 case SK_Y2_STOPC_TXSTAT:
2263 if (sc_if0)
2264 msk_txeof(sc_if0);
2265 if (sc_if1)
2266 msk_txeof(sc_if1);
2267 break;
2268 default:
2269 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2270 break;
2271 }
2272 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2273
2274 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2275 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2276 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2277 }
2278
2279 if (status & SK_Y2_IMR_BMU) {
2280 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2281 claimed = 1;
2282 }
2283
2284 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2285
2286 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2287 if_schedule_deferred_start(ifp0);
2288 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2289 if_schedule_deferred_start(ifp1);
2290
2291 KASSERT(sc->rnd_attached > 0);
2292 rnd_add_uint32(&sc->rnd_source, status);
2293
2294 if (sc->sk_int_mod_pending)
2295 msk_update_int_mod(sc, 1);
2296
2297 return claimed;
2298 }
2299
2300 void
2301 msk_init_yukon(struct sk_if_softc *sc_if)
2302 {
2303 uint32_t v;
2304 uint16_t reg;
2305 struct sk_softc *sc;
2306 int i;
2307
2308 sc = sc_if->sk_softc;
2309
2310 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2311 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2312
2313 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2314
2315 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2316 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2317
2318 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2319
2320 /* unused read of the interrupt source register */
2321 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2322 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2323
2324 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2325 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2326 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2327
2328 /* MIB Counter Clear Mode set */
2329 reg |= YU_PAR_MIB_CLR;
2330 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2331 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2332 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2333
2334 /* MIB Counter Clear Mode clear */
2335 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2336 reg &= ~YU_PAR_MIB_CLR;
2337 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2338
2339 /* receive control reg */
2340 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2341 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2342
2343 /* transmit control register */
2344 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2345
2346 /* transmit flow control register */
2347 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2348
2349 /* transmit parameter register */
2350 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2351 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2352 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2353
2354 /* serial mode register */
2355 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2356 reg = YU_SMR_DATA_BLIND(0x1c) |
2357 YU_SMR_MFL_VLAN |
2358 YU_SMR_IPG_DATA(0x1e);
2359
2360 if (sc->sk_type != SK_YUKON_FE &&
2361 sc->sk_type != SK_YUKON_FE_P)
2362 reg |= YU_SMR_MFL_JUMBO;
2363
2364 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2365
2366 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2367 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2368 /* msk_attach calls me before ether_ifattach so check null */
2369 if (ifp != NULL && ifp->if_sadl != NULL)
2370 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2371 sizeof(sc_if->sk_enaddr));
2372 /* Setup Yukon's address */
2373 for (i = 0; i < 3; i++) {
2374 /* Write Source Address 1 (unicast filter) */
2375 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2376 sc_if->sk_enaddr[i * 2] |
2377 sc_if->sk_enaddr[i * 2 + 1] << 8);
2378 }
2379
2380 for (i = 0; i < 3; i++) {
2381 reg = sk_win_read_2(sc_if->sk_softc,
2382 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2383 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2384 }
2385
2386 /* Set promiscuous mode */
2387 msk_setpromisc(sc_if);
2388
2389 /* Set multicast filter */
2390 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2391 msk_setmulti(sc_if);
2392
2393 /* enable interrupt mask for counter overflows */
2394 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2395 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2396 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2397 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2398
2399 /* Configure RX MAC FIFO Flush Mask */
2400 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2401 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2402 YU_RXSTAT_JABBER;
2403 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2404
2405 /* Configure RX MAC FIFO */
2406 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2407 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON |
2408 SK_RFCTL_FIFO_FLUSH_ON);
2409
2410 /* Increase flush threshold to 64 bytes */
2411 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
2412 SK_RFCTL_FIFO_THRESHOLD + 1);
2413
2414 /* Configure TX MAC FIFO */
2415 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2416 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2417
2418 #if 1
2419 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2420 #endif
2421 DPRINTFN(6, ("msk_init_yukon: end\n"));
2422 }
2423
2424 /*
2425 * Note that to properly initialize any part of the GEnesis chip,
2426 * you first have to take it out of reset mode.
2427 */
2428 int
2429 msk_init(struct ifnet *ifp)
2430 {
2431 struct sk_if_softc *sc_if = ifp->if_softc;
2432 struct sk_softc *sc = sc_if->sk_softc;
2433 int rc = 0, s;
2434 uint32_t imr, imtimer_ticks;
2435
2436
2437 DPRINTFN(2, ("msk_init\n"));
2438
2439 s = splnet();
2440
2441 /* Cancel pending I/O and free all RX/TX buffers. */
2442 msk_stop(ifp, 1);
2443
2444 /* Configure I2C registers */
2445
2446 /* Configure XMAC(s) */
2447 msk_init_yukon(sc_if);
2448 if ((rc = ether_mediachange(ifp)) != 0)
2449 goto out;
2450
2451 /* Configure transmit arbiter(s) */
2452 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2453 #if 0
2454 SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON);
2455 #endif
2456
2457 if (sc->sk_ramsize) {
2458 /* Configure RAMbuffers */
2459 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2460 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2461 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2462 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2463 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2464 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2465
2466 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2467 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2468 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2469 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2470 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2471 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2472 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2473 }
2474
2475 /* Configure BMUs */
2476 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2477 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2478 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2479 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2480
2481 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2482 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2483 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2484 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2485
2486 /* Make sure the sync transmit queue is disabled. */
2487 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2488
2489 /* Init descriptors */
2490 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2491 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2492 "memory for rx buffers\n");
2493 msk_stop(ifp, 1);
2494 splx(s);
2495 return ENOBUFS;
2496 }
2497
2498 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2499 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2500 "memory for tx buffers\n");
2501 msk_stop(ifp, 1);
2502 splx(s);
2503 return ENOBUFS;
2504 }
2505
2506 /* Set interrupt moderation if changed via sysctl. */
2507 switch (sc->sk_type) {
2508 case SK_YUKON_EC:
2509 case SK_YUKON_EC_U:
2510 case SK_YUKON_EX:
2511 case SK_YUKON_SUPR:
2512 case SK_YUKON_ULTRA2:
2513 case SK_YUKON_OPTIMA:
2514 case SK_YUKON_PRM:
2515 case SK_YUKON_OPTIMA2:
2516 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2517 break;
2518 case SK_YUKON_FE:
2519 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2520 break;
2521 case SK_YUKON_FE_P:
2522 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2523 break;
2524 case SK_YUKON_XL:
2525 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2526 break;
2527 default:
2528 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2529 }
2530 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2531 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2532 sk_win_write_4(sc, SK_IMTIMERINIT,
2533 SK_IM_USECS(sc->sk_int_mod));
2534 aprint_verbose_dev(sc->sk_dev,
2535 "interrupt moderation is %d us\n", sc->sk_int_mod);
2536 }
2537
2538 /* Initialize prefetch engine. */
2539 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2540 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2541 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2542 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2543 MSK_RX_RING_ADDR(sc_if, 0));
2544 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2545 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2546 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2547 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2548
2549 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2550 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2551 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2552 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2553 MSK_TX_RING_ADDR(sc_if, 0));
2554 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2555 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2556 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2557 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2558
2559 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2560 sc_if->sk_cdata.sk_rx_prod);
2561
2562 /* Configure interrupt handling */
2563 if (sc_if->sk_port == SK_PORT_A)
2564 sc->sk_intrmask |= SK_Y2_INTRS1;
2565 else
2566 sc->sk_intrmask |= SK_Y2_INTRS2;
2567 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2568 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2569
2570 ifp->if_flags |= IFF_RUNNING;
2571 ifp->if_flags &= ~IFF_OACTIVE;
2572
2573 callout_schedule(&sc_if->sk_tick_ch, hz);
2574
2575 out:
2576 splx(s);
2577 return rc;
2578 }
2579
2580 /*
2581 * Note: the logic of second parameter is inverted compared to OpenBSD
2582 * code, since this code uses the function as if_stop hook too.
2583 */
2584 void
2585 msk_stop(struct ifnet *ifp, int disable)
2586 {
2587 struct sk_if_softc *sc_if = ifp->if_softc;
2588 struct sk_softc *sc = sc_if->sk_softc;
2589 struct sk_txmap_entry *dma;
2590 int i;
2591
2592 DPRINTFN(2, ("msk_stop\n"));
2593
2594 callout_stop(&sc_if->sk_tick_ch);
2595 callout_stop(&sc_if->sk_tick_rx);
2596
2597 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2598
2599 /* Stop transfer of Tx descriptors */
2600
2601 /* Stop transfer of Rx descriptors */
2602
2603 if (disable) {
2604 /* Turn off various components of this interface. */
2605 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2606 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2607 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2608 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2609 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2610 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2611 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2612 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2613 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2614 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2615 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2616
2617 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2618 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2619
2620 /* Disable interrupts */
2621 if (sc_if->sk_port == SK_PORT_A)
2622 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2623 else
2624 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2625 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2626 }
2627
2628 /* Free RX and TX mbufs still in the queues. */
2629 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2630 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2631 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2632 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2633 }
2634 }
2635
2636 sc_if->sk_cdata.sk_rx_prod = 0;
2637 sc_if->sk_cdata.sk_rx_cons = 0;
2638 sc_if->sk_cdata.sk_rx_cnt = 0;
2639
2640 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2641 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2642 dma = sc_if->sk_cdata.sk_tx_map[i];
2643
2644 bus_dmamap_sync(sc->sc_dmatag, dma->dmamap, 0,
2645 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2646
2647 bus_dmamap_unload(sc->sc_dmatag, dma->dmamap);
2648 #if 1
2649 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2650 sc_if->sk_cdata.sk_tx_map[i], link);
2651 sc_if->sk_cdata.sk_tx_map[i] = 0;
2652 #endif
2653 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2654 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2655 }
2656 }
2657
2658 #if 1
2659 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2660 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2661 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2662 free(dma, M_DEVBUF);
2663 }
2664 #endif
2665 }
2666
2667 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2668 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2669
2670 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2671 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2672
2673 #ifdef MSK_DEBUG
2674 void
2675 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2676 {
2677 #define DESC_PRINT(X) \
2678 if (X) \
2679 printf("txdesc[%d]." #X "=%#x\n", \
2680 idx, X);
2681
2682 DESC_PRINT(letoh32(le->sk_addr));
2683 DESC_PRINT(letoh16(le->sk_len));
2684 DESC_PRINT(le->sk_ctl);
2685 DESC_PRINT(le->sk_opcode);
2686 #undef DESC_PRINT
2687 }
2688
2689 void
2690 msk_dump_bytes(const char *data, int len)
2691 {
2692 int c, i, j;
2693
2694 for (i = 0; i < len; i += 16) {
2695 printf("%08x ", i);
2696 c = len - i;
2697 if (c > 16) c = 16;
2698
2699 for (j = 0; j < c; j++) {
2700 printf("%02x ", data[i + j] & 0xff);
2701 if ((j & 0xf) == 7 && j > 0)
2702 printf(" ");
2703 }
2704
2705 for (; j < 16; j++)
2706 printf(" ");
2707 printf(" ");
2708
2709 for (j = 0; j < c; j++) {
2710 int ch = data[i + j] & 0xff;
2711 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2712 }
2713
2714 printf("\n");
2715
2716 if (c < 16)
2717 break;
2718 }
2719 }
2720
2721 void
2722 msk_dump_mbuf(struct mbuf *m)
2723 {
2724 int count = m->m_pkthdr.len;
2725
2726 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2727
2728 while (count > 0 && m) {
2729 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2730 m, m->m_data, m->m_len);
2731 if (mskdebug >= 4)
2732 msk_dump_bytes(mtod(m, char *), m->m_len);
2733
2734 count -= m->m_len;
2735 m = m->m_next;
2736 }
2737 }
2738 #endif
2739
2740 static int
2741 msk_sysctl_handler(SYSCTLFN_ARGS)
2742 {
2743 int error, t;
2744 struct sysctlnode node;
2745 struct sk_softc *sc;
2746
2747 node = *rnode;
2748 sc = node.sysctl_data;
2749 t = sc->sk_int_mod;
2750 node.sysctl_data = &t;
2751 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2752 if (error || newp == NULL)
2753 return error;
2754
2755 if (t < SK_IM_MIN || t > SK_IM_MAX)
2756 return EINVAL;
2757
2758 /* update the softc with sysctl-changed value, and mark
2759 for hardware update */
2760 sc->sk_int_mod = t;
2761 sc->sk_int_mod_pending = 1;
2762 return 0;
2763 }
2764
2765 /*
2766 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2767 * set up in mskc_attach()
2768 */
2769 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2770 {
2771 int rc;
2772 const struct sysctlnode *node;
2773
2774 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2775 0, CTLTYPE_NODE, "msk",
2776 SYSCTL_DESCR("msk interface controls"),
2777 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2778 goto err;
2779 }
2780
2781 msk_root_num = node->sysctl_num;
2782 return;
2783
2784 err:
2785 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2786 }
2787