if_msk.c revision 1.96 1 /* $NetBSD: if_msk.c,v 1.96 2019/12/01 12:47:10 maxv Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.96 2019/12/01 12:47:10 maxv Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 static int mskc_probe(device_t, cfdata_t, void *);
96 static void mskc_attach(device_t, device_t, void *);
97 static int mskc_detach(device_t, int);
98 static void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 static int msk_probe(device_t, cfdata_t, void *);
102 static void msk_attach(device_t, device_t, void *);
103 static int msk_detach(device_t, int);
104 static void msk_reset(struct sk_if_softc *);
105 static int mskcprint(void *, const char *);
106 static int msk_intr(void *);
107 static void msk_intr_yukon(struct sk_if_softc *);
108 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
109 static void msk_txeof(struct sk_if_softc *);
110 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
111 static void msk_start(struct ifnet *);
112 static int msk_ioctl(struct ifnet *, u_long, void *);
113 static int msk_init(struct ifnet *);
114 static void msk_init_yukon(struct sk_if_softc *);
115 static void msk_stop(struct ifnet *, int);
116 static void msk_watchdog(struct ifnet *);
117 static int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 static void *msk_jalloc(struct sk_if_softc *);
120 static void msk_jfree(struct mbuf *, void *, size_t, void *);
121 static int msk_init_rx_ring(struct sk_if_softc *);
122 static int msk_init_tx_ring(struct sk_if_softc *);
123 static void msk_fill_rx_ring(struct sk_if_softc *);
124
125 static void msk_update_int_mod(struct sk_softc *, int);
126
127 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
128 static int msk_miibus_writereg(device_t, int, int, uint16_t);
129 static void msk_miibus_statchg(struct ifnet *);
130
131 static void msk_setmulti(struct sk_if_softc *);
132 static void msk_setpromisc(struct sk_if_softc *);
133 static void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 static void msk_dump_txdesc(struct msk_tx_desc *, int);
143 static void msk_dump_mbuf(struct mbuf *);
144 static void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n, x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
155
156 /* supported device vendors */
157 static const struct msk_product {
158 pci_vendor_id_t msk_vendor;
159 pci_product_id_t msk_product;
160 } msk_products[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
199 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 { 0, 0 }
203 };
204
205 static inline uint32_t
206 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
207 {
208 return CSR_READ_4(sc, reg);
209 }
210
211 static inline uint16_t
212 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
213 {
214 return CSR_READ_2(sc, reg);
215 }
216
217 static inline uint8_t
218 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
219 {
220 return CSR_READ_1(sc, reg);
221 }
222
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
225 {
226 CSR_WRITE_4(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
231 {
232 CSR_WRITE_2(sc, reg, x);
233 }
234
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
237 {
238 CSR_WRITE_1(sc, reg, x);
239 }
240
241 static int
242 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
243 {
244 struct sk_if_softc *sc_if = device_private(dev);
245 uint16_t data;
246 int i;
247
248 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250
251 for (i = 0; i < SK_TIMEOUT; i++) {
252 DELAY(1);
253 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 if (data & YU_SMICR_READ_VALID)
255 break;
256 }
257
258 if (i == SK_TIMEOUT) {
259 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 return ETIMEDOUT;
261 }
262
263 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
264
265 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
266
267 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
268 phy, reg, *val));
269
270 return 0;
271 }
272
273 static int
274 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
275 {
276 struct sk_if_softc *sc_if = device_private(dev);
277 int i;
278
279 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
280 phy, reg, val));
281
282 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
283 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
284 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
285
286 for (i = 0; i < SK_TIMEOUT; i++) {
287 DELAY(1);
288 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
289 break;
290 }
291
292 if (i == SK_TIMEOUT) {
293 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
294 return ETIMEDOUT;
295 }
296
297 return 0;
298 }
299
300 static void
301 msk_miibus_statchg(struct ifnet *ifp)
302 {
303 struct sk_if_softc *sc_if = ifp->if_softc;
304 struct mii_data *mii = &sc_if->sk_mii;
305 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
306 int gpcr;
307
308 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
309 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
310
311 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
312 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
313 /* Set speed. */
314 gpcr |= YU_GPCR_SPEED_DIS;
315 switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 case IFM_1000_SX:
317 case IFM_1000_LX:
318 case IFM_1000_CX:
319 case IFM_1000_T:
320 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
321 break;
322 case IFM_100_TX:
323 gpcr |= YU_GPCR_SPEED;
324 break;
325 }
326
327 /* Set duplex. */
328 gpcr |= YU_GPCR_DPLX_DIS;
329 if ((mii->mii_media_active & IFM_FDX) != 0)
330 gpcr |= YU_GPCR_DUPLEX;
331
332 /* Disable flow control. */
333 gpcr |= YU_GPCR_FCTL_DIS;
334 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
335 }
336
337 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
338
339 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
340 SK_YU_READ_2(sc_if, YUKON_GPCR)));
341 }
342
343 static void
344 msk_setmulti(struct sk_if_softc *sc_if)
345 {
346 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
347 uint32_t hashes[2] = { 0, 0 };
348 int h;
349 struct ethercom *ec = &sc_if->sk_ethercom;
350 struct ether_multi *enm;
351 struct ether_multistep step;
352 uint16_t reg;
353
354 /* First, zot all the existing filters. */
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
358 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
359
360
361 /* Now program new ones. */
362 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
363 reg |= YU_RCR_UFLEN;
364 allmulti:
365 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
366 if ((ifp->if_flags & IFF_PROMISC) != 0)
367 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
368 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
369 hashes[0] = 0xFFFFFFFF;
370 hashes[1] = 0xFFFFFFFF;
371 }
372 } else {
373 /* First find the tail of the list. */
374 ETHER_LOCK(ec);
375 ETHER_FIRST_MULTI(step, ec, enm);
376 while (enm != NULL) {
377 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
378 ETHER_ADDR_LEN)) {
379 ifp->if_flags |= IFF_ALLMULTI;
380 ETHER_UNLOCK(ec);
381 goto allmulti;
382 }
383 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
384 ((1 << SK_HASH_BITS) - 1);
385 if (h < 32)
386 hashes[0] |= (1 << h);
387 else
388 hashes[1] |= (1 << (h - 32));
389
390 ETHER_NEXT_MULTI(step, enm);
391 }
392 ETHER_UNLOCK(ec);
393 reg |= YU_RCR_MUFLEN;
394 }
395
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
399 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
400 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
401 }
402
403 static void
404 msk_setpromisc(struct sk_if_softc *sc_if)
405 {
406 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
407
408 if (ifp->if_flags & IFF_PROMISC)
409 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
410 YU_RCR_UFLEN | YU_RCR_MUFLEN);
411 else
412 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
413 YU_RCR_UFLEN | YU_RCR_MUFLEN);
414 }
415
416 static int
417 msk_init_rx_ring(struct sk_if_softc *sc_if)
418 {
419 struct msk_chain_data *cd = &sc_if->sk_cdata;
420 struct msk_ring_data *rd = sc_if->sk_rdata;
421 struct msk_rx_desc *r;
422 int i, nexti;
423
424 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
425
426 for (i = 0; i < MSK_RX_RING_CNT; i++) {
427 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
428 if (i == (MSK_RX_RING_CNT - 1))
429 nexti = 0;
430 else
431 nexti = i + 1;
432 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
433 }
434
435 sc_if->sk_cdata.sk_rx_prod = 0;
436 sc_if->sk_cdata.sk_rx_cons = 0;
437 sc_if->sk_cdata.sk_rx_cnt = 0;
438 sc_if->sk_cdata.sk_rx_hiaddr = 0;
439
440 /* Mark the first ring element to initialize the high address. */
441 sc_if->sk_cdata.sk_rx_hiaddr = 0;
442 r = &rd->sk_rx_ring[cd->sk_rx_prod];
443 r->sk_addr = htole32(cd->sk_rx_hiaddr);
444 r->sk_len = 0;
445 r->sk_ctl = 0;
446 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
447 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
448 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
449 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
450 sc_if->sk_cdata.sk_rx_cnt++;
451
452 msk_fill_rx_ring(sc_if);
453 return 0;
454 }
455
456 static int
457 msk_init_tx_ring(struct sk_if_softc *sc_if)
458 {
459 struct sk_softc *sc = sc_if->sk_softc;
460 struct msk_chain_data *cd = &sc_if->sk_cdata;
461 struct msk_ring_data *rd = sc_if->sk_rdata;
462 struct msk_tx_desc *t;
463 bus_dmamap_t dmamap;
464 struct sk_txmap_entry *entry;
465 int i, nexti;
466
467 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
468
469 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
470 for (i = 0; i < MSK_TX_RING_CNT; i++) {
471 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
472 if (i == (MSK_TX_RING_CNT - 1))
473 nexti = 0;
474 else
475 nexti = i + 1;
476 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
477
478 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
479 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap))
480 return ENOBUFS;
481
482 entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT);
483 if (!entry) {
484 bus_dmamap_destroy(sc->sc_dmatag, dmamap);
485 return ENOBUFS;
486 }
487 entry->dmamap = dmamap;
488 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
489 }
490
491 sc_if->sk_cdata.sk_tx_prod = 0;
492 sc_if->sk_cdata.sk_tx_cons = 0;
493 sc_if->sk_cdata.sk_tx_cnt = 0;
494 sc_if->sk_cdata.sk_tx_hiaddr = 0;
495
496 /* Mark the first ring element to initialize the high address. */
497 sc_if->sk_cdata.sk_tx_hiaddr = 0;
498 t = &rd->sk_tx_ring[cd->sk_tx_prod];
499 t->sk_addr = htole32(cd->sk_tx_hiaddr);
500 t->sk_len = 0;
501 t->sk_ctl = 0;
502 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
503 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
504 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
505 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
506 sc_if->sk_cdata.sk_tx_cnt++;
507
508 return 0;
509 }
510
511 static int
512 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
513 {
514 struct mbuf *m_new = NULL;
515 struct sk_chain *c;
516 struct msk_rx_desc *r;
517 void *buf = NULL;
518 bus_addr_t addr;
519
520 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
521 if (m_new == NULL)
522 return ENOBUFS;
523
524 /* Allocate the jumbo buffer */
525 buf = msk_jalloc(sc_if);
526 if (buf == NULL) {
527 m_freem(m_new);
528 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
529 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
530 return ENOBUFS;
531 }
532
533 /* Attach the buffer to the mbuf */
534 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
535 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
536
537 m_adj(m_new, ETHER_ALIGN);
538
539 addr = dmamap->dm_segs[0].ds_addr +
540 ((vaddr_t)m_new->m_data -
541 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
542
543 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
544 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
545 r = c->sk_le;
546 c->sk_mbuf = NULL;
547 r->sk_addr = htole32(MSK_ADDR_HI(addr));
548 r->sk_len = 0;
549 r->sk_ctl = 0;
550 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
551 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
552
553 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
554 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
555
556 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
557 sc_if->sk_cdata.sk_rx_cnt++;
558
559 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
560 sc_if->sk_ethercom.ec_if.if_xname,
561 (unsigned)MSK_ADDR_HI(addr)));
562 }
563
564 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
565 r = c->sk_le;
566 c->sk_mbuf = m_new;
567 r->sk_addr = htole32(MSK_ADDR_LO(addr));
568 r->sk_len = htole16(SK_JLEN);
569 r->sk_ctl = 0;
570 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
571
572 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
573 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
574
575 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
576 sc_if->sk_cdata.sk_rx_cnt++;
577
578 return 0;
579 }
580
581 /*
582 * Memory management for jumbo frames.
583 */
584
585 static int
586 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
587 {
588 struct sk_softc *sc = sc_if->sk_softc;
589 char *ptr, *kva;
590 int i, state, error;
591 struct sk_jpool_entry *entry;
592
593 state = error = 0;
594
595 /* Grab a big chunk o' storage. */
596 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
597 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
598 BUS_DMA_NOWAIT)) {
599 aprint_error(": can't alloc rx buffers");
600 return ENOBUFS;
601 }
602
603 state = 1;
604 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
605 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
606 BUS_DMA_NOWAIT)) {
607 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
608 error = ENOBUFS;
609 goto out;
610 }
611
612 state = 2;
613 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
614 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
615 aprint_error(": can't create dma map");
616 error = ENOBUFS;
617 goto out;
618 }
619
620 state = 3;
621 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
622 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
623 aprint_error(": can't load dma map");
624 error = ENOBUFS;
625 goto out;
626 }
627
628 state = 4;
629 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
630 DPRINTFN(1,("msk_jumbo_buf = %p\n",
631 (void *)sc_if->sk_cdata.sk_jumbo_buf));
632
633 LIST_INIT(&sc_if->sk_jfree_listhead);
634 LIST_INIT(&sc_if->sk_jinuse_listhead);
635 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
636
637 /*
638 * Now divide it up into 9K pieces and save the addresses
639 * in an array.
640 */
641 ptr = sc_if->sk_cdata.sk_jumbo_buf;
642 for (i = 0; i < MSK_JSLOTS; i++) {
643 sc_if->sk_cdata.sk_jslots[i] = ptr;
644 ptr += SK_JLEN;
645 entry = malloc(sizeof(struct sk_jpool_entry),
646 M_DEVBUF, M_WAITOK);
647 entry->slot = i;
648 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
649 entry, jpool_entries);
650 }
651 out:
652 if (error != 0) {
653 switch (state) {
654 case 4:
655 bus_dmamap_unload(sc->sc_dmatag,
656 sc_if->sk_cdata.sk_rx_jumbo_map);
657 /* FALLTHROUGH */
658 case 3:
659 bus_dmamap_destroy(sc->sc_dmatag,
660 sc_if->sk_cdata.sk_rx_jumbo_map);
661 /* FALLTHROUGH */
662 case 2:
663 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
664 /* FALLTHROUGH */
665 case 1:
666 bus_dmamem_free(sc->sc_dmatag,
667 &sc_if->sk_cdata.sk_jumbo_seg,
668 sc_if->sk_cdata.sk_jumbo_nseg);
669 break;
670 default:
671 break;
672 }
673 }
674
675 return error;
676 }
677
678 static void
679 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
680 {
681 struct sk_softc *sc = sc_if->sk_softc;
682
683 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
684 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
685 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
686 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
687 sc_if->sk_cdata.sk_jumbo_nseg);
688 }
689
690 /*
691 * Allocate a jumbo buffer.
692 */
693 static void *
694 msk_jalloc(struct sk_if_softc *sc_if)
695 {
696 struct sk_jpool_entry *entry;
697
698 mutex_enter(&sc_if->sk_jpool_mtx);
699 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
700
701 if (entry == NULL) {
702 mutex_exit(&sc_if->sk_jpool_mtx);
703 return NULL;
704 }
705
706 LIST_REMOVE(entry, jpool_entries);
707 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
708 mutex_exit(&sc_if->sk_jpool_mtx);
709 return sc_if->sk_cdata.sk_jslots[entry->slot];
710 }
711
712 /*
713 * Release a jumbo buffer.
714 */
715 static void
716 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
717 {
718 struct sk_jpool_entry *entry;
719 struct sk_if_softc *sc;
720 int i;
721
722 /* Extract the softc struct pointer. */
723 sc = (struct sk_if_softc *)arg;
724
725 if (sc == NULL)
726 panic("msk_jfree: can't find softc pointer!");
727
728 /* calculate the slot this buffer belongs to */
729 i = ((vaddr_t)buf
730 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
731
732 if ((i < 0) || (i >= MSK_JSLOTS))
733 panic("msk_jfree: asked to free buffer that we don't manage!");
734
735 mutex_enter(&sc->sk_jpool_mtx);
736 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
737 if (entry == NULL)
738 panic("msk_jfree: buffer not in use!");
739 entry->slot = i;
740 LIST_REMOVE(entry, jpool_entries);
741 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
742 mutex_exit(&sc->sk_jpool_mtx);
743
744 if (__predict_true(m != NULL))
745 pool_cache_put(mb_cache, m);
746
747 /* Now that we know we have a free RX buffer, refill if running out */
748 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
749 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
750 callout_schedule(&sc->sk_tick_rx, 0);
751 }
752
753 static int
754 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
755 {
756 struct sk_if_softc *sc = ifp->if_softc;
757 int s, error;
758
759 s = splnet();
760
761 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
762 switch (cmd) {
763 case SIOCSIFFLAGS:
764 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
765 break;
766
767 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
768 case IFF_RUNNING:
769 msk_stop(ifp, 1);
770 break;
771 case IFF_UP:
772 msk_init(ifp);
773 break;
774 case IFF_UP | IFF_RUNNING:
775 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
776 msk_setpromisc(sc);
777 msk_setmulti(sc);
778 } else
779 msk_init(ifp);
780 break;
781 }
782 sc->sk_if_flags = ifp->if_flags;
783 break;
784 default:
785 error = ether_ioctl(ifp, cmd, data);
786 if (error == ENETRESET) {
787 error = 0;
788 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
789 ;
790 else if (ifp->if_flags & IFF_RUNNING) {
791 /*
792 * Multicast list has changed; set the hardware
793 * filter accordingly.
794 */
795 msk_setmulti(sc);
796 }
797 }
798 break;
799 }
800
801 splx(s);
802 return error;
803 }
804
805 static void
806 msk_update_int_mod(struct sk_softc *sc, int verbose)
807 {
808 uint32_t imtimer_ticks;
809
810 /*
811 * Configure interrupt moderation. The moderation timer
812 * defers interrupts specified in the interrupt moderation
813 * timer mask based on the timeout specified in the interrupt
814 * moderation timer init register. Each bit in the timer
815 * register represents one tick, so to specify a timeout in
816 * microseconds, we have to multiply by the correct number of
817 * ticks-per-microsecond.
818 */
819 switch (sc->sk_type) {
820 case SK_YUKON_EC:
821 case SK_YUKON_EC_U:
822 case SK_YUKON_EX:
823 case SK_YUKON_SUPR:
824 case SK_YUKON_ULTRA2:
825 case SK_YUKON_OPTIMA:
826 case SK_YUKON_PRM:
827 case SK_YUKON_OPTIMA2:
828 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
829 break;
830 case SK_YUKON_FE:
831 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
832 break;
833 case SK_YUKON_FE_P:
834 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
835 break;
836 case SK_YUKON_XL:
837 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
838 break;
839 default:
840 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
841 }
842 if (verbose)
843 aprint_verbose_dev(sc->sk_dev,
844 "interrupt moderation is %d us\n", sc->sk_int_mod);
845 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
846 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
847 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
848 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
849 sc->sk_int_mod_pending = 0;
850 }
851
852 static int
853 msk_lookup(const struct pci_attach_args *pa)
854 {
855 const struct msk_product *pmsk;
856
857 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
858 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
859 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
860 return 1;
861 }
862 return 0;
863 }
864
865 /*
866 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
867 * IDs against our list and return a device name if we find a match.
868 */
869 static int
870 mskc_probe(device_t parent, cfdata_t match, void *aux)
871 {
872 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
873
874 return msk_lookup(pa);
875 }
876
877 /*
878 * Force the GEnesis into reset, then bring it out of reset.
879 */
880 static void
881 mskc_reset(struct sk_softc *sc)
882 {
883 uint32_t imtimer_ticks, reg1;
884 uint16_t status;
885 int reg;
886
887 DPRINTFN(2, ("mskc_reset\n"));
888
889 /* Disable ASF */
890 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
891 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
892 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
893 /* Clear AHB bridge & microcontroller reset. */
894 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
895 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
896 /* Clear ASF microcontroller state. */
897 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
898 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
899 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
900 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
901 } else
902 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
903 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
904
905 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
906 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
907
908 DELAY(1000);
909 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
910 DELAY(2);
911 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
912 sk_win_write_1(sc, SK_TESTCTL1, 2);
913
914 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
915 sc->sk_type >= SK_YUKON_FE_P) {
916 uint32_t our;
917
918 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
919
920 /* enable all clocks. */
921 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
922 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
923 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
924 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
925 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
926 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
927 /* Set all bits to 0 except bits 15..12 */
928 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
929 /* Set to default value */
930 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
931
932 /*
933 * Disable status race, workaround for Yukon EC Ultra &
934 * Yukon EX.
935 */
936 reg1 = sk_win_read_4(sc, SK_GPIO);
937 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
938 sk_win_write_4(sc, SK_GPIO, reg1);
939 sk_win_read_4(sc, SK_GPIO);
940 }
941
942 /* release PHY from PowerDown/Coma mode. */
943 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
944 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
945 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
946 else
947 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
948 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
949
950 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
951 sk_win_write_1(sc, SK_Y2_CLKGATE,
952 SK_Y2_CLKGATE_LINK1_GATE_DIS |
953 SK_Y2_CLKGATE_LINK2_GATE_DIS |
954 SK_Y2_CLKGATE_LINK1_CORE_DIS |
955 SK_Y2_CLKGATE_LINK2_CORE_DIS |
956 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
957 else
958 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
959
960 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
961 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
962 DELAY(1000);
963 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
964 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
965
966 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
967 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
968 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
969 }
970
971 sk_win_write_1(sc, SK_TESTCTL1, 1);
972
973 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
974 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
975 CSR_READ_2(sc, SK_LINK_CTRL)));
976
977 /* Clear I2C IRQ noise */
978 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
979
980 /* Disable hardware timer */
981 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
982 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
983
984 /* Disable descriptor polling */
985 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
986
987 /* Disable time stamps */
988 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
989 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
990
991 /* Enable RAM interface */
992 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
993 for (reg = SK_TO0;reg <= SK_TO11; reg++)
994 sk_win_write_1(sc, reg, 36);
995 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
996 for (reg = SK_TO0;reg <= SK_TO11; reg++)
997 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
998
999 /*
1000 * Configure interrupt moderation. The moderation timer
1001 * defers interrupts specified in the interrupt moderation
1002 * timer mask based on the timeout specified in the interrupt
1003 * moderation timer init register. Each bit in the timer
1004 * register represents one tick, so to specify a timeout in
1005 * microseconds, we have to multiply by the correct number of
1006 * ticks-per-microsecond.
1007 */
1008 switch (sc->sk_type) {
1009 case SK_YUKON_EC:
1010 case SK_YUKON_EC_U:
1011 case SK_YUKON_EX:
1012 case SK_YUKON_SUPR:
1013 case SK_YUKON_ULTRA2:
1014 case SK_YUKON_OPTIMA:
1015 case SK_YUKON_PRM:
1016 case SK_YUKON_OPTIMA2:
1017 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1018 break;
1019 case SK_YUKON_FE:
1020 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1021 break;
1022 case SK_YUKON_FE_P:
1023 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1024 break;
1025 case SK_YUKON_XL:
1026 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1027 break;
1028 default:
1029 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1030 break;
1031 }
1032
1033 /* Reset status ring. */
1034 memset(sc->sk_status_ring, 0,
1035 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1036 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1037 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1038 sc->sk_status_idx = 0;
1039
1040 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1041 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1042
1043 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1044 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1045 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1046 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1047 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1048 if (sc->sk_type == SK_YUKON_EC &&
1049 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1050 /* WA for dev. #4.3 */
1051 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1052 SK_STAT_BMU_TXTHIDX_MSK);
1053 /* WA for dev. #4.18 */
1054 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1055 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1056 } else {
1057 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1058 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1059 if (sc->sk_type == SK_YUKON_XL)
1060 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1061 else
1062 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1063 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1064 }
1065
1066 #if 0
1067 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1068 #endif
1069 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1070
1071 /* Enable status unit. */
1072 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1073
1074 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1075 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1076 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1077
1078 msk_update_int_mod(sc, 0);
1079 }
1080
1081 static int
1082 msk_probe(device_t parent, cfdata_t match, void *aux)
1083 {
1084 struct skc_attach_args *sa = aux;
1085
1086 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1087 return 0;
1088
1089 switch (sa->skc_type) {
1090 case SK_YUKON_XL:
1091 case SK_YUKON_EC_U:
1092 case SK_YUKON_EX:
1093 case SK_YUKON_EC:
1094 case SK_YUKON_FE:
1095 case SK_YUKON_FE_P:
1096 case SK_YUKON_SUPR:
1097 case SK_YUKON_ULTRA2:
1098 case SK_YUKON_OPTIMA:
1099 case SK_YUKON_PRM:
1100 case SK_YUKON_OPTIMA2:
1101 return 1;
1102 }
1103
1104 return 0;
1105 }
1106
1107 static void
1108 msk_reset(struct sk_if_softc *sc_if)
1109 {
1110 /* GMAC and GPHY Reset */
1111 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1112 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1113 DELAY(1000);
1114 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1115 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1116 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1117 }
1118
1119 static bool
1120 msk_resume(device_t dv, const pmf_qual_t *qual)
1121 {
1122 struct sk_if_softc *sc_if = device_private(dv);
1123
1124 msk_init_yukon(sc_if);
1125 return true;
1126 }
1127
1128 /*
1129 * Each XMAC chip is attached as a separate logical IP interface.
1130 * Single port cards will have only one logical interface of course.
1131 */
1132 static void
1133 msk_attach(device_t parent, device_t self, void *aux)
1134 {
1135 struct sk_if_softc *sc_if = device_private(self);
1136 struct sk_softc *sc = device_private(parent);
1137 struct skc_attach_args *sa = aux;
1138 struct ifnet *ifp;
1139 struct mii_data * const mii = &sc_if->sk_mii;
1140 void *kva;
1141 int i;
1142 uint32_t chunk;
1143 int mii_flags;
1144
1145 sc_if->sk_dev = self;
1146 sc_if->sk_port = sa->skc_port;
1147 sc_if->sk_softc = sc;
1148 sc->sk_if[sa->skc_port] = sc_if;
1149
1150 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1151
1152 /*
1153 * Get station address for this interface. Note that
1154 * dual port cards actually come with three station
1155 * addresses: one for each port, plus an extra. The
1156 * extra one is used by the SysKonnect driver software
1157 * as a 'virtual' station address for when both ports
1158 * are operating in failover mode. Currently we don't
1159 * use this extra address.
1160 */
1161 for (i = 0; i < ETHER_ADDR_LEN; i++)
1162 sc_if->sk_enaddr[i] =
1163 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1164
1165 aprint_normal(": Ethernet address %s\n",
1166 ether_sprintf(sc_if->sk_enaddr));
1167
1168 /*
1169 * Set up RAM buffer addresses. The Yukon2 has a small amount
1170 * of SRAM on it, somewhere between 4K and 48K. We need to
1171 * divide this up between the transmitter and receiver. We
1172 * give the receiver 2/3 of the memory (rounded down), and the
1173 * transmitter whatever remains.
1174 */
1175 if (sc->sk_ramsize) {
1176 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1177 sc_if->sk_rx_ramstart = 0;
1178 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1179 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1180 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1181 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1182
1183 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1184 " tx_ramstart=%#x tx_ramend=%#x\n",
1185 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1186 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1187 }
1188
1189 /* Allocate the descriptor queues. */
1190 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1191 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1192 BUS_DMA_NOWAIT)) {
1193 aprint_error(": can't alloc rx buffers\n");
1194 goto fail;
1195 }
1196 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1197 sc_if->sk_ring_nseg,
1198 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1199 aprint_error(": can't map dma buffers (%zu bytes)\n",
1200 sizeof(struct msk_ring_data));
1201 goto fail_1;
1202 }
1203 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1204 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1205 &sc_if->sk_ring_map)) {
1206 aprint_error(": can't create dma map\n");
1207 goto fail_2;
1208 }
1209 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1210 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1211 aprint_error(": can't load dma map\n");
1212 goto fail_3;
1213 }
1214 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1215 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1216
1217 if (sc->sk_type != SK_YUKON_FE &&
1218 sc->sk_type != SK_YUKON_FE_P)
1219 sc_if->sk_pktlen = SK_JLEN;
1220 else
1221 sc_if->sk_pktlen = MCLBYTES;
1222
1223 /* Try to allocate memory for jumbo buffers. */
1224 if (msk_alloc_jumbo_mem(sc_if)) {
1225 aprint_error(": jumbo buffer allocation failed\n");
1226 goto fail_3;
1227 }
1228
1229 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1230 if (sc->sk_type != SK_YUKON_FE &&
1231 sc->sk_type != SK_YUKON_FE_P)
1232 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1233
1234 ifp = &sc_if->sk_ethercom.ec_if;
1235 ifp->if_softc = sc_if;
1236 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1237 ifp->if_ioctl = msk_ioctl;
1238 ifp->if_start = msk_start;
1239 ifp->if_stop = msk_stop;
1240 ifp->if_init = msk_init;
1241 ifp->if_watchdog = msk_watchdog;
1242 ifp->if_baudrate = 1000000000;
1243 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1244 IFQ_SET_READY(&ifp->if_snd);
1245 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1246
1247 msk_reset(sc_if);
1248
1249 /*
1250 * Do miibus setup.
1251 */
1252 DPRINTFN(2, ("msk_attach: 1\n"));
1253
1254 mii->mii_ifp = ifp;
1255 mii->mii_readreg = msk_miibus_readreg;
1256 mii->mii_writereg = msk_miibus_writereg;
1257 mii->mii_statchg = msk_miibus_statchg;
1258
1259 sc_if->sk_ethercom.ec_mii = mii;
1260 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1261 mii_flags = MIIF_DOPAUSE;
1262 if (sc->sk_fibertype)
1263 mii_flags |= MIIF_HAVEFIBER;
1264 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1265 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1266 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1267 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1268 0, NULL);
1269 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1270 } else
1271 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1272
1273 callout_init(&sc_if->sk_tick_ch, 0);
1274 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1275 callout_schedule(&sc_if->sk_tick_ch, hz);
1276
1277 callout_init(&sc_if->sk_tick_rx, 0);
1278 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1279
1280 /*
1281 * Call MI attach routines.
1282 */
1283 if_attach(ifp);
1284 if_deferred_start_init(ifp, NULL);
1285 ether_ifattach(ifp, sc_if->sk_enaddr);
1286
1287 if (pmf_device_register(self, NULL, msk_resume))
1288 pmf_class_network_register(self, ifp);
1289 else
1290 aprint_error_dev(self, "couldn't establish power handler\n");
1291
1292 if (sc->rnd_attached++ == 0) {
1293 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1294 RND_TYPE_NET, RND_FLAG_DEFAULT);
1295 }
1296
1297 DPRINTFN(2, ("msk_attach: end\n"));
1298 return;
1299
1300 fail_3:
1301 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1302 fail_2:
1303 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1304 fail_1:
1305 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1306 fail:
1307 sc->sk_if[sa->skc_port] = NULL;
1308 }
1309
1310 static int
1311 msk_detach(device_t self, int flags)
1312 {
1313 struct sk_if_softc *sc_if = device_private(self);
1314 struct sk_softc *sc = sc_if->sk_softc;
1315 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1316
1317 if (sc->sk_if[sc_if->sk_port] == NULL)
1318 return 0;
1319
1320 msk_stop(ifp, 1);
1321
1322 if (--sc->rnd_attached == 0)
1323 rnd_detach_source(&sc->rnd_source);
1324
1325 callout_halt(&sc_if->sk_tick_ch, NULL);
1326 callout_destroy(&sc_if->sk_tick_ch);
1327
1328 callout_halt(&sc_if->sk_tick_rx, NULL);
1329 callout_destroy(&sc_if->sk_tick_rx);
1330
1331 /* Detach any PHYs we might have. */
1332 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1333 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1334
1335 /* Delete any remaining media. */
1336 ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY);
1337
1338 pmf_device_deregister(self);
1339
1340 ether_ifdetach(ifp);
1341 if_detach(ifp);
1342
1343 msk_free_jumbo_mem(sc_if);
1344
1345 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1346 sizeof(struct msk_ring_data));
1347 bus_dmamem_free(sc->sc_dmatag,
1348 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1349 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1350 sc->sk_if[sc_if->sk_port] = NULL;
1351
1352 return 0;
1353 }
1354
1355 static int
1356 mskcprint(void *aux, const char *pnp)
1357 {
1358 struct skc_attach_args *sa = aux;
1359
1360 if (pnp)
1361 aprint_normal("msk port %c at %s",
1362 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1363 else
1364 aprint_normal(" port %c",
1365 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1366 return UNCONF;
1367 }
1368
1369 /*
1370 * Attach the interface. Allocate softc structures, do ifmedia
1371 * setup and ethernet/BPF attach.
1372 */
1373 static void
1374 mskc_attach(device_t parent, device_t self, void *aux)
1375 {
1376 struct sk_softc *sc = device_private(self);
1377 struct pci_attach_args *pa = aux;
1378 struct skc_attach_args skca;
1379 pci_chipset_tag_t pc = pa->pa_pc;
1380 pcireg_t command, memtype;
1381 const char *intrstr = NULL;
1382 int rc, sk_nodenum;
1383 uint8_t hw, pmd;
1384 const char *revstr = NULL;
1385 const struct sysctlnode *node;
1386 void *kva;
1387 char intrbuf[PCI_INTRSTR_LEN];
1388
1389 DPRINTFN(2, ("begin mskc_attach\n"));
1390
1391 sc->sk_dev = self;
1392 /*
1393 * Handle power management nonsense.
1394 */
1395 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1396
1397 if (command == 0x01) {
1398 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1399 if (command & SK_PSTATE_MASK) {
1400 uint32_t iobase, membase, irq;
1401
1402 /* Save important PCI config data. */
1403 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1404 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1405 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1406
1407 /* Reset the power state. */
1408 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1409 "mode -- setting to D0\n",
1410 command & SK_PSTATE_MASK);
1411 command &= 0xFFFFFFFC;
1412 pci_conf_write(pc, pa->pa_tag,
1413 SK_PCI_PWRMGMTCTRL, command);
1414
1415 /* Restore PCI config data. */
1416 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1417 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1418 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1419 }
1420 }
1421
1422 /*
1423 * Map control/status registers.
1424 */
1425 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1426 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1427 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1428 aprint_error(": can't map mem space\n");
1429 return;
1430 }
1431
1432 if (pci_dma64_available(pa))
1433 sc->sc_dmatag = pa->pa_dmat64;
1434 else
1435 sc->sc_dmatag = pa->pa_dmat;
1436
1437 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1438 command |= PCI_COMMAND_MASTER_ENABLE;
1439 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1440
1441 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1442 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1443
1444 /* bail out here if chip is not recognized */
1445 if (!(SK_IS_YUKON2(sc))) {
1446 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1447 goto fail_1;
1448 }
1449 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1450
1451 /* Allocate interrupt */
1452 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1453 aprint_error(": couldn't map interrupt\n");
1454 goto fail_1;
1455 }
1456
1457 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1458 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1459 msk_intr, sc, device_xname(sc->sk_dev));
1460 if (sc->sk_intrhand == NULL) {
1461 aprint_error(": couldn't establish interrupt");
1462 if (intrstr != NULL)
1463 aprint_error(" at %s", intrstr);
1464 aprint_error("\n");
1465 goto fail_1;
1466 }
1467 sc->sk_pc = pc;
1468
1469 if (bus_dmamem_alloc(sc->sc_dmatag,
1470 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1471 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1472 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1473 aprint_error(": can't alloc status buffers\n");
1474 goto fail_2;
1475 }
1476
1477 if (bus_dmamem_map(sc->sc_dmatag,
1478 &sc->sk_status_seg, sc->sk_status_nseg,
1479 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1480 &kva, BUS_DMA_NOWAIT)) {
1481 aprint_error(": can't map dma buffers (%zu bytes)\n",
1482 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1483 goto fail_3;
1484 }
1485 if (bus_dmamap_create(sc->sc_dmatag,
1486 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1487 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1488 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1489 aprint_error(": can't create dma map\n");
1490 goto fail_4;
1491 }
1492 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1493 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1494 NULL, BUS_DMA_NOWAIT)) {
1495 aprint_error(": can't load dma map\n");
1496 goto fail_5;
1497 }
1498 sc->sk_status_ring = (struct msk_status_desc *)kva;
1499
1500 sc->sk_int_mod = SK_IM_DEFAULT;
1501 sc->sk_int_mod_pending = 0;
1502
1503 /* Reset the adapter. */
1504 mskc_reset(sc);
1505
1506 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1507 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1508
1509 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1510 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1511 sc->sk_fibertype = 1;
1512
1513 switch (sc->sk_type) {
1514 case SK_YUKON_XL:
1515 sc->sk_name = "Yukon-2 XL";
1516 break;
1517 case SK_YUKON_EC_U:
1518 sc->sk_name = "Yukon-2 EC Ultra";
1519 break;
1520 case SK_YUKON_EX:
1521 sc->sk_name = "Yukon-2 Extreme";
1522 break;
1523 case SK_YUKON_EC:
1524 sc->sk_name = "Yukon-2 EC";
1525 break;
1526 case SK_YUKON_FE:
1527 sc->sk_name = "Yukon-2 FE";
1528 break;
1529 case SK_YUKON_FE_P:
1530 sc->sk_name = "Yukon-2 FE+";
1531 break;
1532 case SK_YUKON_SUPR:
1533 sc->sk_name = "Yukon-2 Supreme";
1534 break;
1535 case SK_YUKON_ULTRA2:
1536 sc->sk_name = "Yukon-2 Ultra 2";
1537 break;
1538 case SK_YUKON_OPTIMA:
1539 sc->sk_name = "Yukon-2 Optima";
1540 break;
1541 case SK_YUKON_PRM:
1542 sc->sk_name = "Yukon-2 Optima Prime";
1543 break;
1544 case SK_YUKON_OPTIMA2:
1545 sc->sk_name = "Yukon-2 Optima 2";
1546 break;
1547 default:
1548 sc->sk_name = "Yukon (Unknown)";
1549 }
1550
1551 if (sc->sk_type == SK_YUKON_XL) {
1552 switch (sc->sk_rev) {
1553 case SK_YUKON_XL_REV_A0:
1554 revstr = "A0";
1555 break;
1556 case SK_YUKON_XL_REV_A1:
1557 revstr = "A1";
1558 break;
1559 case SK_YUKON_XL_REV_A2:
1560 revstr = "A2";
1561 break;
1562 case SK_YUKON_XL_REV_A3:
1563 revstr = "A3";
1564 break;
1565 default:
1566 break;
1567 }
1568 }
1569
1570 if (sc->sk_type == SK_YUKON_EC) {
1571 switch (sc->sk_rev) {
1572 case SK_YUKON_EC_REV_A1:
1573 revstr = "A1";
1574 break;
1575 case SK_YUKON_EC_REV_A2:
1576 revstr = "A2";
1577 break;
1578 case SK_YUKON_EC_REV_A3:
1579 revstr = "A3";
1580 break;
1581 default:
1582 break;
1583 }
1584 }
1585
1586 if (sc->sk_type == SK_YUKON_FE) {
1587 switch (sc->sk_rev) {
1588 case SK_YUKON_FE_REV_A1:
1589 revstr = "A1";
1590 break;
1591 case SK_YUKON_FE_REV_A2:
1592 revstr = "A2";
1593 break;
1594 default:
1595 break;
1596 }
1597 }
1598
1599 if (sc->sk_type == SK_YUKON_EC_U) {
1600 switch (sc->sk_rev) {
1601 case SK_YUKON_EC_U_REV_A0:
1602 revstr = "A0";
1603 break;
1604 case SK_YUKON_EC_U_REV_A1:
1605 revstr = "A1";
1606 break;
1607 case SK_YUKON_EC_U_REV_B0:
1608 revstr = "B0";
1609 break;
1610 case SK_YUKON_EC_U_REV_B1:
1611 revstr = "B1";
1612 break;
1613 default:
1614 break;
1615 }
1616 }
1617
1618 if (sc->sk_type == SK_YUKON_FE) {
1619 switch (sc->sk_rev) {
1620 case SK_YUKON_FE_REV_A1:
1621 revstr = "A1";
1622 break;
1623 case SK_YUKON_FE_REV_A2:
1624 revstr = "A2";
1625 break;
1626 default:
1627 ;
1628 }
1629 }
1630
1631 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1632 revstr = "A0";
1633
1634 if (sc->sk_type == SK_YUKON_EX) {
1635 switch (sc->sk_rev) {
1636 case SK_YUKON_EX_REV_A0:
1637 revstr = "A0";
1638 break;
1639 case SK_YUKON_EX_REV_B0:
1640 revstr = "B0";
1641 break;
1642 default:
1643 ;
1644 }
1645 }
1646
1647 if (sc->sk_type == SK_YUKON_SUPR) {
1648 switch (sc->sk_rev) {
1649 case SK_YUKON_SUPR_REV_A0:
1650 revstr = "A0";
1651 break;
1652 case SK_YUKON_SUPR_REV_B0:
1653 revstr = "B0";
1654 break;
1655 case SK_YUKON_SUPR_REV_B1:
1656 revstr = "B1";
1657 break;
1658 default:
1659 ;
1660 }
1661 }
1662
1663 if (sc->sk_type == SK_YUKON_PRM) {
1664 switch (sc->sk_rev) {
1665 case SK_YUKON_PRM_REV_Z1:
1666 revstr = "Z1";
1667 break;
1668 case SK_YUKON_PRM_REV_A0:
1669 revstr = "A0";
1670 break;
1671 default:
1672 ;
1673 }
1674 }
1675
1676 /* Announce the product name. */
1677 aprint_normal(", %s", sc->sk_name);
1678 if (revstr != NULL)
1679 aprint_normal(" rev. %s", revstr);
1680 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1681
1682 sc->sk_macs = 1;
1683
1684 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1685 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1686 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1687 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1688 sc->sk_macs++;
1689 }
1690
1691 skca.skc_port = SK_PORT_A;
1692 skca.skc_type = sc->sk_type;
1693 skca.skc_rev = sc->sk_rev;
1694 (void)config_found(sc->sk_dev, &skca, mskcprint);
1695
1696 if (sc->sk_macs > 1) {
1697 skca.skc_port = SK_PORT_B;
1698 skca.skc_type = sc->sk_type;
1699 skca.skc_rev = sc->sk_rev;
1700 (void)config_found(sc->sk_dev, &skca, mskcprint);
1701 }
1702
1703 /* Turn on the 'driver is loaded' LED. */
1704 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1705
1706 /* skc sysctl setup */
1707
1708 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1709 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1710 SYSCTL_DESCR("mskc per-controller controls"),
1711 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1712 CTL_EOL)) != 0) {
1713 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1714 goto fail_6;
1715 }
1716
1717 sk_nodenum = node->sysctl_num;
1718
1719 /* interrupt moderation time in usecs */
1720 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1721 CTLFLAG_READWRITE,
1722 CTLTYPE_INT, "int_mod",
1723 SYSCTL_DESCR("msk interrupt moderation timer"),
1724 msk_sysctl_handler, 0, (void *)sc,
1725 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1726 CTL_EOL)) != 0) {
1727 aprint_normal_dev(sc->sk_dev,
1728 "couldn't create int_mod sysctl node\n");
1729 goto fail_6;
1730 }
1731
1732 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1733 aprint_error_dev(self, "couldn't establish power handler\n");
1734
1735 return;
1736
1737 fail_6:
1738 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1739 fail_4:
1740 bus_dmamem_unmap(sc->sc_dmatag, kva,
1741 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1742 fail_3:
1743 bus_dmamem_free(sc->sc_dmatag,
1744 &sc->sk_status_seg, sc->sk_status_nseg);
1745 sc->sk_status_nseg = 0;
1746 fail_5:
1747 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1748 fail_2:
1749 pci_intr_disestablish(pc, sc->sk_intrhand);
1750 sc->sk_intrhand = NULL;
1751 fail_1:
1752 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1753 sc->sk_bsize = 0;
1754 }
1755
1756 static int
1757 mskc_detach(device_t self, int flags)
1758 {
1759 struct sk_softc *sc = device_private(self);
1760 int rv;
1761
1762 if (sc->sk_intrhand) {
1763 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1764 sc->sk_intrhand = NULL;
1765 }
1766
1767 if (sc->sk_pihp != NULL) {
1768 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1769 sc->sk_pihp = NULL;
1770 }
1771
1772 rv = config_detach_children(self, flags);
1773 if (rv != 0)
1774 return rv;
1775
1776 if (sc->sk_status_nseg > 0) {
1777 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1778 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1779 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1780 bus_dmamem_free(sc->sc_dmatag,
1781 &sc->sk_status_seg, sc->sk_status_nseg);
1782 }
1783
1784 if (sc->sk_bsize > 0)
1785 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1786
1787 return 0;
1788 }
1789
1790 static int
1791 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1792 {
1793 struct sk_softc *sc = sc_if->sk_softc;
1794 struct msk_tx_desc *f = NULL;
1795 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1796 uint32_t entries = 0;
1797 size_t i;
1798 struct sk_txmap_entry *entry;
1799 bus_dmamap_t txmap;
1800 bus_addr_t addr;
1801
1802 DPRINTFN(2, ("msk_encap\n"));
1803
1804 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1805 if (entry == NULL) {
1806 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1807 return ENOBUFS;
1808 }
1809 txmap = entry->dmamap;
1810
1811 cur = frag = *txidx;
1812
1813 #ifdef MSK_DEBUG
1814 if (mskdebug >= 2)
1815 msk_dump_mbuf(m_head);
1816 #endif
1817
1818 /*
1819 * Start packing the mbufs in this chain into
1820 * the fragment pointers. Stop when we run out
1821 * of fragments or hit the end of the mbuf chain.
1822 */
1823 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1824 BUS_DMA_NOWAIT)) {
1825 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1826 return ENOBUFS;
1827 }
1828
1829 /* Count how many tx descriptors needed. */
1830 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1831 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1832 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1833 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1834 total++;
1835 }
1836 total++;
1837 }
1838
1839 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1840 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1841 bus_dmamap_unload(sc->sc_dmatag, txmap);
1842 return ENOBUFS;
1843 }
1844
1845 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1846 txmap->dm_nsegs, total));
1847
1848 /* Sync the DMA map. */
1849 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1850 BUS_DMASYNC_PREWRITE);
1851
1852 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1853 for (i = 0; i < txmap->dm_nsegs; i++) {
1854 addr = txmap->dm_segs[i].ds_addr;
1855 DPRINTFN(2, ("msk_encap: addr %llx\n",
1856 (unsigned long long)addr));
1857 hiaddr = MSK_ADDR_HI(addr);
1858
1859 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1860 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1861 f->sk_addr = htole32(hiaddr);
1862 f->sk_len = 0;
1863 f->sk_ctl = 0;
1864 if (i == 0)
1865 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1866 else
1867 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1868 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1869 SK_INC(frag, MSK_TX_RING_CNT);
1870 entries++;
1871 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1872 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1873 }
1874
1875 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1876 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1877 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1878 f->sk_ctl = 0;
1879 if (i == 0) {
1880 if (hiaddr != old_hiaddr)
1881 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1882 else
1883 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1884 } else
1885 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1886 cur = frag;
1887 SK_INC(frag, MSK_TX_RING_CNT);
1888 entries++;
1889 }
1890 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1891
1892 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1893 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1894
1895 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1896 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1897
1898 /* Sync descriptors before handing to chip */
1899 MSK_CDTXSYNC(sc_if, *txidx, entries,
1900 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1901
1902 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1903
1904 /* Sync first descriptor to hand it off */
1905 MSK_CDTXSYNC(sc_if, *txidx, 1,
1906 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1907
1908 sc_if->sk_cdata.sk_tx_cnt += entries;
1909
1910 #ifdef MSK_DEBUG
1911 if (mskdebug >= 2) {
1912 struct msk_tx_desc *le;
1913 uint32_t idx;
1914 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1915 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1916 msk_dump_txdesc(le, idx);
1917 }
1918 }
1919 #endif
1920
1921 *txidx = frag;
1922
1923 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1924
1925 return 0;
1926 }
1927
1928 static void
1929 msk_start(struct ifnet *ifp)
1930 {
1931 struct sk_if_softc *sc_if = ifp->if_softc;
1932 struct mbuf *m_head = NULL;
1933 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1934 int pkts = 0;
1935
1936 DPRINTFN(2, ("msk_start\n"));
1937
1938 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1939 IFQ_POLL(&ifp->if_snd, m_head);
1940 if (m_head == NULL)
1941 break;
1942
1943 /*
1944 * Pack the data into the transmit ring. If we
1945 * don't have room, set the OACTIVE flag and wait
1946 * for the NIC to drain the ring.
1947 */
1948 if (msk_encap(sc_if, m_head, &idx)) {
1949 ifp->if_flags |= IFF_OACTIVE;
1950 break;
1951 }
1952
1953 /* now we are committed to transmit the packet */
1954 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1955 pkts++;
1956
1957 /*
1958 * If there's a BPF listener, bounce a copy of this frame
1959 * to him.
1960 */
1961 bpf_mtap(ifp, m_head, BPF_D_OUT);
1962 }
1963 if (pkts == 0)
1964 return;
1965
1966 /* Transmit */
1967 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1968 sc_if->sk_cdata.sk_tx_prod = idx;
1969 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1970
1971 /* Set a timeout in case the chip goes out to lunch. */
1972 ifp->if_timer = 5;
1973 }
1974 }
1975
1976 static void
1977 msk_watchdog(struct ifnet *ifp)
1978 {
1979 struct sk_if_softc *sc_if = ifp->if_softc;
1980
1981 /*
1982 * Reclaim first as there is a possibility of losing Tx completion
1983 * interrupts.
1984 */
1985 msk_txeof(sc_if);
1986 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1987 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1988
1989 ifp->if_oerrors++;
1990
1991 /* XXX Resets both ports; we shouldn't do that. */
1992 mskc_reset(sc_if->sk_softc);
1993 msk_reset(sc_if);
1994 msk_init(ifp);
1995 }
1996 }
1997
1998 static bool
1999 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2000 {
2001 struct sk_softc *sc = device_private(dv);
2002
2003 DPRINTFN(2, ("mskc_suspend\n"));
2004
2005 /* Turn off the 'driver is loaded' LED. */
2006 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2007
2008 return true;
2009 }
2010
2011 static bool
2012 mskc_resume(device_t dv, const pmf_qual_t *qual)
2013 {
2014 struct sk_softc *sc = device_private(dv);
2015
2016 DPRINTFN(2, ("mskc_resume\n"));
2017
2018 mskc_reset(sc);
2019 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2020
2021 return true;
2022 }
2023
2024 static __inline int
2025 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2026 {
2027 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2028 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2029 YU_RXSTAT_JABBER)) != 0 ||
2030 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2031 YU_RXSTAT_BYTES(stat) != len)
2032 return 0;
2033
2034 return 1;
2035 }
2036
2037 static void
2038 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2039 {
2040 struct sk_softc *sc = sc_if->sk_softc;
2041 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2042 struct mbuf *m;
2043 unsigned cur, prod, tail, total_len = len;
2044 bus_dmamap_t dmamap;
2045
2046 cur = sc_if->sk_cdata.sk_rx_cons;
2047 prod = sc_if->sk_cdata.sk_rx_prod;
2048
2049 /* Sync the descriptor */
2050 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2051
2052 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2053 sc_if->sk_cdata.sk_rx_cnt));
2054
2055 while (prod != cur) {
2056 tail = cur;
2057 SK_INC(cur, MSK_RX_RING_CNT);
2058
2059 sc_if->sk_cdata.sk_rx_cnt--;
2060 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2061 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2062 if (m != NULL)
2063 break; /* found it */
2064 }
2065 sc_if->sk_cdata.sk_rx_cons = cur;
2066 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2067 sc_if->sk_cdata.sk_rx_cnt, m));
2068
2069 if (m == NULL)
2070 return;
2071
2072 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2073
2074 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2075 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2076
2077 if (total_len < SK_MIN_FRAMELEN ||
2078 total_len > ETHER_MAX_LEN_JUMBO ||
2079 msk_rxvalid(sc, rxstat, total_len) == 0) {
2080 ifp->if_ierrors++;
2081 m_freem(m);
2082 return;
2083 }
2084
2085 m_set_rcvif(m, ifp);
2086 m->m_pkthdr.len = m->m_len = total_len;
2087
2088 /* pass it on. */
2089 if_percpuq_enqueue(ifp->if_percpuq, m);
2090 }
2091
2092 static void
2093 msk_txeof(struct sk_if_softc *sc_if)
2094 {
2095 struct sk_softc *sc = sc_if->sk_softc;
2096 struct msk_tx_desc *cur_tx;
2097 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2098 uint32_t idx, reg, sk_ctl;
2099 struct sk_txmap_entry *entry;
2100
2101 DPRINTFN(2, ("msk_txeof\n"));
2102
2103 if (sc_if->sk_port == SK_PORT_A)
2104 reg = SK_STAT_BMU_TXA1_RIDX;
2105 else
2106 reg = SK_STAT_BMU_TXA2_RIDX;
2107
2108 /*
2109 * Go through our tx ring and free mbufs for those
2110 * frames that have been sent.
2111 */
2112 idx = sc_if->sk_cdata.sk_tx_cons;
2113 while (idx != sk_win_read_2(sc, reg)) {
2114 MSK_CDTXSYNC(sc_if, idx, 1,
2115 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2116
2117 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2118 sk_ctl = cur_tx->sk_ctl;
2119 #ifdef MSK_DEBUG
2120 if (mskdebug >= 2)
2121 msk_dump_txdesc(cur_tx, idx);
2122 #endif
2123 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2124 ifp->if_opackets++;
2125 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2126 entry = sc_if->sk_cdata.sk_tx_map[idx];
2127
2128 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2129 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2130
2131 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2132 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2133 link);
2134 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2135 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2136 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2137 }
2138 sc_if->sk_cdata.sk_tx_cnt--;
2139 SK_INC(idx, MSK_TX_RING_CNT);
2140 }
2141 if (idx == sc_if->sk_cdata.sk_tx_cons)
2142 return;
2143
2144 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2145
2146 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2147 ifp->if_flags &= ~IFF_OACTIVE;
2148
2149 sc_if->sk_cdata.sk_tx_cons = idx;
2150 }
2151
2152 static void
2153 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2154 {
2155 /* Make sure to not completely wrap around */
2156 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2157 if (msk_newbuf(sc_if,
2158 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2159 goto schedretry;
2160 }
2161 }
2162
2163 return;
2164
2165 schedretry:
2166 /* Try later */
2167 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2168 }
2169
2170 static void
2171 msk_fill_rx_tick(void *xsc_if)
2172 {
2173 struct sk_if_softc *sc_if = xsc_if;
2174 int s, rx_prod;
2175
2176 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2177
2178 s = splnet();
2179 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2180 msk_fill_rx_ring(sc_if);
2181 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2182 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2183 sc_if->sk_cdata.sk_rx_prod);
2184 }
2185 splx(s);
2186 }
2187
2188 static void
2189 msk_tick(void *xsc_if)
2190 {
2191 struct sk_if_softc *sc_if = xsc_if;
2192 struct mii_data *mii = &sc_if->sk_mii;
2193 int s;
2194
2195 s = splnet();
2196 mii_tick(mii);
2197 splx(s);
2198
2199 callout_schedule(&sc_if->sk_tick_ch, hz);
2200 }
2201
2202 static void
2203 msk_intr_yukon(struct sk_if_softc *sc_if)
2204 {
2205 uint8_t status;
2206
2207 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2208 /* RX overrun */
2209 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2210 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2211 SK_RFCTL_RX_FIFO_OVER);
2212 }
2213 /* TX underrun */
2214 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2215 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2216 SK_TFCTL_TX_FIFO_UNDER);
2217 }
2218
2219 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2220 }
2221
2222 static int
2223 msk_intr(void *xsc)
2224 {
2225 struct sk_softc *sc = xsc;
2226 struct sk_if_softc *sc_if;
2227 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2228 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2229 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2230 int claimed = 0;
2231 uint32_t status;
2232 struct msk_status_desc *cur_st;
2233
2234 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2235 if (status == 0xffffffff)
2236 return 0;
2237 if (status == 0) {
2238 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2239 return 0;
2240 }
2241
2242 status = CSR_READ_4(sc, SK_ISR);
2243
2244 if (sc_if0 != NULL)
2245 ifp0 = &sc_if0->sk_ethercom.ec_if;
2246 if (sc_if1 != NULL)
2247 ifp1 = &sc_if1->sk_ethercom.ec_if;
2248
2249 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2250 (ifp0->if_flags & IFF_RUNNING)) {
2251 msk_intr_yukon(sc_if0);
2252 }
2253
2254 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2255 (ifp1->if_flags & IFF_RUNNING)) {
2256 msk_intr_yukon(sc_if1);
2257 }
2258
2259 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2260 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2261 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2262
2263 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2264 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2265 switch (cur_st->sk_opcode) {
2266 case SK_Y2_STOPC_RXSTAT:
2267 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2268 if (sc_if) {
2269 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2270 letoh32(cur_st->sk_status));
2271 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2272 msk_fill_rx_tick(sc_if);
2273 }
2274 break;
2275 case SK_Y2_STOPC_TXSTAT:
2276 if (sc_if0)
2277 msk_txeof(sc_if0);
2278 if (sc_if1)
2279 msk_txeof(sc_if1);
2280 break;
2281 default:
2282 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2283 break;
2284 }
2285 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2286
2287 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2288 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2289 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2290 }
2291
2292 if (status & SK_Y2_IMR_BMU) {
2293 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2294 claimed = 1;
2295 }
2296
2297 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2298
2299 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2300 if_schedule_deferred_start(ifp0);
2301 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2302 if_schedule_deferred_start(ifp1);
2303
2304 KASSERT(sc->rnd_attached > 0);
2305 rnd_add_uint32(&sc->rnd_source, status);
2306
2307 if (sc->sk_int_mod_pending)
2308 msk_update_int_mod(sc, 1);
2309
2310 return claimed;
2311 }
2312
2313 static void
2314 msk_init_yukon(struct sk_if_softc *sc_if)
2315 {
2316 uint32_t v;
2317 uint16_t reg;
2318 struct sk_softc *sc;
2319 int i;
2320
2321 sc = sc_if->sk_softc;
2322
2323 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2324 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2325
2326 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2327
2328 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2329 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2330
2331 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2332
2333 /* unused read of the interrupt source register */
2334 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2335 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2336
2337 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2338 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2339 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2340
2341 /* MIB Counter Clear Mode set */
2342 reg |= YU_PAR_MIB_CLR;
2343 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2344 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2345 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2346
2347 /* MIB Counter Clear Mode clear */
2348 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2349 reg &= ~YU_PAR_MIB_CLR;
2350 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2351
2352 /* receive control reg */
2353 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2354 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2355
2356 /* transmit control register */
2357 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2358
2359 /* transmit flow control register */
2360 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2361
2362 /* transmit parameter register */
2363 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2364 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2365 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2366
2367 /* serial mode register */
2368 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2369 reg = YU_SMR_DATA_BLIND(0x1c) |
2370 YU_SMR_MFL_VLAN |
2371 YU_SMR_IPG_DATA(0x1e);
2372
2373 if (sc->sk_type != SK_YUKON_FE &&
2374 sc->sk_type != SK_YUKON_FE_P)
2375 reg |= YU_SMR_MFL_JUMBO;
2376
2377 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2378
2379 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2380 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2381 /* msk_attach calls me before ether_ifattach so check null */
2382 if (ifp != NULL && ifp->if_sadl != NULL)
2383 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2384 sizeof(sc_if->sk_enaddr));
2385 /* Setup Yukon's address */
2386 for (i = 0; i < 3; i++) {
2387 /* Write Source Address 1 (unicast filter) */
2388 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2389 sc_if->sk_enaddr[i * 2] |
2390 sc_if->sk_enaddr[i * 2 + 1] << 8);
2391 }
2392
2393 for (i = 0; i < 3; i++) {
2394 reg = sk_win_read_2(sc_if->sk_softc,
2395 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2396 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2397 }
2398
2399 /* Set promiscuous mode */
2400 msk_setpromisc(sc_if);
2401
2402 /* Set multicast filter */
2403 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2404 msk_setmulti(sc_if);
2405
2406 /* enable interrupt mask for counter overflows */
2407 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2408 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2409 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2410 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2411
2412 /* Configure RX MAC FIFO Flush Mask */
2413 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2414 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2415 YU_RXSTAT_JABBER;
2416 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2417
2418 /* Configure RX MAC FIFO */
2419 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2420 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2421 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2422 v |= SK_RFCTL_RX_OVER_ON;
2423 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2424
2425 if ((sc->sk_type == SK_YUKON_FE_P) &&
2426 (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2427 v = 0x178; /* Magic value */
2428 else {
2429 /* Increase flush threshold to 64 bytes */
2430 v = SK_RFCTL_FIFO_THRESHOLD + 1;
2431 }
2432 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2433
2434 /* Configure TX MAC FIFO */
2435 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2436 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2437
2438 if ((sc->sk_type == SK_YUKON_FE_P) &&
2439 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2440 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2441 v &= ~SK_TXEND_WM_ON;
2442 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2443 }
2444
2445 #if 1
2446 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2447 #endif
2448 DPRINTFN(6, ("msk_init_yukon: end\n"));
2449 }
2450
2451 /*
2452 * Note that to properly initialize any part of the GEnesis chip,
2453 * you first have to take it out of reset mode.
2454 */
2455 static int
2456 msk_init(struct ifnet *ifp)
2457 {
2458 struct sk_if_softc *sc_if = ifp->if_softc;
2459 struct sk_softc *sc = sc_if->sk_softc;
2460 int rc = 0, s;
2461 uint32_t imr, imtimer_ticks;
2462
2463
2464 DPRINTFN(2, ("msk_init\n"));
2465
2466 s = splnet();
2467
2468 /* Cancel pending I/O and free all RX/TX buffers. */
2469 msk_stop(ifp, 1);
2470
2471 /* Configure I2C registers */
2472
2473 /* Configure XMAC(s) */
2474 msk_init_yukon(sc_if);
2475 if ((rc = ether_mediachange(ifp)) != 0)
2476 goto out;
2477
2478 /* Configure transmit arbiter(s) */
2479 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2480 #if 0
2481 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2482 #endif
2483
2484 if (sc->sk_ramsize) {
2485 /* Configure RAMbuffers */
2486 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2487 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2488 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2489 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2490 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2491 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2492
2493 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2494 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2495 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2496 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2497 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2498 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2499 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2500 }
2501
2502 /* Configure BMUs */
2503 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2504 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2505 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2506 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2507
2508 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2509 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2510 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2511 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2512
2513 /* Make sure the sync transmit queue is disabled. */
2514 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2515
2516 /* Init descriptors */
2517 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2518 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2519 "memory for rx buffers\n");
2520 msk_stop(ifp, 1);
2521 splx(s);
2522 return ENOBUFS;
2523 }
2524
2525 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2526 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2527 "memory for tx buffers\n");
2528 msk_stop(ifp, 1);
2529 splx(s);
2530 return ENOBUFS;
2531 }
2532
2533 /* Set interrupt moderation if changed via sysctl. */
2534 switch (sc->sk_type) {
2535 case SK_YUKON_EC:
2536 case SK_YUKON_EC_U:
2537 case SK_YUKON_EX:
2538 case SK_YUKON_SUPR:
2539 case SK_YUKON_ULTRA2:
2540 case SK_YUKON_OPTIMA:
2541 case SK_YUKON_PRM:
2542 case SK_YUKON_OPTIMA2:
2543 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2544 break;
2545 case SK_YUKON_FE:
2546 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2547 break;
2548 case SK_YUKON_FE_P:
2549 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2550 break;
2551 case SK_YUKON_XL:
2552 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2553 break;
2554 default:
2555 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2556 }
2557 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2558 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2559 sk_win_write_4(sc, SK_IMTIMERINIT,
2560 SK_IM_USECS(sc->sk_int_mod));
2561 aprint_verbose_dev(sc->sk_dev,
2562 "interrupt moderation is %d us\n", sc->sk_int_mod);
2563 }
2564
2565 /* Initialize prefetch engine. */
2566 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2567 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2568 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2569 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2570 MSK_RX_RING_ADDR(sc_if, 0));
2571 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2572 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2573 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2574 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2575
2576 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2577 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2578 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2579 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2580 MSK_TX_RING_ADDR(sc_if, 0));
2581 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2582 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2583 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2584 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2585
2586 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2587 sc_if->sk_cdata.sk_rx_prod);
2588
2589
2590 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2591 /* Disable flushing of non-ASF packets. */
2592 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2593 SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2594 }
2595
2596 /* Configure interrupt handling */
2597 if (sc_if->sk_port == SK_PORT_A)
2598 sc->sk_intrmask |= SK_Y2_INTRS1;
2599 else
2600 sc->sk_intrmask |= SK_Y2_INTRS2;
2601 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2602 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2603
2604 ifp->if_flags |= IFF_RUNNING;
2605 ifp->if_flags &= ~IFF_OACTIVE;
2606
2607 callout_schedule(&sc_if->sk_tick_ch, hz);
2608
2609 out:
2610 splx(s);
2611 return rc;
2612 }
2613
2614 /*
2615 * Note: the logic of second parameter is inverted compared to OpenBSD
2616 * code, since this code uses the function as if_stop hook too.
2617 */
2618 static void
2619 msk_stop(struct ifnet *ifp, int disable)
2620 {
2621 struct sk_if_softc *sc_if = ifp->if_softc;
2622 struct sk_softc *sc = sc_if->sk_softc;
2623 struct sk_txmap_entry *dma;
2624 int i;
2625
2626 DPRINTFN(2, ("msk_stop\n"));
2627
2628 callout_stop(&sc_if->sk_tick_ch);
2629 callout_stop(&sc_if->sk_tick_rx);
2630
2631 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2632
2633 /* Stop transfer of Tx descriptors */
2634
2635 /* Stop transfer of Rx descriptors */
2636
2637 if (disable) {
2638 /* Turn off various components of this interface. */
2639 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2640 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2641 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2642 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2643 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2644 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2645 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2646 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2647 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2648 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2649 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2650
2651 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2652 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2653
2654 /* Disable interrupts */
2655 if (sc_if->sk_port == SK_PORT_A)
2656 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2657 else
2658 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2659 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2660 }
2661
2662 /* Free RX and TX mbufs still in the queues. */
2663 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2664 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2665 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2666 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2667 }
2668 }
2669
2670 sc_if->sk_cdata.sk_rx_prod = 0;
2671 sc_if->sk_cdata.sk_rx_cons = 0;
2672 sc_if->sk_cdata.sk_rx_cnt = 0;
2673
2674 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2675 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2676 dma = sc_if->sk_cdata.sk_tx_map[i];
2677
2678 bus_dmamap_sync(sc->sc_dmatag, dma->dmamap, 0,
2679 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2680
2681 bus_dmamap_unload(sc->sc_dmatag, dma->dmamap);
2682 #if 1
2683 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2684 sc_if->sk_cdata.sk_tx_map[i], link);
2685 sc_if->sk_cdata.sk_tx_map[i] = 0;
2686 #endif
2687 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2688 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2689 }
2690 }
2691
2692 #if 1
2693 while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
2694 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
2695 bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap);
2696 free(dma, M_DEVBUF);
2697 }
2698 #endif
2699 }
2700
2701 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2702 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2703
2704 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2705 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2706
2707 #ifdef MSK_DEBUG
2708 static void
2709 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2710 {
2711 #define DESC_PRINT(X) \
2712 if (X) \
2713 printf("txdesc[%d]." #X "=%#x\n", \
2714 idx, X);
2715
2716 DESC_PRINT(letoh32(le->sk_addr));
2717 DESC_PRINT(letoh16(le->sk_len));
2718 DESC_PRINT(le->sk_ctl);
2719 DESC_PRINT(le->sk_opcode);
2720 #undef DESC_PRINT
2721 }
2722
2723 static void
2724 msk_dump_bytes(const char *data, int len)
2725 {
2726 int c, i, j;
2727
2728 for (i = 0; i < len; i += 16) {
2729 printf("%08x ", i);
2730 c = len - i;
2731 if (c > 16) c = 16;
2732
2733 for (j = 0; j < c; j++) {
2734 printf("%02x ", data[i + j] & 0xff);
2735 if ((j & 0xf) == 7 && j > 0)
2736 printf(" ");
2737 }
2738
2739 for (; j < 16; j++)
2740 printf(" ");
2741 printf(" ");
2742
2743 for (j = 0; j < c; j++) {
2744 int ch = data[i + j] & 0xff;
2745 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2746 }
2747
2748 printf("\n");
2749
2750 if (c < 16)
2751 break;
2752 }
2753 }
2754
2755 static void
2756 msk_dump_mbuf(struct mbuf *m)
2757 {
2758 int count = m->m_pkthdr.len;
2759
2760 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2761
2762 while (count > 0 && m) {
2763 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2764 m, m->m_data, m->m_len);
2765 if (mskdebug >= 4)
2766 msk_dump_bytes(mtod(m, char *), m->m_len);
2767
2768 count -= m->m_len;
2769 m = m->m_next;
2770 }
2771 }
2772 #endif
2773
2774 static int
2775 msk_sysctl_handler(SYSCTLFN_ARGS)
2776 {
2777 int error, t;
2778 struct sysctlnode node;
2779 struct sk_softc *sc;
2780
2781 node = *rnode;
2782 sc = node.sysctl_data;
2783 t = sc->sk_int_mod;
2784 node.sysctl_data = &t;
2785 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2786 if (error || newp == NULL)
2787 return error;
2788
2789 if (t < SK_IM_MIN || t > SK_IM_MAX)
2790 return EINVAL;
2791
2792 /* update the softc with sysctl-changed value, and mark
2793 for hardware update */
2794 sc->sk_int_mod = t;
2795 sc->sk_int_mod_pending = 1;
2796 return 0;
2797 }
2798
2799 /*
2800 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2801 * set up in mskc_attach()
2802 */
2803 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2804 {
2805 int rc;
2806 const struct sysctlnode *node;
2807
2808 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2809 0, CTLTYPE_NODE, "msk",
2810 SYSCTL_DESCR("msk interface controls"),
2811 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2812 goto err;
2813 }
2814
2815 msk_root_num = node->sysctl_num;
2816 return;
2817
2818 err:
2819 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2820 }
2821