if_msk.c revision 1.99 1 /* $NetBSD: if_msk.c,v 1.99 2020/04/18 17:31:52 jakllsch Exp $ */
2 /* $OpenBSD: if_msk.c,v 1.79 2009/10/15 17:54:56 deraadt Exp $ */
3
4 /*
5 * Copyright (c) 1997, 1998, 1999, 2000
6 * Bill Paul <wpaul (at) ctr.columbia.edu>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
34 *
35 * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $
36 */
37
38 /*
39 * Copyright (c) 2003 Nathan L. Binkert <binkertn (at) umich.edu>
40 *
41 * Permission to use, copy, modify, and distribute this software for any
42 * purpose with or without fee is hereby granted, provided that the above
43 * copyright notice and this permission notice appear in all copies.
44 *
45 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
46 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
47 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
48 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
49 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
50 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
51 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
52 */
53
54 #include <sys/cdefs.h>
55 __KERNEL_RCSID(0, "$NetBSD: if_msk.c,v 1.99 2020/04/18 17:31:52 jakllsch Exp $");
56
57 #include <sys/param.h>
58 #include <sys/systm.h>
59 #include <sys/sockio.h>
60 #include <sys/mbuf.h>
61 #include <sys/malloc.h>
62 #include <sys/mutex.h>
63 #include <sys/kernel.h>
64 #include <sys/socket.h>
65 #include <sys/device.h>
66 #include <sys/queue.h>
67 #include <sys/callout.h>
68 #include <sys/sysctl.h>
69 #include <sys/endian.h>
70 #ifdef __NetBSD__
71 #define letoh16 htole16
72 #define letoh32 htole32
73 #endif
74
75 #include <net/if.h>
76 #include <net/if_dl.h>
77 #include <net/if_types.h>
78
79 #include <net/if_media.h>
80
81 #include <net/bpf.h>
82 #include <sys/rndsource.h>
83
84 #include <dev/mii/mii.h>
85 #include <dev/mii/miivar.h>
86 #include <dev/mii/brgphyreg.h>
87
88 #include <dev/pci/pcireg.h>
89 #include <dev/pci/pcivar.h>
90 #include <dev/pci/pcidevs.h>
91
92 #include <dev/pci/if_skreg.h>
93 #include <dev/pci/if_mskvar.h>
94
95 static int mskc_probe(device_t, cfdata_t, void *);
96 static void mskc_attach(device_t, device_t, void *);
97 static int mskc_detach(device_t, int);
98 static void mskc_reset(struct sk_softc *);
99 static bool mskc_suspend(device_t, const pmf_qual_t *);
100 static bool mskc_resume(device_t, const pmf_qual_t *);
101 static int msk_probe(device_t, cfdata_t, void *);
102 static void msk_attach(device_t, device_t, void *);
103 static int msk_detach(device_t, int);
104 static void msk_reset(struct sk_if_softc *);
105 static int mskcprint(void *, const char *);
106 static int msk_intr(void *);
107 static void msk_intr_yukon(struct sk_if_softc *);
108 static void msk_rxeof(struct sk_if_softc *, uint16_t, uint32_t);
109 static void msk_txeof(struct sk_if_softc *);
110 static int msk_encap(struct sk_if_softc *, struct mbuf *, uint32_t *);
111 static void msk_start(struct ifnet *);
112 static int msk_ioctl(struct ifnet *, u_long, void *);
113 static int msk_init(struct ifnet *);
114 static void msk_init_yukon(struct sk_if_softc *);
115 static void msk_stop(struct ifnet *, int);
116 static void msk_watchdog(struct ifnet *);
117 static int msk_newbuf(struct sk_if_softc *, bus_dmamap_t);
118 static int msk_alloc_jumbo_mem(struct sk_if_softc *);
119 static void *msk_jalloc(struct sk_if_softc *);
120 static void msk_jfree(struct mbuf *, void *, size_t, void *);
121 static int msk_init_rx_ring(struct sk_if_softc *);
122 static int msk_init_tx_ring(struct sk_if_softc *);
123 static void msk_fill_rx_ring(struct sk_if_softc *);
124
125 static void msk_update_int_mod(struct sk_softc *, int);
126
127 static int msk_miibus_readreg(device_t, int, int, uint16_t *);
128 static int msk_miibus_writereg(device_t, int, int, uint16_t);
129 static void msk_miibus_statchg(struct ifnet *);
130
131 static void msk_setmulti(struct sk_if_softc *);
132 static void msk_setpromisc(struct sk_if_softc *);
133 static void msk_tick(void *);
134 static void msk_fill_rx_tick(void *);
135
136 /* #define MSK_DEBUG 1 */
137 #ifdef MSK_DEBUG
138 #define DPRINTF(x) if (mskdebug) printf x
139 #define DPRINTFN(n, x) if (mskdebug >= (n)) printf x
140 int mskdebug = MSK_DEBUG;
141
142 static void msk_dump_txdesc(struct msk_tx_desc *, int);
143 static void msk_dump_mbuf(struct mbuf *);
144 static void msk_dump_bytes(const char *, int);
145 #else
146 #define DPRINTF(x)
147 #define DPRINTFN(n, x)
148 #endif
149
150 static int msk_sysctl_handler(SYSCTLFN_PROTO);
151 static int msk_root_num;
152
153 #define MSK_ADDR_LO(x) ((uint64_t) (x) & 0xffffffffUL)
154 #define MSK_ADDR_HI(x) ((uint64_t) (x) >> 32)
155
156 /* supported device vendors */
157 static const struct msk_product {
158 pci_vendor_id_t msk_vendor;
159 pci_product_id_t msk_product;
160 } msk_products[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX },
162 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 },
163 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX },
164 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T },
165 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021CU },
166 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8021X },
167 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022CU },
168 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8022X },
169 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 },
170 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 },
171 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 },
172 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 },
173 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 },
174 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T },
175 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 },
176 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 },
177 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 },
178 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 },
179 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 },
180 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 },
181 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 },
182 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 },
183 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8057 },
184 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 },
185 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8059 },
186 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061CU },
187 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8061X },
188 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062CU },
189 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKONII_8062X },
190 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 },
191 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 },
192 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 },
193 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 },
194 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8079 },
195 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 },
196 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 },
197 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 },
198 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 },
199 { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 },
200 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9SXX },
201 { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK_9E21 },
202 { 0, 0 }
203 };
204
205 static inline uint32_t
206 sk_win_read_4(struct sk_softc *sc, uint32_t reg)
207 {
208 return CSR_READ_4(sc, reg);
209 }
210
211 static inline uint16_t
212 sk_win_read_2(struct sk_softc *sc, uint32_t reg)
213 {
214 return CSR_READ_2(sc, reg);
215 }
216
217 static inline uint8_t
218 sk_win_read_1(struct sk_softc *sc, uint32_t reg)
219 {
220 return CSR_READ_1(sc, reg);
221 }
222
223 static inline void
224 sk_win_write_4(struct sk_softc *sc, uint32_t reg, uint32_t x)
225 {
226 CSR_WRITE_4(sc, reg, x);
227 }
228
229 static inline void
230 sk_win_write_2(struct sk_softc *sc, uint32_t reg, uint16_t x)
231 {
232 CSR_WRITE_2(sc, reg, x);
233 }
234
235 static inline void
236 sk_win_write_1(struct sk_softc *sc, uint32_t reg, uint8_t x)
237 {
238 CSR_WRITE_1(sc, reg, x);
239 }
240
241 static int
242 msk_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
243 {
244 struct sk_if_softc *sc_if = device_private(dev);
245 uint16_t data;
246 int i;
247
248 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
249 YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
250
251 for (i = 0; i < SK_TIMEOUT; i++) {
252 DELAY(1);
253 data = SK_YU_READ_2(sc_if, YUKON_SMICR);
254 if (data & YU_SMICR_READ_VALID)
255 break;
256 }
257
258 if (i == SK_TIMEOUT) {
259 aprint_error_dev(sc_if->sk_dev, "phy failed to come ready\n");
260 return ETIMEDOUT;
261 }
262
263 DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT));
264
265 *val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
266
267 DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#hx\n",
268 phy, reg, *val));
269
270 return 0;
271 }
272
273 static int
274 msk_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
275 {
276 struct sk_if_softc *sc_if = device_private(dev);
277 int i;
278
279 DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#hx\n",
280 phy, reg, val));
281
282 SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
283 SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
284 YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
285
286 for (i = 0; i < SK_TIMEOUT; i++) {
287 DELAY(1);
288 if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY))
289 break;
290 }
291
292 if (i == SK_TIMEOUT) {
293 aprint_error_dev(sc_if->sk_dev, "phy write timed out\n");
294 return ETIMEDOUT;
295 }
296
297 return 0;
298 }
299
300 static void
301 msk_miibus_statchg(struct ifnet *ifp)
302 {
303 struct sk_if_softc *sc_if = ifp->if_softc;
304 struct mii_data *mii = &sc_if->sk_mii;
305 struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
306 int gpcr;
307
308 gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR);
309 gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN);
310
311 if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO ||
312 sc_if->sk_softc->sk_type == SK_YUKON_FE_P) {
313 /* Set speed. */
314 gpcr |= YU_GPCR_SPEED_DIS;
315 switch (IFM_SUBTYPE(mii->mii_media_active)) {
316 case IFM_1000_SX:
317 case IFM_1000_LX:
318 case IFM_1000_CX:
319 case IFM_1000_T:
320 gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED);
321 break;
322 case IFM_100_TX:
323 gpcr |= YU_GPCR_SPEED;
324 break;
325 }
326
327 /* Set duplex. */
328 gpcr |= YU_GPCR_DPLX_DIS;
329 if ((mii->mii_media_active & IFM_FDX) != 0)
330 gpcr |= YU_GPCR_DUPLEX;
331
332 /* Disable flow control. */
333 gpcr |= YU_GPCR_FCTL_DIS;
334 gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS);
335 }
336
337 SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr);
338
339 DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n",
340 SK_YU_READ_2(sc_if, YUKON_GPCR)));
341 }
342
343 static void
344 msk_setmulti(struct sk_if_softc *sc_if)
345 {
346 struct ifnet *ifp= &sc_if->sk_ethercom.ec_if;
347 uint32_t hashes[2] = { 0, 0 };
348 int h;
349 struct ethercom *ec = &sc_if->sk_ethercom;
350 struct ether_multi *enm;
351 struct ether_multistep step;
352 uint16_t reg;
353
354 /* First, zot all the existing filters. */
355 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0);
356 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0);
357 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0);
358 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0);
359
360
361 /* Now program new ones. */
362 reg = SK_YU_READ_2(sc_if, YUKON_RCR);
363 reg |= YU_RCR_UFLEN;
364 allmulti:
365 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
366 if ((ifp->if_flags & IFF_PROMISC) != 0)
367 reg &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
368 else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
369 hashes[0] = 0xFFFFFFFF;
370 hashes[1] = 0xFFFFFFFF;
371 }
372 } else {
373 /* First find the tail of the list. */
374 ETHER_LOCK(ec);
375 ETHER_FIRST_MULTI(step, ec, enm);
376 while (enm != NULL) {
377 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
378 ETHER_ADDR_LEN)) {
379 ifp->if_flags |= IFF_ALLMULTI;
380 ETHER_UNLOCK(ec);
381 goto allmulti;
382 }
383 h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) &
384 ((1 << SK_HASH_BITS) - 1);
385 if (h < 32)
386 hashes[0] |= (1 << h);
387 else
388 hashes[1] |= (1 << (h - 32));
389
390 ETHER_NEXT_MULTI(step, enm);
391 }
392 ETHER_UNLOCK(ec);
393 reg |= YU_RCR_MUFLEN;
394 }
395
396 SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
397 SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
398 SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
399 SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
400 SK_YU_WRITE_2(sc_if, YUKON_RCR, reg);
401 }
402
403 static void
404 msk_setpromisc(struct sk_if_softc *sc_if)
405 {
406 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
407
408 if (ifp->if_flags & IFF_PROMISC)
409 SK_YU_CLRBIT_2(sc_if, YUKON_RCR,
410 YU_RCR_UFLEN | YU_RCR_MUFLEN);
411 else
412 SK_YU_SETBIT_2(sc_if, YUKON_RCR,
413 YU_RCR_UFLEN | YU_RCR_MUFLEN);
414 }
415
416 static int
417 msk_init_rx_ring(struct sk_if_softc *sc_if)
418 {
419 struct msk_chain_data *cd = &sc_if->sk_cdata;
420 struct msk_ring_data *rd = sc_if->sk_rdata;
421 struct msk_rx_desc *r;
422 int i, nexti;
423
424 memset(rd->sk_rx_ring, 0, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
425
426 for (i = 0; i < MSK_RX_RING_CNT; i++) {
427 cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i];
428 if (i == (MSK_RX_RING_CNT - 1))
429 nexti = 0;
430 else
431 nexti = i + 1;
432 cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti];
433 }
434
435 sc_if->sk_cdata.sk_rx_prod = 0;
436 sc_if->sk_cdata.sk_rx_cons = 0;
437 sc_if->sk_cdata.sk_rx_cnt = 0;
438 sc_if->sk_cdata.sk_rx_hiaddr = 0;
439
440 /* Mark the first ring element to initialize the high address. */
441 sc_if->sk_cdata.sk_rx_hiaddr = 0;
442 r = &rd->sk_rx_ring[cd->sk_rx_prod];
443 r->sk_addr = htole32(cd->sk_rx_hiaddr);
444 r->sk_len = 0;
445 r->sk_ctl = 0;
446 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
447 MSK_CDRXSYNC(sc_if, cd->sk_rx_prod,
448 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
449 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
450 sc_if->sk_cdata.sk_rx_cnt++;
451
452 msk_fill_rx_ring(sc_if);
453 return 0;
454 }
455
456 static int
457 msk_init_tx_ring(struct sk_if_softc *sc_if)
458 {
459 struct msk_chain_data *cd = &sc_if->sk_cdata;
460 struct msk_ring_data *rd = sc_if->sk_rdata;
461 struct msk_tx_desc *t;
462 int i, nexti;
463
464 memset(rd->sk_tx_ring, 0, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
465
466 for (i = 0; i < MSK_TX_RING_CNT; i++) {
467 cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i];
468 if (i == (MSK_TX_RING_CNT - 1))
469 nexti = 0;
470 else
471 nexti = i + 1;
472 cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti];
473 }
474
475 sc_if->sk_cdata.sk_tx_prod = 0;
476 sc_if->sk_cdata.sk_tx_cons = 0;
477 sc_if->sk_cdata.sk_tx_cnt = 0;
478 sc_if->sk_cdata.sk_tx_hiaddr = 0;
479
480 /* Mark the first ring element to initialize the high address. */
481 sc_if->sk_cdata.sk_tx_hiaddr = 0;
482 t = &rd->sk_tx_ring[cd->sk_tx_prod];
483 t->sk_addr = htole32(cd->sk_tx_hiaddr);
484 t->sk_len = 0;
485 t->sk_ctl = 0;
486 t->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
487 MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT,
488 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
489 SK_INC(sc_if->sk_cdata.sk_tx_prod, MSK_TX_RING_CNT);
490 sc_if->sk_cdata.sk_tx_cnt++;
491
492 return 0;
493 }
494
495 static int
496 msk_newbuf(struct sk_if_softc *sc_if, bus_dmamap_t dmamap)
497 {
498 struct mbuf *m_new = NULL;
499 struct sk_chain *c;
500 struct msk_rx_desc *r;
501 void *buf = NULL;
502 bus_addr_t addr;
503
504 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
505 if (m_new == NULL)
506 return ENOBUFS;
507
508 /* Allocate the jumbo buffer */
509 buf = msk_jalloc(sc_if);
510 if (buf == NULL) {
511 m_freem(m_new);
512 DPRINTFN(1, ("%s jumbo allocation failed -- packet "
513 "dropped!\n", sc_if->sk_ethercom.ec_if.if_xname));
514 return ENOBUFS;
515 }
516
517 /* Attach the buffer to the mbuf */
518 m_new->m_len = m_new->m_pkthdr.len = SK_JLEN;
519 MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if);
520
521 m_adj(m_new, ETHER_ALIGN);
522
523 addr = dmamap->dm_segs[0].ds_addr +
524 ((vaddr_t)m_new->m_data -
525 (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf);
526
527 if (sc_if->sk_cdata.sk_rx_hiaddr != MSK_ADDR_HI(addr)) {
528 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
529 r = c->sk_le;
530 c->sk_mbuf = NULL;
531 r->sk_addr = htole32(MSK_ADDR_HI(addr));
532 r->sk_len = 0;
533 r->sk_ctl = 0;
534 r->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_RXOPC_OWN;
535 sc_if->sk_cdata.sk_rx_hiaddr = MSK_ADDR_HI(addr);
536
537 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
538 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
539
540 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
541 sc_if->sk_cdata.sk_rx_cnt++;
542
543 DPRINTFN(10, ("%s: rx ADDR64: %#x\n",
544 sc_if->sk_ethercom.ec_if.if_xname,
545 (unsigned)MSK_ADDR_HI(addr)));
546 }
547
548 c = &sc_if->sk_cdata.sk_rx_chain[sc_if->sk_cdata.sk_rx_prod];
549 r = c->sk_le;
550 c->sk_mbuf = m_new;
551 r->sk_addr = htole32(MSK_ADDR_LO(addr));
552 r->sk_len = htole16(SK_JLEN);
553 r->sk_ctl = 0;
554 r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN;
555
556 MSK_CDRXSYNC(sc_if, sc_if->sk_cdata.sk_rx_prod,
557 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
558
559 SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT);
560 sc_if->sk_cdata.sk_rx_cnt++;
561
562 return 0;
563 }
564
565 /*
566 * Memory management for jumbo frames.
567 */
568
569 static int
570 msk_alloc_jumbo_mem(struct sk_if_softc *sc_if)
571 {
572 struct sk_softc *sc = sc_if->sk_softc;
573 char *ptr, *kva;
574 int i, state, error;
575 struct sk_jpool_entry *entry;
576
577 state = error = 0;
578
579 /* Grab a big chunk o' storage. */
580 if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0,
581 &sc_if->sk_cdata.sk_jumbo_seg, 1, &sc_if->sk_cdata.sk_jumbo_nseg,
582 BUS_DMA_NOWAIT)) {
583 aprint_error(": can't alloc rx buffers");
584 return ENOBUFS;
585 }
586
587 state = 1;
588 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
589 sc_if->sk_cdata.sk_jumbo_nseg, MSK_JMEM, (void **)&kva,
590 BUS_DMA_NOWAIT)) {
591 aprint_error(": can't map dma buffers (%d bytes)", MSK_JMEM);
592 error = ENOBUFS;
593 goto out;
594 }
595
596 state = 2;
597 if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0,
598 BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) {
599 aprint_error(": can't create dma map");
600 error = ENOBUFS;
601 goto out;
602 }
603
604 state = 3;
605 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map,
606 kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) {
607 aprint_error(": can't load dma map");
608 error = ENOBUFS;
609 goto out;
610 }
611
612 state = 4;
613 sc_if->sk_cdata.sk_jumbo_buf = (void *)kva;
614 DPRINTFN(1,("msk_jumbo_buf = %p\n",
615 (void *)sc_if->sk_cdata.sk_jumbo_buf));
616
617 LIST_INIT(&sc_if->sk_jfree_listhead);
618 LIST_INIT(&sc_if->sk_jinuse_listhead);
619 mutex_init(&sc_if->sk_jpool_mtx, MUTEX_DEFAULT, IPL_NET);
620
621 /*
622 * Now divide it up into 9K pieces and save the addresses
623 * in an array.
624 */
625 ptr = sc_if->sk_cdata.sk_jumbo_buf;
626 for (i = 0; i < MSK_JSLOTS; i++) {
627 sc_if->sk_cdata.sk_jslots[i] = ptr;
628 ptr += SK_JLEN;
629 entry = malloc(sizeof(struct sk_jpool_entry),
630 M_DEVBUF, M_WAITOK);
631 entry->slot = i;
632 LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead,
633 entry, jpool_entries);
634 }
635 out:
636 if (error != 0) {
637 switch (state) {
638 case 4:
639 bus_dmamap_unload(sc->sc_dmatag,
640 sc_if->sk_cdata.sk_rx_jumbo_map);
641 /* FALLTHROUGH */
642 case 3:
643 bus_dmamap_destroy(sc->sc_dmatag,
644 sc_if->sk_cdata.sk_rx_jumbo_map);
645 /* FALLTHROUGH */
646 case 2:
647 bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM);
648 /* FALLTHROUGH */
649 case 1:
650 bus_dmamem_free(sc->sc_dmatag,
651 &sc_if->sk_cdata.sk_jumbo_seg,
652 sc_if->sk_cdata.sk_jumbo_nseg);
653 break;
654 default:
655 break;
656 }
657 }
658
659 return error;
660 }
661
662 static void
663 msk_free_jumbo_mem(struct sk_if_softc *sc_if)
664 {
665 struct sk_softc *sc = sc_if->sk_softc;
666
667 bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
668 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map);
669 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_cdata.sk_jumbo_buf, MSK_JMEM);
670 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_cdata.sk_jumbo_seg,
671 sc_if->sk_cdata.sk_jumbo_nseg);
672 }
673
674 /*
675 * Allocate a jumbo buffer.
676 */
677 static void *
678 msk_jalloc(struct sk_if_softc *sc_if)
679 {
680 struct sk_jpool_entry *entry;
681
682 mutex_enter(&sc_if->sk_jpool_mtx);
683 entry = LIST_FIRST(&sc_if->sk_jfree_listhead);
684
685 if (entry == NULL) {
686 mutex_exit(&sc_if->sk_jpool_mtx);
687 return NULL;
688 }
689
690 LIST_REMOVE(entry, jpool_entries);
691 LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries);
692 mutex_exit(&sc_if->sk_jpool_mtx);
693 return sc_if->sk_cdata.sk_jslots[entry->slot];
694 }
695
696 /*
697 * Release a jumbo buffer.
698 */
699 static void
700 msk_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
701 {
702 struct sk_jpool_entry *entry;
703 struct sk_if_softc *sc;
704 int i;
705
706 /* Extract the softc struct pointer. */
707 sc = (struct sk_if_softc *)arg;
708
709 if (sc == NULL)
710 panic("msk_jfree: can't find softc pointer!");
711
712 /* calculate the slot this buffer belongs to */
713 i = ((vaddr_t)buf
714 - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN;
715
716 if ((i < 0) || (i >= MSK_JSLOTS))
717 panic("msk_jfree: asked to free buffer that we don't manage!");
718
719 mutex_enter(&sc->sk_jpool_mtx);
720 entry = LIST_FIRST(&sc->sk_jinuse_listhead);
721 if (entry == NULL)
722 panic("msk_jfree: buffer not in use!");
723 entry->slot = i;
724 LIST_REMOVE(entry, jpool_entries);
725 LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries);
726 mutex_exit(&sc->sk_jpool_mtx);
727
728 if (__predict_true(m != NULL))
729 pool_cache_put(mb_cache, m);
730
731 /* Now that we know we have a free RX buffer, refill if running out */
732 if ((sc->sk_ethercom.ec_if.if_flags & IFF_RUNNING) != 0
733 && sc->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
734 callout_schedule(&sc->sk_tick_rx, 0);
735 }
736
737 static int
738 msk_ioctl(struct ifnet *ifp, u_long cmd, void *data)
739 {
740 struct sk_if_softc *sc = ifp->if_softc;
741 int s, error;
742
743 s = splnet();
744
745 DPRINTFN(2, ("msk_ioctl ETHER cmd %lx\n", cmd));
746 switch (cmd) {
747 case SIOCSIFFLAGS:
748 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
749 break;
750
751 switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
752 case IFF_RUNNING:
753 msk_stop(ifp, 1);
754 break;
755 case IFF_UP:
756 msk_init(ifp);
757 break;
758 case IFF_UP | IFF_RUNNING:
759 if ((ifp->if_flags ^ sc->sk_if_flags) == IFF_PROMISC) {
760 msk_setpromisc(sc);
761 msk_setmulti(sc);
762 } else
763 msk_init(ifp);
764 break;
765 }
766 sc->sk_if_flags = ifp->if_flags;
767 break;
768 default:
769 error = ether_ioctl(ifp, cmd, data);
770 if (error == ENETRESET) {
771 error = 0;
772 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
773 ;
774 else if (ifp->if_flags & IFF_RUNNING) {
775 /*
776 * Multicast list has changed; set the hardware
777 * filter accordingly.
778 */
779 msk_setmulti(sc);
780 }
781 }
782 break;
783 }
784
785 splx(s);
786 return error;
787 }
788
789 static void
790 msk_update_int_mod(struct sk_softc *sc, int verbose)
791 {
792 uint32_t imtimer_ticks;
793
794 /*
795 * Configure interrupt moderation. The moderation timer
796 * defers interrupts specified in the interrupt moderation
797 * timer mask based on the timeout specified in the interrupt
798 * moderation timer init register. Each bit in the timer
799 * register represents one tick, so to specify a timeout in
800 * microseconds, we have to multiply by the correct number of
801 * ticks-per-microsecond.
802 */
803 switch (sc->sk_type) {
804 case SK_YUKON_EC:
805 case SK_YUKON_EC_U:
806 case SK_YUKON_EX:
807 case SK_YUKON_SUPR:
808 case SK_YUKON_ULTRA2:
809 case SK_YUKON_OPTIMA:
810 case SK_YUKON_PRM:
811 case SK_YUKON_OPTIMA2:
812 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
813 break;
814 case SK_YUKON_FE:
815 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
816 break;
817 case SK_YUKON_FE_P:
818 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
819 break;
820 case SK_YUKON_XL:
821 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
822 break;
823 default:
824 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
825 }
826 if (verbose)
827 aprint_verbose_dev(sc->sk_dev,
828 "interrupt moderation is %d us\n", sc->sk_int_mod);
829 sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod));
830 sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF | SK_ISR_TX2_S_EOF |
831 SK_ISR_RX1_EOF | SK_ISR_RX2_EOF);
832 sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
833 sc->sk_int_mod_pending = 0;
834 }
835
836 static int
837 msk_lookup(const struct pci_attach_args *pa)
838 {
839 const struct msk_product *pmsk;
840
841 for ( pmsk = &msk_products[0]; pmsk->msk_vendor != 0; pmsk++) {
842 if (PCI_VENDOR(pa->pa_id) == pmsk->msk_vendor &&
843 PCI_PRODUCT(pa->pa_id) == pmsk->msk_product)
844 return 1;
845 }
846 return 0;
847 }
848
849 /*
850 * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
851 * IDs against our list and return a device name if we find a match.
852 */
853 static int
854 mskc_probe(device_t parent, cfdata_t match, void *aux)
855 {
856 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
857
858 return msk_lookup(pa);
859 }
860
861 /*
862 * Force the GEnesis into reset, then bring it out of reset.
863 */
864 static void
865 mskc_reset(struct sk_softc *sc)
866 {
867 uint32_t imtimer_ticks, reg1;
868 uint16_t status;
869 int reg;
870
871 DPRINTFN(2, ("mskc_reset\n"));
872
873 /* Disable ASF */
874 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
875 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
876 status = CSR_READ_2(sc, SK_Y2_ASF_HCU_CCSR);
877 /* Clear AHB bridge & microcontroller reset. */
878 status &= ~(SK_Y2_ASF_HCU_CSSR_ARB_RST |
879 SK_Y2_ASF_HCU_CSSR_CPU_RST_MODE);
880 /* Clear ASF microcontroller state. */
881 status &= ~SK_Y2_ASF_HCU_CSSR_UC_STATE_MSK;
882 status &= ~SK_Y2_ASF_HCU_CSSR_CPU_CLK_DIVIDE_MSK;
883 CSR_WRITE_2(sc, SK_Y2_ASF_HCU_CCSR, status);
884 CSR_WRITE_4(sc, SK_Y2_CPU_WDOG, 0);
885 } else
886 CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET);
887 CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF);
888
889 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET);
890 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET);
891
892 DELAY(1000);
893 CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET);
894 DELAY(2);
895 CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
896 sk_win_write_1(sc, SK_TESTCTL1, 2);
897
898 if (sc->sk_type == SK_YUKON_EC_U || sc->sk_type == SK_YUKON_EX ||
899 sc->sk_type >= SK_YUKON_FE_P) {
900 uint32_t our;
901
902 CSR_WRITE_2(sc, SK_CSR, SK_CSR_WOL_ON);
903
904 /* enable all clocks. */
905 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG3), 0);
906 our = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4));
907 our &= (SK_Y2_REG4_FORCE_ASPM_REQUEST |
908 SK_Y2_REG4_ASPM_GPHY_LINK_DOWN |
909 SK_Y2_REG4_ASPM_INT_FIFO_EMPTY |
910 SK_Y2_REG4_ASPM_CLKRUN_REQUEST);
911 /* Set all bits to 0 except bits 15..12 */
912 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG4), our);
913 /* Set to default value */
914 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG5), 0);
915
916 /*
917 * Disable status race, workaround for Yukon EC Ultra &
918 * Yukon EX.
919 */
920 reg1 = sk_win_read_4(sc, SK_GPIO);
921 reg1 |= SK_Y2_GPIO_STAT_RACE_DIS;
922 sk_win_write_4(sc, SK_GPIO, reg1);
923 sk_win_read_4(sc, SK_GPIO);
924 }
925
926 /* release PHY from PowerDown/Coma mode. */
927 reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1));
928 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
929 reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
930 else
931 reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA);
932 sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1);
933
934 if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1)
935 sk_win_write_1(sc, SK_Y2_CLKGATE,
936 SK_Y2_CLKGATE_LINK1_GATE_DIS |
937 SK_Y2_CLKGATE_LINK2_GATE_DIS |
938 SK_Y2_CLKGATE_LINK1_CORE_DIS |
939 SK_Y2_CLKGATE_LINK2_CORE_DIS |
940 SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS);
941 else
942 sk_win_write_1(sc, SK_Y2_CLKGATE, 0);
943
944 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
945 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET);
946 DELAY(1000);
947 CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
948 CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR);
949
950 if (sc->sk_type == SK_YUKON_EX || sc->sk_type == SK_YUKON_SUPR) {
951 CSR_WRITE_2(sc, SK_GMAC_CTRL, SK_GMAC_BYP_MACSECRX |
952 SK_GMAC_BYP_MACSECTX | SK_GMAC_BYP_RETR_FIFO);
953 }
954
955 sk_win_write_1(sc, SK_TESTCTL1, 1);
956
957 DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR)));
958 DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n",
959 CSR_READ_2(sc, SK_LINK_CTRL)));
960
961 /* Clear I2C IRQ noise */
962 CSR_WRITE_4(sc, SK_I2CHWIRQ, 1);
963
964 /* Disable hardware timer */
965 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP);
966 CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR);
967
968 /* Disable descriptor polling */
969 CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
970
971 /* Disable time stamps */
972 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP);
973 CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR);
974
975 /* Enable RAM interface */
976 sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
977 for (reg = SK_TO0;reg <= SK_TO11; reg++)
978 sk_win_write_1(sc, reg, 36);
979 sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET);
980 for (reg = SK_TO0;reg <= SK_TO11; reg++)
981 sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36);
982
983 /*
984 * Configure interrupt moderation. The moderation timer
985 * defers interrupts specified in the interrupt moderation
986 * timer mask based on the timeout specified in the interrupt
987 * moderation timer init register. Each bit in the timer
988 * register represents one tick, so to specify a timeout in
989 * microseconds, we have to multiply by the correct number of
990 * ticks-per-microsecond.
991 */
992 switch (sc->sk_type) {
993 case SK_YUKON_EC:
994 case SK_YUKON_EC_U:
995 case SK_YUKON_EX:
996 case SK_YUKON_SUPR:
997 case SK_YUKON_ULTRA2:
998 case SK_YUKON_OPTIMA:
999 case SK_YUKON_PRM:
1000 case SK_YUKON_OPTIMA2:
1001 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
1002 break;
1003 case SK_YUKON_FE:
1004 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
1005 break;
1006 case SK_YUKON_FE_P:
1007 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
1008 break;
1009 case SK_YUKON_XL:
1010 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
1011 break;
1012 default:
1013 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
1014 break;
1015 }
1016
1017 /* Reset status ring. */
1018 memset(sc->sk_status_ring, 0,
1019 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1020 bus_dmamap_sync(sc->sc_dmatag, sc->sk_status_map, 0,
1021 sc->sk_status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
1022 sc->sk_status_idx = 0;
1023
1024 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET);
1025 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET);
1026
1027 sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1);
1028 sk_win_write_4(sc, SK_STAT_BMU_ADDRLO,
1029 MSK_ADDR_LO(sc->sk_status_map->dm_segs[0].ds_addr));
1030 sk_win_write_4(sc, SK_STAT_BMU_ADDRHI,
1031 MSK_ADDR_HI(sc->sk_status_map->dm_segs[0].ds_addr));
1032 if (sc->sk_type == SK_YUKON_EC &&
1033 sc->sk_rev == SK_YUKON_EC_REV_A1) {
1034 /* WA for dev. #4.3 */
1035 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH,
1036 SK_STAT_BMU_TXTHIDX_MSK);
1037 /* WA for dev. #4.18 */
1038 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x21);
1039 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x07);
1040 } else {
1041 sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 0x000a);
1042 sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 0x10);
1043 if (sc->sk_type == SK_YUKON_XL)
1044 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x04);
1045 else
1046 sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 0x10);
1047 sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, 0x0190); /* 3.2us on Yukon-EC */
1048 }
1049
1050 #if 0
1051 sk_win_write_4(sc, SK_Y2_LEV_ITIMERINIT, SK_IM_USECS(100));
1052 #endif
1053 sk_win_write_4(sc, SK_Y2_TX_ITIMERINIT, SK_IM_USECS(1000));
1054
1055 /* Enable status unit. */
1056 sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON);
1057
1058 sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START);
1059 sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START);
1060 sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START);
1061
1062 msk_update_int_mod(sc, 0);
1063 }
1064
1065 static int
1066 msk_probe(device_t parent, cfdata_t match, void *aux)
1067 {
1068 struct skc_attach_args *sa = aux;
1069
1070 if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B)
1071 return 0;
1072
1073 switch (sa->skc_type) {
1074 case SK_YUKON_XL:
1075 case SK_YUKON_EC_U:
1076 case SK_YUKON_EX:
1077 case SK_YUKON_EC:
1078 case SK_YUKON_FE:
1079 case SK_YUKON_FE_P:
1080 case SK_YUKON_SUPR:
1081 case SK_YUKON_ULTRA2:
1082 case SK_YUKON_OPTIMA:
1083 case SK_YUKON_PRM:
1084 case SK_YUKON_OPTIMA2:
1085 return 1;
1086 }
1087
1088 return 0;
1089 }
1090
1091 static void
1092 msk_reset(struct sk_if_softc *sc_if)
1093 {
1094 /* GMAC and GPHY Reset */
1095 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
1096 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
1097 DELAY(1000);
1098 SK_IF_WRITE_1(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR);
1099 SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
1100 SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
1101 }
1102
1103 static bool
1104 msk_resume(device_t dv, const pmf_qual_t *qual)
1105 {
1106 struct sk_if_softc *sc_if = device_private(dv);
1107
1108 msk_init_yukon(sc_if);
1109 return true;
1110 }
1111
1112 /*
1113 * Each XMAC chip is attached as a separate logical IP interface.
1114 * Single port cards will have only one logical interface of course.
1115 */
1116 static void
1117 msk_attach(device_t parent, device_t self, void *aux)
1118 {
1119 struct sk_if_softc *sc_if = device_private(self);
1120 struct sk_softc *sc = device_private(parent);
1121 struct skc_attach_args *sa = aux;
1122 bus_dmamap_t dmamap;
1123 struct sk_txmap_entry *entry;
1124 struct ifnet *ifp;
1125 struct mii_data * const mii = &sc_if->sk_mii;
1126 void *kva;
1127 int i;
1128 uint32_t chunk;
1129 int mii_flags;
1130
1131 sc_if->sk_dev = self;
1132 sc_if->sk_port = sa->skc_port;
1133 sc_if->sk_softc = sc;
1134 sc->sk_if[sa->skc_port] = sc_if;
1135
1136 DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port));
1137
1138 /*
1139 * Get station address for this interface. Note that
1140 * dual port cards actually come with three station
1141 * addresses: one for each port, plus an extra. The
1142 * extra one is used by the SysKonnect driver software
1143 * as a 'virtual' station address for when both ports
1144 * are operating in failover mode. Currently we don't
1145 * use this extra address.
1146 */
1147 for (i = 0; i < ETHER_ADDR_LEN; i++)
1148 sc_if->sk_enaddr[i] =
1149 sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i);
1150
1151 aprint_normal(": Ethernet address %s\n",
1152 ether_sprintf(sc_if->sk_enaddr));
1153
1154 /*
1155 * Set up RAM buffer addresses. The Yukon2 has a small amount
1156 * of SRAM on it, somewhere between 4K and 48K. We need to
1157 * divide this up between the transmitter and receiver. We
1158 * give the receiver 2/3 of the memory (rounded down), and the
1159 * transmitter whatever remains.
1160 */
1161 if (sc->sk_ramsize) {
1162 chunk = (2 * (sc->sk_ramsize / sizeof(uint64_t)) / 3) & ~0xff;
1163 sc_if->sk_rx_ramstart = 0;
1164 sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1;
1165 chunk = (sc->sk_ramsize / sizeof(uint64_t)) - chunk;
1166 sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1;
1167 sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1;
1168
1169 DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n"
1170 " tx_ramstart=%#x tx_ramend=%#x\n",
1171 sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend,
1172 sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend));
1173 }
1174
1175 /* Allocate the descriptor queues. */
1176 if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data),
1177 PAGE_SIZE, 0, &sc_if->sk_ring_seg, 1, &sc_if->sk_ring_nseg,
1178 BUS_DMA_NOWAIT)) {
1179 aprint_error(": can't alloc rx buffers\n");
1180 goto fail;
1181 }
1182 if (bus_dmamem_map(sc->sc_dmatag, &sc_if->sk_ring_seg,
1183 sc_if->sk_ring_nseg,
1184 sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) {
1185 aprint_error(": can't map dma buffers (%zu bytes)\n",
1186 sizeof(struct msk_ring_data));
1187 goto fail_1;
1188 }
1189 if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1,
1190 sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT,
1191 &sc_if->sk_ring_map)) {
1192 aprint_error(": can't create dma map\n");
1193 goto fail_2;
1194 }
1195 if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva,
1196 sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) {
1197 aprint_error(": can't load dma map\n");
1198 goto fail_3;
1199 }
1200
1201 SIMPLEQ_INIT(&sc_if->sk_txmap_head);
1202 for (i = 0; i < MSK_TX_RING_CNT; i++) {
1203 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
1204
1205 if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG,
1206 SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) {
1207 aprint_error_dev(sc_if->sk_dev,
1208 "Can't create TX dmamap\n");
1209 goto fail_3;
1210 }
1211
1212 entry = malloc(sizeof(*entry), M_DEVBUF, M_WAITOK);
1213 entry->dmamap = dmamap;
1214 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link);
1215 }
1216
1217 sc_if->sk_rdata = (struct msk_ring_data *)kva;
1218 memset(sc_if->sk_rdata, 0, sizeof(struct msk_ring_data));
1219
1220 if (sc->sk_type != SK_YUKON_FE &&
1221 sc->sk_type != SK_YUKON_FE_P)
1222 sc_if->sk_pktlen = SK_JLEN;
1223 else
1224 sc_if->sk_pktlen = MCLBYTES;
1225
1226 /* Try to allocate memory for jumbo buffers. */
1227 if (msk_alloc_jumbo_mem(sc_if)) {
1228 aprint_error(": jumbo buffer allocation failed\n");
1229 goto fail_3;
1230 }
1231
1232 sc_if->sk_ethercom.ec_capabilities = ETHERCAP_VLAN_MTU;
1233 if (sc->sk_type != SK_YUKON_FE &&
1234 sc->sk_type != SK_YUKON_FE_P)
1235 sc_if->sk_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
1236
1237 ifp = &sc_if->sk_ethercom.ec_if;
1238 ifp->if_softc = sc_if;
1239 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1240 ifp->if_ioctl = msk_ioctl;
1241 ifp->if_start = msk_start;
1242 ifp->if_stop = msk_stop;
1243 ifp->if_init = msk_init;
1244 ifp->if_watchdog = msk_watchdog;
1245 ifp->if_baudrate = 1000000000;
1246 IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
1247 IFQ_SET_READY(&ifp->if_snd);
1248 strlcpy(ifp->if_xname, device_xname(sc_if->sk_dev), IFNAMSIZ);
1249
1250 msk_reset(sc_if);
1251
1252 /*
1253 * Do miibus setup.
1254 */
1255 DPRINTFN(2, ("msk_attach: 1\n"));
1256
1257 mii->mii_ifp = ifp;
1258 mii->mii_readreg = msk_miibus_readreg;
1259 mii->mii_writereg = msk_miibus_writereg;
1260 mii->mii_statchg = msk_miibus_statchg;
1261
1262 sc_if->sk_ethercom.ec_mii = mii;
1263 ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
1264 mii_flags = MIIF_DOPAUSE;
1265 if (sc->sk_fibertype)
1266 mii_flags |= MIIF_HAVEFIBER;
1267 mii_attach(self, mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags);
1268 if (LIST_FIRST(&mii->mii_phys) == NULL) {
1269 aprint_error_dev(sc_if->sk_dev, "no PHY found!\n");
1270 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
1271 0, NULL);
1272 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
1273 } else
1274 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
1275
1276 callout_init(&sc_if->sk_tick_ch, 0);
1277 callout_setfunc(&sc_if->sk_tick_ch, msk_tick, sc_if);
1278 callout_schedule(&sc_if->sk_tick_ch, hz);
1279
1280 callout_init(&sc_if->sk_tick_rx, 0);
1281 callout_setfunc(&sc_if->sk_tick_rx, msk_fill_rx_tick, sc_if);
1282
1283 /*
1284 * Call MI attach routines.
1285 */
1286 if_attach(ifp);
1287 if_deferred_start_init(ifp, NULL);
1288 ether_ifattach(ifp, sc_if->sk_enaddr);
1289
1290 if (pmf_device_register(self, NULL, msk_resume))
1291 pmf_class_network_register(self, ifp);
1292 else
1293 aprint_error_dev(self, "couldn't establish power handler\n");
1294
1295 if (sc->rnd_attached++ == 0) {
1296 rnd_attach_source(&sc->rnd_source, device_xname(sc->sk_dev),
1297 RND_TYPE_NET, RND_FLAG_DEFAULT);
1298 }
1299
1300 DPRINTFN(2, ("msk_attach: end\n"));
1301 return;
1302
1303 fail_3:
1304 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1305 fail_2:
1306 bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data));
1307 fail_1:
1308 bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1309 fail:
1310 sc->sk_if[sa->skc_port] = NULL;
1311 }
1312
1313 static int
1314 msk_detach(device_t self, int flags)
1315 {
1316 struct sk_if_softc *sc_if = device_private(self);
1317 struct sk_softc *sc = sc_if->sk_softc;
1318 struct sk_txmap_entry *entry;
1319 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
1320
1321 if (sc->sk_if[sc_if->sk_port] == NULL)
1322 return 0;
1323
1324 msk_stop(ifp, 1);
1325
1326 while ((entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) {
1327 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1328 bus_dmamap_destroy(sc->sc_dmatag, entry->dmamap);
1329 free(entry, M_DEVBUF);
1330 }
1331
1332 if (--sc->rnd_attached == 0)
1333 rnd_detach_source(&sc->rnd_source);
1334
1335 callout_halt(&sc_if->sk_tick_ch, NULL);
1336 callout_destroy(&sc_if->sk_tick_ch);
1337
1338 callout_halt(&sc_if->sk_tick_rx, NULL);
1339 callout_destroy(&sc_if->sk_tick_rx);
1340
1341 /* Detach any PHYs we might have. */
1342 if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL)
1343 mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY);
1344
1345 pmf_device_deregister(self);
1346
1347 ether_ifdetach(ifp);
1348 if_detach(ifp);
1349
1350 /* Delete any remaining media. */
1351 ifmedia_fini(&sc_if->sk_mii.mii_media);
1352
1353 msk_free_jumbo_mem(sc_if);
1354
1355 bus_dmamem_unmap(sc->sc_dmatag, sc_if->sk_rdata,
1356 sizeof(struct msk_ring_data));
1357 bus_dmamem_free(sc->sc_dmatag,
1358 &sc_if->sk_ring_seg, sc_if->sk_ring_nseg);
1359 bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map);
1360 sc->sk_if[sc_if->sk_port] = NULL;
1361
1362 return 0;
1363 }
1364
1365 static int
1366 mskcprint(void *aux, const char *pnp)
1367 {
1368 struct skc_attach_args *sa = aux;
1369
1370 if (pnp)
1371 aprint_normal("msk port %c at %s",
1372 (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp);
1373 else
1374 aprint_normal(" port %c",
1375 (sa->skc_port == SK_PORT_A) ? 'A' : 'B');
1376 return UNCONF;
1377 }
1378
1379 /*
1380 * Attach the interface. Allocate softc structures, do ifmedia
1381 * setup and ethernet/BPF attach.
1382 */
1383 static void
1384 mskc_attach(device_t parent, device_t self, void *aux)
1385 {
1386 struct sk_softc *sc = device_private(self);
1387 struct pci_attach_args *pa = aux;
1388 struct skc_attach_args skca;
1389 pci_chipset_tag_t pc = pa->pa_pc;
1390 pcireg_t command, memtype;
1391 const char *intrstr = NULL;
1392 int rc, sk_nodenum;
1393 uint8_t hw, pmd;
1394 const char *revstr = NULL;
1395 const struct sysctlnode *node;
1396 void *kva;
1397 char intrbuf[PCI_INTRSTR_LEN];
1398
1399 DPRINTFN(2, ("begin mskc_attach\n"));
1400
1401 sc->sk_dev = self;
1402 /*
1403 * Handle power management nonsense.
1404 */
1405 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF;
1406
1407 if (command == 0x01) {
1408 command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL);
1409 if (command & SK_PSTATE_MASK) {
1410 uint32_t iobase, membase, irq;
1411
1412 /* Save important PCI config data. */
1413 iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO);
1414 membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM);
1415 irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE);
1416
1417 /* Reset the power state. */
1418 aprint_normal_dev(sc->sk_dev, "chip is in D%d power "
1419 "mode -- setting to D0\n",
1420 command & SK_PSTATE_MASK);
1421 command &= 0xFFFFFFFC;
1422 pci_conf_write(pc, pa->pa_tag,
1423 SK_PCI_PWRMGMTCTRL, command);
1424
1425 /* Restore PCI config data. */
1426 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase);
1427 pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase);
1428 pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq);
1429 }
1430 }
1431
1432 /*
1433 * Map control/status registers.
1434 */
1435 memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM);
1436 if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag,
1437 &sc->sk_bhandle, NULL, &sc->sk_bsize)) {
1438 aprint_error(": can't map mem space\n");
1439 return;
1440 }
1441
1442 if (pci_dma64_available(pa))
1443 sc->sc_dmatag = pa->pa_dmat64;
1444 else
1445 sc->sc_dmatag = pa->pa_dmat;
1446
1447 command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
1448 command |= PCI_COMMAND_MASTER_ENABLE;
1449 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
1450
1451 sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
1452 sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4);
1453
1454 /* bail out here if chip is not recognized */
1455 if (!(SK_IS_YUKON2(sc))) {
1456 aprint_error(": unknown chip type: %d\n", sc->sk_type);
1457 goto fail_1;
1458 }
1459 DPRINTFN(2, ("mskc_attach: allocate interrupt\n"));
1460
1461 /* Allocate interrupt */
1462 if (pci_intr_alloc(pa, &sc->sk_pihp, NULL, 0)) {
1463 aprint_error(": couldn't map interrupt\n");
1464 goto fail_1;
1465 }
1466
1467 intrstr = pci_intr_string(pc, sc->sk_pihp[0], intrbuf, sizeof(intrbuf));
1468 sc->sk_intrhand = pci_intr_establish_xname(pc, sc->sk_pihp[0], IPL_NET,
1469 msk_intr, sc, device_xname(sc->sk_dev));
1470 if (sc->sk_intrhand == NULL) {
1471 aprint_error(": couldn't establish interrupt");
1472 if (intrstr != NULL)
1473 aprint_error(" at %s", intrstr);
1474 aprint_error("\n");
1475 goto fail_1;
1476 }
1477 sc->sk_pc = pc;
1478
1479 if (bus_dmamem_alloc(sc->sc_dmatag,
1480 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1481 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1482 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) {
1483 aprint_error(": can't alloc status buffers\n");
1484 goto fail_2;
1485 }
1486
1487 if (bus_dmamem_map(sc->sc_dmatag,
1488 &sc->sk_status_seg, sc->sk_status_nseg,
1489 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1490 &kva, BUS_DMA_NOWAIT)) {
1491 aprint_error(": can't map dma buffers (%zu bytes)\n",
1492 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1493 goto fail_3;
1494 }
1495 if (bus_dmamap_create(sc->sc_dmatag,
1496 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1,
1497 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0,
1498 BUS_DMA_NOWAIT, &sc->sk_status_map)) {
1499 aprint_error(": can't create dma map\n");
1500 goto fail_4;
1501 }
1502 if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva,
1503 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc),
1504 NULL, BUS_DMA_NOWAIT)) {
1505 aprint_error(": can't load dma map\n");
1506 goto fail_5;
1507 }
1508 sc->sk_status_ring = (struct msk_status_desc *)kva;
1509
1510 sc->sk_int_mod = SK_IM_DEFAULT;
1511 sc->sk_int_mod_pending = 0;
1512
1513 /* Reset the adapter. */
1514 mskc_reset(sc);
1515
1516 sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096;
1517 DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024));
1518
1519 pmd = sk_win_read_1(sc, SK_PMDTYPE);
1520 if (pmd == 'L' || pmd == 'S' || pmd == 'P')
1521 sc->sk_fibertype = 1;
1522
1523 switch (sc->sk_type) {
1524 case SK_YUKON_XL:
1525 sc->sk_name = "Yukon-2 XL";
1526 break;
1527 case SK_YUKON_EC_U:
1528 sc->sk_name = "Yukon-2 EC Ultra";
1529 break;
1530 case SK_YUKON_EX:
1531 sc->sk_name = "Yukon-2 Extreme";
1532 break;
1533 case SK_YUKON_EC:
1534 sc->sk_name = "Yukon-2 EC";
1535 break;
1536 case SK_YUKON_FE:
1537 sc->sk_name = "Yukon-2 FE";
1538 break;
1539 case SK_YUKON_FE_P:
1540 sc->sk_name = "Yukon-2 FE+";
1541 break;
1542 case SK_YUKON_SUPR:
1543 sc->sk_name = "Yukon-2 Supreme";
1544 break;
1545 case SK_YUKON_ULTRA2:
1546 sc->sk_name = "Yukon-2 Ultra 2";
1547 break;
1548 case SK_YUKON_OPTIMA:
1549 sc->sk_name = "Yukon-2 Optima";
1550 break;
1551 case SK_YUKON_PRM:
1552 sc->sk_name = "Yukon-2 Optima Prime";
1553 break;
1554 case SK_YUKON_OPTIMA2:
1555 sc->sk_name = "Yukon-2 Optima 2";
1556 break;
1557 default:
1558 sc->sk_name = "Yukon (Unknown)";
1559 }
1560
1561 if (sc->sk_type == SK_YUKON_XL) {
1562 switch (sc->sk_rev) {
1563 case SK_YUKON_XL_REV_A0:
1564 revstr = "A0";
1565 break;
1566 case SK_YUKON_XL_REV_A1:
1567 revstr = "A1";
1568 break;
1569 case SK_YUKON_XL_REV_A2:
1570 revstr = "A2";
1571 break;
1572 case SK_YUKON_XL_REV_A3:
1573 revstr = "A3";
1574 break;
1575 default:
1576 break;
1577 }
1578 }
1579
1580 if (sc->sk_type == SK_YUKON_EC) {
1581 switch (sc->sk_rev) {
1582 case SK_YUKON_EC_REV_A1:
1583 revstr = "A1";
1584 break;
1585 case SK_YUKON_EC_REV_A2:
1586 revstr = "A2";
1587 break;
1588 case SK_YUKON_EC_REV_A3:
1589 revstr = "A3";
1590 break;
1591 default:
1592 break;
1593 }
1594 }
1595
1596 if (sc->sk_type == SK_YUKON_FE) {
1597 switch (sc->sk_rev) {
1598 case SK_YUKON_FE_REV_A1:
1599 revstr = "A1";
1600 break;
1601 case SK_YUKON_FE_REV_A2:
1602 revstr = "A2";
1603 break;
1604 default:
1605 break;
1606 }
1607 }
1608
1609 if (sc->sk_type == SK_YUKON_EC_U) {
1610 switch (sc->sk_rev) {
1611 case SK_YUKON_EC_U_REV_A0:
1612 revstr = "A0";
1613 break;
1614 case SK_YUKON_EC_U_REV_A1:
1615 revstr = "A1";
1616 break;
1617 case SK_YUKON_EC_U_REV_B0:
1618 revstr = "B0";
1619 break;
1620 case SK_YUKON_EC_U_REV_B1:
1621 revstr = "B1";
1622 break;
1623 default:
1624 break;
1625 }
1626 }
1627
1628 if (sc->sk_type == SK_YUKON_FE) {
1629 switch (sc->sk_rev) {
1630 case SK_YUKON_FE_REV_A1:
1631 revstr = "A1";
1632 break;
1633 case SK_YUKON_FE_REV_A2:
1634 revstr = "A2";
1635 break;
1636 default:
1637 ;
1638 }
1639 }
1640
1641 if (sc->sk_type == SK_YUKON_FE_P && sc->sk_rev == SK_YUKON_FE_P_REV_A0)
1642 revstr = "A0";
1643
1644 if (sc->sk_type == SK_YUKON_EX) {
1645 switch (sc->sk_rev) {
1646 case SK_YUKON_EX_REV_A0:
1647 revstr = "A0";
1648 break;
1649 case SK_YUKON_EX_REV_B0:
1650 revstr = "B0";
1651 break;
1652 default:
1653 ;
1654 }
1655 }
1656
1657 if (sc->sk_type == SK_YUKON_SUPR) {
1658 switch (sc->sk_rev) {
1659 case SK_YUKON_SUPR_REV_A0:
1660 revstr = "A0";
1661 break;
1662 case SK_YUKON_SUPR_REV_B0:
1663 revstr = "B0";
1664 break;
1665 case SK_YUKON_SUPR_REV_B1:
1666 revstr = "B1";
1667 break;
1668 default:
1669 ;
1670 }
1671 }
1672
1673 if (sc->sk_type == SK_YUKON_PRM) {
1674 switch (sc->sk_rev) {
1675 case SK_YUKON_PRM_REV_Z1:
1676 revstr = "Z1";
1677 break;
1678 case SK_YUKON_PRM_REV_A0:
1679 revstr = "A0";
1680 break;
1681 default:
1682 ;
1683 }
1684 }
1685
1686 /* Announce the product name. */
1687 aprint_normal(", %s", sc->sk_name);
1688 if (revstr != NULL)
1689 aprint_normal(" rev. %s", revstr);
1690 aprint_normal(" (0x%x): %s\n", sc->sk_rev, intrstr);
1691
1692 sc->sk_macs = 1;
1693
1694 hw = sk_win_read_1(sc, SK_Y2_HWRES);
1695 if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) {
1696 if ((sk_win_read_1(sc, SK_Y2_CLKGATE) &
1697 SK_Y2_CLKGATE_LINK2_INACTIVE) == 0)
1698 sc->sk_macs++;
1699 }
1700
1701 skca.skc_port = SK_PORT_A;
1702 skca.skc_type = sc->sk_type;
1703 skca.skc_rev = sc->sk_rev;
1704 (void)config_found(sc->sk_dev, &skca, mskcprint);
1705
1706 if (sc->sk_macs > 1) {
1707 skca.skc_port = SK_PORT_B;
1708 skca.skc_type = sc->sk_type;
1709 skca.skc_rev = sc->sk_rev;
1710 (void)config_found(sc->sk_dev, &skca, mskcprint);
1711 }
1712
1713 /* Turn on the 'driver is loaded' LED. */
1714 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
1715
1716 /* skc sysctl setup */
1717
1718 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1719 0, CTLTYPE_NODE, device_xname(sc->sk_dev),
1720 SYSCTL_DESCR("mskc per-controller controls"),
1721 NULL, 0, NULL, 0, CTL_HW, msk_root_num, CTL_CREATE,
1722 CTL_EOL)) != 0) {
1723 aprint_normal_dev(sc->sk_dev, "couldn't create sysctl node\n");
1724 goto fail_6;
1725 }
1726
1727 sk_nodenum = node->sysctl_num;
1728
1729 /* interrupt moderation time in usecs */
1730 if ((rc = sysctl_createv(&sc->sk_clog, 0, NULL, &node,
1731 CTLFLAG_READWRITE,
1732 CTLTYPE_INT, "int_mod",
1733 SYSCTL_DESCR("msk interrupt moderation timer"),
1734 msk_sysctl_handler, 0, (void *)sc,
1735 0, CTL_HW, msk_root_num, sk_nodenum, CTL_CREATE,
1736 CTL_EOL)) != 0) {
1737 aprint_normal_dev(sc->sk_dev,
1738 "couldn't create int_mod sysctl node\n");
1739 goto fail_6;
1740 }
1741
1742 if (!pmf_device_register(self, mskc_suspend, mskc_resume))
1743 aprint_error_dev(self, "couldn't establish power handler\n");
1744
1745 return;
1746
1747 fail_6:
1748 bus_dmamap_unload(sc->sc_dmatag, sc->sk_status_map);
1749 fail_4:
1750 bus_dmamem_unmap(sc->sc_dmatag, kva,
1751 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1752 fail_3:
1753 bus_dmamem_free(sc->sc_dmatag,
1754 &sc->sk_status_seg, sc->sk_status_nseg);
1755 sc->sk_status_nseg = 0;
1756 fail_5:
1757 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1758 fail_2:
1759 pci_intr_disestablish(pc, sc->sk_intrhand);
1760 sc->sk_intrhand = NULL;
1761 fail_1:
1762 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1763 sc->sk_bsize = 0;
1764 }
1765
1766 static int
1767 mskc_detach(device_t self, int flags)
1768 {
1769 struct sk_softc *sc = device_private(self);
1770 int rv;
1771
1772 if (sc->sk_intrhand) {
1773 pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand);
1774 sc->sk_intrhand = NULL;
1775 }
1776
1777 if (sc->sk_pihp != NULL) {
1778 pci_intr_release(sc->sk_pc, sc->sk_pihp, 1);
1779 sc->sk_pihp = NULL;
1780 }
1781
1782 rv = config_detach_children(self, flags);
1783 if (rv != 0)
1784 return rv;
1785
1786 if (sc->sk_status_nseg > 0) {
1787 bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map);
1788 bus_dmamem_unmap(sc->sc_dmatag, sc->sk_status_ring,
1789 MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc));
1790 bus_dmamem_free(sc->sc_dmatag,
1791 &sc->sk_status_seg, sc->sk_status_nseg);
1792 }
1793
1794 if (sc->sk_bsize > 0)
1795 bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize);
1796
1797 return 0;
1798 }
1799
1800 static int
1801 msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, uint32_t *txidx)
1802 {
1803 struct sk_softc *sc = sc_if->sk_softc;
1804 struct msk_tx_desc *f = NULL;
1805 uint32_t frag, cur, hiaddr, old_hiaddr, total;
1806 uint32_t entries = 0;
1807 size_t i;
1808 struct sk_txmap_entry *entry;
1809 bus_dmamap_t txmap;
1810 bus_addr_t addr;
1811
1812 DPRINTFN(2, ("msk_encap\n"));
1813
1814 entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head);
1815 if (entry == NULL) {
1816 DPRINTFN(2, ("msk_encap: no txmap available\n"));
1817 return ENOBUFS;
1818 }
1819 txmap = entry->dmamap;
1820
1821 cur = frag = *txidx;
1822
1823 #ifdef MSK_DEBUG
1824 if (mskdebug >= 2)
1825 msk_dump_mbuf(m_head);
1826 #endif
1827
1828 /*
1829 * Start packing the mbufs in this chain into
1830 * the fragment pointers. Stop when we run out
1831 * of fragments or hit the end of the mbuf chain.
1832 */
1833 if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head,
1834 BUS_DMA_NOWAIT)) {
1835 DPRINTFN(2, ("msk_encap: dmamap failed\n"));
1836 return ENOBUFS;
1837 }
1838
1839 /* Count how many tx descriptors needed. */
1840 hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1841 for (total = i = 0; i < txmap->dm_nsegs; i++) {
1842 if (hiaddr != MSK_ADDR_HI(txmap->dm_segs[i].ds_addr)) {
1843 hiaddr = MSK_ADDR_HI(txmap->dm_segs[i].ds_addr);
1844 total++;
1845 }
1846 total++;
1847 }
1848
1849 if (total > MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2) {
1850 DPRINTFN(2, ("msk_encap: too few descriptors free\n"));
1851 bus_dmamap_unload(sc->sc_dmatag, txmap);
1852 return ENOBUFS;
1853 }
1854
1855 DPRINTFN(2, ("msk_encap: dm_nsegs=%d total desc=%u\n",
1856 txmap->dm_nsegs, total));
1857
1858 /* Sync the DMA map. */
1859 bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize,
1860 BUS_DMASYNC_PREWRITE);
1861
1862 old_hiaddr = sc_if->sk_cdata.sk_tx_hiaddr;
1863 for (i = 0; i < txmap->dm_nsegs; i++) {
1864 addr = txmap->dm_segs[i].ds_addr;
1865 DPRINTFN(2, ("msk_encap: addr %llx\n",
1866 (unsigned long long)addr));
1867 hiaddr = MSK_ADDR_HI(addr);
1868
1869 if (sc_if->sk_cdata.sk_tx_hiaddr != hiaddr) {
1870 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1871 f->sk_addr = htole32(hiaddr);
1872 f->sk_len = 0;
1873 f->sk_ctl = 0;
1874 if (i == 0)
1875 f->sk_opcode = SK_Y2_BMUOPC_ADDR64;
1876 else
1877 f->sk_opcode = SK_Y2_BMUOPC_ADDR64 | SK_Y2_TXOPC_OWN;
1878 sc_if->sk_cdata.sk_tx_hiaddr = hiaddr;
1879 SK_INC(frag, MSK_TX_RING_CNT);
1880 entries++;
1881 DPRINTFN(10, ("%s: tx ADDR64: %#x\n",
1882 sc_if->sk_ethercom.ec_if.if_xname, hiaddr));
1883 }
1884
1885 f = &sc_if->sk_rdata->sk_tx_ring[frag];
1886 f->sk_addr = htole32(MSK_ADDR_LO(addr));
1887 f->sk_len = htole16(txmap->dm_segs[i].ds_len);
1888 f->sk_ctl = 0;
1889 if (i == 0) {
1890 if (hiaddr != old_hiaddr)
1891 f->sk_opcode = SK_Y2_TXOPC_PACKET | SK_Y2_TXOPC_OWN;
1892 else
1893 f->sk_opcode = SK_Y2_TXOPC_PACKET;
1894 } else
1895 f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN;
1896 cur = frag;
1897 SK_INC(frag, MSK_TX_RING_CNT);
1898 entries++;
1899 }
1900 KASSERTMSG(entries == total, "entries %u total %u", entries, total);
1901
1902 sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head;
1903 SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link);
1904
1905 sc_if->sk_cdata.sk_tx_map[cur] = entry;
1906 sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG;
1907
1908 /* Sync descriptors before handing to chip */
1909 MSK_CDTXSYNC(sc_if, *txidx, entries,
1910 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1911
1912 sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN;
1913
1914 /* Sync first descriptor to hand it off */
1915 MSK_CDTXSYNC(sc_if, *txidx, 1,
1916 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1917
1918 sc_if->sk_cdata.sk_tx_cnt += entries;
1919
1920 #ifdef MSK_DEBUG
1921 if (mskdebug >= 2) {
1922 struct msk_tx_desc *le;
1923 uint32_t idx;
1924 for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) {
1925 le = &sc_if->sk_rdata->sk_tx_ring[idx];
1926 msk_dump_txdesc(le, idx);
1927 }
1928 }
1929 #endif
1930
1931 *txidx = frag;
1932
1933 DPRINTFN(2, ("msk_encap: successful: %u entries\n", entries));
1934
1935 return 0;
1936 }
1937
1938 static void
1939 msk_start(struct ifnet *ifp)
1940 {
1941 struct sk_if_softc *sc_if = ifp->if_softc;
1942 struct mbuf *m_head = NULL;
1943 uint32_t idx = sc_if->sk_cdata.sk_tx_prod;
1944 int pkts = 0;
1945
1946 DPRINTFN(2, ("msk_start\n"));
1947
1948 while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) {
1949 IFQ_POLL(&ifp->if_snd, m_head);
1950 if (m_head == NULL)
1951 break;
1952
1953 /*
1954 * Pack the data into the transmit ring. If we
1955 * don't have room, set the OACTIVE flag and wait
1956 * for the NIC to drain the ring.
1957 */
1958 if (msk_encap(sc_if, m_head, &idx)) {
1959 ifp->if_flags |= IFF_OACTIVE;
1960 break;
1961 }
1962
1963 /* now we are committed to transmit the packet */
1964 IFQ_DEQUEUE(&ifp->if_snd, m_head);
1965 pkts++;
1966
1967 /*
1968 * If there's a BPF listener, bounce a copy of this frame
1969 * to him.
1970 */
1971 bpf_mtap(ifp, m_head, BPF_D_OUT);
1972 }
1973 if (pkts == 0)
1974 return;
1975
1976 /* Transmit */
1977 if (idx != sc_if->sk_cdata.sk_tx_prod) {
1978 sc_if->sk_cdata.sk_tx_prod = idx;
1979 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx);
1980
1981 /* Set a timeout in case the chip goes out to lunch. */
1982 ifp->if_timer = 5;
1983 }
1984 }
1985
1986 static void
1987 msk_watchdog(struct ifnet *ifp)
1988 {
1989 struct sk_if_softc *sc_if = ifp->if_softc;
1990
1991 /*
1992 * Reclaim first as there is a possibility of losing Tx completion
1993 * interrupts.
1994 */
1995 msk_txeof(sc_if);
1996 if (sc_if->sk_cdata.sk_tx_cnt != 0) {
1997 aprint_error_dev(sc_if->sk_dev, "watchdog timeout\n");
1998
1999 if_statinc(ifp, if_oerrors);
2000
2001 /* XXX Resets both ports; we shouldn't do that. */
2002 mskc_reset(sc_if->sk_softc);
2003 msk_reset(sc_if);
2004 msk_init(ifp);
2005 }
2006 }
2007
2008 static bool
2009 mskc_suspend(device_t dv, const pmf_qual_t *qual)
2010 {
2011 struct sk_softc *sc = device_private(dv);
2012
2013 DPRINTFN(2, ("mskc_suspend\n"));
2014
2015 /* Turn off the 'driver is loaded' LED. */
2016 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
2017
2018 return true;
2019 }
2020
2021 static bool
2022 mskc_resume(device_t dv, const pmf_qual_t *qual)
2023 {
2024 struct sk_softc *sc = device_private(dv);
2025
2026 DPRINTFN(2, ("mskc_resume\n"));
2027
2028 mskc_reset(sc);
2029 CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
2030
2031 return true;
2032 }
2033
2034 static __inline int
2035 msk_rxvalid(struct sk_softc *sc, uint32_t stat, uint32_t len)
2036 {
2037 if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
2038 YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
2039 YU_RXSTAT_JABBER)) != 0 ||
2040 (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
2041 YU_RXSTAT_BYTES(stat) != len)
2042 return 0;
2043
2044 return 1;
2045 }
2046
2047 static void
2048 msk_rxeof(struct sk_if_softc *sc_if, uint16_t len, uint32_t rxstat)
2049 {
2050 struct sk_softc *sc = sc_if->sk_softc;
2051 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2052 struct mbuf *m;
2053 unsigned cur, prod, tail, total_len = len;
2054 bus_dmamap_t dmamap;
2055
2056 cur = sc_if->sk_cdata.sk_rx_cons;
2057 prod = sc_if->sk_cdata.sk_rx_prod;
2058
2059 /* Sync the descriptor */
2060 MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2061
2062 DPRINTFN(2, ("msk_rxeof: cur %u prod %u rx_cnt %u\n", cur, prod,
2063 sc_if->sk_cdata.sk_rx_cnt));
2064
2065 while (prod != cur) {
2066 tail = cur;
2067 SK_INC(cur, MSK_RX_RING_CNT);
2068
2069 sc_if->sk_cdata.sk_rx_cnt--;
2070 m = sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf;
2071 sc_if->sk_cdata.sk_rx_chain[tail].sk_mbuf = NULL;
2072 if (m != NULL)
2073 break; /* found it */
2074 }
2075 sc_if->sk_cdata.sk_rx_cons = cur;
2076 DPRINTFN(2, ("msk_rxeof: cur %u rx_cnt %u m %p\n", cur,
2077 sc_if->sk_cdata.sk_rx_cnt, m));
2078
2079 if (m == NULL)
2080 return;
2081
2082 dmamap = sc_if->sk_cdata.sk_rx_jumbo_map;
2083
2084 bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0,
2085 dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
2086
2087 if (total_len < SK_MIN_FRAMELEN ||
2088 total_len > ETHER_MAX_LEN_JUMBO ||
2089 msk_rxvalid(sc, rxstat, total_len) == 0) {
2090 if_statinc(ifp, if_ierrors);
2091 m_freem(m);
2092 return;
2093 }
2094
2095 m_set_rcvif(m, ifp);
2096 m->m_pkthdr.len = m->m_len = total_len;
2097
2098 /* pass it on. */
2099 if_percpuq_enqueue(ifp->if_percpuq, m);
2100 }
2101
2102 static void
2103 msk_txeof(struct sk_if_softc *sc_if)
2104 {
2105 struct sk_softc *sc = sc_if->sk_softc;
2106 struct msk_tx_desc *cur_tx;
2107 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2108 uint32_t idx, reg, sk_ctl;
2109 struct sk_txmap_entry *entry;
2110
2111 DPRINTFN(2, ("msk_txeof\n"));
2112
2113 if (sc_if->sk_port == SK_PORT_A)
2114 reg = SK_STAT_BMU_TXA1_RIDX;
2115 else
2116 reg = SK_STAT_BMU_TXA2_RIDX;
2117
2118 /*
2119 * Go through our tx ring and free mbufs for those
2120 * frames that have been sent.
2121 */
2122 idx = sc_if->sk_cdata.sk_tx_cons;
2123 while (idx != sk_win_read_2(sc, reg)) {
2124 MSK_CDTXSYNC(sc_if, idx, 1,
2125 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2126
2127 cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx];
2128 sk_ctl = cur_tx->sk_ctl;
2129 #ifdef MSK_DEBUG
2130 if (mskdebug >= 2)
2131 msk_dump_txdesc(cur_tx, idx);
2132 #endif
2133 if (sk_ctl & SK_Y2_TXCTL_LASTFRAG)
2134 if_statinc(ifp, if_opackets);
2135 if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) {
2136 entry = sc_if->sk_cdata.sk_tx_map[idx];
2137
2138 bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0,
2139 entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2140
2141 bus_dmamap_unload(sc->sc_dmatag, entry->dmamap);
2142 SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry,
2143 link);
2144 sc_if->sk_cdata.sk_tx_map[idx] = NULL;
2145 m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf);
2146 sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL;
2147 }
2148 sc_if->sk_cdata.sk_tx_cnt--;
2149 SK_INC(idx, MSK_TX_RING_CNT);
2150 }
2151 if (idx == sc_if->sk_cdata.sk_tx_cons)
2152 return;
2153
2154 ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
2155
2156 if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2)
2157 ifp->if_flags &= ~IFF_OACTIVE;
2158
2159 sc_if->sk_cdata.sk_tx_cons = idx;
2160 }
2161
2162 static void
2163 msk_fill_rx_ring(struct sk_if_softc *sc_if)
2164 {
2165 /* Make sure to not completely wrap around */
2166 while (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT - 1)) {
2167 if (msk_newbuf(sc_if,
2168 sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) {
2169 goto schedretry;
2170 }
2171 }
2172
2173 return;
2174
2175 schedretry:
2176 /* Try later */
2177 callout_schedule(&sc_if->sk_tick_rx, hz/2);
2178 }
2179
2180 static void
2181 msk_fill_rx_tick(void *xsc_if)
2182 {
2183 struct sk_if_softc *sc_if = xsc_if;
2184 int s, rx_prod;
2185
2186 KASSERT(KERNEL_LOCKED_P()); /* XXXSMP */
2187
2188 s = splnet();
2189 rx_prod = sc_if->sk_cdata.sk_rx_prod;
2190 msk_fill_rx_ring(sc_if);
2191 if (rx_prod != sc_if->sk_cdata.sk_rx_prod) {
2192 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2193 sc_if->sk_cdata.sk_rx_prod);
2194 }
2195 splx(s);
2196 }
2197
2198 static void
2199 msk_tick(void *xsc_if)
2200 {
2201 struct sk_if_softc *sc_if = xsc_if;
2202 struct mii_data *mii = &sc_if->sk_mii;
2203 int s;
2204
2205 s = splnet();
2206 mii_tick(mii);
2207 splx(s);
2208
2209 callout_schedule(&sc_if->sk_tick_ch, hz);
2210 }
2211
2212 static void
2213 msk_intr_yukon(struct sk_if_softc *sc_if)
2214 {
2215 uint8_t status;
2216
2217 status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
2218 /* RX overrun */
2219 if ((status & SK_GMAC_INT_RX_OVER) != 0) {
2220 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
2221 SK_RFCTL_RX_FIFO_OVER);
2222 }
2223 /* TX underrun */
2224 if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
2225 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST,
2226 SK_TFCTL_TX_FIFO_UNDER);
2227 }
2228
2229 DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status));
2230 }
2231
2232 static int
2233 msk_intr(void *xsc)
2234 {
2235 struct sk_softc *sc = xsc;
2236 struct sk_if_softc *sc_if;
2237 struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A];
2238 struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B];
2239 struct ifnet *ifp0 = NULL, *ifp1 = NULL;
2240 int claimed = 0;
2241 uint32_t status;
2242 struct msk_status_desc *cur_st;
2243
2244 status = CSR_READ_4(sc, SK_Y2_ISSR2);
2245 if (status == 0xffffffff)
2246 return 0;
2247 if (status == 0) {
2248 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2249 return 0;
2250 }
2251
2252 status = CSR_READ_4(sc, SK_ISR);
2253
2254 if (sc_if0 != NULL)
2255 ifp0 = &sc_if0->sk_ethercom.ec_if;
2256 if (sc_if1 != NULL)
2257 ifp1 = &sc_if1->sk_ethercom.ec_if;
2258
2259 if (sc_if0 && (status & SK_Y2_IMR_MAC1) &&
2260 (ifp0->if_flags & IFF_RUNNING)) {
2261 msk_intr_yukon(sc_if0);
2262 }
2263
2264 if (sc_if1 && (status & SK_Y2_IMR_MAC2) &&
2265 (ifp1->if_flags & IFF_RUNNING)) {
2266 msk_intr_yukon(sc_if1);
2267 }
2268
2269 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2270 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2271 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2272
2273 while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) {
2274 cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN;
2275 switch (cur_st->sk_opcode) {
2276 case SK_Y2_STOPC_RXSTAT:
2277 sc_if = sc->sk_if[cur_st->sk_link & 0x01];
2278 if (sc_if) {
2279 msk_rxeof(sc_if, letoh16(cur_st->sk_len),
2280 letoh32(cur_st->sk_status));
2281 if (sc_if->sk_cdata.sk_rx_cnt < (MSK_RX_RING_CNT/3))
2282 msk_fill_rx_tick(sc_if);
2283 }
2284 break;
2285 case SK_Y2_STOPC_TXSTAT:
2286 if (sc_if0)
2287 msk_txeof(sc_if0);
2288 if (sc_if1)
2289 msk_txeof(sc_if1);
2290 break;
2291 default:
2292 aprint_error("opcode=0x%x\n", cur_st->sk_opcode);
2293 break;
2294 }
2295 SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT);
2296
2297 MSK_CDSTSYNC(sc, sc->sk_status_idx,
2298 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2299 cur_st = &sc->sk_status_ring[sc->sk_status_idx];
2300 }
2301
2302 if (status & SK_Y2_IMR_BMU) {
2303 CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR);
2304 claimed = 1;
2305 }
2306
2307 CSR_WRITE_4(sc, SK_Y2_ICR, 2);
2308
2309 if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd))
2310 if_schedule_deferred_start(ifp0);
2311 if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd))
2312 if_schedule_deferred_start(ifp1);
2313
2314 KASSERT(sc->rnd_attached > 0);
2315 rnd_add_uint32(&sc->rnd_source, status);
2316
2317 if (sc->sk_int_mod_pending)
2318 msk_update_int_mod(sc, 1);
2319
2320 return claimed;
2321 }
2322
2323 static void
2324 msk_init_yukon(struct sk_if_softc *sc_if)
2325 {
2326 uint32_t v;
2327 uint16_t reg;
2328 struct sk_softc *sc;
2329 int i;
2330
2331 sc = sc_if->sk_softc;
2332
2333 DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n",
2334 CSR_READ_4(sc_if->sk_softc, SK_CSR)));
2335
2336 DPRINTFN(6, ("msk_init_yukon: 1\n"));
2337
2338 DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n",
2339 SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL)));
2340
2341 DPRINTFN(6, ("msk_init_yukon: 3\n"));
2342
2343 /* unused read of the interrupt source register */
2344 DPRINTFN(6, ("msk_init_yukon: 4\n"));
2345 SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
2346
2347 DPRINTFN(6, ("msk_init_yukon: 4a\n"));
2348 reg = SK_YU_READ_2(sc_if, YUKON_PAR);
2349 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2350
2351 /* MIB Counter Clear Mode set */
2352 reg |= YU_PAR_MIB_CLR;
2353 DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg));
2354 DPRINTFN(6, ("msk_init_yukon: 4b\n"));
2355 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2356
2357 /* MIB Counter Clear Mode clear */
2358 DPRINTFN(6, ("msk_init_yukon: 5\n"));
2359 reg &= ~YU_PAR_MIB_CLR;
2360 SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
2361
2362 /* receive control reg */
2363 DPRINTFN(6, ("msk_init_yukon: 7\n"));
2364 SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
2365
2366 /* transmit control register */
2367 SK_YU_WRITE_2(sc_if, YUKON_TCR, (0x04 << 10));
2368
2369 /* transmit flow control register */
2370 SK_YU_WRITE_2(sc_if, YUKON_TFCR, 0xffff);
2371
2372 /* transmit parameter register */
2373 DPRINTFN(6, ("msk_init_yukon: 8\n"));
2374 SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
2375 YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1c) | 0x04);
2376
2377 /* serial mode register */
2378 DPRINTFN(6, ("msk_init_yukon: 9\n"));
2379 reg = YU_SMR_DATA_BLIND(0x1c) |
2380 YU_SMR_MFL_VLAN |
2381 YU_SMR_IPG_DATA(0x1e);
2382
2383 if (sc->sk_type != SK_YUKON_FE &&
2384 sc->sk_type != SK_YUKON_FE_P)
2385 reg |= YU_SMR_MFL_JUMBO;
2386
2387 SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
2388
2389 DPRINTFN(6, ("msk_init_yukon: 10\n"));
2390 struct ifnet *ifp = &sc_if->sk_ethercom.ec_if;
2391 /* msk_attach calls me before ether_ifattach so check null */
2392 if (ifp != NULL && ifp->if_sadl != NULL)
2393 memcpy(sc_if->sk_enaddr, CLLADDR(ifp->if_sadl),
2394 sizeof(sc_if->sk_enaddr));
2395 /* Setup Yukon's address */
2396 for (i = 0; i < 3; i++) {
2397 /* Write Source Address 1 (unicast filter) */
2398 SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
2399 sc_if->sk_enaddr[i * 2] |
2400 sc_if->sk_enaddr[i * 2 + 1] << 8);
2401 }
2402
2403 for (i = 0; i < 3; i++) {
2404 reg = sk_win_read_2(sc_if->sk_softc,
2405 SK_MAC1_0 + i * 2 + sc_if->sk_port * 8);
2406 SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg);
2407 }
2408
2409 /* Set promiscuous mode */
2410 msk_setpromisc(sc_if);
2411
2412 /* Set multicast filter */
2413 DPRINTFN(6, ("msk_init_yukon: 11\n"));
2414 msk_setmulti(sc_if);
2415
2416 /* enable interrupt mask for counter overflows */
2417 DPRINTFN(6, ("msk_init_yukon: 12\n"));
2418 SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
2419 SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
2420 SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
2421
2422 /* Configure RX MAC FIFO Flush Mask */
2423 v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
2424 YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
2425 YU_RXSTAT_JABBER;
2426 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
2427
2428 /* Configure RX MAC FIFO */
2429 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
2430 v = SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
2431 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_FE_P))
2432 v |= SK_RFCTL_RX_OVER_ON;
2433 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
2434
2435 if ((sc->sk_type == SK_YUKON_FE_P) &&
2436 (sc->sk_rev == SK_YUKON_FE_P_REV_A0))
2437 v = 0x178; /* Magic value */
2438 else {
2439 /* Increase flush threshold to 64 bytes */
2440 v = SK_RFCTL_FIFO_THRESHOLD + 1;
2441 }
2442 SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, v);
2443
2444 /* Configure TX MAC FIFO */
2445 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
2446 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
2447
2448 if ((sc->sk_type == SK_YUKON_FE_P) &&
2449 (sc->sk_rev == SK_YUKON_FE_P_REV_A0)) {
2450 v = SK_IF_READ_2(sc_if, 0, SK_TXMF1_END);
2451 v &= ~SK_TXEND_WM_ON;
2452 SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_END, v);
2453 }
2454
2455 #if 1
2456 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN);
2457 #endif
2458 DPRINTFN(6, ("msk_init_yukon: end\n"));
2459 }
2460
2461 /*
2462 * Note that to properly initialize any part of the GEnesis chip,
2463 * you first have to take it out of reset mode.
2464 */
2465 static int
2466 msk_init(struct ifnet *ifp)
2467 {
2468 struct sk_if_softc *sc_if = ifp->if_softc;
2469 struct sk_softc *sc = sc_if->sk_softc;
2470 int rc = 0, s;
2471 uint32_t imr, imtimer_ticks;
2472
2473
2474 DPRINTFN(2, ("msk_init\n"));
2475
2476 s = splnet();
2477
2478 /* Cancel pending I/O and free all RX/TX buffers. */
2479 msk_stop(ifp, 1);
2480
2481 /* Configure I2C registers */
2482
2483 /* Configure XMAC(s) */
2484 msk_init_yukon(sc_if);
2485 if ((rc = ether_mediachange(ifp)) != 0)
2486 goto out;
2487
2488 /* Configure transmit arbiter(s) */
2489 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON);
2490 #if 0
2491 /* SK_TXARCTL_ON | SK_TXARCTL_FSYNC_ON); */
2492 #endif
2493
2494 if (sc->sk_ramsize) {
2495 /* Configure RAMbuffers */
2496 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
2497 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
2498 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
2499 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
2500 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
2501 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
2502
2503 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET);
2504 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON);
2505 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart);
2506 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart);
2507 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart);
2508 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend);
2509 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON);
2510 }
2511
2512 /* Configure BMUs */
2513 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016);
2514 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28);
2515 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080);
2516 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_WM, 0x0600); /* XXX ??? */
2517
2518 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016);
2519 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28);
2520 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080);
2521 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_WM, 0x0600); /* XXX ??? */
2522
2523 /* Make sure the sync transmit queue is disabled. */
2524 SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET);
2525
2526 /* Init descriptors */
2527 if (msk_init_rx_ring(sc_if) == ENOBUFS) {
2528 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2529 "memory for rx buffers\n");
2530 msk_stop(ifp, 1);
2531 splx(s);
2532 return ENOBUFS;
2533 }
2534
2535 if (msk_init_tx_ring(sc_if) == ENOBUFS) {
2536 aprint_error_dev(sc_if->sk_dev, "initialization failed: no "
2537 "memory for tx buffers\n");
2538 msk_stop(ifp, 1);
2539 splx(s);
2540 return ENOBUFS;
2541 }
2542
2543 /* Set interrupt moderation if changed via sysctl. */
2544 switch (sc->sk_type) {
2545 case SK_YUKON_EC:
2546 case SK_YUKON_EC_U:
2547 case SK_YUKON_EX:
2548 case SK_YUKON_SUPR:
2549 case SK_YUKON_ULTRA2:
2550 case SK_YUKON_OPTIMA:
2551 case SK_YUKON_PRM:
2552 case SK_YUKON_OPTIMA2:
2553 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC;
2554 break;
2555 case SK_YUKON_FE:
2556 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE;
2557 break;
2558 case SK_YUKON_FE_P:
2559 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_FE_P;
2560 break;
2561 case SK_YUKON_XL:
2562 imtimer_ticks = SK_IMTIMER_TICKS_YUKON_XL;
2563 break;
2564 default:
2565 imtimer_ticks = SK_IMTIMER_TICKS_YUKON;
2566 }
2567 imr = sk_win_read_4(sc, SK_IMTIMERINIT);
2568 if (imr != SK_IM_USECS(sc->sk_int_mod)) {
2569 sk_win_write_4(sc, SK_IMTIMERINIT,
2570 SK_IM_USECS(sc->sk_int_mod));
2571 aprint_verbose_dev(sc->sk_dev,
2572 "interrupt moderation is %d us\n", sc->sk_int_mod);
2573 }
2574
2575 /* Initialize prefetch engine. */
2576 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2577 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002);
2578 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1);
2579 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO,
2580 MSK_RX_RING_ADDR(sc_if, 0));
2581 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI,
2582 (uint64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32);
2583 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008);
2584 SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR);
2585
2586 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2587 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002);
2588 SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1);
2589 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO,
2590 MSK_TX_RING_ADDR(sc_if, 0));
2591 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI,
2592 (uint64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32);
2593 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008);
2594 SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR);
2595
2596 SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX,
2597 sc_if->sk_cdata.sk_rx_prod);
2598
2599
2600 if ((sc->sk_type == SK_YUKON_EX) || (sc->sk_type == SK_YUKON_SUPR)) {
2601 /* Disable flushing of non-ASF packets. */
2602 SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST,
2603 SK_RFCTL_RX_MACSEC_FLUSH_OFF);
2604 }
2605
2606 /* Configure interrupt handling */
2607 if (sc_if->sk_port == SK_PORT_A)
2608 sc->sk_intrmask |= SK_Y2_INTRS1;
2609 else
2610 sc->sk_intrmask |= SK_Y2_INTRS2;
2611 sc->sk_intrmask |= SK_Y2_IMR_BMU;
2612 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2613
2614 ifp->if_flags |= IFF_RUNNING;
2615 ifp->if_flags &= ~IFF_OACTIVE;
2616
2617 callout_schedule(&sc_if->sk_tick_ch, hz);
2618
2619 out:
2620 splx(s);
2621 return rc;
2622 }
2623
2624 /*
2625 * Note: the logic of second parameter is inverted compared to OpenBSD
2626 * code, since this code uses the function as if_stop hook too.
2627 */
2628 static void
2629 msk_stop(struct ifnet *ifp, int disable)
2630 {
2631 struct sk_if_softc *sc_if = ifp->if_softc;
2632 struct sk_softc *sc = sc_if->sk_softc;
2633 struct sk_txmap_entry *dma;
2634 int i;
2635
2636 DPRINTFN(2, ("msk_stop\n"));
2637
2638 callout_stop(&sc_if->sk_tick_ch);
2639 callout_stop(&sc_if->sk_tick_rx);
2640
2641 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2642
2643 /* Stop transfer of Tx descriptors */
2644
2645 /* Stop transfer of Rx descriptors */
2646
2647 if (disable) {
2648 /* Turn off various components of this interface. */
2649 SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
2650 SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
2651 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
2652 SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2653 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE);
2654 SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET | SK_RBCTL_OFF);
2655 SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
2656 SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
2657 SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP);
2658 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
2659 SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
2660
2661 SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001);
2662 SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001);
2663
2664 /* Disable interrupts */
2665 if (sc_if->sk_port == SK_PORT_A)
2666 sc->sk_intrmask &= ~SK_Y2_INTRS1;
2667 else
2668 sc->sk_intrmask &= ~SK_Y2_INTRS2;
2669 CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
2670 }
2671
2672 /* Free RX and TX mbufs still in the queues. */
2673 for (i = 0; i < MSK_RX_RING_CNT; i++) {
2674 if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) {
2675 m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf);
2676 sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL;
2677 }
2678 }
2679
2680 sc_if->sk_cdata.sk_rx_prod = 0;
2681 sc_if->sk_cdata.sk_rx_cons = 0;
2682 sc_if->sk_cdata.sk_rx_cnt = 0;
2683
2684 for (i = 0; i < MSK_TX_RING_CNT; i++) {
2685 if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) {
2686 dma = sc_if->sk_cdata.sk_tx_map[i];
2687
2688 bus_dmamap_sync(sc->sc_dmatag, dma->dmamap, 0,
2689 dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2690
2691 bus_dmamap_unload(sc->sc_dmatag, dma->dmamap);
2692
2693 SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head,
2694 sc_if->sk_cdata.sk_tx_map[i], link);
2695 sc_if->sk_cdata.sk_tx_map[i] = 0;
2696
2697 m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf);
2698 sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL;
2699 }
2700 }
2701 }
2702
2703 CFATTACH_DECL3_NEW(mskc, sizeof(struct sk_softc), mskc_probe, mskc_attach,
2704 mskc_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2705
2706 CFATTACH_DECL3_NEW(msk, sizeof(struct sk_if_softc), msk_probe, msk_attach,
2707 msk_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
2708
2709 #ifdef MSK_DEBUG
2710 static void
2711 msk_dump_txdesc(struct msk_tx_desc *le, int idx)
2712 {
2713 #define DESC_PRINT(X) \
2714 if (X) \
2715 printf("txdesc[%d]." #X "=%#x\n", \
2716 idx, X);
2717
2718 DESC_PRINT(letoh32(le->sk_addr));
2719 DESC_PRINT(letoh16(le->sk_len));
2720 DESC_PRINT(le->sk_ctl);
2721 DESC_PRINT(le->sk_opcode);
2722 #undef DESC_PRINT
2723 }
2724
2725 static void
2726 msk_dump_bytes(const char *data, int len)
2727 {
2728 int c, i, j;
2729
2730 for (i = 0; i < len; i += 16) {
2731 printf("%08x ", i);
2732 c = len - i;
2733 if (c > 16) c = 16;
2734
2735 for (j = 0; j < c; j++) {
2736 printf("%02x ", data[i + j] & 0xff);
2737 if ((j & 0xf) == 7 && j > 0)
2738 printf(" ");
2739 }
2740
2741 for (; j < 16; j++)
2742 printf(" ");
2743 printf(" ");
2744
2745 for (j = 0; j < c; j++) {
2746 int ch = data[i + j] & 0xff;
2747 printf("%c", ' ' <= ch && ch <= '~' ? ch : ' ');
2748 }
2749
2750 printf("\n");
2751
2752 if (c < 16)
2753 break;
2754 }
2755 }
2756
2757 static void
2758 msk_dump_mbuf(struct mbuf *m)
2759 {
2760 int count = m->m_pkthdr.len;
2761
2762 printf("m=%p, m->m_pkthdr.len=%d\n", m, m->m_pkthdr.len);
2763
2764 while (count > 0 && m) {
2765 printf("m=%p, m->m_data=%p, m->m_len=%d\n",
2766 m, m->m_data, m->m_len);
2767 if (mskdebug >= 4)
2768 msk_dump_bytes(mtod(m, char *), m->m_len);
2769
2770 count -= m->m_len;
2771 m = m->m_next;
2772 }
2773 }
2774 #endif
2775
2776 static int
2777 msk_sysctl_handler(SYSCTLFN_ARGS)
2778 {
2779 int error, t;
2780 struct sysctlnode node;
2781 struct sk_softc *sc;
2782
2783 node = *rnode;
2784 sc = node.sysctl_data;
2785 t = sc->sk_int_mod;
2786 node.sysctl_data = &t;
2787 error = sysctl_lookup(SYSCTLFN_CALL(&node));
2788 if (error || newp == NULL)
2789 return error;
2790
2791 if (t < SK_IM_MIN || t > SK_IM_MAX)
2792 return EINVAL;
2793
2794 /* update the softc with sysctl-changed value, and mark
2795 for hardware update */
2796 sc->sk_int_mod = t;
2797 sc->sk_int_mod_pending = 1;
2798 return 0;
2799 }
2800
2801 /*
2802 * Set up sysctl(3) MIB, hw.msk.* - Individual controllers will be
2803 * set up in mskc_attach()
2804 */
2805 SYSCTL_SETUP(sysctl_msk, "sysctl msk subtree setup")
2806 {
2807 int rc;
2808 const struct sysctlnode *node;
2809
2810 if ((rc = sysctl_createv(clog, 0, NULL, &node,
2811 0, CTLTYPE_NODE, "msk",
2812 SYSCTL_DESCR("msk interface controls"),
2813 NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2814 goto err;
2815 }
2816
2817 msk_root_num = node->sysctl_num;
2818 return;
2819
2820 err:
2821 aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2822 }
2823