Home | History | Annotate | Line # | Download | only in pci
if_nfe.c revision 1.28.6.2
      1  1.28.6.1       mjf /*	$NetBSD: if_nfe.c,v 1.28.6.2 2008/06/02 13:23:39 mjf Exp $	*/
      2  1.28.6.2       mjf /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
      3       1.1       chs 
      4       1.1       chs /*-
      5  1.28.6.2       mjf  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6       1.1       chs  * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
      7       1.1       chs  *
      8       1.1       chs  * Permission to use, copy, modify, and distribute this software for any
      9       1.1       chs  * purpose with or without fee is hereby granted, provided that the above
     10       1.1       chs  * copyright notice and this permission notice appear in all copies.
     11       1.1       chs  *
     12       1.1       chs  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13       1.1       chs  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14       1.1       chs  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15       1.1       chs  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16       1.1       chs  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17       1.1       chs  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18       1.1       chs  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19       1.1       chs  */
     20       1.1       chs 
     21       1.1       chs /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
     22       1.1       chs 
     23       1.1       chs #include <sys/cdefs.h>
     24  1.28.6.1       mjf __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.28.6.2 2008/06/02 13:23:39 mjf Exp $");
     25       1.1       chs 
     26       1.1       chs #include "opt_inet.h"
     27       1.1       chs #include "bpfilter.h"
     28       1.1       chs #include "vlan.h"
     29       1.1       chs 
     30       1.1       chs #include <sys/param.h>
     31       1.1       chs #include <sys/endian.h>
     32       1.1       chs #include <sys/systm.h>
     33       1.1       chs #include <sys/types.h>
     34       1.1       chs #include <sys/sockio.h>
     35       1.1       chs #include <sys/mbuf.h>
     36  1.28.6.2       mjf #include <sys/mutex.h>
     37       1.1       chs #include <sys/queue.h>
     38       1.1       chs #include <sys/kernel.h>
     39       1.1       chs #include <sys/device.h>
     40  1.28.6.2       mjf #include <sys/callout.h>
     41       1.1       chs #include <sys/socket.h>
     42       1.1       chs 
     43      1.20        ad #include <sys/bus.h>
     44       1.1       chs 
     45       1.1       chs #include <net/if.h>
     46       1.1       chs #include <net/if_dl.h>
     47       1.1       chs #include <net/if_media.h>
     48       1.1       chs #include <net/if_ether.h>
     49       1.1       chs #include <net/if_arp.h>
     50       1.1       chs 
     51       1.1       chs #ifdef INET
     52       1.1       chs #include <netinet/in.h>
     53       1.1       chs #include <netinet/in_systm.h>
     54       1.1       chs #include <netinet/in_var.h>
     55       1.1       chs #include <netinet/ip.h>
     56       1.1       chs #include <netinet/if_inarp.h>
     57       1.1       chs #endif
     58       1.1       chs 
     59       1.1       chs #if NVLAN > 0
     60       1.1       chs #include <net/if_types.h>
     61       1.1       chs #endif
     62       1.1       chs 
     63       1.1       chs #if NBPFILTER > 0
     64       1.1       chs #include <net/bpf.h>
     65       1.1       chs #endif
     66       1.1       chs 
     67       1.1       chs #include <dev/mii/mii.h>
     68       1.1       chs #include <dev/mii/miivar.h>
     69       1.1       chs 
     70       1.1       chs #include <dev/pci/pcireg.h>
     71       1.1       chs #include <dev/pci/pcivar.h>
     72       1.1       chs #include <dev/pci/pcidevs.h>
     73       1.1       chs 
     74       1.1       chs #include <dev/pci/if_nfereg.h>
     75       1.1       chs #include <dev/pci/if_nfevar.h>
     76       1.1       chs 
     77  1.28.6.1       mjf int	nfe_match(device_t, cfdata_t, void *);
     78  1.28.6.1       mjf void	nfe_attach(device_t, device_t, void *);
     79       1.1       chs void	nfe_power(int, void *);
     80  1.28.6.1       mjf void	nfe_miibus_statchg(device_t);
     81  1.28.6.1       mjf int	nfe_miibus_readreg(device_t, int, int);
     82  1.28.6.1       mjf void	nfe_miibus_writereg(device_t, int, int, int);
     83       1.1       chs int	nfe_intr(void *);
     84      1.15  christos int	nfe_ioctl(struct ifnet *, u_long, void *);
     85       1.1       chs void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
     86       1.1       chs void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
     87       1.1       chs void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
     88       1.1       chs void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
     89       1.1       chs void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
     90       1.1       chs void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
     91       1.1       chs void	nfe_rxeof(struct nfe_softc *);
     92       1.1       chs void	nfe_txeof(struct nfe_softc *);
     93       1.1       chs int	nfe_encap(struct nfe_softc *, struct mbuf *);
     94       1.1       chs void	nfe_start(struct ifnet *);
     95       1.1       chs void	nfe_watchdog(struct ifnet *);
     96       1.1       chs int	nfe_init(struct ifnet *);
     97       1.1       chs void	nfe_stop(struct ifnet *, int);
     98      1.19      cube struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
     99      1.15  christos void	nfe_jfree(struct mbuf *, void *, size_t, void *);
    100       1.1       chs int	nfe_jpool_alloc(struct nfe_softc *);
    101       1.1       chs void	nfe_jpool_free(struct nfe_softc *);
    102       1.1       chs int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    103       1.1       chs void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    104       1.1       chs void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    105       1.1       chs int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    106       1.1       chs void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    107       1.1       chs void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    108       1.1       chs void	nfe_setmulti(struct nfe_softc *);
    109       1.1       chs void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
    110       1.1       chs void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
    111       1.1       chs void	nfe_tick(void *);
    112  1.28.6.2       mjf void	nfe_poweron(device_t);
    113  1.28.6.2       mjf bool	nfe_resume(device_t PMF_FN_PROTO);
    114       1.1       chs 
    115  1.28.6.1       mjf CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
    116  1.28.6.1       mjf     NULL, NULL);
    117       1.1       chs 
    118  1.28.6.2       mjf /* #define NFE_NO_JUMBO */
    119       1.1       chs 
    120       1.1       chs #ifdef NFE_DEBUG
    121       1.1       chs int nfedebug = 0;
    122       1.1       chs #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
    123       1.1       chs #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
    124       1.1       chs #else
    125       1.1       chs #define DPRINTF(x)
    126       1.1       chs #define DPRINTFN(n,x)
    127       1.1       chs #endif
    128       1.1       chs 
    129       1.1       chs /* deal with naming differences */
    130       1.1       chs 
    131       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
    132       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
    133       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
    134       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
    135       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
    136       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
    137       1.1       chs 
    138       1.1       chs #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
    139       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
    140       1.1       chs #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
    141       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
    142       1.1       chs 
    143       1.1       chs #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
    144       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
    145       1.1       chs #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
    146       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
    147       1.1       chs 
    148       1.1       chs #ifdef	_LP64
    149       1.1       chs #define	__LP64__ 1
    150       1.1       chs #endif
    151       1.1       chs 
    152       1.1       chs const struct nfe_product {
    153       1.1       chs 	pci_vendor_id_t		vendor;
    154       1.1       chs 	pci_product_id_t	product;
    155       1.1       chs } nfe_devices[] = {
    156       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
    157       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
    158       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
    159       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
    160       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
    161       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
    162       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
    163       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
    164       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
    165       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
    166       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
    167       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
    168       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
    169       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
    170       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
    171       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
    172       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
    173       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
    174       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
    175       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
    176       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
    177       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
    178      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
    179      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
    180      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
    181      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
    182      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
    183      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
    184      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
    185      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
    186  1.28.6.1       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
    187  1.28.6.2       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
    188  1.28.6.2       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
    189  1.28.6.2       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
    190  1.28.6.2       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
    191  1.28.6.2       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
    192  1.28.6.2       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
    193  1.28.6.2       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
    194  1.28.6.2       mjf 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
    195       1.1       chs };
    196       1.1       chs 
    197       1.1       chs int
    198  1.28.6.1       mjf nfe_match(device_t dev, cfdata_t match, void *aux)
    199       1.1       chs {
    200       1.1       chs 	struct pci_attach_args *pa = aux;
    201       1.1       chs 	const struct nfe_product *np;
    202       1.1       chs 	int i;
    203       1.1       chs 
    204       1.1       chs 	for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
    205       1.1       chs 		np = &nfe_devices[i];
    206       1.1       chs 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
    207       1.1       chs 		    PCI_PRODUCT(pa->pa_id) == np->product)
    208       1.1       chs 			return 1;
    209       1.1       chs 	}
    210       1.1       chs 	return 0;
    211       1.1       chs }
    212       1.1       chs 
    213       1.1       chs void
    214  1.28.6.1       mjf nfe_attach(device_t parent, device_t self, void *aux)
    215       1.1       chs {
    216  1.28.6.1       mjf 	struct nfe_softc *sc = device_private(self);
    217       1.1       chs 	struct pci_attach_args *pa = aux;
    218       1.1       chs 	pci_chipset_tag_t pc = pa->pa_pc;
    219       1.1       chs 	pci_intr_handle_t ih;
    220       1.1       chs 	const char *intrstr;
    221       1.1       chs 	struct ifnet *ifp;
    222       1.1       chs 	bus_size_t memsize;
    223       1.1       chs 	pcireg_t memtype;
    224      1.10   tsutsui 	char devinfo[256];
    225      1.10   tsutsui 
    226  1.28.6.1       mjf 	sc->sc_dev = self;
    227      1.10   tsutsui 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
    228  1.28.6.2       mjf 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
    229       1.1       chs 
    230       1.1       chs 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
    231       1.1       chs 	switch (memtype) {
    232       1.1       chs 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    233       1.1       chs 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    234       1.1       chs 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
    235       1.1       chs 		    &sc->sc_memh, NULL, &memsize) == 0)
    236       1.1       chs 			break;
    237       1.1       chs 		/* FALLTHROUGH */
    238       1.1       chs 	default:
    239  1.28.6.1       mjf 		aprint_error_dev(self, "could not map mem space\n");
    240       1.1       chs 		return;
    241       1.1       chs 	}
    242       1.1       chs 
    243       1.1       chs 	if (pci_intr_map(pa, &ih) != 0) {
    244  1.28.6.1       mjf 		aprint_error_dev(self, "could not map interrupt\n");
    245       1.1       chs 		return;
    246       1.1       chs 	}
    247       1.1       chs 
    248       1.1       chs 	intrstr = pci_intr_string(pc, ih);
    249       1.1       chs 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
    250       1.1       chs 	if (sc->sc_ih == NULL) {
    251  1.28.6.1       mjf 		aprint_error_dev(self, "could not establish interrupt");
    252       1.1       chs 		if (intrstr != NULL)
    253  1.28.6.1       mjf 			aprint_normal(" at %s", intrstr);
    254  1.28.6.1       mjf 		aprint_normal("\n");
    255       1.1       chs 		return;
    256       1.1       chs 	}
    257  1.28.6.1       mjf 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    258       1.1       chs 
    259       1.1       chs 	sc->sc_dmat = pa->pa_dmat;
    260       1.1       chs 
    261       1.1       chs 	sc->sc_flags = 0;
    262       1.1       chs 
    263       1.1       chs 	switch (PCI_PRODUCT(pa->pa_id)) {
    264       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
    265       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
    266       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
    267       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
    268       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
    269       1.1       chs 		break;
    270       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
    271       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
    272  1.28.6.2       mjf 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
    273  1.28.6.2       mjf 		break;
    274       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
    275       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
    276       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
    277       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
    278      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
    279      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
    280      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
    281      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
    282      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
    283      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
    284      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
    285      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
    286  1.28.6.2       mjf 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
    287  1.28.6.2       mjf 		    NFE_PWR_MGMT;
    288  1.28.6.2       mjf 		break;
    289  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
    290  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
    291  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
    292  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
    293  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
    294  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
    295  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
    296  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
    297  1.28.6.2       mjf 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
    298  1.28.6.2       mjf 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    299       1.1       chs 		break;
    300       1.1       chs 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
    301       1.1       chs 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
    302       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
    303       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
    304       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
    305       1.1       chs 		break;
    306       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
    307       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
    308       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
    309       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
    310  1.28.6.2       mjf 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
    311  1.28.6.2       mjf 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    312  1.28.6.2       mjf 		break;
    313  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
    314  1.28.6.2       mjf 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
    315       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
    316      1.27   tsutsui 		    NFE_HW_VLAN | NFE_PWR_MGMT;
    317       1.1       chs 		break;
    318       1.1       chs 	}
    319       1.1       chs 
    320  1.28.6.2       mjf 	nfe_poweron(self);
    321      1.27   tsutsui 
    322       1.1       chs #ifndef NFE_NO_JUMBO
    323       1.1       chs 	/* enable jumbo frames for adapters that support it */
    324       1.1       chs 	if (sc->sc_flags & NFE_JUMBO_SUP)
    325       1.1       chs 		sc->sc_flags |= NFE_USE_JUMBO;
    326       1.1       chs #endif
    327       1.1       chs 
    328  1.28.6.2       mjf 	/* Check for reversed ethernet address */
    329  1.28.6.2       mjf 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
    330  1.28.6.2       mjf 		sc->sc_flags |= NFE_CORRECT_MACADDR;
    331  1.28.6.2       mjf 
    332  1.28.6.2       mjf 	nfe_get_macaddr(sc, sc->sc_enaddr);
    333  1.28.6.2       mjf 	aprint_normal_dev(self, "Ethernet address %s\n",
    334  1.28.6.2       mjf 	    ether_sprintf(sc->sc_enaddr));
    335  1.28.6.2       mjf 
    336       1.1       chs 	/*
    337       1.1       chs 	 * Allocate Tx and Rx rings.
    338       1.1       chs 	 */
    339       1.1       chs 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
    340  1.28.6.1       mjf 		aprint_error_dev(self, "could not allocate Tx ring\n");
    341       1.1       chs 		return;
    342       1.1       chs 	}
    343       1.1       chs 
    344  1.28.6.2       mjf 	mutex_init(&sc->rxq.mtx, MUTEX_SPIN, IPL_NET);
    345  1.28.6.2       mjf 
    346       1.1       chs 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
    347  1.28.6.1       mjf 		aprint_error_dev(self, "could not allocate Rx ring\n");
    348       1.1       chs 		nfe_free_tx_ring(sc, &sc->txq);
    349       1.1       chs 		return;
    350       1.1       chs 	}
    351       1.1       chs 
    352       1.1       chs 	ifp = &sc->sc_ethercom.ec_if;
    353       1.1       chs 	ifp->if_softc = sc;
    354       1.1       chs 	ifp->if_mtu = ETHERMTU;
    355       1.1       chs 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    356       1.1       chs 	ifp->if_ioctl = nfe_ioctl;
    357       1.1       chs 	ifp->if_start = nfe_start;
    358      1.24  jmcneill 	ifp->if_stop = nfe_stop;
    359       1.1       chs 	ifp->if_watchdog = nfe_watchdog;
    360       1.1       chs 	ifp->if_init = nfe_init;
    361       1.1       chs 	ifp->if_baudrate = IF_Gbps(1);
    362       1.1       chs 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
    363       1.1       chs 	IFQ_SET_READY(&ifp->if_snd);
    364  1.28.6.1       mjf 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    365       1.1       chs 
    366  1.28.6.2       mjf #ifdef notyet
    367  1.28.6.2       mjf 	if (sc->sc_flags & NFE_USE_JUMBO)
    368  1.28.6.2       mjf 		ifp->if_hardmtu = NFE_JUMBO_MTU;
    369  1.28.6.2       mjf #endif
    370  1.28.6.2       mjf 
    371       1.1       chs #if NVLAN > 0
    372       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
    373       1.1       chs 		sc->sc_ethercom.ec_capabilities |=
    374       1.1       chs 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
    375       1.1       chs #endif
    376       1.1       chs 	if (sc->sc_flags & NFE_HW_CSUM) {
    377      1.13   tsutsui 		ifp->if_capabilities |=
    378      1.13   tsutsui 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    379      1.13   tsutsui 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    380      1.13   tsutsui 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    381       1.1       chs 	}
    382       1.1       chs 
    383       1.1       chs 	sc->sc_mii.mii_ifp = ifp;
    384       1.1       chs 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
    385       1.1       chs 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
    386       1.1       chs 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
    387       1.1       chs 
    388      1.26    dyoung 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    389      1.26    dyoung 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
    390      1.26    dyoung 	    ether_mediastatus);
    391       1.1       chs 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    392       1.1       chs 	    MII_OFFSET_ANY, 0);
    393       1.1       chs 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    394  1.28.6.1       mjf 		aprint_error_dev(self, "no PHY found!\n");
    395       1.1       chs 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
    396       1.1       chs 		    0, NULL);
    397       1.1       chs 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    398       1.1       chs 	} else
    399       1.1       chs 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
    400       1.1       chs 
    401       1.1       chs 	if_attach(ifp);
    402       1.1       chs 	ether_ifattach(ifp, sc->sc_enaddr);
    403       1.1       chs 
    404      1.16        ad 	callout_init(&sc->sc_tick_ch, 0);
    405       1.1       chs 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
    406       1.1       chs 
    407  1.28.6.2       mjf 	if (!pmf_device_register(self, NULL, nfe_resume))
    408      1.24  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    409      1.24  jmcneill 	else
    410      1.24  jmcneill 		pmf_class_network_register(self, ifp);
    411       1.1       chs }
    412       1.1       chs 
    413       1.1       chs void
    414  1.28.6.1       mjf nfe_miibus_statchg(device_t dev)
    415       1.1       chs {
    416  1.28.6.1       mjf 	struct nfe_softc *sc = device_private(dev);
    417       1.1       chs 	struct mii_data *mii = &sc->sc_mii;
    418       1.1       chs 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
    419       1.1       chs 
    420       1.1       chs 	phy = NFE_READ(sc, NFE_PHY_IFACE);
    421       1.1       chs 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
    422       1.1       chs 
    423       1.1       chs 	seed = NFE_READ(sc, NFE_RNDSEED);
    424       1.1       chs 	seed &= ~NFE_SEED_MASK;
    425       1.1       chs 
    426       1.1       chs 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
    427       1.1       chs 		phy  |= NFE_PHY_HDX;	/* half-duplex */
    428       1.1       chs 		misc |= NFE_MISC1_HDX;
    429       1.1       chs 	}
    430       1.1       chs 
    431       1.1       chs 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
    432       1.1       chs 	case IFM_1000_T:	/* full-duplex only */
    433       1.1       chs 		link |= NFE_MEDIA_1000T;
    434       1.1       chs 		seed |= NFE_SEED_1000T;
    435       1.1       chs 		phy  |= NFE_PHY_1000T;
    436       1.1       chs 		break;
    437       1.1       chs 	case IFM_100_TX:
    438       1.1       chs 		link |= NFE_MEDIA_100TX;
    439       1.1       chs 		seed |= NFE_SEED_100TX;
    440       1.1       chs 		phy  |= NFE_PHY_100TX;
    441       1.1       chs 		break;
    442       1.1       chs 	case IFM_10_T:
    443       1.1       chs 		link |= NFE_MEDIA_10T;
    444       1.1       chs 		seed |= NFE_SEED_10T;
    445       1.1       chs 		break;
    446       1.1       chs 	}
    447       1.1       chs 
    448       1.1       chs 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
    449       1.1       chs 
    450       1.1       chs 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
    451       1.1       chs 	NFE_WRITE(sc, NFE_MISC1, misc);
    452       1.1       chs 	NFE_WRITE(sc, NFE_LINKSPEED, link);
    453       1.1       chs }
    454       1.1       chs 
    455       1.1       chs int
    456  1.28.6.1       mjf nfe_miibus_readreg(device_t dev, int phy, int reg)
    457       1.1       chs {
    458  1.28.6.1       mjf 	struct nfe_softc *sc = device_private(dev);
    459       1.1       chs 	uint32_t val;
    460       1.1       chs 	int ntries;
    461       1.1       chs 
    462       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    463       1.1       chs 
    464       1.1       chs 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
    465       1.1       chs 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
    466       1.1       chs 		DELAY(100);
    467       1.1       chs 	}
    468       1.1       chs 
    469       1.1       chs 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
    470       1.1       chs 
    471       1.1       chs 	for (ntries = 0; ntries < 1000; ntries++) {
    472       1.1       chs 		DELAY(100);
    473       1.1       chs 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
    474       1.1       chs 			break;
    475       1.1       chs 	}
    476       1.1       chs 	if (ntries == 1000) {
    477       1.1       chs 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
    478  1.28.6.1       mjf 		    device_xname(sc->sc_dev)));
    479       1.1       chs 		return 0;
    480       1.1       chs 	}
    481       1.1       chs 
    482       1.1       chs 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
    483       1.1       chs 		DPRINTFN(2, ("%s: could not read PHY\n",
    484  1.28.6.1       mjf 		    device_xname(sc->sc_dev)));
    485       1.1       chs 		return 0;
    486       1.1       chs 	}
    487       1.1       chs 
    488       1.1       chs 	val = NFE_READ(sc, NFE_PHY_DATA);
    489       1.1       chs 	if (val != 0xffffffff && val != 0)
    490       1.1       chs 		sc->mii_phyaddr = phy;
    491       1.1       chs 
    492       1.1       chs 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
    493  1.28.6.1       mjf 	    device_xname(sc->sc_dev), phy, reg, val));
    494       1.1       chs 
    495       1.1       chs 	return val;
    496       1.1       chs }
    497       1.1       chs 
    498       1.1       chs void
    499  1.28.6.1       mjf nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
    500       1.1       chs {
    501  1.28.6.1       mjf 	struct nfe_softc *sc = device_private(dev);
    502       1.1       chs 	uint32_t ctl;
    503       1.1       chs 	int ntries;
    504       1.1       chs 
    505       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    506       1.1       chs 
    507       1.1       chs 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
    508       1.1       chs 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
    509       1.1       chs 		DELAY(100);
    510       1.1       chs 	}
    511       1.1       chs 
    512       1.1       chs 	NFE_WRITE(sc, NFE_PHY_DATA, val);
    513       1.1       chs 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
    514       1.1       chs 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
    515       1.1       chs 
    516       1.1       chs 	for (ntries = 0; ntries < 1000; ntries++) {
    517       1.1       chs 		DELAY(100);
    518       1.1       chs 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
    519       1.1       chs 			break;
    520       1.1       chs 	}
    521       1.1       chs #ifdef NFE_DEBUG
    522       1.1       chs 	if (nfedebug >= 2 && ntries == 1000)
    523       1.1       chs 		printf("could not write to PHY\n");
    524       1.1       chs #endif
    525       1.1       chs }
    526       1.1       chs 
    527       1.1       chs int
    528       1.1       chs nfe_intr(void *arg)
    529       1.1       chs {
    530       1.1       chs 	struct nfe_softc *sc = arg;
    531       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    532       1.1       chs 	uint32_t r;
    533      1.14   tsutsui 	int handled;
    534       1.1       chs 
    535      1.14   tsutsui 	if ((ifp->if_flags & IFF_UP) == 0)
    536      1.14   tsutsui 		return 0;
    537       1.1       chs 
    538      1.14   tsutsui 	handled = 0;
    539       1.1       chs 
    540      1.12  jmcneill 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
    541      1.12  jmcneill 
    542      1.14   tsutsui 	for (;;) {
    543      1.14   tsutsui 		r = NFE_READ(sc, NFE_IRQ_STATUS);
    544      1.14   tsutsui 		if ((r & NFE_IRQ_WANTED) == 0)
    545      1.14   tsutsui 			break;
    546       1.1       chs 
    547      1.14   tsutsui 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
    548      1.14   tsutsui 		handled = 1;
    549      1.14   tsutsui 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
    550      1.14   tsutsui 
    551  1.28.6.2       mjf 		if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
    552      1.14   tsutsui 			/* check Rx ring */
    553      1.14   tsutsui 			nfe_rxeof(sc);
    554      1.14   tsutsui 		}
    555  1.28.6.2       mjf 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
    556      1.14   tsutsui 			/* check Tx ring */
    557      1.14   tsutsui 			nfe_txeof(sc);
    558      1.14   tsutsui 		}
    559      1.14   tsutsui 		if ((r & NFE_IRQ_LINK) != 0) {
    560      1.14   tsutsui 			NFE_READ(sc, NFE_PHY_STATUS);
    561      1.14   tsutsui 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    562      1.14   tsutsui 			DPRINTF(("%s: link state changed\n",
    563  1.28.6.1       mjf 			    device_xname(sc->sc_dev)));
    564      1.14   tsutsui 		}
    565       1.1       chs 	}
    566       1.1       chs 
    567      1.12  jmcneill 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
    568      1.12  jmcneill 
    569      1.14   tsutsui 	if (handled && !IF_IS_EMPTY(&ifp->if_snd))
    570      1.12  jmcneill 		nfe_start(ifp);
    571      1.12  jmcneill 
    572      1.14   tsutsui 	return handled;
    573       1.1       chs }
    574       1.1       chs 
    575       1.1       chs int
    576      1.15  christos nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    577       1.1       chs {
    578       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
    579       1.1       chs 	struct ifreq *ifr = (struct ifreq *)data;
    580       1.1       chs 	struct ifaddr *ifa = (struct ifaddr *)data;
    581       1.1       chs 	int s, error = 0;
    582       1.1       chs 
    583       1.1       chs 	s = splnet();
    584       1.1       chs 
    585       1.1       chs 	switch (cmd) {
    586       1.1       chs 	case SIOCSIFADDR:
    587       1.1       chs 		ifp->if_flags |= IFF_UP;
    588       1.1       chs 		nfe_init(ifp);
    589       1.1       chs 		switch (ifa->ifa_addr->sa_family) {
    590       1.1       chs #ifdef INET
    591       1.1       chs 		case AF_INET:
    592       1.1       chs 			arp_ifinit(ifp, ifa);
    593       1.1       chs 			break;
    594       1.1       chs #endif
    595       1.1       chs 		default:
    596       1.1       chs 			break;
    597       1.1       chs 		}
    598       1.1       chs 		break;
    599       1.1       chs 	case SIOCSIFMTU:
    600       1.1       chs 		if (ifr->ifr_mtu < ETHERMIN ||
    601       1.1       chs 		    ((sc->sc_flags & NFE_USE_JUMBO) &&
    602       1.1       chs 		    ifr->ifr_mtu > ETHERMTU_JUMBO) ||
    603       1.1       chs 		    (!(sc->sc_flags & NFE_USE_JUMBO) &&
    604       1.1       chs 		    ifr->ifr_mtu > ETHERMTU))
    605       1.1       chs 			error = EINVAL;
    606      1.28    dyoung 		else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
    607      1.28    dyoung 			error = 0;
    608       1.1       chs 		break;
    609       1.1       chs 	case SIOCSIFFLAGS:
    610       1.1       chs 		if (ifp->if_flags & IFF_UP) {
    611       1.1       chs 			/*
    612       1.1       chs 			 * If only the PROMISC or ALLMULTI flag changes, then
    613       1.1       chs 			 * don't do a full re-init of the chip, just update
    614       1.1       chs 			 * the Rx filter.
    615       1.1       chs 			 */
    616       1.1       chs 			if ((ifp->if_flags & IFF_RUNNING) &&
    617       1.1       chs 			    ((ifp->if_flags ^ sc->sc_if_flags) &
    618  1.28.6.2       mjf 			     (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
    619       1.1       chs 				nfe_setmulti(sc);
    620  1.28.6.2       mjf 			} else
    621       1.1       chs 				nfe_init(ifp);
    622       1.1       chs 		} else {
    623       1.1       chs 			if (ifp->if_flags & IFF_RUNNING)
    624       1.1       chs 				nfe_stop(ifp, 1);
    625       1.1       chs 		}
    626       1.1       chs 		sc->sc_if_flags = ifp->if_flags;
    627       1.1       chs 		break;
    628      1.26    dyoung 	default:
    629      1.28    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    630      1.28    dyoung 			break;
    631  1.28.6.2       mjf 
    632      1.28    dyoung 		error = 0;
    633      1.28    dyoung 
    634      1.28    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    635      1.28    dyoung 			;
    636      1.28    dyoung 		else if (ifp->if_flags & IFF_RUNNING)
    637      1.28    dyoung 			nfe_setmulti(sc);
    638       1.1       chs 		break;
    639       1.1       chs 	}
    640       1.1       chs 
    641       1.1       chs 	splx(s);
    642       1.1       chs 
    643       1.1       chs 	return error;
    644       1.1       chs }
    645       1.1       chs 
    646       1.1       chs void
    647       1.1       chs nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
    648       1.1       chs {
    649       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    650      1.15  christos 	    (char *)desc32 - (char *)sc->txq.desc32,
    651       1.1       chs 	    sizeof (struct nfe_desc32), ops);
    652       1.1       chs }
    653       1.1       chs 
    654       1.1       chs void
    655       1.1       chs nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
    656       1.1       chs {
    657       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    658      1.15  christos 	    (char *)desc64 - (char *)sc->txq.desc64,
    659       1.1       chs 	    sizeof (struct nfe_desc64), ops);
    660       1.1       chs }
    661       1.1       chs 
    662       1.1       chs void
    663       1.1       chs nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
    664       1.1       chs {
    665       1.1       chs 	if (end > start) {
    666       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    667      1.15  christos 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
    668      1.15  christos 		    (char *)&sc->txq.desc32[end] -
    669      1.15  christos 		    (char *)&sc->txq.desc32[start], ops);
    670       1.1       chs 		return;
    671       1.1       chs 	}
    672       1.1       chs 	/* sync from 'start' to end of ring */
    673       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    674      1.15  christos 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
    675      1.15  christos 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
    676      1.15  christos 	    (char *)&sc->txq.desc32[start], ops);
    677       1.1       chs 
    678       1.1       chs 	/* sync from start of ring to 'end' */
    679       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
    680      1.15  christos 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
    681       1.1       chs }
    682       1.1       chs 
    683       1.1       chs void
    684       1.1       chs nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
    685       1.1       chs {
    686       1.1       chs 	if (end > start) {
    687       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    688      1.15  christos 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
    689      1.15  christos 		    (char *)&sc->txq.desc64[end] -
    690      1.15  christos 		    (char *)&sc->txq.desc64[start], ops);
    691       1.1       chs 		return;
    692       1.1       chs 	}
    693       1.1       chs 	/* sync from 'start' to end of ring */
    694       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    695      1.15  christos 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
    696      1.15  christos 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
    697      1.15  christos 	    (char *)&sc->txq.desc64[start], ops);
    698       1.1       chs 
    699       1.1       chs 	/* sync from start of ring to 'end' */
    700       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
    701      1.15  christos 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
    702       1.1       chs }
    703       1.1       chs 
    704       1.1       chs void
    705       1.1       chs nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
    706       1.1       chs {
    707       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
    708      1.15  christos 	    (char *)desc32 - (char *)sc->rxq.desc32,
    709       1.1       chs 	    sizeof (struct nfe_desc32), ops);
    710       1.1       chs }
    711       1.1       chs 
    712       1.1       chs void
    713       1.1       chs nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
    714       1.1       chs {
    715       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
    716      1.15  christos 	    (char *)desc64 - (char *)sc->rxq.desc64,
    717       1.1       chs 	    sizeof (struct nfe_desc64), ops);
    718       1.1       chs }
    719       1.1       chs 
    720       1.1       chs void
    721       1.1       chs nfe_rxeof(struct nfe_softc *sc)
    722       1.1       chs {
    723       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    724       1.1       chs 	struct nfe_desc32 *desc32;
    725       1.1       chs 	struct nfe_desc64 *desc64;
    726       1.1       chs 	struct nfe_rx_data *data;
    727       1.1       chs 	struct nfe_jbuf *jbuf;
    728       1.1       chs 	struct mbuf *m, *mnew;
    729       1.1       chs 	bus_addr_t physaddr;
    730       1.1       chs 	uint16_t flags;
    731      1.14   tsutsui 	int error, len, i;
    732       1.1       chs 
    733       1.1       chs 	desc32 = NULL;
    734       1.1       chs 	desc64 = NULL;
    735      1.14   tsutsui 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
    736      1.14   tsutsui 		data = &sc->rxq.data[i];
    737       1.1       chs 
    738       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    739      1.14   tsutsui 			desc64 = &sc->rxq.desc64[i];
    740      1.14   tsutsui 			nfe_rxdesc64_sync(sc, desc64,
    741      1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    742       1.1       chs 
    743       1.1       chs 			flags = le16toh(desc64->flags);
    744       1.1       chs 			len = le16toh(desc64->length) & 0x3fff;
    745       1.1       chs 		} else {
    746      1.14   tsutsui 			desc32 = &sc->rxq.desc32[i];
    747      1.14   tsutsui 			nfe_rxdesc32_sync(sc, desc32,
    748      1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    749       1.1       chs 
    750       1.1       chs 			flags = le16toh(desc32->flags);
    751       1.1       chs 			len = le16toh(desc32->length) & 0x3fff;
    752       1.1       chs 		}
    753       1.1       chs 
    754      1.14   tsutsui 		if ((flags & NFE_RX_READY) != 0)
    755       1.1       chs 			break;
    756       1.1       chs 
    757       1.1       chs 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
    758      1.14   tsutsui 			if ((flags & NFE_RX_VALID_V1) == 0)
    759       1.1       chs 				goto skip;
    760       1.1       chs 
    761       1.1       chs 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
    762       1.1       chs 				flags &= ~NFE_RX_ERROR;
    763       1.1       chs 				len--;	/* fix buffer length */
    764       1.1       chs 			}
    765       1.1       chs 		} else {
    766      1.14   tsutsui 			if ((flags & NFE_RX_VALID_V2) == 0)
    767       1.1       chs 				goto skip;
    768       1.1       chs 
    769       1.1       chs 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
    770       1.1       chs 				flags &= ~NFE_RX_ERROR;
    771       1.1       chs 				len--;	/* fix buffer length */
    772       1.1       chs 			}
    773       1.1       chs 		}
    774       1.1       chs 
    775       1.1       chs 		if (flags & NFE_RX_ERROR) {
    776       1.1       chs 			ifp->if_ierrors++;
    777       1.1       chs 			goto skip;
    778       1.1       chs 		}
    779       1.1       chs 
    780       1.1       chs 		/*
    781       1.1       chs 		 * Try to allocate a new mbuf for this ring element and load
    782       1.1       chs 		 * it before processing the current mbuf. If the ring element
    783       1.1       chs 		 * cannot be loaded, drop the received packet and reuse the
    784       1.1       chs 		 * old mbuf. In the unlikely case that the old mbuf can't be
    785       1.1       chs 		 * reloaded either, explicitly panic.
    786       1.1       chs 		 */
    787       1.1       chs 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    788       1.1       chs 		if (mnew == NULL) {
    789       1.1       chs 			ifp->if_ierrors++;
    790       1.1       chs 			goto skip;
    791       1.1       chs 		}
    792       1.1       chs 
    793       1.1       chs 		if (sc->sc_flags & NFE_USE_JUMBO) {
    794      1.19      cube 			physaddr =
    795      1.19      cube 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
    796      1.19      cube 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
    797      1.19      cube 				if (len > MCLBYTES) {
    798      1.19      cube 					m_freem(mnew);
    799      1.19      cube 					ifp->if_ierrors++;
    800      1.19      cube 					goto skip1;
    801      1.19      cube 				}
    802      1.19      cube 				MCLGET(mnew, M_DONTWAIT);
    803      1.19      cube 				if ((mnew->m_flags & M_EXT) == 0) {
    804      1.19      cube 					m_freem(mnew);
    805      1.19      cube 					ifp->if_ierrors++;
    806      1.19      cube 					goto skip1;
    807      1.19      cube 				}
    808       1.1       chs 
    809  1.28.6.2       mjf 				(void)memcpy(mtod(mnew, void *),
    810      1.19      cube 				    mtod(data->m, const void *), len);
    811      1.19      cube 				m = mnew;
    812      1.19      cube 				goto mbufcopied;
    813      1.19      cube 			} else {
    814      1.19      cube 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
    815      1.19      cube 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
    816      1.19      cube 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
    817      1.19      cube 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
    818       1.1       chs 
    819      1.19      cube 				physaddr = jbuf->physaddr;
    820      1.19      cube 			}
    821       1.1       chs 		} else {
    822       1.1       chs 			MCLGET(mnew, M_DONTWAIT);
    823      1.14   tsutsui 			if ((mnew->m_flags & M_EXT) == 0) {
    824       1.1       chs 				m_freem(mnew);
    825       1.1       chs 				ifp->if_ierrors++;
    826       1.1       chs 				goto skip;
    827       1.1       chs 			}
    828       1.1       chs 
    829       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    830       1.1       chs 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    831       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->map);
    832       1.1       chs 
    833      1.19      cube 			error = bus_dmamap_load(sc->sc_dmat, data->map,
    834      1.19      cube 			    mtod(mnew, void *), MCLBYTES, NULL,
    835      1.19      cube 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
    836       1.1       chs 			if (error != 0) {
    837       1.1       chs 				m_freem(mnew);
    838       1.1       chs 
    839       1.1       chs 				/* try to reload the old mbuf */
    840      1.19      cube 				error = bus_dmamap_load(sc->sc_dmat, data->map,
    841      1.19      cube 				    mtod(data->m, void *), MCLBYTES, NULL,
    842       1.1       chs 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
    843       1.1       chs 				if (error != 0) {
    844       1.1       chs 					/* very unlikely that it will fail.. */
    845       1.1       chs 					panic("%s: could not load old rx mbuf",
    846  1.28.6.1       mjf 					    device_xname(sc->sc_dev));
    847       1.1       chs 				}
    848       1.1       chs 				ifp->if_ierrors++;
    849       1.1       chs 				goto skip;
    850       1.1       chs 			}
    851       1.1       chs 			physaddr = data->map->dm_segs[0].ds_addr;
    852       1.1       chs 		}
    853       1.1       chs 
    854       1.1       chs 		/*
    855       1.1       chs 		 * New mbuf successfully loaded, update Rx ring and continue
    856       1.1       chs 		 * processing.
    857       1.1       chs 		 */
    858       1.1       chs 		m = data->m;
    859       1.1       chs 		data->m = mnew;
    860       1.1       chs 
    861      1.19      cube mbufcopied:
    862       1.1       chs 		/* finalize mbuf */
    863       1.1       chs 		m->m_pkthdr.len = m->m_len = len;
    864       1.1       chs 		m->m_pkthdr.rcvif = ifp;
    865       1.1       chs 
    866      1.13   tsutsui 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
    867      1.13   tsutsui 			/*
    868      1.13   tsutsui 			 * XXX
    869      1.13   tsutsui 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
    870      1.13   tsutsui 			 */
    871      1.13   tsutsui 			if (flags & NFE_RX_IP_CSUMOK) {
    872      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    873      1.13   tsutsui 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
    874  1.28.6.1       mjf 				    device_xname(sc->sc_dev)));
    875      1.13   tsutsui 			}
    876      1.13   tsutsui 			/*
    877      1.13   tsutsui 			 * XXX
    878      1.13   tsutsui 			 * no way to check M_CSUM_TCP_UDP_BAD or
    879      1.13   tsutsui 			 * other protocols?
    880      1.13   tsutsui 			 */
    881      1.13   tsutsui 			if (flags & NFE_RX_UDP_CSUMOK) {
    882      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
    883      1.13   tsutsui 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
    884  1.28.6.1       mjf 				    device_xname(sc->sc_dev)));
    885      1.13   tsutsui 			} else if (flags & NFE_RX_TCP_CSUMOK) {
    886      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
    887      1.13   tsutsui 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
    888  1.28.6.1       mjf 				    device_xname(sc->sc_dev)));
    889      1.13   tsutsui 			}
    890      1.13   tsutsui 		}
    891       1.1       chs #if NBPFILTER > 0
    892       1.1       chs 		if (ifp->if_bpf)
    893       1.1       chs 			bpf_mtap(ifp->if_bpf, m);
    894       1.1       chs #endif
    895       1.1       chs 		ifp->if_ipackets++;
    896       1.1       chs 		(*ifp->if_input)(ifp, m);
    897       1.1       chs 
    898      1.19      cube skip1:
    899       1.1       chs 		/* update mapping address in h/w descriptor */
    900       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    901       1.1       chs #if defined(__LP64__)
    902       1.1       chs 			desc64->physaddr[0] = htole32(physaddr >> 32);
    903       1.1       chs #endif
    904       1.1       chs 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
    905       1.1       chs 		} else {
    906       1.1       chs 			desc32->physaddr = htole32(physaddr);
    907       1.1       chs 		}
    908       1.1       chs 
    909  1.28.6.2       mjf skip:
    910      1.14   tsutsui 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    911       1.1       chs 			desc64->length = htole16(sc->rxq.bufsz);
    912       1.1       chs 			desc64->flags = htole16(NFE_RX_READY);
    913       1.1       chs 
    914      1.14   tsutsui 			nfe_rxdesc64_sync(sc, desc64,
    915      1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    916       1.1       chs 		} else {
    917       1.1       chs 			desc32->length = htole16(sc->rxq.bufsz);
    918       1.1       chs 			desc32->flags = htole16(NFE_RX_READY);
    919       1.1       chs 
    920      1.14   tsutsui 			nfe_rxdesc32_sync(sc, desc32,
    921      1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    922       1.1       chs 		}
    923       1.1       chs 	}
    924      1.14   tsutsui 	/* update current RX pointer */
    925      1.14   tsutsui 	sc->rxq.cur = i;
    926       1.1       chs }
    927       1.1       chs 
    928       1.1       chs void
    929       1.1       chs nfe_txeof(struct nfe_softc *sc)
    930       1.1       chs {
    931       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    932       1.1       chs 	struct nfe_desc32 *desc32;
    933       1.1       chs 	struct nfe_desc64 *desc64;
    934       1.1       chs 	struct nfe_tx_data *data = NULL;
    935      1.14   tsutsui 	int i;
    936       1.1       chs 	uint16_t flags;
    937  1.28.6.2       mjf 	char buf[128];
    938       1.1       chs 
    939      1.14   tsutsui 	for (i = sc->txq.next;
    940      1.14   tsutsui 	    sc->txq.queued > 0;
    941      1.14   tsutsui 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
    942       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    943      1.14   tsutsui 			desc64 = &sc->txq.desc64[i];
    944      1.14   tsutsui 			nfe_txdesc64_sync(sc, desc64,
    945      1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    946       1.1       chs 
    947       1.1       chs 			flags = le16toh(desc64->flags);
    948       1.1       chs 		} else {
    949      1.14   tsutsui 			desc32 = &sc->txq.desc32[i];
    950      1.14   tsutsui 			nfe_txdesc32_sync(sc, desc32,
    951      1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    952       1.1       chs 
    953       1.1       chs 			flags = le16toh(desc32->flags);
    954       1.1       chs 		}
    955       1.1       chs 
    956      1.14   tsutsui 		if ((flags & NFE_TX_VALID) != 0)
    957       1.1       chs 			break;
    958       1.1       chs 
    959      1.14   tsutsui 		data = &sc->txq.data[i];
    960       1.1       chs 
    961       1.1       chs 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
    962      1.14   tsutsui 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
    963      1.14   tsutsui 			    data->m == NULL)
    964      1.14   tsutsui 				continue;
    965       1.1       chs 
    966       1.1       chs 			if ((flags & NFE_TX_ERROR_V1) != 0) {
    967  1.28.6.2       mjf 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
    968  1.28.6.2       mjf 				    bitmask_snprintf(flags, NFE_V1_TXERR,
    969  1.28.6.2       mjf 				    buf, sizeof(buf)));
    970       1.1       chs 				ifp->if_oerrors++;
    971       1.1       chs 			} else
    972       1.1       chs 				ifp->if_opackets++;
    973       1.1       chs 		} else {
    974      1.14   tsutsui 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
    975      1.14   tsutsui 			    data->m == NULL)
    976      1.14   tsutsui 				continue;
    977       1.1       chs 
    978       1.1       chs 			if ((flags & NFE_TX_ERROR_V2) != 0) {
    979  1.28.6.2       mjf 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
    980  1.28.6.2       mjf 				    bitmask_snprintf(flags, NFE_V2_TXERR,
    981  1.28.6.2       mjf 				    buf, sizeof(buf)));
    982       1.1       chs 				ifp->if_oerrors++;
    983       1.1       chs 			} else
    984       1.1       chs 				ifp->if_opackets++;
    985       1.1       chs 		}
    986       1.1       chs 
    987       1.1       chs 		if (data->m == NULL) {	/* should not get there */
    988  1.28.6.1       mjf 			aprint_error_dev(sc->sc_dev,
    989  1.28.6.1       mjf 			    "last fragment bit w/o associated mbuf!\n");
    990      1.14   tsutsui 			continue;
    991       1.1       chs 		}
    992       1.1       chs 
    993       1.1       chs 		/* last fragment of the mbuf chain transmitted */
    994       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
    995       1.1       chs 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    996       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, data->active);
    997       1.1       chs 		m_freem(data->m);
    998       1.1       chs 		data->m = NULL;
    999      1.14   tsutsui 	}
   1000       1.1       chs 
   1001      1.14   tsutsui 	sc->txq.next = i;
   1002       1.1       chs 
   1003      1.14   tsutsui 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
   1004      1.14   tsutsui 		/* at least one slot freed */
   1005      1.14   tsutsui 		ifp->if_flags &= ~IFF_OACTIVE;
   1006       1.1       chs 	}
   1007       1.1       chs 
   1008      1.14   tsutsui 	if (sc->txq.queued == 0) {
   1009      1.14   tsutsui 		/* all queued packets are sent */
   1010      1.14   tsutsui 		ifp->if_timer = 0;
   1011       1.1       chs 	}
   1012       1.1       chs }
   1013       1.1       chs 
   1014       1.1       chs int
   1015       1.1       chs nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
   1016       1.1       chs {
   1017       1.1       chs 	struct nfe_desc32 *desc32;
   1018       1.1       chs 	struct nfe_desc64 *desc64;
   1019       1.1       chs 	struct nfe_tx_data *data;
   1020       1.1       chs 	bus_dmamap_t map;
   1021      1.13   tsutsui 	uint16_t flags, csumflags;
   1022       1.1       chs #if NVLAN > 0
   1023       1.1       chs 	struct m_tag *mtag;
   1024       1.1       chs 	uint32_t vtag = 0;
   1025       1.1       chs #endif
   1026      1.11   tsutsui 	int error, i, first;
   1027       1.1       chs 
   1028       1.1       chs 	desc32 = NULL;
   1029       1.1       chs 	desc64 = NULL;
   1030       1.1       chs 	data = NULL;
   1031      1.11   tsutsui 
   1032      1.11   tsutsui 	flags = 0;
   1033      1.13   tsutsui 	csumflags = 0;
   1034      1.11   tsutsui 	first = sc->txq.cur;
   1035      1.11   tsutsui 
   1036      1.11   tsutsui 	map = sc->txq.data[first].map;
   1037       1.1       chs 
   1038       1.1       chs 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
   1039       1.1       chs 	if (error != 0) {
   1040  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1041  1.28.6.1       mjf 		    error);
   1042       1.1       chs 		return error;
   1043       1.1       chs 	}
   1044       1.1       chs 
   1045       1.1       chs 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
   1046       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, map);
   1047       1.1       chs 		return ENOBUFS;
   1048       1.1       chs 	}
   1049       1.1       chs 
   1050       1.1       chs #if NVLAN > 0
   1051       1.1       chs 	/* setup h/w VLAN tagging */
   1052       1.9       alc 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
   1053       1.1       chs 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
   1054       1.1       chs #endif
   1055      1.13   tsutsui 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
   1056      1.13   tsutsui 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1057      1.13   tsutsui 			csumflags |= NFE_TX_IP_CSUM;
   1058      1.13   tsutsui 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1059      1.14   tsutsui 			csumflags |= NFE_TX_TCP_UDP_CSUM;
   1060      1.13   tsutsui 	}
   1061       1.1       chs 
   1062       1.1       chs 	for (i = 0; i < map->dm_nsegs; i++) {
   1063       1.1       chs 		data = &sc->txq.data[sc->txq.cur];
   1064       1.1       chs 
   1065       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1066       1.1       chs 			desc64 = &sc->txq.desc64[sc->txq.cur];
   1067       1.1       chs #if defined(__LP64__)
   1068       1.1       chs 			desc64->physaddr[0] =
   1069       1.1       chs 			    htole32(map->dm_segs[i].ds_addr >> 32);
   1070       1.1       chs #endif
   1071       1.1       chs 			desc64->physaddr[1] =
   1072       1.1       chs 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
   1073       1.1       chs 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
   1074       1.1       chs 			desc64->flags = htole16(flags);
   1075      1.13   tsutsui 			desc64->vtag = 0;
   1076       1.1       chs 		} else {
   1077       1.1       chs 			desc32 = &sc->txq.desc32[sc->txq.cur];
   1078       1.1       chs 
   1079       1.1       chs 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
   1080       1.1       chs 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
   1081       1.1       chs 			desc32->flags = htole16(flags);
   1082       1.1       chs 		}
   1083       1.1       chs 
   1084      1.13   tsutsui 		/*
   1085      1.13   tsutsui 		 * Setting of the valid bit in the first descriptor is
   1086      1.13   tsutsui 		 * deferred until the whole chain is fully setup.
   1087      1.13   tsutsui 		 */
   1088      1.13   tsutsui 		flags |= NFE_TX_VALID;
   1089       1.1       chs 
   1090       1.1       chs 		sc->txq.queued++;
   1091      1.14   tsutsui 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
   1092       1.1       chs 	}
   1093       1.1       chs 
   1094      1.11   tsutsui 	/* the whole mbuf chain has been setup */
   1095       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1096      1.11   tsutsui 		/* fix last descriptor */
   1097       1.1       chs 		flags |= NFE_TX_LASTFRAG_V2;
   1098       1.1       chs 		desc64->flags = htole16(flags);
   1099      1.11   tsutsui 
   1100      1.13   tsutsui 		/* Checksum flags and vtag belong to the first fragment only. */
   1101      1.13   tsutsui #if NVLAN > 0
   1102      1.13   tsutsui 		sc->txq.desc64[first].vtag = htole32(vtag);
   1103      1.13   tsutsui #endif
   1104      1.13   tsutsui 		sc->txq.desc64[first].flags |= htole16(csumflags);
   1105      1.13   tsutsui 
   1106      1.11   tsutsui 		/* finally, set the valid bit in the first descriptor */
   1107      1.11   tsutsui 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
   1108       1.1       chs 	} else {
   1109      1.11   tsutsui 		/* fix last descriptor */
   1110       1.1       chs 		if (sc->sc_flags & NFE_JUMBO_SUP)
   1111       1.1       chs 			flags |= NFE_TX_LASTFRAG_V2;
   1112       1.1       chs 		else
   1113       1.1       chs 			flags |= NFE_TX_LASTFRAG_V1;
   1114       1.1       chs 		desc32->flags = htole16(flags);
   1115      1.11   tsutsui 
   1116      1.13   tsutsui 		/* Checksum flags belong to the first fragment only. */
   1117      1.13   tsutsui 		sc->txq.desc32[first].flags |= htole16(csumflags);
   1118      1.13   tsutsui 
   1119      1.11   tsutsui 		/* finally, set the valid bit in the first descriptor */
   1120      1.11   tsutsui 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
   1121       1.1       chs 	}
   1122       1.1       chs 
   1123       1.1       chs 	data->m = m0;
   1124       1.1       chs 	data->active = map;
   1125       1.1       chs 
   1126       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1127       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1128       1.1       chs 
   1129       1.1       chs 	return 0;
   1130       1.1       chs }
   1131       1.1       chs 
   1132       1.1       chs void
   1133       1.1       chs nfe_start(struct ifnet *ifp)
   1134       1.1       chs {
   1135       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1136      1.14   tsutsui 	int old = sc->txq.queued;
   1137       1.1       chs 	struct mbuf *m0;
   1138       1.1       chs 
   1139  1.28.6.2       mjf 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1140      1.18      cube 		return;
   1141      1.18      cube 
   1142       1.1       chs 	for (;;) {
   1143       1.1       chs 		IFQ_POLL(&ifp->if_snd, m0);
   1144       1.1       chs 		if (m0 == NULL)
   1145       1.1       chs 			break;
   1146       1.1       chs 
   1147       1.1       chs 		if (nfe_encap(sc, m0) != 0) {
   1148       1.1       chs 			ifp->if_flags |= IFF_OACTIVE;
   1149       1.1       chs 			break;
   1150       1.1       chs 		}
   1151       1.1       chs 
   1152       1.1       chs 		/* packet put in h/w queue, remove from s/w queue */
   1153       1.1       chs 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1154       1.1       chs 
   1155       1.1       chs #if NBPFILTER > 0
   1156       1.1       chs 		if (ifp->if_bpf != NULL)
   1157       1.1       chs 			bpf_mtap(ifp->if_bpf, m0);
   1158       1.1       chs #endif
   1159       1.1       chs 	}
   1160       1.1       chs 
   1161      1.14   tsutsui 	if (sc->txq.queued != old) {
   1162      1.14   tsutsui 		/* packets are queued */
   1163      1.14   tsutsui 		if (sc->sc_flags & NFE_40BIT_ADDR)
   1164      1.14   tsutsui 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
   1165      1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1166      1.14   tsutsui 		else
   1167      1.14   tsutsui 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
   1168      1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1169      1.14   tsutsui 		/* kick Tx */
   1170      1.14   tsutsui 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
   1171       1.1       chs 
   1172      1.14   tsutsui 		/*
   1173      1.14   tsutsui 		 * Set a timeout in case the chip goes out to lunch.
   1174      1.14   tsutsui 		 */
   1175      1.14   tsutsui 		ifp->if_timer = 5;
   1176      1.14   tsutsui 	}
   1177       1.1       chs }
   1178       1.1       chs 
   1179       1.1       chs void
   1180       1.1       chs nfe_watchdog(struct ifnet *ifp)
   1181       1.1       chs {
   1182       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1183       1.1       chs 
   1184  1.28.6.1       mjf 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1185       1.1       chs 
   1186       1.1       chs 	ifp->if_flags &= ~IFF_RUNNING;
   1187       1.1       chs 	nfe_init(ifp);
   1188       1.1       chs 
   1189       1.1       chs 	ifp->if_oerrors++;
   1190       1.1       chs }
   1191       1.1       chs 
   1192       1.1       chs int
   1193       1.1       chs nfe_init(struct ifnet *ifp)
   1194       1.1       chs {
   1195       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1196       1.1       chs 	uint32_t tmp;
   1197      1.26    dyoung 	int rc = 0, s;
   1198       1.1       chs 
   1199       1.1       chs 	if (ifp->if_flags & IFF_RUNNING)
   1200       1.1       chs 		return 0;
   1201       1.1       chs 
   1202       1.1       chs 	nfe_stop(ifp, 0);
   1203       1.1       chs 
   1204       1.1       chs 	NFE_WRITE(sc, NFE_TX_UNK, 0);
   1205       1.1       chs 	NFE_WRITE(sc, NFE_STATUS, 0);
   1206       1.1       chs 
   1207       1.1       chs 	sc->rxtxctl = NFE_RXTX_BIT2;
   1208       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR)
   1209       1.1       chs 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
   1210       1.1       chs 	else if (sc->sc_flags & NFE_JUMBO_SUP)
   1211       1.1       chs 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
   1212       1.1       chs 	if (sc->sc_flags & NFE_HW_CSUM)
   1213       1.1       chs 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
   1214       1.1       chs #if NVLAN > 0
   1215       1.1       chs 	/*
   1216       1.1       chs 	 * Although the adapter is capable of stripping VLAN tags from received
   1217       1.1       chs 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
   1218       1.1       chs 	 * purpose.  This will be done in software by our network stack.
   1219       1.1       chs 	 */
   1220       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
   1221       1.1       chs 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
   1222       1.1       chs #endif
   1223       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
   1224       1.1       chs 	DELAY(10);
   1225       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
   1226       1.1       chs 
   1227       1.1       chs #if NVLAN
   1228       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
   1229       1.1       chs 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
   1230       1.1       chs #endif
   1231       1.1       chs 
   1232       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
   1233       1.1       chs 
   1234       1.1       chs 	/* set MAC address */
   1235       1.1       chs 	nfe_set_macaddr(sc, sc->sc_enaddr);
   1236       1.1       chs 
   1237       1.1       chs 	/* tell MAC where rings are in memory */
   1238       1.1       chs #ifdef __LP64__
   1239       1.1       chs 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
   1240       1.1       chs #endif
   1241       1.1       chs 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
   1242       1.1       chs #ifdef __LP64__
   1243       1.1       chs 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
   1244       1.1       chs #endif
   1245       1.1       chs 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
   1246       1.1       chs 
   1247       1.1       chs 	NFE_WRITE(sc, NFE_RING_SIZE,
   1248       1.1       chs 	    (NFE_RX_RING_COUNT - 1) << 16 |
   1249       1.1       chs 	    (NFE_TX_RING_COUNT - 1));
   1250       1.1       chs 
   1251       1.1       chs 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
   1252       1.1       chs 
   1253       1.1       chs 	/* force MAC to wakeup */
   1254       1.1       chs 	tmp = NFE_READ(sc, NFE_PWR_STATE);
   1255       1.1       chs 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
   1256       1.1       chs 	DELAY(10);
   1257       1.1       chs 	tmp = NFE_READ(sc, NFE_PWR_STATE);
   1258       1.1       chs 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
   1259       1.1       chs 
   1260      1.12  jmcneill 	s = splnet();
   1261      1.12  jmcneill 	nfe_intr(sc); /* XXX clear IRQ status registers */
   1262      1.12  jmcneill 	splx(s);
   1263      1.12  jmcneill 
   1264       1.1       chs #if 1
   1265       1.1       chs 	/* configure interrupts coalescing/mitigation */
   1266       1.1       chs 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
   1267       1.1       chs #else
   1268       1.1       chs 	/* no interrupt mitigation: one interrupt per packet */
   1269       1.1       chs 	NFE_WRITE(sc, NFE_IMTIMER, 970);
   1270       1.1       chs #endif
   1271       1.1       chs 
   1272       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
   1273       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
   1274       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
   1275       1.1       chs 
   1276       1.1       chs 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
   1277       1.1       chs 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
   1278       1.1       chs 
   1279       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
   1280  1.28.6.2       mjf 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
   1281       1.1       chs 
   1282       1.1       chs 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
   1283       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
   1284       1.1       chs 	DELAY(10);
   1285       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
   1286       1.1       chs 
   1287       1.1       chs 	/* set Rx filter */
   1288       1.1       chs 	nfe_setmulti(sc);
   1289       1.1       chs 
   1290      1.26    dyoung 	if ((rc = ether_mediachange(ifp)) != 0)
   1291      1.26    dyoung 		goto out;
   1292       1.1       chs 
   1293      1.12  jmcneill 	nfe_tick(sc);
   1294      1.12  jmcneill 
   1295       1.1       chs 	/* enable Rx */
   1296       1.1       chs 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
   1297       1.1       chs 
   1298       1.1       chs 	/* enable Tx */
   1299       1.1       chs 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
   1300       1.1       chs 
   1301       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
   1302       1.1       chs 
   1303       1.1       chs 	/* enable interrupts */
   1304       1.1       chs 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
   1305       1.1       chs 
   1306       1.1       chs 	callout_schedule(&sc->sc_tick_ch, hz);
   1307       1.1       chs 
   1308       1.1       chs 	ifp->if_flags |= IFF_RUNNING;
   1309       1.1       chs 	ifp->if_flags &= ~IFF_OACTIVE;
   1310       1.1       chs 
   1311      1.26    dyoung out:
   1312      1.26    dyoung 	return rc;
   1313       1.1       chs }
   1314       1.1       chs 
   1315       1.1       chs void
   1316       1.7  christos nfe_stop(struct ifnet *ifp, int disable)
   1317       1.1       chs {
   1318       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1319       1.1       chs 
   1320       1.1       chs 	callout_stop(&sc->sc_tick_ch);
   1321       1.1       chs 
   1322       1.1       chs 	ifp->if_timer = 0;
   1323       1.1       chs 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1324       1.1       chs 
   1325       1.1       chs 	mii_down(&sc->sc_mii);
   1326       1.1       chs 
   1327       1.1       chs 	/* abort Tx */
   1328       1.1       chs 	NFE_WRITE(sc, NFE_TX_CTL, 0);
   1329       1.1       chs 
   1330       1.1       chs 	/* disable Rx */
   1331       1.1       chs 	NFE_WRITE(sc, NFE_RX_CTL, 0);
   1332       1.1       chs 
   1333       1.1       chs 	/* disable interrupts */
   1334       1.1       chs 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
   1335       1.1       chs 
   1336       1.1       chs 	/* reset Tx and Rx rings */
   1337       1.1       chs 	nfe_reset_tx_ring(sc, &sc->txq);
   1338       1.1       chs 	nfe_reset_rx_ring(sc, &sc->rxq);
   1339       1.1       chs }
   1340       1.1       chs 
   1341       1.1       chs int
   1342       1.1       chs nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1343       1.1       chs {
   1344       1.1       chs 	struct nfe_desc32 *desc32;
   1345       1.1       chs 	struct nfe_desc64 *desc64;
   1346       1.1       chs 	struct nfe_rx_data *data;
   1347       1.1       chs 	struct nfe_jbuf *jbuf;
   1348       1.1       chs 	void **desc;
   1349       1.1       chs 	bus_addr_t physaddr;
   1350       1.1       chs 	int i, nsegs, error, descsize;
   1351       1.1       chs 
   1352       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1353       1.1       chs 		desc = (void **)&ring->desc64;
   1354       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1355       1.1       chs 	} else {
   1356       1.1       chs 		desc = (void **)&ring->desc32;
   1357       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1358       1.1       chs 	}
   1359       1.1       chs 
   1360       1.1       chs 	ring->cur = ring->next = 0;
   1361       1.1       chs 	ring->bufsz = MCLBYTES;
   1362       1.1       chs 
   1363       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
   1364       1.1       chs 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
   1365       1.1       chs 	if (error != 0) {
   1366  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1367  1.28.6.1       mjf 		    "could not create desc DMA map\n");
   1368       1.1       chs 		goto fail;
   1369       1.1       chs 	}
   1370       1.1       chs 
   1371       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
   1372       1.1       chs 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
   1373       1.1       chs 	if (error != 0) {
   1374  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1375  1.28.6.1       mjf 		    "could not allocate DMA memory\n");
   1376       1.1       chs 		goto fail;
   1377       1.1       chs 	}
   1378       1.1       chs 
   1379       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
   1380      1.15  christos 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
   1381       1.1       chs 	if (error != 0) {
   1382  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1383  1.28.6.1       mjf 		    "could not map desc DMA memory\n");
   1384       1.1       chs 		goto fail;
   1385       1.1       chs 	}
   1386       1.1       chs 
   1387       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
   1388       1.1       chs 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
   1389       1.1       chs 	if (error != 0) {
   1390  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
   1391       1.1       chs 		goto fail;
   1392       1.1       chs 	}
   1393       1.1       chs 
   1394       1.1       chs 	bzero(*desc, NFE_RX_RING_COUNT * descsize);
   1395       1.1       chs 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
   1396       1.1       chs 
   1397       1.1       chs 	if (sc->sc_flags & NFE_USE_JUMBO) {
   1398       1.1       chs 		ring->bufsz = NFE_JBYTES;
   1399       1.1       chs 		if ((error = nfe_jpool_alloc(sc)) != 0) {
   1400  1.28.6.1       mjf 			aprint_error_dev(sc->sc_dev,
   1401  1.28.6.1       mjf 			    "could not allocate jumbo frames\n");
   1402       1.1       chs 			goto fail;
   1403       1.1       chs 		}
   1404       1.1       chs 	}
   1405       1.1       chs 
   1406       1.1       chs 	/*
   1407       1.1       chs 	 * Pre-allocate Rx buffers and populate Rx ring.
   1408       1.1       chs 	 */
   1409       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1410       1.1       chs 		data = &sc->rxq.data[i];
   1411       1.1       chs 
   1412       1.1       chs 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   1413       1.1       chs 		if (data->m == NULL) {
   1414  1.28.6.1       mjf 			aprint_error_dev(sc->sc_dev,
   1415  1.28.6.1       mjf 			    "could not allocate rx mbuf\n");
   1416       1.1       chs 			error = ENOMEM;
   1417       1.1       chs 			goto fail;
   1418       1.1       chs 		}
   1419       1.1       chs 
   1420       1.1       chs 		if (sc->sc_flags & NFE_USE_JUMBO) {
   1421      1.19      cube 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
   1422  1.28.6.1       mjf 				aprint_error_dev(sc->sc_dev,
   1423  1.28.6.1       mjf 				    "could not allocate jumbo buffer\n");
   1424       1.1       chs 				goto fail;
   1425       1.1       chs 			}
   1426       1.1       chs 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
   1427       1.1       chs 			    sc);
   1428       1.1       chs 
   1429       1.1       chs 			physaddr = jbuf->physaddr;
   1430       1.1       chs 		} else {
   1431       1.1       chs 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1432       1.1       chs 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
   1433       1.1       chs 			if (error != 0) {
   1434  1.28.6.1       mjf 				aprint_error_dev(sc->sc_dev,
   1435  1.28.6.1       mjf 				    "could not create DMA map\n");
   1436       1.1       chs 				goto fail;
   1437       1.1       chs 			}
   1438       1.1       chs 			MCLGET(data->m, M_DONTWAIT);
   1439       1.1       chs 			if (!(data->m->m_flags & M_EXT)) {
   1440  1.28.6.1       mjf 				aprint_error_dev(sc->sc_dev,
   1441  1.28.6.1       mjf 				    "could not allocate mbuf cluster\n");
   1442       1.1       chs 				error = ENOMEM;
   1443       1.1       chs 				goto fail;
   1444       1.1       chs 			}
   1445       1.1       chs 
   1446       1.1       chs 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1447       1.1       chs 			    mtod(data->m, void *), MCLBYTES, NULL,
   1448       1.1       chs 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1449       1.1       chs 			if (error != 0) {
   1450  1.28.6.1       mjf 				aprint_error_dev(sc->sc_dev,
   1451  1.28.6.1       mjf 				    "could not load rx buf DMA map");
   1452       1.1       chs 				goto fail;
   1453       1.1       chs 			}
   1454       1.1       chs 			physaddr = data->map->dm_segs[0].ds_addr;
   1455       1.1       chs 		}
   1456       1.1       chs 
   1457       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1458       1.1       chs 			desc64 = &sc->rxq.desc64[i];
   1459       1.1       chs #if defined(__LP64__)
   1460       1.1       chs 			desc64->physaddr[0] = htole32(physaddr >> 32);
   1461       1.1       chs #endif
   1462       1.1       chs 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
   1463       1.1       chs 			desc64->length = htole16(sc->rxq.bufsz);
   1464       1.1       chs 			desc64->flags = htole16(NFE_RX_READY);
   1465       1.1       chs 		} else {
   1466       1.1       chs 			desc32 = &sc->rxq.desc32[i];
   1467       1.1       chs 			desc32->physaddr = htole32(physaddr);
   1468       1.1       chs 			desc32->length = htole16(sc->rxq.bufsz);
   1469       1.1       chs 			desc32->flags = htole16(NFE_RX_READY);
   1470       1.1       chs 		}
   1471       1.1       chs 	}
   1472       1.1       chs 
   1473       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1474       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1475       1.1       chs 
   1476       1.1       chs 	return 0;
   1477       1.1       chs 
   1478       1.1       chs fail:	nfe_free_rx_ring(sc, ring);
   1479       1.1       chs 	return error;
   1480       1.1       chs }
   1481       1.1       chs 
   1482       1.1       chs void
   1483       1.1       chs nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1484       1.1       chs {
   1485       1.1       chs 	int i;
   1486       1.1       chs 
   1487       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1488       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1489       1.1       chs 			ring->desc64[i].length = htole16(ring->bufsz);
   1490       1.1       chs 			ring->desc64[i].flags = htole16(NFE_RX_READY);
   1491       1.1       chs 		} else {
   1492       1.1       chs 			ring->desc32[i].length = htole16(ring->bufsz);
   1493       1.1       chs 			ring->desc32[i].flags = htole16(NFE_RX_READY);
   1494       1.1       chs 		}
   1495       1.1       chs 	}
   1496       1.1       chs 
   1497       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1498       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1499       1.1       chs 
   1500       1.1       chs 	ring->cur = ring->next = 0;
   1501       1.1       chs }
   1502       1.1       chs 
   1503       1.1       chs void
   1504       1.1       chs nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1505       1.1       chs {
   1506       1.1       chs 	struct nfe_rx_data *data;
   1507       1.1       chs 	void *desc;
   1508       1.1       chs 	int i, descsize;
   1509       1.1       chs 
   1510       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1511       1.1       chs 		desc = ring->desc64;
   1512       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1513       1.1       chs 	} else {
   1514       1.1       chs 		desc = ring->desc32;
   1515       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1516       1.1       chs 	}
   1517       1.1       chs 
   1518       1.1       chs 	if (desc != NULL) {
   1519       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
   1520       1.1       chs 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1521       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->map);
   1522      1.15  christos 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
   1523       1.1       chs 		    NFE_RX_RING_COUNT * descsize);
   1524       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
   1525       1.1       chs 	}
   1526       1.1       chs 
   1527       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1528       1.1       chs 		data = &ring->data[i];
   1529       1.1       chs 
   1530       1.1       chs 		if (data->map != NULL) {
   1531       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1532       1.1       chs 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1533       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1534       1.1       chs 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1535       1.1       chs 		}
   1536       1.1       chs 		if (data->m != NULL)
   1537       1.1       chs 			m_freem(data->m);
   1538       1.1       chs 	}
   1539       1.1       chs }
   1540       1.1       chs 
   1541       1.1       chs struct nfe_jbuf *
   1542      1.19      cube nfe_jalloc(struct nfe_softc *sc, int i)
   1543       1.1       chs {
   1544       1.1       chs 	struct nfe_jbuf *jbuf;
   1545       1.1       chs 
   1546  1.28.6.2       mjf 	mutex_enter(&sc->rxq.mtx);
   1547       1.1       chs 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
   1548  1.28.6.2       mjf 	if (jbuf != NULL)
   1549  1.28.6.2       mjf 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
   1550  1.28.6.2       mjf 	mutex_exit(&sc->rxq.mtx);
   1551       1.1       chs 	if (jbuf == NULL)
   1552       1.1       chs 		return NULL;
   1553      1.19      cube 	sc->rxq.jbufmap[i] =
   1554      1.19      cube 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
   1555       1.1       chs 	return jbuf;
   1556       1.1       chs }
   1557       1.1       chs 
   1558       1.1       chs /*
   1559       1.1       chs  * This is called automatically by the network stack when the mbuf is freed.
   1560       1.1       chs  * Caution must be taken that the NIC might be reset by the time the mbuf is
   1561       1.1       chs  * freed.
   1562       1.1       chs  */
   1563       1.1       chs void
   1564      1.15  christos nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1565       1.1       chs {
   1566       1.1       chs 	struct nfe_softc *sc = arg;
   1567       1.1       chs 	struct nfe_jbuf *jbuf;
   1568       1.1       chs 	int i;
   1569       1.1       chs 
   1570       1.1       chs 	/* find the jbuf from the base pointer */
   1571      1.15  christos 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
   1572       1.1       chs 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
   1573  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1574  1.28.6.1       mjf 		    "request to free a buffer (%p) not managed by us\n", buf);
   1575       1.1       chs 		return;
   1576       1.1       chs 	}
   1577       1.1       chs 	jbuf = &sc->rxq.jbuf[i];
   1578       1.1       chs 
   1579       1.1       chs 	/* ..and put it back in the free list */
   1580  1.28.6.2       mjf 	mutex_enter(&sc->rxq.mtx);
   1581       1.1       chs 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
   1582  1.28.6.2       mjf 	mutex_exit(&sc->rxq.mtx);
   1583       1.2       chs 
   1584  1.28.6.2       mjf 	if (m != NULL)
   1585  1.28.6.2       mjf 		pool_cache_put(mb_cache, m);
   1586       1.1       chs }
   1587       1.1       chs 
   1588       1.1       chs int
   1589       1.1       chs nfe_jpool_alloc(struct nfe_softc *sc)
   1590       1.1       chs {
   1591       1.1       chs 	struct nfe_rx_ring *ring = &sc->rxq;
   1592       1.1       chs 	struct nfe_jbuf *jbuf;
   1593       1.1       chs 	bus_addr_t physaddr;
   1594      1.15  christos 	char *buf;
   1595       1.1       chs 	int i, nsegs, error;
   1596       1.1       chs 
   1597       1.1       chs 	/*
   1598       1.1       chs 	 * Allocate a big chunk of DMA'able memory.
   1599       1.1       chs 	 */
   1600       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
   1601       1.1       chs 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
   1602       1.1       chs 	if (error != 0) {
   1603  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1604  1.28.6.1       mjf 		    "could not create jumbo DMA map\n");
   1605       1.1       chs 		goto fail;
   1606       1.1       chs 	}
   1607       1.1       chs 
   1608       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
   1609       1.1       chs 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
   1610       1.1       chs 	if (error != 0) {
   1611  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1612  1.28.6.1       mjf 		    "could not allocate jumbo DMA memory\n");
   1613       1.1       chs 		goto fail;
   1614       1.1       chs 	}
   1615       1.1       chs 
   1616       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
   1617       1.1       chs 	    &ring->jpool, BUS_DMA_NOWAIT);
   1618       1.1       chs 	if (error != 0) {
   1619  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1620  1.28.6.1       mjf 		    "could not map jumbo DMA memory\n");
   1621       1.1       chs 		goto fail;
   1622       1.1       chs 	}
   1623       1.1       chs 
   1624       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
   1625       1.1       chs 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
   1626       1.1       chs 	if (error != 0) {
   1627  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1628  1.28.6.1       mjf 		    "could not load jumbo DMA map\n");
   1629       1.1       chs 		goto fail;
   1630       1.1       chs 	}
   1631       1.1       chs 
   1632       1.1       chs 	/* ..and split it into 9KB chunks */
   1633       1.1       chs 	SLIST_INIT(&ring->jfreelist);
   1634       1.1       chs 
   1635       1.1       chs 	buf = ring->jpool;
   1636       1.1       chs 	physaddr = ring->jmap->dm_segs[0].ds_addr;
   1637       1.1       chs 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
   1638       1.1       chs 		jbuf = &ring->jbuf[i];
   1639       1.1       chs 
   1640       1.1       chs 		jbuf->buf = buf;
   1641       1.1       chs 		jbuf->physaddr = physaddr;
   1642       1.1       chs 
   1643       1.1       chs 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
   1644       1.1       chs 
   1645       1.1       chs 		buf += NFE_JBYTES;
   1646       1.1       chs 		physaddr += NFE_JBYTES;
   1647       1.1       chs 	}
   1648       1.1       chs 
   1649       1.1       chs 	return 0;
   1650       1.1       chs 
   1651       1.1       chs fail:	nfe_jpool_free(sc);
   1652       1.1       chs 	return error;
   1653       1.1       chs }
   1654       1.1       chs 
   1655       1.1       chs void
   1656       1.1       chs nfe_jpool_free(struct nfe_softc *sc)
   1657       1.1       chs {
   1658       1.1       chs 	struct nfe_rx_ring *ring = &sc->rxq;
   1659       1.1       chs 
   1660       1.1       chs 	if (ring->jmap != NULL) {
   1661       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
   1662       1.1       chs 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1663       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
   1664       1.1       chs 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
   1665       1.1       chs 	}
   1666       1.1       chs 	if (ring->jpool != NULL) {
   1667       1.1       chs 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
   1668       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
   1669       1.1       chs 	}
   1670       1.1       chs }
   1671       1.1       chs 
   1672       1.1       chs int
   1673       1.1       chs nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1674       1.1       chs {
   1675       1.1       chs 	int i, nsegs, error;
   1676       1.1       chs 	void **desc;
   1677       1.1       chs 	int descsize;
   1678       1.1       chs 
   1679       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1680       1.1       chs 		desc = (void **)&ring->desc64;
   1681       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1682       1.1       chs 	} else {
   1683       1.1       chs 		desc = (void **)&ring->desc32;
   1684       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1685       1.1       chs 	}
   1686       1.1       chs 
   1687       1.1       chs 	ring->queued = 0;
   1688       1.1       chs 	ring->cur = ring->next = 0;
   1689       1.1       chs 
   1690       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
   1691       1.1       chs 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
   1692       1.1       chs 
   1693       1.1       chs 	if (error != 0) {
   1694  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1695  1.28.6.1       mjf 		    "could not create desc DMA map\n");
   1696       1.1       chs 		goto fail;
   1697       1.1       chs 	}
   1698       1.1       chs 
   1699       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
   1700       1.1       chs 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
   1701       1.1       chs 	if (error != 0) {
   1702  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1703  1.28.6.1       mjf 		    "could not allocate DMA memory\n");
   1704       1.1       chs 		goto fail;
   1705       1.1       chs 	}
   1706       1.1       chs 
   1707       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
   1708      1.15  christos 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
   1709       1.1       chs 	if (error != 0) {
   1710  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev,
   1711  1.28.6.1       mjf 		    "could not map desc DMA memory\n");
   1712       1.1       chs 		goto fail;
   1713       1.1       chs 	}
   1714       1.1       chs 
   1715       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
   1716       1.1       chs 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
   1717       1.1       chs 	if (error != 0) {
   1718  1.28.6.1       mjf 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
   1719       1.1       chs 		goto fail;
   1720       1.1       chs 	}
   1721       1.1       chs 
   1722       1.1       chs 	bzero(*desc, NFE_TX_RING_COUNT * descsize);
   1723       1.1       chs 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
   1724       1.1       chs 
   1725       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1726       1.1       chs 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
   1727       1.1       chs 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
   1728       1.1       chs 		    &ring->data[i].map);
   1729       1.1       chs 		if (error != 0) {
   1730  1.28.6.1       mjf 			aprint_error_dev(sc->sc_dev,
   1731  1.28.6.1       mjf 			    "could not create DMA map\n");
   1732       1.1       chs 			goto fail;
   1733       1.1       chs 		}
   1734       1.1       chs 	}
   1735       1.1       chs 
   1736       1.1       chs 	return 0;
   1737       1.1       chs 
   1738       1.1       chs fail:	nfe_free_tx_ring(sc, ring);
   1739       1.1       chs 	return error;
   1740       1.1       chs }
   1741       1.1       chs 
   1742       1.1       chs void
   1743       1.1       chs nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1744       1.1       chs {
   1745       1.1       chs 	struct nfe_tx_data *data;
   1746       1.1       chs 	int i;
   1747       1.1       chs 
   1748       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1749       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR)
   1750       1.1       chs 			ring->desc64[i].flags = 0;
   1751       1.1       chs 		else
   1752       1.1       chs 			ring->desc32[i].flags = 0;
   1753       1.1       chs 
   1754       1.1       chs 		data = &ring->data[i];
   1755       1.1       chs 
   1756       1.1       chs 		if (data->m != NULL) {
   1757       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1758       1.1       chs 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1759       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->active);
   1760       1.1       chs 			m_freem(data->m);
   1761       1.1       chs 			data->m = NULL;
   1762       1.1       chs 		}
   1763       1.1       chs 	}
   1764       1.1       chs 
   1765       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1766       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1767       1.1       chs 
   1768       1.1       chs 	ring->queued = 0;
   1769       1.1       chs 	ring->cur = ring->next = 0;
   1770       1.1       chs }
   1771       1.1       chs 
   1772       1.1       chs void
   1773       1.1       chs nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1774       1.1       chs {
   1775       1.1       chs 	struct nfe_tx_data *data;
   1776       1.1       chs 	void *desc;
   1777       1.1       chs 	int i, descsize;
   1778       1.1       chs 
   1779       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1780       1.1       chs 		desc = ring->desc64;
   1781       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1782       1.1       chs 	} else {
   1783       1.1       chs 		desc = ring->desc32;
   1784       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1785       1.1       chs 	}
   1786       1.1       chs 
   1787       1.1       chs 	if (desc != NULL) {
   1788       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
   1789       1.1       chs 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1790       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->map);
   1791      1.15  christos 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
   1792       1.1       chs 		    NFE_TX_RING_COUNT * descsize);
   1793       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
   1794       1.1       chs 	}
   1795       1.1       chs 
   1796       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1797       1.1       chs 		data = &ring->data[i];
   1798       1.1       chs 
   1799       1.1       chs 		if (data->m != NULL) {
   1800       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1801       1.1       chs 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1802       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->active);
   1803       1.1       chs 			m_freem(data->m);
   1804       1.1       chs 		}
   1805       1.1       chs 	}
   1806       1.1       chs 
   1807       1.1       chs 	/* ..and now actually destroy the DMA mappings */
   1808       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1809       1.1       chs 		data = &ring->data[i];
   1810       1.1       chs 		if (data->map == NULL)
   1811       1.1       chs 			continue;
   1812       1.1       chs 		bus_dmamap_destroy(sc->sc_dmat, data->map);
   1813       1.1       chs 	}
   1814       1.1       chs }
   1815       1.1       chs 
   1816       1.1       chs void
   1817       1.1       chs nfe_setmulti(struct nfe_softc *sc)
   1818       1.1       chs {
   1819       1.1       chs 	struct ethercom *ec = &sc->sc_ethercom;
   1820       1.1       chs 	struct ifnet *ifp = &ec->ec_if;
   1821       1.1       chs 	struct ether_multi *enm;
   1822       1.1       chs 	struct ether_multistep step;
   1823       1.1       chs 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
   1824       1.1       chs 	uint32_t filter = NFE_RXFILTER_MAGIC;
   1825       1.1       chs 	int i;
   1826       1.1       chs 
   1827       1.1       chs 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   1828       1.1       chs 		bzero(addr, ETHER_ADDR_LEN);
   1829       1.1       chs 		bzero(mask, ETHER_ADDR_LEN);
   1830       1.1       chs 		goto done;
   1831       1.1       chs 	}
   1832       1.1       chs 
   1833       1.1       chs 	bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
   1834       1.1       chs 	bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
   1835       1.1       chs 
   1836       1.1       chs 	ETHER_FIRST_MULTI(step, ec, enm);
   1837       1.1       chs 	while (enm != NULL) {
   1838       1.1       chs 		if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1839       1.1       chs 			ifp->if_flags |= IFF_ALLMULTI;
   1840       1.1       chs 			bzero(addr, ETHER_ADDR_LEN);
   1841       1.1       chs 			bzero(mask, ETHER_ADDR_LEN);
   1842       1.1       chs 			goto done;
   1843       1.1       chs 		}
   1844       1.1       chs 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
   1845       1.1       chs 			addr[i] &=  enm->enm_addrlo[i];
   1846       1.1       chs 			mask[i] &= ~enm->enm_addrlo[i];
   1847       1.1       chs 		}
   1848       1.1       chs 		ETHER_NEXT_MULTI(step, enm);
   1849       1.1       chs 	}
   1850       1.1       chs 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1851       1.1       chs 		mask[i] |= addr[i];
   1852       1.1       chs 
   1853       1.1       chs done:
   1854       1.1       chs 	addr[0] |= 0x01;	/* make sure multicast bit is set */
   1855       1.1       chs 
   1856       1.1       chs 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
   1857       1.1       chs 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1858       1.1       chs 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
   1859       1.1       chs 	    addr[5] <<  8 | addr[4]);
   1860       1.1       chs 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
   1861       1.1       chs 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
   1862       1.1       chs 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
   1863       1.1       chs 	    mask[5] <<  8 | mask[4]);
   1864       1.1       chs 
   1865       1.1       chs 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
   1866       1.1       chs 	NFE_WRITE(sc, NFE_RXFILTER, filter);
   1867       1.1       chs }
   1868       1.1       chs 
   1869       1.1       chs void
   1870       1.1       chs nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
   1871       1.1       chs {
   1872       1.1       chs 	uint32_t tmp;
   1873       1.1       chs 
   1874  1.28.6.2       mjf 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
   1875  1.28.6.2       mjf 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
   1876  1.28.6.2       mjf 		addr[0] = (tmp & 0xff);
   1877  1.28.6.2       mjf 		addr[1] = (tmp >>  8) & 0xff;
   1878  1.28.6.2       mjf 		addr[2] = (tmp >> 16) & 0xff;
   1879  1.28.6.2       mjf 		addr[3] = (tmp >> 24) & 0xff;
   1880  1.28.6.2       mjf 
   1881  1.28.6.2       mjf 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
   1882  1.28.6.2       mjf 		addr[4] = (tmp & 0xff);
   1883  1.28.6.2       mjf 		addr[5] = (tmp >> 8) & 0xff;
   1884  1.28.6.2       mjf 
   1885  1.28.6.2       mjf 	} else {
   1886      1.25   tsutsui 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
   1887      1.25   tsutsui 		addr[0] = (tmp >> 8) & 0xff;
   1888      1.25   tsutsui 		addr[1] = (tmp & 0xff);
   1889      1.25   tsutsui 
   1890      1.25   tsutsui 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
   1891      1.25   tsutsui 		addr[2] = (tmp >> 24) & 0xff;
   1892      1.25   tsutsui 		addr[3] = (tmp >> 16) & 0xff;
   1893      1.25   tsutsui 		addr[4] = (tmp >>  8) & 0xff;
   1894      1.25   tsutsui 		addr[5] = (tmp & 0xff);
   1895      1.25   tsutsui 	}
   1896       1.1       chs }
   1897       1.1       chs 
   1898       1.1       chs void
   1899       1.1       chs nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
   1900       1.1       chs {
   1901       1.1       chs 	NFE_WRITE(sc, NFE_MACADDR_LO,
   1902       1.1       chs 	    addr[5] <<  8 | addr[4]);
   1903       1.1       chs 	NFE_WRITE(sc, NFE_MACADDR_HI,
   1904       1.1       chs 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1905       1.1       chs }
   1906       1.1       chs 
   1907       1.1       chs void
   1908       1.1       chs nfe_tick(void *arg)
   1909       1.1       chs {
   1910       1.1       chs 	struct nfe_softc *sc = arg;
   1911       1.1       chs 	int s;
   1912       1.1       chs 
   1913       1.1       chs 	s = splnet();
   1914       1.1       chs 	mii_tick(&sc->sc_mii);
   1915       1.1       chs 	splx(s);
   1916       1.1       chs 
   1917       1.1       chs 	callout_schedule(&sc->sc_tick_ch, hz);
   1918       1.1       chs }
   1919  1.28.6.2       mjf 
   1920  1.28.6.2       mjf void
   1921  1.28.6.2       mjf nfe_poweron(device_t self)
   1922  1.28.6.2       mjf {
   1923  1.28.6.2       mjf 	struct nfe_softc *sc = device_private(self);
   1924  1.28.6.2       mjf 
   1925  1.28.6.2       mjf 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
   1926  1.28.6.2       mjf 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
   1927  1.28.6.2       mjf 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
   1928  1.28.6.2       mjf 		DELAY(100);
   1929  1.28.6.2       mjf 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
   1930  1.28.6.2       mjf 		DELAY(100);
   1931  1.28.6.2       mjf 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
   1932  1.28.6.2       mjf 		NFE_WRITE(sc, NFE_PWR2_CTL,
   1933  1.28.6.2       mjf 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
   1934  1.28.6.2       mjf 	}
   1935  1.28.6.2       mjf }
   1936  1.28.6.2       mjf 
   1937  1.28.6.2       mjf bool
   1938  1.28.6.2       mjf nfe_resume(device_t dv PMF_FN_ARGS)
   1939  1.28.6.2       mjf {
   1940  1.28.6.2       mjf 	nfe_poweron(dv);
   1941  1.28.6.2       mjf 
   1942  1.28.6.2       mjf 	return true;
   1943  1.28.6.2       mjf }
   1944