Home | History | Annotate | Line # | Download | only in pci
if_nfe.c revision 1.49.2.1
      1  1.49.2.1  uebayasi /*	$NetBSD: if_nfe.c,v 1.49.2.1 2010/04/30 14:43:36 uebayasi Exp $	*/
      2      1.31  christos /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
      3       1.1       chs 
      4       1.1       chs /*-
      5      1.31  christos  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6       1.1       chs  * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
      7       1.1       chs  *
      8       1.1       chs  * Permission to use, copy, modify, and distribute this software for any
      9       1.1       chs  * purpose with or without fee is hereby granted, provided that the above
     10       1.1       chs  * copyright notice and this permission notice appear in all copies.
     11       1.1       chs  *
     12       1.1       chs  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13       1.1       chs  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14       1.1       chs  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15       1.1       chs  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16       1.1       chs  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17       1.1       chs  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18       1.1       chs  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19       1.1       chs  */
     20       1.1       chs 
     21       1.1       chs /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
     22       1.1       chs 
     23       1.1       chs #include <sys/cdefs.h>
     24  1.49.2.1  uebayasi __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.49.2.1 2010/04/30 14:43:36 uebayasi Exp $");
     25       1.1       chs 
     26       1.1       chs #include "opt_inet.h"
     27       1.1       chs #include "vlan.h"
     28       1.1       chs 
     29       1.1       chs #include <sys/param.h>
     30       1.1       chs #include <sys/endian.h>
     31       1.1       chs #include <sys/systm.h>
     32       1.1       chs #include <sys/types.h>
     33       1.1       chs #include <sys/sockio.h>
     34       1.1       chs #include <sys/mbuf.h>
     35      1.34      cube #include <sys/mutex.h>
     36       1.1       chs #include <sys/queue.h>
     37       1.1       chs #include <sys/kernel.h>
     38       1.1       chs #include <sys/device.h>
     39      1.31  christos #include <sys/callout.h>
     40       1.1       chs #include <sys/socket.h>
     41       1.1       chs 
     42      1.20        ad #include <sys/bus.h>
     43       1.1       chs 
     44       1.1       chs #include <net/if.h>
     45       1.1       chs #include <net/if_dl.h>
     46       1.1       chs #include <net/if_media.h>
     47       1.1       chs #include <net/if_ether.h>
     48       1.1       chs #include <net/if_arp.h>
     49       1.1       chs 
     50       1.1       chs #ifdef INET
     51       1.1       chs #include <netinet/in.h>
     52       1.1       chs #include <netinet/in_systm.h>
     53       1.1       chs #include <netinet/in_var.h>
     54       1.1       chs #include <netinet/ip.h>
     55       1.1       chs #include <netinet/if_inarp.h>
     56       1.1       chs #endif
     57       1.1       chs 
     58       1.1       chs #if NVLAN > 0
     59       1.1       chs #include <net/if_types.h>
     60       1.1       chs #endif
     61       1.1       chs 
     62       1.1       chs #include <net/bpf.h>
     63       1.1       chs 
     64       1.1       chs #include <dev/mii/mii.h>
     65       1.1       chs #include <dev/mii/miivar.h>
     66       1.1       chs 
     67       1.1       chs #include <dev/pci/pcireg.h>
     68       1.1       chs #include <dev/pci/pcivar.h>
     69       1.1       chs #include <dev/pci/pcidevs.h>
     70       1.1       chs 
     71       1.1       chs #include <dev/pci/if_nfereg.h>
     72       1.1       chs #include <dev/pci/if_nfevar.h>
     73       1.1       chs 
     74      1.37    dyoung static int nfe_ifflags_cb(struct ethercom *);
     75      1.37    dyoung 
     76      1.30      cube int	nfe_match(device_t, cfdata_t, void *);
     77      1.30      cube void	nfe_attach(device_t, device_t, void *);
     78       1.1       chs void	nfe_power(int, void *);
     79      1.30      cube void	nfe_miibus_statchg(device_t);
     80      1.30      cube int	nfe_miibus_readreg(device_t, int, int);
     81      1.30      cube void	nfe_miibus_writereg(device_t, int, int, int);
     82       1.1       chs int	nfe_intr(void *);
     83      1.15  christos int	nfe_ioctl(struct ifnet *, u_long, void *);
     84       1.1       chs void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
     85       1.1       chs void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
     86       1.1       chs void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
     87       1.1       chs void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
     88       1.1       chs void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
     89       1.1       chs void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
     90       1.1       chs void	nfe_rxeof(struct nfe_softc *);
     91       1.1       chs void	nfe_txeof(struct nfe_softc *);
     92       1.1       chs int	nfe_encap(struct nfe_softc *, struct mbuf *);
     93       1.1       chs void	nfe_start(struct ifnet *);
     94       1.1       chs void	nfe_watchdog(struct ifnet *);
     95       1.1       chs int	nfe_init(struct ifnet *);
     96       1.1       chs void	nfe_stop(struct ifnet *, int);
     97      1.19      cube struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
     98      1.15  christos void	nfe_jfree(struct mbuf *, void *, size_t, void *);
     99       1.1       chs int	nfe_jpool_alloc(struct nfe_softc *);
    100       1.1       chs void	nfe_jpool_free(struct nfe_softc *);
    101       1.1       chs int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    102       1.1       chs void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    103       1.1       chs void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    104       1.1       chs int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    105       1.1       chs void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    106       1.1       chs void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    107       1.1       chs void	nfe_setmulti(struct nfe_softc *);
    108       1.1       chs void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
    109       1.1       chs void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
    110       1.1       chs void	nfe_tick(void *);
    111      1.35  jmcneill void	nfe_poweron(device_t);
    112  1.49.2.1  uebayasi bool	nfe_resume(device_t, const pmf_qual_t *);
    113       1.1       chs 
    114      1.30      cube CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
    115      1.30      cube     NULL, NULL);
    116       1.1       chs 
    117      1.34      cube /* #define NFE_NO_JUMBO */
    118      1.34      cube 
    119       1.1       chs #ifdef NFE_DEBUG
    120       1.1       chs int nfedebug = 0;
    121       1.1       chs #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
    122       1.1       chs #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
    123       1.1       chs #else
    124       1.1       chs #define DPRINTF(x)
    125       1.1       chs #define DPRINTFN(n,x)
    126       1.1       chs #endif
    127       1.1       chs 
    128       1.1       chs /* deal with naming differences */
    129       1.1       chs 
    130       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
    131       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
    132       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
    133       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
    134       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
    135       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
    136       1.1       chs 
    137       1.1       chs #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
    138       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
    139       1.1       chs #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
    140       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
    141       1.1       chs 
    142       1.1       chs #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
    143       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
    144       1.1       chs #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
    145       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
    146       1.1       chs 
    147       1.1       chs #ifdef	_LP64
    148       1.1       chs #define	__LP64__ 1
    149       1.1       chs #endif
    150       1.1       chs 
    151       1.1       chs const struct nfe_product {
    152       1.1       chs 	pci_vendor_id_t		vendor;
    153       1.1       chs 	pci_product_id_t	product;
    154       1.1       chs } nfe_devices[] = {
    155       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
    156       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
    157       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
    158       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
    159       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
    160       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
    161       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
    162       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
    163       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
    164       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
    165       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
    166       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
    167       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
    168       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
    169       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
    170       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
    171       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
    172       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
    173       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
    174       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
    175       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
    176       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
    177      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
    178      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
    179      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
    180      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
    181      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
    182      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
    183      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
    184      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
    185      1.29     isaki 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
    186      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
    187      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
    188      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
    189      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
    190      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
    191      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
    192      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
    193      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
    194       1.1       chs };
    195       1.1       chs 
    196       1.1       chs int
    197      1.30      cube nfe_match(device_t dev, cfdata_t match, void *aux)
    198       1.1       chs {
    199       1.1       chs 	struct pci_attach_args *pa = aux;
    200       1.1       chs 	const struct nfe_product *np;
    201       1.1       chs 	int i;
    202       1.1       chs 
    203      1.45    cegger 	for (i = 0; i < __arraycount(nfe_devices); i++) {
    204       1.1       chs 		np = &nfe_devices[i];
    205       1.1       chs 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
    206       1.1       chs 		    PCI_PRODUCT(pa->pa_id) == np->product)
    207       1.1       chs 			return 1;
    208       1.1       chs 	}
    209       1.1       chs 	return 0;
    210       1.1       chs }
    211       1.1       chs 
    212       1.1       chs void
    213      1.30      cube nfe_attach(device_t parent, device_t self, void *aux)
    214       1.1       chs {
    215      1.30      cube 	struct nfe_softc *sc = device_private(self);
    216       1.1       chs 	struct pci_attach_args *pa = aux;
    217       1.1       chs 	pci_chipset_tag_t pc = pa->pa_pc;
    218       1.1       chs 	pci_intr_handle_t ih;
    219       1.1       chs 	const char *intrstr;
    220       1.1       chs 	struct ifnet *ifp;
    221       1.1       chs 	bus_size_t memsize;
    222       1.1       chs 	pcireg_t memtype;
    223      1.10   tsutsui 	char devinfo[256];
    224      1.40    cegger 	int mii_flags = 0;
    225      1.10   tsutsui 
    226      1.30      cube 	sc->sc_dev = self;
    227      1.10   tsutsui 	pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
    228      1.31  christos 	aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
    229       1.1       chs 
    230       1.1       chs 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
    231       1.1       chs 	switch (memtype) {
    232       1.1       chs 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    233       1.1       chs 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    234       1.1       chs 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
    235       1.1       chs 		    &sc->sc_memh, NULL, &memsize) == 0)
    236       1.1       chs 			break;
    237       1.1       chs 		/* FALLTHROUGH */
    238       1.1       chs 	default:
    239      1.30      cube 		aprint_error_dev(self, "could not map mem space\n");
    240       1.1       chs 		return;
    241       1.1       chs 	}
    242       1.1       chs 
    243       1.1       chs 	if (pci_intr_map(pa, &ih) != 0) {
    244      1.30      cube 		aprint_error_dev(self, "could not map interrupt\n");
    245      1.42    cegger 		goto fail;
    246       1.1       chs 	}
    247       1.1       chs 
    248       1.1       chs 	intrstr = pci_intr_string(pc, ih);
    249       1.1       chs 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
    250       1.1       chs 	if (sc->sc_ih == NULL) {
    251      1.30      cube 		aprint_error_dev(self, "could not establish interrupt");
    252       1.1       chs 		if (intrstr != NULL)
    253      1.47     njoly 			aprint_error(" at %s", intrstr);
    254      1.47     njoly 		aprint_error("\n");
    255      1.42    cegger 		goto fail;
    256       1.1       chs 	}
    257      1.30      cube 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    258       1.1       chs 
    259       1.1       chs 	sc->sc_dmat = pa->pa_dmat;
    260       1.1       chs 
    261       1.1       chs 	sc->sc_flags = 0;
    262       1.1       chs 
    263       1.1       chs 	switch (PCI_PRODUCT(pa->pa_id)) {
    264       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
    265       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
    266       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
    267       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
    268       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
    269       1.1       chs 		break;
    270       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
    271       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
    272      1.31  christos 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
    273      1.31  christos 		break;
    274       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
    275       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
    276       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
    277       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
    278      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
    279      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
    280      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
    281      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
    282      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
    283      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
    284      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
    285      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
    286      1.31  christos 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
    287      1.31  christos 		    NFE_PWR_MGMT;
    288      1.31  christos 		break;
    289      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
    290      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
    291      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
    292      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
    293      1.41    cegger 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
    294      1.41    cegger 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    295      1.41    cegger 		break;
    296      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
    297      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
    298      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
    299      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
    300      1.41    cegger 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
    301      1.31  christos 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    302       1.1       chs 		break;
    303       1.1       chs 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
    304       1.1       chs 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
    305       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
    306       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
    307       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
    308       1.1       chs 		break;
    309       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
    310       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
    311       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
    312       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
    313      1.31  christos 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
    314      1.31  christos 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    315      1.40    cegger 		mii_flags = MIIF_DOPAUSE;
    316      1.31  christos 		break;
    317      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
    318      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
    319       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
    320      1.27   tsutsui 		    NFE_HW_VLAN | NFE_PWR_MGMT;
    321       1.1       chs 		break;
    322       1.1       chs 	}
    323       1.1       chs 
    324      1.35  jmcneill 	nfe_poweron(self);
    325      1.27   tsutsui 
    326      1.34      cube #ifndef NFE_NO_JUMBO
    327       1.1       chs 	/* enable jumbo frames for adapters that support it */
    328       1.1       chs 	if (sc->sc_flags & NFE_JUMBO_SUP)
    329       1.1       chs 		sc->sc_flags |= NFE_USE_JUMBO;
    330       1.1       chs #endif
    331       1.1       chs 
    332      1.31  christos 	/* Check for reversed ethernet address */
    333      1.31  christos 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
    334      1.31  christos 		sc->sc_flags |= NFE_CORRECT_MACADDR;
    335      1.31  christos 
    336      1.31  christos 	nfe_get_macaddr(sc, sc->sc_enaddr);
    337      1.31  christos 	aprint_normal_dev(self, "Ethernet address %s\n",
    338      1.31  christos 	    ether_sprintf(sc->sc_enaddr));
    339      1.31  christos 
    340       1.1       chs 	/*
    341       1.1       chs 	 * Allocate Tx and Rx rings.
    342       1.1       chs 	 */
    343       1.1       chs 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
    344      1.30      cube 		aprint_error_dev(self, "could not allocate Tx ring\n");
    345      1.42    cegger 		goto fail;
    346       1.1       chs 	}
    347       1.1       chs 
    348      1.36      cube 	mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
    349      1.34      cube 
    350       1.1       chs 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
    351      1.30      cube 		aprint_error_dev(self, "could not allocate Rx ring\n");
    352       1.1       chs 		nfe_free_tx_ring(sc, &sc->txq);
    353      1.42    cegger 		goto fail;
    354       1.1       chs 	}
    355       1.1       chs 
    356       1.1       chs 	ifp = &sc->sc_ethercom.ec_if;
    357       1.1       chs 	ifp->if_softc = sc;
    358       1.1       chs 	ifp->if_mtu = ETHERMTU;
    359       1.1       chs 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    360       1.1       chs 	ifp->if_ioctl = nfe_ioctl;
    361       1.1       chs 	ifp->if_start = nfe_start;
    362      1.24  jmcneill 	ifp->if_stop = nfe_stop;
    363       1.1       chs 	ifp->if_watchdog = nfe_watchdog;
    364       1.1       chs 	ifp->if_init = nfe_init;
    365       1.1       chs 	ifp->if_baudrate = IF_Gbps(1);
    366       1.1       chs 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
    367       1.1       chs 	IFQ_SET_READY(&ifp->if_snd);
    368      1.30      cube 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    369       1.1       chs 
    370      1.31  christos 	if (sc->sc_flags & NFE_USE_JUMBO)
    371      1.37    dyoung 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    372      1.31  christos 
    373       1.1       chs #if NVLAN > 0
    374       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
    375       1.1       chs 		sc->sc_ethercom.ec_capabilities |=
    376       1.1       chs 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
    377       1.1       chs #endif
    378       1.1       chs 	if (sc->sc_flags & NFE_HW_CSUM) {
    379      1.13   tsutsui 		ifp->if_capabilities |=
    380      1.13   tsutsui 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    381      1.13   tsutsui 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    382      1.13   tsutsui 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    383       1.1       chs 	}
    384       1.1       chs 
    385       1.1       chs 	sc->sc_mii.mii_ifp = ifp;
    386       1.1       chs 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
    387       1.1       chs 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
    388       1.1       chs 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
    389       1.1       chs 
    390      1.26    dyoung 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    391      1.26    dyoung 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
    392      1.26    dyoung 	    ether_mediastatus);
    393      1.40    cegger 
    394       1.1       chs 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    395      1.40    cegger 	    MII_OFFSET_ANY, mii_flags);
    396      1.40    cegger 
    397       1.1       chs 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    398      1.30      cube 		aprint_error_dev(self, "no PHY found!\n");
    399       1.1       chs 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
    400       1.1       chs 		    0, NULL);
    401       1.1       chs 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    402       1.1       chs 	} else
    403       1.1       chs 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
    404       1.1       chs 
    405       1.1       chs 	if_attach(ifp);
    406       1.1       chs 	ether_ifattach(ifp, sc->sc_enaddr);
    407      1.37    dyoung 	ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
    408       1.1       chs 
    409      1.16        ad 	callout_init(&sc->sc_tick_ch, 0);
    410       1.1       chs 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
    411       1.1       chs 
    412      1.46   tsutsui 	if (pmf_device_register(self, NULL, nfe_resume))
    413      1.46   tsutsui 		pmf_class_network_register(self, ifp);
    414      1.46   tsutsui 	else
    415      1.24  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    416      1.42    cegger 
    417      1.42    cegger 	return;
    418      1.42    cegger 
    419      1.42    cegger fail:
    420      1.42    cegger 	if (sc->sc_ih != NULL) {
    421      1.42    cegger 		pci_intr_disestablish(pc, sc->sc_ih);
    422      1.42    cegger 		sc->sc_ih = NULL;
    423      1.42    cegger 	}
    424      1.42    cegger 	if (memsize)
    425      1.42    cegger 		bus_space_unmap(sc->sc_memt, sc->sc_memh, memsize);
    426       1.1       chs }
    427       1.1       chs 
    428       1.1       chs void
    429      1.30      cube nfe_miibus_statchg(device_t dev)
    430       1.1       chs {
    431      1.30      cube 	struct nfe_softc *sc = device_private(dev);
    432       1.1       chs 	struct mii_data *mii = &sc->sc_mii;
    433       1.1       chs 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
    434       1.1       chs 
    435       1.1       chs 	phy = NFE_READ(sc, NFE_PHY_IFACE);
    436       1.1       chs 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
    437       1.1       chs 
    438       1.1       chs 	seed = NFE_READ(sc, NFE_RNDSEED);
    439       1.1       chs 	seed &= ~NFE_SEED_MASK;
    440       1.1       chs 
    441       1.1       chs 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
    442       1.1       chs 		phy  |= NFE_PHY_HDX;	/* half-duplex */
    443       1.1       chs 		misc |= NFE_MISC1_HDX;
    444       1.1       chs 	}
    445       1.1       chs 
    446       1.1       chs 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
    447       1.1       chs 	case IFM_1000_T:	/* full-duplex only */
    448       1.1       chs 		link |= NFE_MEDIA_1000T;
    449       1.1       chs 		seed |= NFE_SEED_1000T;
    450       1.1       chs 		phy  |= NFE_PHY_1000T;
    451       1.1       chs 		break;
    452       1.1       chs 	case IFM_100_TX:
    453       1.1       chs 		link |= NFE_MEDIA_100TX;
    454       1.1       chs 		seed |= NFE_SEED_100TX;
    455       1.1       chs 		phy  |= NFE_PHY_100TX;
    456       1.1       chs 		break;
    457       1.1       chs 	case IFM_10_T:
    458       1.1       chs 		link |= NFE_MEDIA_10T;
    459       1.1       chs 		seed |= NFE_SEED_10T;
    460       1.1       chs 		break;
    461       1.1       chs 	}
    462       1.1       chs 
    463       1.1       chs 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
    464       1.1       chs 
    465       1.1       chs 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
    466       1.1       chs 	NFE_WRITE(sc, NFE_MISC1, misc);
    467       1.1       chs 	NFE_WRITE(sc, NFE_LINKSPEED, link);
    468       1.1       chs }
    469       1.1       chs 
    470       1.1       chs int
    471      1.30      cube nfe_miibus_readreg(device_t dev, int phy, int reg)
    472       1.1       chs {
    473      1.30      cube 	struct nfe_softc *sc = device_private(dev);
    474       1.1       chs 	uint32_t val;
    475       1.1       chs 	int ntries;
    476       1.1       chs 
    477       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    478       1.1       chs 
    479       1.1       chs 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
    480       1.1       chs 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
    481       1.1       chs 		DELAY(100);
    482       1.1       chs 	}
    483       1.1       chs 
    484       1.1       chs 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
    485       1.1       chs 
    486       1.1       chs 	for (ntries = 0; ntries < 1000; ntries++) {
    487       1.1       chs 		DELAY(100);
    488       1.1       chs 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
    489       1.1       chs 			break;
    490       1.1       chs 	}
    491       1.1       chs 	if (ntries == 1000) {
    492       1.1       chs 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
    493      1.30      cube 		    device_xname(sc->sc_dev)));
    494       1.1       chs 		return 0;
    495       1.1       chs 	}
    496       1.1       chs 
    497       1.1       chs 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
    498       1.1       chs 		DPRINTFN(2, ("%s: could not read PHY\n",
    499      1.30      cube 		    device_xname(sc->sc_dev)));
    500       1.1       chs 		return 0;
    501       1.1       chs 	}
    502       1.1       chs 
    503       1.1       chs 	val = NFE_READ(sc, NFE_PHY_DATA);
    504       1.1       chs 	if (val != 0xffffffff && val != 0)
    505       1.1       chs 		sc->mii_phyaddr = phy;
    506       1.1       chs 
    507       1.1       chs 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
    508      1.30      cube 	    device_xname(sc->sc_dev), phy, reg, val));
    509       1.1       chs 
    510       1.1       chs 	return val;
    511       1.1       chs }
    512       1.1       chs 
    513       1.1       chs void
    514      1.30      cube nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
    515       1.1       chs {
    516      1.30      cube 	struct nfe_softc *sc = device_private(dev);
    517       1.1       chs 	uint32_t ctl;
    518       1.1       chs 	int ntries;
    519       1.1       chs 
    520       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    521       1.1       chs 
    522       1.1       chs 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
    523       1.1       chs 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
    524       1.1       chs 		DELAY(100);
    525       1.1       chs 	}
    526       1.1       chs 
    527       1.1       chs 	NFE_WRITE(sc, NFE_PHY_DATA, val);
    528       1.1       chs 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
    529       1.1       chs 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
    530       1.1       chs 
    531       1.1       chs 	for (ntries = 0; ntries < 1000; ntries++) {
    532       1.1       chs 		DELAY(100);
    533       1.1       chs 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
    534       1.1       chs 			break;
    535       1.1       chs 	}
    536       1.1       chs #ifdef NFE_DEBUG
    537       1.1       chs 	if (nfedebug >= 2 && ntries == 1000)
    538       1.1       chs 		printf("could not write to PHY\n");
    539       1.1       chs #endif
    540       1.1       chs }
    541       1.1       chs 
    542       1.1       chs int
    543       1.1       chs nfe_intr(void *arg)
    544       1.1       chs {
    545       1.1       chs 	struct nfe_softc *sc = arg;
    546       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    547       1.1       chs 	uint32_t r;
    548      1.14   tsutsui 	int handled;
    549       1.1       chs 
    550      1.14   tsutsui 	if ((ifp->if_flags & IFF_UP) == 0)
    551      1.14   tsutsui 		return 0;
    552       1.1       chs 
    553      1.14   tsutsui 	handled = 0;
    554       1.1       chs 
    555      1.14   tsutsui 	for (;;) {
    556      1.14   tsutsui 		r = NFE_READ(sc, NFE_IRQ_STATUS);
    557      1.14   tsutsui 		if ((r & NFE_IRQ_WANTED) == 0)
    558      1.14   tsutsui 			break;
    559       1.1       chs 
    560      1.14   tsutsui 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
    561      1.14   tsutsui 		handled = 1;
    562      1.14   tsutsui 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
    563      1.14   tsutsui 
    564      1.31  christos 		if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
    565      1.14   tsutsui 			/* check Rx ring */
    566      1.14   tsutsui 			nfe_rxeof(sc);
    567      1.14   tsutsui 		}
    568      1.31  christos 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
    569      1.14   tsutsui 			/* check Tx ring */
    570      1.14   tsutsui 			nfe_txeof(sc);
    571      1.14   tsutsui 		}
    572      1.14   tsutsui 		if ((r & NFE_IRQ_LINK) != 0) {
    573      1.14   tsutsui 			NFE_READ(sc, NFE_PHY_STATUS);
    574      1.14   tsutsui 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    575      1.14   tsutsui 			DPRINTF(("%s: link state changed\n",
    576      1.30      cube 			    device_xname(sc->sc_dev)));
    577      1.14   tsutsui 		}
    578       1.1       chs 	}
    579       1.1       chs 
    580      1.14   tsutsui 	if (handled && !IF_IS_EMPTY(&ifp->if_snd))
    581      1.12  jmcneill 		nfe_start(ifp);
    582      1.12  jmcneill 
    583      1.14   tsutsui 	return handled;
    584       1.1       chs }
    585       1.1       chs 
    586      1.37    dyoung static int
    587      1.37    dyoung nfe_ifflags_cb(struct ethercom *ec)
    588      1.37    dyoung {
    589      1.37    dyoung 	struct ifnet *ifp = &ec->ec_if;
    590      1.37    dyoung 	struct nfe_softc *sc = ifp->if_softc;
    591      1.37    dyoung 	int change = ifp->if_flags ^ sc->sc_if_flags;
    592      1.37    dyoung 
    593      1.37    dyoung 	/*
    594      1.37    dyoung 	 * If only the PROMISC flag changes, then
    595      1.37    dyoung 	 * don't do a full re-init of the chip, just update
    596      1.37    dyoung 	 * the Rx filter.
    597      1.37    dyoung 	 */
    598      1.37    dyoung 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
    599      1.37    dyoung 		return ENETRESET;
    600      1.37    dyoung 	else if ((change & IFF_PROMISC) != 0)
    601      1.37    dyoung 		nfe_setmulti(sc);
    602      1.37    dyoung 
    603      1.37    dyoung 	return 0;
    604      1.37    dyoung }
    605      1.37    dyoung 
    606       1.1       chs int
    607      1.15  christos nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    608       1.1       chs {
    609       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
    610       1.1       chs 	struct ifaddr *ifa = (struct ifaddr *)data;
    611       1.1       chs 	int s, error = 0;
    612       1.1       chs 
    613       1.1       chs 	s = splnet();
    614       1.1       chs 
    615       1.1       chs 	switch (cmd) {
    616      1.37    dyoung 	case SIOCINITIFADDR:
    617       1.1       chs 		ifp->if_flags |= IFF_UP;
    618       1.1       chs 		nfe_init(ifp);
    619       1.1       chs 		switch (ifa->ifa_addr->sa_family) {
    620       1.1       chs #ifdef INET
    621       1.1       chs 		case AF_INET:
    622       1.1       chs 			arp_ifinit(ifp, ifa);
    623       1.1       chs 			break;
    624       1.1       chs #endif
    625       1.1       chs 		default:
    626       1.1       chs 			break;
    627       1.1       chs 		}
    628       1.1       chs 		break;
    629      1.26    dyoung 	default:
    630      1.28    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    631      1.28    dyoung 			break;
    632      1.31  christos 
    633      1.28    dyoung 		error = 0;
    634      1.28    dyoung 
    635      1.28    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    636      1.28    dyoung 			;
    637      1.28    dyoung 		else if (ifp->if_flags & IFF_RUNNING)
    638      1.28    dyoung 			nfe_setmulti(sc);
    639       1.1       chs 		break;
    640       1.1       chs 	}
    641      1.37    dyoung 	sc->sc_if_flags = ifp->if_flags;
    642       1.1       chs 
    643       1.1       chs 	splx(s);
    644       1.1       chs 
    645       1.1       chs 	return error;
    646       1.1       chs }
    647       1.1       chs 
    648       1.1       chs void
    649       1.1       chs nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
    650       1.1       chs {
    651       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    652      1.15  christos 	    (char *)desc32 - (char *)sc->txq.desc32,
    653       1.1       chs 	    sizeof (struct nfe_desc32), ops);
    654       1.1       chs }
    655       1.1       chs 
    656       1.1       chs void
    657       1.1       chs nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
    658       1.1       chs {
    659       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    660      1.15  christos 	    (char *)desc64 - (char *)sc->txq.desc64,
    661       1.1       chs 	    sizeof (struct nfe_desc64), ops);
    662       1.1       chs }
    663       1.1       chs 
    664       1.1       chs void
    665       1.1       chs nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
    666       1.1       chs {
    667       1.1       chs 	if (end > start) {
    668       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    669      1.15  christos 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
    670      1.15  christos 		    (char *)&sc->txq.desc32[end] -
    671      1.15  christos 		    (char *)&sc->txq.desc32[start], ops);
    672       1.1       chs 		return;
    673       1.1       chs 	}
    674       1.1       chs 	/* sync from 'start' to end of ring */
    675       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    676      1.15  christos 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
    677      1.15  christos 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
    678      1.15  christos 	    (char *)&sc->txq.desc32[start], ops);
    679       1.1       chs 
    680       1.1       chs 	/* sync from start of ring to 'end' */
    681       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
    682      1.15  christos 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
    683       1.1       chs }
    684       1.1       chs 
    685       1.1       chs void
    686       1.1       chs nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
    687       1.1       chs {
    688       1.1       chs 	if (end > start) {
    689       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    690      1.15  christos 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
    691      1.15  christos 		    (char *)&sc->txq.desc64[end] -
    692      1.15  christos 		    (char *)&sc->txq.desc64[start], ops);
    693       1.1       chs 		return;
    694       1.1       chs 	}
    695       1.1       chs 	/* sync from 'start' to end of ring */
    696       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    697      1.15  christos 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
    698      1.15  christos 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
    699      1.15  christos 	    (char *)&sc->txq.desc64[start], ops);
    700       1.1       chs 
    701       1.1       chs 	/* sync from start of ring to 'end' */
    702       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
    703      1.15  christos 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
    704       1.1       chs }
    705       1.1       chs 
    706       1.1       chs void
    707       1.1       chs nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
    708       1.1       chs {
    709       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
    710      1.15  christos 	    (char *)desc32 - (char *)sc->rxq.desc32,
    711       1.1       chs 	    sizeof (struct nfe_desc32), ops);
    712       1.1       chs }
    713       1.1       chs 
    714       1.1       chs void
    715       1.1       chs nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
    716       1.1       chs {
    717       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
    718      1.15  christos 	    (char *)desc64 - (char *)sc->rxq.desc64,
    719       1.1       chs 	    sizeof (struct nfe_desc64), ops);
    720       1.1       chs }
    721       1.1       chs 
    722       1.1       chs void
    723       1.1       chs nfe_rxeof(struct nfe_softc *sc)
    724       1.1       chs {
    725       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    726       1.1       chs 	struct nfe_desc32 *desc32;
    727       1.1       chs 	struct nfe_desc64 *desc64;
    728       1.1       chs 	struct nfe_rx_data *data;
    729       1.1       chs 	struct nfe_jbuf *jbuf;
    730       1.1       chs 	struct mbuf *m, *mnew;
    731       1.1       chs 	bus_addr_t physaddr;
    732       1.1       chs 	uint16_t flags;
    733      1.14   tsutsui 	int error, len, i;
    734       1.1       chs 
    735       1.1       chs 	desc32 = NULL;
    736       1.1       chs 	desc64 = NULL;
    737      1.14   tsutsui 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
    738      1.14   tsutsui 		data = &sc->rxq.data[i];
    739       1.1       chs 
    740       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    741      1.14   tsutsui 			desc64 = &sc->rxq.desc64[i];
    742      1.14   tsutsui 			nfe_rxdesc64_sync(sc, desc64,
    743      1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    744       1.1       chs 
    745       1.1       chs 			flags = le16toh(desc64->flags);
    746       1.1       chs 			len = le16toh(desc64->length) & 0x3fff;
    747       1.1       chs 		} else {
    748      1.14   tsutsui 			desc32 = &sc->rxq.desc32[i];
    749      1.14   tsutsui 			nfe_rxdesc32_sync(sc, desc32,
    750      1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    751       1.1       chs 
    752       1.1       chs 			flags = le16toh(desc32->flags);
    753       1.1       chs 			len = le16toh(desc32->length) & 0x3fff;
    754       1.1       chs 		}
    755       1.1       chs 
    756      1.14   tsutsui 		if ((flags & NFE_RX_READY) != 0)
    757       1.1       chs 			break;
    758       1.1       chs 
    759       1.1       chs 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
    760      1.14   tsutsui 			if ((flags & NFE_RX_VALID_V1) == 0)
    761       1.1       chs 				goto skip;
    762       1.1       chs 
    763       1.1       chs 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
    764       1.1       chs 				flags &= ~NFE_RX_ERROR;
    765       1.1       chs 				len--;	/* fix buffer length */
    766       1.1       chs 			}
    767       1.1       chs 		} else {
    768      1.14   tsutsui 			if ((flags & NFE_RX_VALID_V2) == 0)
    769       1.1       chs 				goto skip;
    770       1.1       chs 
    771       1.1       chs 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
    772       1.1       chs 				flags &= ~NFE_RX_ERROR;
    773       1.1       chs 				len--;	/* fix buffer length */
    774       1.1       chs 			}
    775       1.1       chs 		}
    776       1.1       chs 
    777       1.1       chs 		if (flags & NFE_RX_ERROR) {
    778       1.1       chs 			ifp->if_ierrors++;
    779       1.1       chs 			goto skip;
    780       1.1       chs 		}
    781       1.1       chs 
    782       1.1       chs 		/*
    783       1.1       chs 		 * Try to allocate a new mbuf for this ring element and load
    784       1.1       chs 		 * it before processing the current mbuf. If the ring element
    785       1.1       chs 		 * cannot be loaded, drop the received packet and reuse the
    786       1.1       chs 		 * old mbuf. In the unlikely case that the old mbuf can't be
    787       1.1       chs 		 * reloaded either, explicitly panic.
    788       1.1       chs 		 */
    789       1.1       chs 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    790       1.1       chs 		if (mnew == NULL) {
    791       1.1       chs 			ifp->if_ierrors++;
    792       1.1       chs 			goto skip;
    793       1.1       chs 		}
    794       1.1       chs 
    795       1.1       chs 		if (sc->sc_flags & NFE_USE_JUMBO) {
    796      1.19      cube 			physaddr =
    797      1.19      cube 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
    798      1.19      cube 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
    799      1.19      cube 				if (len > MCLBYTES) {
    800      1.19      cube 					m_freem(mnew);
    801      1.19      cube 					ifp->if_ierrors++;
    802      1.19      cube 					goto skip1;
    803      1.19      cube 				}
    804      1.19      cube 				MCLGET(mnew, M_DONTWAIT);
    805      1.19      cube 				if ((mnew->m_flags & M_EXT) == 0) {
    806      1.19      cube 					m_freem(mnew);
    807      1.19      cube 					ifp->if_ierrors++;
    808      1.19      cube 					goto skip1;
    809      1.19      cube 				}
    810       1.1       chs 
    811      1.31  christos 				(void)memcpy(mtod(mnew, void *),
    812      1.19      cube 				    mtod(data->m, const void *), len);
    813      1.19      cube 				m = mnew;
    814      1.19      cube 				goto mbufcopied;
    815      1.19      cube 			} else {
    816      1.19      cube 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
    817      1.19      cube 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
    818      1.19      cube 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
    819      1.19      cube 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
    820       1.1       chs 
    821      1.19      cube 				physaddr = jbuf->physaddr;
    822      1.19      cube 			}
    823       1.1       chs 		} else {
    824       1.1       chs 			MCLGET(mnew, M_DONTWAIT);
    825      1.14   tsutsui 			if ((mnew->m_flags & M_EXT) == 0) {
    826       1.1       chs 				m_freem(mnew);
    827       1.1       chs 				ifp->if_ierrors++;
    828       1.1       chs 				goto skip;
    829       1.1       chs 			}
    830       1.1       chs 
    831       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    832       1.1       chs 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    833       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->map);
    834       1.1       chs 
    835      1.19      cube 			error = bus_dmamap_load(sc->sc_dmat, data->map,
    836      1.19      cube 			    mtod(mnew, void *), MCLBYTES, NULL,
    837      1.19      cube 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
    838       1.1       chs 			if (error != 0) {
    839       1.1       chs 				m_freem(mnew);
    840       1.1       chs 
    841       1.1       chs 				/* try to reload the old mbuf */
    842      1.19      cube 				error = bus_dmamap_load(sc->sc_dmat, data->map,
    843      1.19      cube 				    mtod(data->m, void *), MCLBYTES, NULL,
    844       1.1       chs 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
    845       1.1       chs 				if (error != 0) {
    846       1.1       chs 					/* very unlikely that it will fail.. */
    847       1.1       chs 					panic("%s: could not load old rx mbuf",
    848      1.30      cube 					    device_xname(sc->sc_dev));
    849       1.1       chs 				}
    850       1.1       chs 				ifp->if_ierrors++;
    851       1.1       chs 				goto skip;
    852       1.1       chs 			}
    853       1.1       chs 			physaddr = data->map->dm_segs[0].ds_addr;
    854       1.1       chs 		}
    855       1.1       chs 
    856       1.1       chs 		/*
    857       1.1       chs 		 * New mbuf successfully loaded, update Rx ring and continue
    858       1.1       chs 		 * processing.
    859       1.1       chs 		 */
    860       1.1       chs 		m = data->m;
    861       1.1       chs 		data->m = mnew;
    862       1.1       chs 
    863      1.19      cube mbufcopied:
    864       1.1       chs 		/* finalize mbuf */
    865       1.1       chs 		m->m_pkthdr.len = m->m_len = len;
    866       1.1       chs 		m->m_pkthdr.rcvif = ifp;
    867       1.1       chs 
    868      1.13   tsutsui 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
    869      1.13   tsutsui 			/*
    870      1.13   tsutsui 			 * XXX
    871      1.13   tsutsui 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
    872      1.13   tsutsui 			 */
    873      1.13   tsutsui 			if (flags & NFE_RX_IP_CSUMOK) {
    874      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    875      1.13   tsutsui 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
    876      1.30      cube 				    device_xname(sc->sc_dev)));
    877      1.13   tsutsui 			}
    878      1.13   tsutsui 			/*
    879      1.13   tsutsui 			 * XXX
    880      1.13   tsutsui 			 * no way to check M_CSUM_TCP_UDP_BAD or
    881      1.13   tsutsui 			 * other protocols?
    882      1.13   tsutsui 			 */
    883      1.13   tsutsui 			if (flags & NFE_RX_UDP_CSUMOK) {
    884      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
    885      1.13   tsutsui 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
    886      1.30      cube 				    device_xname(sc->sc_dev)));
    887      1.13   tsutsui 			} else if (flags & NFE_RX_TCP_CSUMOK) {
    888      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
    889      1.13   tsutsui 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
    890      1.30      cube 				    device_xname(sc->sc_dev)));
    891      1.13   tsutsui 			}
    892      1.13   tsutsui 		}
    893  1.49.2.1  uebayasi 		bpf_mtap(ifp, m);
    894       1.1       chs 		ifp->if_ipackets++;
    895       1.1       chs 		(*ifp->if_input)(ifp, m);
    896       1.1       chs 
    897      1.19      cube skip1:
    898       1.1       chs 		/* update mapping address in h/w descriptor */
    899       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    900       1.1       chs #if defined(__LP64__)
    901       1.1       chs 			desc64->physaddr[0] = htole32(physaddr >> 32);
    902       1.1       chs #endif
    903       1.1       chs 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
    904       1.1       chs 		} else {
    905       1.1       chs 			desc32->physaddr = htole32(physaddr);
    906       1.1       chs 		}
    907       1.1       chs 
    908      1.31  christos skip:
    909      1.14   tsutsui 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    910       1.1       chs 			desc64->length = htole16(sc->rxq.bufsz);
    911       1.1       chs 			desc64->flags = htole16(NFE_RX_READY);
    912       1.1       chs 
    913      1.14   tsutsui 			nfe_rxdesc64_sync(sc, desc64,
    914      1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    915       1.1       chs 		} else {
    916       1.1       chs 			desc32->length = htole16(sc->rxq.bufsz);
    917       1.1       chs 			desc32->flags = htole16(NFE_RX_READY);
    918       1.1       chs 
    919      1.14   tsutsui 			nfe_rxdesc32_sync(sc, desc32,
    920      1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    921       1.1       chs 		}
    922       1.1       chs 	}
    923      1.14   tsutsui 	/* update current RX pointer */
    924      1.14   tsutsui 	sc->rxq.cur = i;
    925       1.1       chs }
    926       1.1       chs 
    927       1.1       chs void
    928       1.1       chs nfe_txeof(struct nfe_softc *sc)
    929       1.1       chs {
    930       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    931       1.1       chs 	struct nfe_desc32 *desc32;
    932       1.1       chs 	struct nfe_desc64 *desc64;
    933       1.1       chs 	struct nfe_tx_data *data = NULL;
    934      1.14   tsutsui 	int i;
    935       1.1       chs 	uint16_t flags;
    936      1.31  christos 	char buf[128];
    937       1.1       chs 
    938      1.14   tsutsui 	for (i = sc->txq.next;
    939      1.14   tsutsui 	    sc->txq.queued > 0;
    940      1.14   tsutsui 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
    941       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    942      1.14   tsutsui 			desc64 = &sc->txq.desc64[i];
    943      1.14   tsutsui 			nfe_txdesc64_sync(sc, desc64,
    944      1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    945       1.1       chs 
    946       1.1       chs 			flags = le16toh(desc64->flags);
    947       1.1       chs 		} else {
    948      1.14   tsutsui 			desc32 = &sc->txq.desc32[i];
    949      1.14   tsutsui 			nfe_txdesc32_sync(sc, desc32,
    950      1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    951       1.1       chs 
    952       1.1       chs 			flags = le16toh(desc32->flags);
    953       1.1       chs 		}
    954       1.1       chs 
    955      1.14   tsutsui 		if ((flags & NFE_TX_VALID) != 0)
    956       1.1       chs 			break;
    957       1.1       chs 
    958      1.14   tsutsui 		data = &sc->txq.data[i];
    959       1.1       chs 
    960       1.1       chs 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
    961      1.14   tsutsui 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
    962      1.14   tsutsui 			    data->m == NULL)
    963      1.14   tsutsui 				continue;
    964       1.1       chs 
    965       1.1       chs 			if ((flags & NFE_TX_ERROR_V1) != 0) {
    966      1.38  christos 				snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
    967      1.33  christos 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
    968      1.38  christos 				    buf);
    969       1.1       chs 				ifp->if_oerrors++;
    970       1.1       chs 			} else
    971       1.1       chs 				ifp->if_opackets++;
    972       1.1       chs 		} else {
    973      1.14   tsutsui 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
    974      1.14   tsutsui 			    data->m == NULL)
    975      1.14   tsutsui 				continue;
    976       1.1       chs 
    977       1.1       chs 			if ((flags & NFE_TX_ERROR_V2) != 0) {
    978      1.38  christos 				snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
    979      1.32   xtraeme 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
    980      1.38  christos 				    buf);
    981       1.1       chs 				ifp->if_oerrors++;
    982       1.1       chs 			} else
    983       1.1       chs 				ifp->if_opackets++;
    984       1.1       chs 		}
    985       1.1       chs 
    986       1.1       chs 		if (data->m == NULL) {	/* should not get there */
    987      1.30      cube 			aprint_error_dev(sc->sc_dev,
    988      1.30      cube 			    "last fragment bit w/o associated mbuf!\n");
    989      1.14   tsutsui 			continue;
    990       1.1       chs 		}
    991       1.1       chs 
    992       1.1       chs 		/* last fragment of the mbuf chain transmitted */
    993       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
    994       1.1       chs 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
    995       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, data->active);
    996       1.1       chs 		m_freem(data->m);
    997       1.1       chs 		data->m = NULL;
    998      1.14   tsutsui 	}
    999       1.1       chs 
   1000      1.14   tsutsui 	sc->txq.next = i;
   1001       1.1       chs 
   1002      1.14   tsutsui 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
   1003      1.14   tsutsui 		/* at least one slot freed */
   1004      1.14   tsutsui 		ifp->if_flags &= ~IFF_OACTIVE;
   1005       1.1       chs 	}
   1006       1.1       chs 
   1007      1.14   tsutsui 	if (sc->txq.queued == 0) {
   1008      1.14   tsutsui 		/* all queued packets are sent */
   1009      1.14   tsutsui 		ifp->if_timer = 0;
   1010       1.1       chs 	}
   1011       1.1       chs }
   1012       1.1       chs 
   1013       1.1       chs int
   1014       1.1       chs nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
   1015       1.1       chs {
   1016       1.1       chs 	struct nfe_desc32 *desc32;
   1017       1.1       chs 	struct nfe_desc64 *desc64;
   1018       1.1       chs 	struct nfe_tx_data *data;
   1019       1.1       chs 	bus_dmamap_t map;
   1020      1.13   tsutsui 	uint16_t flags, csumflags;
   1021       1.1       chs #if NVLAN > 0
   1022       1.1       chs 	struct m_tag *mtag;
   1023       1.1       chs 	uint32_t vtag = 0;
   1024       1.1       chs #endif
   1025      1.11   tsutsui 	int error, i, first;
   1026       1.1       chs 
   1027       1.1       chs 	desc32 = NULL;
   1028       1.1       chs 	desc64 = NULL;
   1029       1.1       chs 	data = NULL;
   1030      1.11   tsutsui 
   1031      1.11   tsutsui 	flags = 0;
   1032      1.13   tsutsui 	csumflags = 0;
   1033      1.11   tsutsui 	first = sc->txq.cur;
   1034      1.11   tsutsui 
   1035      1.11   tsutsui 	map = sc->txq.data[first].map;
   1036       1.1       chs 
   1037       1.1       chs 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
   1038       1.1       chs 	if (error != 0) {
   1039      1.30      cube 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1040      1.30      cube 		    error);
   1041       1.1       chs 		return error;
   1042       1.1       chs 	}
   1043       1.1       chs 
   1044       1.1       chs 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
   1045       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, map);
   1046       1.1       chs 		return ENOBUFS;
   1047       1.1       chs 	}
   1048       1.1       chs 
   1049       1.1       chs #if NVLAN > 0
   1050       1.1       chs 	/* setup h/w VLAN tagging */
   1051       1.9       alc 	if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
   1052       1.1       chs 		vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
   1053       1.1       chs #endif
   1054      1.13   tsutsui 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
   1055      1.13   tsutsui 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1056      1.13   tsutsui 			csumflags |= NFE_TX_IP_CSUM;
   1057      1.13   tsutsui 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1058      1.14   tsutsui 			csumflags |= NFE_TX_TCP_UDP_CSUM;
   1059      1.13   tsutsui 	}
   1060       1.1       chs 
   1061       1.1       chs 	for (i = 0; i < map->dm_nsegs; i++) {
   1062       1.1       chs 		data = &sc->txq.data[sc->txq.cur];
   1063       1.1       chs 
   1064       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1065       1.1       chs 			desc64 = &sc->txq.desc64[sc->txq.cur];
   1066       1.1       chs #if defined(__LP64__)
   1067       1.1       chs 			desc64->physaddr[0] =
   1068       1.1       chs 			    htole32(map->dm_segs[i].ds_addr >> 32);
   1069       1.1       chs #endif
   1070       1.1       chs 			desc64->physaddr[1] =
   1071       1.1       chs 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
   1072       1.1       chs 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
   1073       1.1       chs 			desc64->flags = htole16(flags);
   1074      1.13   tsutsui 			desc64->vtag = 0;
   1075       1.1       chs 		} else {
   1076       1.1       chs 			desc32 = &sc->txq.desc32[sc->txq.cur];
   1077       1.1       chs 
   1078       1.1       chs 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
   1079       1.1       chs 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
   1080       1.1       chs 			desc32->flags = htole16(flags);
   1081       1.1       chs 		}
   1082       1.1       chs 
   1083      1.13   tsutsui 		/*
   1084      1.13   tsutsui 		 * Setting of the valid bit in the first descriptor is
   1085      1.13   tsutsui 		 * deferred until the whole chain is fully setup.
   1086      1.13   tsutsui 		 */
   1087      1.13   tsutsui 		flags |= NFE_TX_VALID;
   1088       1.1       chs 
   1089       1.1       chs 		sc->txq.queued++;
   1090      1.14   tsutsui 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
   1091       1.1       chs 	}
   1092       1.1       chs 
   1093      1.11   tsutsui 	/* the whole mbuf chain has been setup */
   1094       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1095      1.11   tsutsui 		/* fix last descriptor */
   1096       1.1       chs 		flags |= NFE_TX_LASTFRAG_V2;
   1097       1.1       chs 		desc64->flags = htole16(flags);
   1098      1.11   tsutsui 
   1099      1.13   tsutsui 		/* Checksum flags and vtag belong to the first fragment only. */
   1100      1.13   tsutsui #if NVLAN > 0
   1101      1.13   tsutsui 		sc->txq.desc64[first].vtag = htole32(vtag);
   1102      1.13   tsutsui #endif
   1103      1.13   tsutsui 		sc->txq.desc64[first].flags |= htole16(csumflags);
   1104      1.13   tsutsui 
   1105      1.11   tsutsui 		/* finally, set the valid bit in the first descriptor */
   1106      1.11   tsutsui 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
   1107       1.1       chs 	} else {
   1108      1.11   tsutsui 		/* fix last descriptor */
   1109       1.1       chs 		if (sc->sc_flags & NFE_JUMBO_SUP)
   1110       1.1       chs 			flags |= NFE_TX_LASTFRAG_V2;
   1111       1.1       chs 		else
   1112       1.1       chs 			flags |= NFE_TX_LASTFRAG_V1;
   1113       1.1       chs 		desc32->flags = htole16(flags);
   1114      1.11   tsutsui 
   1115      1.13   tsutsui 		/* Checksum flags belong to the first fragment only. */
   1116      1.13   tsutsui 		sc->txq.desc32[first].flags |= htole16(csumflags);
   1117      1.13   tsutsui 
   1118      1.11   tsutsui 		/* finally, set the valid bit in the first descriptor */
   1119      1.11   tsutsui 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
   1120       1.1       chs 	}
   1121       1.1       chs 
   1122       1.1       chs 	data->m = m0;
   1123       1.1       chs 	data->active = map;
   1124       1.1       chs 
   1125       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1126       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1127       1.1       chs 
   1128       1.1       chs 	return 0;
   1129       1.1       chs }
   1130       1.1       chs 
   1131       1.1       chs void
   1132       1.1       chs nfe_start(struct ifnet *ifp)
   1133       1.1       chs {
   1134       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1135      1.14   tsutsui 	int old = sc->txq.queued;
   1136       1.1       chs 	struct mbuf *m0;
   1137       1.1       chs 
   1138      1.31  christos 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1139      1.18      cube 		return;
   1140      1.18      cube 
   1141       1.1       chs 	for (;;) {
   1142       1.1       chs 		IFQ_POLL(&ifp->if_snd, m0);
   1143       1.1       chs 		if (m0 == NULL)
   1144       1.1       chs 			break;
   1145       1.1       chs 
   1146       1.1       chs 		if (nfe_encap(sc, m0) != 0) {
   1147       1.1       chs 			ifp->if_flags |= IFF_OACTIVE;
   1148       1.1       chs 			break;
   1149       1.1       chs 		}
   1150       1.1       chs 
   1151       1.1       chs 		/* packet put in h/w queue, remove from s/w queue */
   1152       1.1       chs 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1153       1.1       chs 
   1154  1.49.2.1  uebayasi 		bpf_mtap(ifp, m0);
   1155       1.1       chs 	}
   1156       1.1       chs 
   1157      1.14   tsutsui 	if (sc->txq.queued != old) {
   1158      1.14   tsutsui 		/* packets are queued */
   1159      1.14   tsutsui 		if (sc->sc_flags & NFE_40BIT_ADDR)
   1160      1.14   tsutsui 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
   1161      1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1162      1.14   tsutsui 		else
   1163      1.14   tsutsui 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
   1164      1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1165      1.14   tsutsui 		/* kick Tx */
   1166      1.14   tsutsui 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
   1167       1.1       chs 
   1168      1.14   tsutsui 		/*
   1169      1.14   tsutsui 		 * Set a timeout in case the chip goes out to lunch.
   1170      1.14   tsutsui 		 */
   1171      1.14   tsutsui 		ifp->if_timer = 5;
   1172      1.14   tsutsui 	}
   1173       1.1       chs }
   1174       1.1       chs 
   1175       1.1       chs void
   1176       1.1       chs nfe_watchdog(struct ifnet *ifp)
   1177       1.1       chs {
   1178       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1179       1.1       chs 
   1180      1.30      cube 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1181       1.1       chs 
   1182       1.1       chs 	ifp->if_flags &= ~IFF_RUNNING;
   1183       1.1       chs 	nfe_init(ifp);
   1184       1.1       chs 
   1185       1.1       chs 	ifp->if_oerrors++;
   1186       1.1       chs }
   1187       1.1       chs 
   1188       1.1       chs int
   1189       1.1       chs nfe_init(struct ifnet *ifp)
   1190       1.1       chs {
   1191       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1192       1.1       chs 	uint32_t tmp;
   1193      1.26    dyoung 	int rc = 0, s;
   1194       1.1       chs 
   1195       1.1       chs 	if (ifp->if_flags & IFF_RUNNING)
   1196       1.1       chs 		return 0;
   1197       1.1       chs 
   1198       1.1       chs 	nfe_stop(ifp, 0);
   1199       1.1       chs 
   1200       1.1       chs 	NFE_WRITE(sc, NFE_TX_UNK, 0);
   1201       1.1       chs 	NFE_WRITE(sc, NFE_STATUS, 0);
   1202       1.1       chs 
   1203       1.1       chs 	sc->rxtxctl = NFE_RXTX_BIT2;
   1204       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR)
   1205       1.1       chs 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
   1206       1.1       chs 	else if (sc->sc_flags & NFE_JUMBO_SUP)
   1207       1.1       chs 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
   1208       1.1       chs 	if (sc->sc_flags & NFE_HW_CSUM)
   1209       1.1       chs 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
   1210       1.1       chs #if NVLAN > 0
   1211       1.1       chs 	/*
   1212       1.1       chs 	 * Although the adapter is capable of stripping VLAN tags from received
   1213       1.1       chs 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
   1214       1.1       chs 	 * purpose.  This will be done in software by our network stack.
   1215       1.1       chs 	 */
   1216       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
   1217       1.1       chs 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
   1218       1.1       chs #endif
   1219       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
   1220       1.1       chs 	DELAY(10);
   1221       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
   1222       1.1       chs 
   1223       1.1       chs #if NVLAN
   1224       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
   1225       1.1       chs 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
   1226       1.1       chs #endif
   1227       1.1       chs 
   1228       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
   1229       1.1       chs 
   1230       1.1       chs 	/* set MAC address */
   1231       1.1       chs 	nfe_set_macaddr(sc, sc->sc_enaddr);
   1232       1.1       chs 
   1233       1.1       chs 	/* tell MAC where rings are in memory */
   1234       1.1       chs #ifdef __LP64__
   1235       1.1       chs 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
   1236       1.1       chs #endif
   1237       1.1       chs 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
   1238       1.1       chs #ifdef __LP64__
   1239       1.1       chs 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
   1240       1.1       chs #endif
   1241       1.1       chs 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
   1242       1.1       chs 
   1243       1.1       chs 	NFE_WRITE(sc, NFE_RING_SIZE,
   1244       1.1       chs 	    (NFE_RX_RING_COUNT - 1) << 16 |
   1245       1.1       chs 	    (NFE_TX_RING_COUNT - 1));
   1246       1.1       chs 
   1247       1.1       chs 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
   1248       1.1       chs 
   1249       1.1       chs 	/* force MAC to wakeup */
   1250       1.1       chs 	tmp = NFE_READ(sc, NFE_PWR_STATE);
   1251       1.1       chs 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
   1252       1.1       chs 	DELAY(10);
   1253       1.1       chs 	tmp = NFE_READ(sc, NFE_PWR_STATE);
   1254       1.1       chs 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
   1255       1.1       chs 
   1256      1.12  jmcneill 	s = splnet();
   1257      1.39    cegger 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
   1258      1.12  jmcneill 	nfe_intr(sc); /* XXX clear IRQ status registers */
   1259      1.39    cegger 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
   1260      1.12  jmcneill 	splx(s);
   1261      1.12  jmcneill 
   1262       1.1       chs #if 1
   1263       1.1       chs 	/* configure interrupts coalescing/mitigation */
   1264       1.1       chs 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
   1265       1.1       chs #else
   1266       1.1       chs 	/* no interrupt mitigation: one interrupt per packet */
   1267       1.1       chs 	NFE_WRITE(sc, NFE_IMTIMER, 970);
   1268       1.1       chs #endif
   1269       1.1       chs 
   1270       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
   1271       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
   1272       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
   1273       1.1       chs 
   1274       1.1       chs 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
   1275       1.1       chs 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
   1276       1.1       chs 
   1277       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
   1278      1.31  christos 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
   1279       1.1       chs 
   1280       1.1       chs 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
   1281       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
   1282       1.1       chs 	DELAY(10);
   1283       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
   1284       1.1       chs 
   1285       1.1       chs 	/* set Rx filter */
   1286       1.1       chs 	nfe_setmulti(sc);
   1287       1.1       chs 
   1288      1.26    dyoung 	if ((rc = ether_mediachange(ifp)) != 0)
   1289      1.26    dyoung 		goto out;
   1290       1.1       chs 
   1291      1.12  jmcneill 	nfe_tick(sc);
   1292      1.12  jmcneill 
   1293       1.1       chs 	/* enable Rx */
   1294       1.1       chs 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
   1295       1.1       chs 
   1296       1.1       chs 	/* enable Tx */
   1297       1.1       chs 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
   1298       1.1       chs 
   1299       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
   1300       1.1       chs 
   1301       1.1       chs 	/* enable interrupts */
   1302       1.1       chs 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
   1303       1.1       chs 
   1304       1.1       chs 	callout_schedule(&sc->sc_tick_ch, hz);
   1305       1.1       chs 
   1306       1.1       chs 	ifp->if_flags |= IFF_RUNNING;
   1307       1.1       chs 	ifp->if_flags &= ~IFF_OACTIVE;
   1308       1.1       chs 
   1309      1.26    dyoung out:
   1310      1.26    dyoung 	return rc;
   1311       1.1       chs }
   1312       1.1       chs 
   1313       1.1       chs void
   1314       1.7  christos nfe_stop(struct ifnet *ifp, int disable)
   1315       1.1       chs {
   1316       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1317       1.1       chs 
   1318       1.1       chs 	callout_stop(&sc->sc_tick_ch);
   1319       1.1       chs 
   1320       1.1       chs 	ifp->if_timer = 0;
   1321       1.1       chs 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1322       1.1       chs 
   1323       1.1       chs 	mii_down(&sc->sc_mii);
   1324       1.1       chs 
   1325       1.1       chs 	/* abort Tx */
   1326       1.1       chs 	NFE_WRITE(sc, NFE_TX_CTL, 0);
   1327       1.1       chs 
   1328       1.1       chs 	/* disable Rx */
   1329       1.1       chs 	NFE_WRITE(sc, NFE_RX_CTL, 0);
   1330       1.1       chs 
   1331       1.1       chs 	/* disable interrupts */
   1332       1.1       chs 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
   1333       1.1       chs 
   1334       1.1       chs 	/* reset Tx and Rx rings */
   1335       1.1       chs 	nfe_reset_tx_ring(sc, &sc->txq);
   1336       1.1       chs 	nfe_reset_rx_ring(sc, &sc->rxq);
   1337       1.1       chs }
   1338       1.1       chs 
   1339       1.1       chs int
   1340       1.1       chs nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1341       1.1       chs {
   1342       1.1       chs 	struct nfe_desc32 *desc32;
   1343       1.1       chs 	struct nfe_desc64 *desc64;
   1344       1.1       chs 	struct nfe_rx_data *data;
   1345       1.1       chs 	struct nfe_jbuf *jbuf;
   1346       1.1       chs 	void **desc;
   1347       1.1       chs 	bus_addr_t physaddr;
   1348       1.1       chs 	int i, nsegs, error, descsize;
   1349       1.1       chs 
   1350       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1351       1.1       chs 		desc = (void **)&ring->desc64;
   1352       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1353       1.1       chs 	} else {
   1354       1.1       chs 		desc = (void **)&ring->desc32;
   1355       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1356       1.1       chs 	}
   1357       1.1       chs 
   1358       1.1       chs 	ring->cur = ring->next = 0;
   1359       1.1       chs 	ring->bufsz = MCLBYTES;
   1360       1.1       chs 
   1361       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
   1362       1.1       chs 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
   1363       1.1       chs 	if (error != 0) {
   1364      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1365      1.30      cube 		    "could not create desc DMA map\n");
   1366      1.42    cegger 		ring->map = NULL;
   1367       1.1       chs 		goto fail;
   1368       1.1       chs 	}
   1369       1.1       chs 
   1370       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
   1371       1.1       chs 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
   1372       1.1       chs 	if (error != 0) {
   1373      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1374      1.30      cube 		    "could not allocate DMA memory\n");
   1375       1.1       chs 		goto fail;
   1376       1.1       chs 	}
   1377       1.1       chs 
   1378       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
   1379      1.15  christos 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
   1380       1.1       chs 	if (error != 0) {
   1381      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1382      1.30      cube 		    "could not map desc DMA memory\n");
   1383       1.1       chs 		goto fail;
   1384       1.1       chs 	}
   1385       1.1       chs 
   1386       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
   1387       1.1       chs 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
   1388       1.1       chs 	if (error != 0) {
   1389      1.30      cube 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
   1390       1.1       chs 		goto fail;
   1391       1.1       chs 	}
   1392       1.1       chs 
   1393      1.43    cegger 	memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
   1394       1.1       chs 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
   1395       1.1       chs 
   1396       1.1       chs 	if (sc->sc_flags & NFE_USE_JUMBO) {
   1397       1.1       chs 		ring->bufsz = NFE_JBYTES;
   1398       1.1       chs 		if ((error = nfe_jpool_alloc(sc)) != 0) {
   1399      1.30      cube 			aprint_error_dev(sc->sc_dev,
   1400      1.30      cube 			    "could not allocate jumbo frames\n");
   1401       1.1       chs 			goto fail;
   1402       1.1       chs 		}
   1403       1.1       chs 	}
   1404       1.1       chs 
   1405       1.1       chs 	/*
   1406       1.1       chs 	 * Pre-allocate Rx buffers and populate Rx ring.
   1407       1.1       chs 	 */
   1408       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1409       1.1       chs 		data = &sc->rxq.data[i];
   1410       1.1       chs 
   1411       1.1       chs 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   1412       1.1       chs 		if (data->m == NULL) {
   1413      1.30      cube 			aprint_error_dev(sc->sc_dev,
   1414      1.30      cube 			    "could not allocate rx mbuf\n");
   1415       1.1       chs 			error = ENOMEM;
   1416       1.1       chs 			goto fail;
   1417       1.1       chs 		}
   1418       1.1       chs 
   1419       1.1       chs 		if (sc->sc_flags & NFE_USE_JUMBO) {
   1420      1.19      cube 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
   1421      1.30      cube 				aprint_error_dev(sc->sc_dev,
   1422      1.30      cube 				    "could not allocate jumbo buffer\n");
   1423       1.1       chs 				goto fail;
   1424       1.1       chs 			}
   1425       1.1       chs 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
   1426       1.1       chs 			    sc);
   1427       1.1       chs 
   1428       1.1       chs 			physaddr = jbuf->physaddr;
   1429       1.1       chs 		} else {
   1430       1.1       chs 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1431       1.1       chs 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
   1432       1.1       chs 			if (error != 0) {
   1433      1.30      cube 				aprint_error_dev(sc->sc_dev,
   1434      1.30      cube 				    "could not create DMA map\n");
   1435      1.42    cegger 				data->map = NULL;
   1436       1.1       chs 				goto fail;
   1437       1.1       chs 			}
   1438       1.1       chs 			MCLGET(data->m, M_DONTWAIT);
   1439       1.1       chs 			if (!(data->m->m_flags & M_EXT)) {
   1440      1.30      cube 				aprint_error_dev(sc->sc_dev,
   1441      1.30      cube 				    "could not allocate mbuf cluster\n");
   1442       1.1       chs 				error = ENOMEM;
   1443       1.1       chs 				goto fail;
   1444       1.1       chs 			}
   1445       1.1       chs 
   1446       1.1       chs 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1447       1.1       chs 			    mtod(data->m, void *), MCLBYTES, NULL,
   1448       1.1       chs 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1449       1.1       chs 			if (error != 0) {
   1450      1.30      cube 				aprint_error_dev(sc->sc_dev,
   1451      1.30      cube 				    "could not load rx buf DMA map");
   1452       1.1       chs 				goto fail;
   1453       1.1       chs 			}
   1454       1.1       chs 			physaddr = data->map->dm_segs[0].ds_addr;
   1455       1.1       chs 		}
   1456       1.1       chs 
   1457       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1458       1.1       chs 			desc64 = &sc->rxq.desc64[i];
   1459       1.1       chs #if defined(__LP64__)
   1460       1.1       chs 			desc64->physaddr[0] = htole32(physaddr >> 32);
   1461       1.1       chs #endif
   1462       1.1       chs 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
   1463       1.1       chs 			desc64->length = htole16(sc->rxq.bufsz);
   1464       1.1       chs 			desc64->flags = htole16(NFE_RX_READY);
   1465       1.1       chs 		} else {
   1466       1.1       chs 			desc32 = &sc->rxq.desc32[i];
   1467       1.1       chs 			desc32->physaddr = htole32(physaddr);
   1468       1.1       chs 			desc32->length = htole16(sc->rxq.bufsz);
   1469       1.1       chs 			desc32->flags = htole16(NFE_RX_READY);
   1470       1.1       chs 		}
   1471       1.1       chs 	}
   1472       1.1       chs 
   1473       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1474       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1475       1.1       chs 
   1476       1.1       chs 	return 0;
   1477       1.1       chs 
   1478       1.1       chs fail:	nfe_free_rx_ring(sc, ring);
   1479       1.1       chs 	return error;
   1480       1.1       chs }
   1481       1.1       chs 
   1482       1.1       chs void
   1483       1.1       chs nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1484       1.1       chs {
   1485       1.1       chs 	int i;
   1486       1.1       chs 
   1487       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1488       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1489       1.1       chs 			ring->desc64[i].length = htole16(ring->bufsz);
   1490       1.1       chs 			ring->desc64[i].flags = htole16(NFE_RX_READY);
   1491       1.1       chs 		} else {
   1492       1.1       chs 			ring->desc32[i].length = htole16(ring->bufsz);
   1493       1.1       chs 			ring->desc32[i].flags = htole16(NFE_RX_READY);
   1494       1.1       chs 		}
   1495       1.1       chs 	}
   1496       1.1       chs 
   1497       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1498       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1499       1.1       chs 
   1500       1.1       chs 	ring->cur = ring->next = 0;
   1501       1.1       chs }
   1502       1.1       chs 
   1503       1.1       chs void
   1504       1.1       chs nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1505       1.1       chs {
   1506       1.1       chs 	struct nfe_rx_data *data;
   1507       1.1       chs 	void *desc;
   1508       1.1       chs 	int i, descsize;
   1509       1.1       chs 
   1510       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1511       1.1       chs 		desc = ring->desc64;
   1512       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1513       1.1       chs 	} else {
   1514       1.1       chs 		desc = ring->desc32;
   1515       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1516       1.1       chs 	}
   1517       1.1       chs 
   1518       1.1       chs 	if (desc != NULL) {
   1519       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
   1520       1.1       chs 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1521       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->map);
   1522      1.15  christos 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
   1523       1.1       chs 		    NFE_RX_RING_COUNT * descsize);
   1524       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
   1525       1.1       chs 	}
   1526       1.1       chs 
   1527       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1528       1.1       chs 		data = &ring->data[i];
   1529       1.1       chs 
   1530       1.1       chs 		if (data->map != NULL) {
   1531       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1532       1.1       chs 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1533       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1534       1.1       chs 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1535       1.1       chs 		}
   1536       1.1       chs 		if (data->m != NULL)
   1537       1.1       chs 			m_freem(data->m);
   1538       1.1       chs 	}
   1539       1.1       chs }
   1540       1.1       chs 
   1541       1.1       chs struct nfe_jbuf *
   1542      1.19      cube nfe_jalloc(struct nfe_softc *sc, int i)
   1543       1.1       chs {
   1544       1.1       chs 	struct nfe_jbuf *jbuf;
   1545       1.1       chs 
   1546      1.34      cube 	mutex_enter(&sc->rxq.mtx);
   1547       1.1       chs 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
   1548      1.34      cube 	if (jbuf != NULL)
   1549      1.34      cube 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
   1550      1.34      cube 	mutex_exit(&sc->rxq.mtx);
   1551       1.1       chs 	if (jbuf == NULL)
   1552       1.1       chs 		return NULL;
   1553      1.19      cube 	sc->rxq.jbufmap[i] =
   1554      1.19      cube 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
   1555       1.1       chs 	return jbuf;
   1556       1.1       chs }
   1557       1.1       chs 
   1558       1.1       chs /*
   1559       1.1       chs  * This is called automatically by the network stack when the mbuf is freed.
   1560       1.1       chs  * Caution must be taken that the NIC might be reset by the time the mbuf is
   1561       1.1       chs  * freed.
   1562       1.1       chs  */
   1563       1.1       chs void
   1564      1.15  christos nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1565       1.1       chs {
   1566       1.1       chs 	struct nfe_softc *sc = arg;
   1567       1.1       chs 	struct nfe_jbuf *jbuf;
   1568       1.1       chs 	int i;
   1569       1.1       chs 
   1570       1.1       chs 	/* find the jbuf from the base pointer */
   1571      1.15  christos 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
   1572       1.1       chs 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
   1573      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1574      1.30      cube 		    "request to free a buffer (%p) not managed by us\n", buf);
   1575       1.1       chs 		return;
   1576       1.1       chs 	}
   1577       1.1       chs 	jbuf = &sc->rxq.jbuf[i];
   1578       1.1       chs 
   1579       1.1       chs 	/* ..and put it back in the free list */
   1580      1.34      cube 	mutex_enter(&sc->rxq.mtx);
   1581       1.1       chs 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
   1582      1.34      cube 	mutex_exit(&sc->rxq.mtx);
   1583       1.2       chs 
   1584      1.31  christos 	if (m != NULL)
   1585      1.31  christos 		pool_cache_put(mb_cache, m);
   1586       1.1       chs }
   1587       1.1       chs 
   1588       1.1       chs int
   1589       1.1       chs nfe_jpool_alloc(struct nfe_softc *sc)
   1590       1.1       chs {
   1591       1.1       chs 	struct nfe_rx_ring *ring = &sc->rxq;
   1592       1.1       chs 	struct nfe_jbuf *jbuf;
   1593       1.1       chs 	bus_addr_t physaddr;
   1594      1.15  christos 	char *buf;
   1595       1.1       chs 	int i, nsegs, error;
   1596       1.1       chs 
   1597       1.1       chs 	/*
   1598       1.1       chs 	 * Allocate a big chunk of DMA'able memory.
   1599       1.1       chs 	 */
   1600       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
   1601       1.1       chs 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
   1602       1.1       chs 	if (error != 0) {
   1603      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1604      1.30      cube 		    "could not create jumbo DMA map\n");
   1605      1.42    cegger 		ring->jmap = NULL;
   1606       1.1       chs 		goto fail;
   1607       1.1       chs 	}
   1608       1.1       chs 
   1609       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
   1610       1.1       chs 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
   1611       1.1       chs 	if (error != 0) {
   1612      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1613      1.30      cube 		    "could not allocate jumbo DMA memory\n");
   1614       1.1       chs 		goto fail;
   1615       1.1       chs 	}
   1616       1.1       chs 
   1617       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
   1618       1.1       chs 	    &ring->jpool, BUS_DMA_NOWAIT);
   1619       1.1       chs 	if (error != 0) {
   1620      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1621      1.30      cube 		    "could not map jumbo DMA memory\n");
   1622       1.1       chs 		goto fail;
   1623       1.1       chs 	}
   1624       1.1       chs 
   1625       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
   1626       1.1       chs 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
   1627       1.1       chs 	if (error != 0) {
   1628      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1629      1.30      cube 		    "could not load jumbo DMA map\n");
   1630       1.1       chs 		goto fail;
   1631       1.1       chs 	}
   1632       1.1       chs 
   1633       1.1       chs 	/* ..and split it into 9KB chunks */
   1634       1.1       chs 	SLIST_INIT(&ring->jfreelist);
   1635       1.1       chs 
   1636       1.1       chs 	buf = ring->jpool;
   1637       1.1       chs 	physaddr = ring->jmap->dm_segs[0].ds_addr;
   1638       1.1       chs 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
   1639       1.1       chs 		jbuf = &ring->jbuf[i];
   1640       1.1       chs 
   1641       1.1       chs 		jbuf->buf = buf;
   1642       1.1       chs 		jbuf->physaddr = physaddr;
   1643       1.1       chs 
   1644       1.1       chs 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
   1645       1.1       chs 
   1646       1.1       chs 		buf += NFE_JBYTES;
   1647       1.1       chs 		physaddr += NFE_JBYTES;
   1648       1.1       chs 	}
   1649       1.1       chs 
   1650       1.1       chs 	return 0;
   1651       1.1       chs 
   1652       1.1       chs fail:	nfe_jpool_free(sc);
   1653       1.1       chs 	return error;
   1654       1.1       chs }
   1655       1.1       chs 
   1656       1.1       chs void
   1657       1.1       chs nfe_jpool_free(struct nfe_softc *sc)
   1658       1.1       chs {
   1659       1.1       chs 	struct nfe_rx_ring *ring = &sc->rxq;
   1660       1.1       chs 
   1661       1.1       chs 	if (ring->jmap != NULL) {
   1662       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
   1663       1.1       chs 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1664       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
   1665       1.1       chs 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
   1666       1.1       chs 	}
   1667       1.1       chs 	if (ring->jpool != NULL) {
   1668       1.1       chs 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
   1669       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
   1670       1.1       chs 	}
   1671       1.1       chs }
   1672       1.1       chs 
   1673       1.1       chs int
   1674       1.1       chs nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1675       1.1       chs {
   1676       1.1       chs 	int i, nsegs, error;
   1677       1.1       chs 	void **desc;
   1678       1.1       chs 	int descsize;
   1679       1.1       chs 
   1680       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1681       1.1       chs 		desc = (void **)&ring->desc64;
   1682       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1683       1.1       chs 	} else {
   1684       1.1       chs 		desc = (void **)&ring->desc32;
   1685       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1686       1.1       chs 	}
   1687       1.1       chs 
   1688       1.1       chs 	ring->queued = 0;
   1689       1.1       chs 	ring->cur = ring->next = 0;
   1690       1.1       chs 
   1691       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
   1692       1.1       chs 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
   1693       1.1       chs 
   1694       1.1       chs 	if (error != 0) {
   1695      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1696      1.30      cube 		    "could not create desc DMA map\n");
   1697      1.42    cegger 		ring->map = NULL;
   1698       1.1       chs 		goto fail;
   1699       1.1       chs 	}
   1700       1.1       chs 
   1701       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
   1702       1.1       chs 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
   1703       1.1       chs 	if (error != 0) {
   1704      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1705      1.30      cube 		    "could not allocate DMA memory\n");
   1706       1.1       chs 		goto fail;
   1707       1.1       chs 	}
   1708       1.1       chs 
   1709       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
   1710      1.15  christos 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
   1711       1.1       chs 	if (error != 0) {
   1712      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1713      1.30      cube 		    "could not map desc DMA memory\n");
   1714       1.1       chs 		goto fail;
   1715       1.1       chs 	}
   1716       1.1       chs 
   1717       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
   1718       1.1       chs 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
   1719       1.1       chs 	if (error != 0) {
   1720      1.30      cube 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
   1721       1.1       chs 		goto fail;
   1722       1.1       chs 	}
   1723       1.1       chs 
   1724      1.43    cegger 	memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
   1725       1.1       chs 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
   1726       1.1       chs 
   1727       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1728       1.1       chs 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
   1729       1.1       chs 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
   1730       1.1       chs 		    &ring->data[i].map);
   1731       1.1       chs 		if (error != 0) {
   1732      1.30      cube 			aprint_error_dev(sc->sc_dev,
   1733      1.30      cube 			    "could not create DMA map\n");
   1734      1.42    cegger 			ring->data[i].map = NULL;
   1735       1.1       chs 			goto fail;
   1736       1.1       chs 		}
   1737       1.1       chs 	}
   1738       1.1       chs 
   1739       1.1       chs 	return 0;
   1740       1.1       chs 
   1741       1.1       chs fail:	nfe_free_tx_ring(sc, ring);
   1742       1.1       chs 	return error;
   1743       1.1       chs }
   1744       1.1       chs 
   1745       1.1       chs void
   1746       1.1       chs nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1747       1.1       chs {
   1748       1.1       chs 	struct nfe_tx_data *data;
   1749       1.1       chs 	int i;
   1750       1.1       chs 
   1751       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1752       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR)
   1753       1.1       chs 			ring->desc64[i].flags = 0;
   1754       1.1       chs 		else
   1755       1.1       chs 			ring->desc32[i].flags = 0;
   1756       1.1       chs 
   1757       1.1       chs 		data = &ring->data[i];
   1758       1.1       chs 
   1759       1.1       chs 		if (data->m != NULL) {
   1760       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1761       1.1       chs 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1762       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->active);
   1763       1.1       chs 			m_freem(data->m);
   1764       1.1       chs 			data->m = NULL;
   1765       1.1       chs 		}
   1766       1.1       chs 	}
   1767       1.1       chs 
   1768       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1769       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1770       1.1       chs 
   1771       1.1       chs 	ring->queued = 0;
   1772       1.1       chs 	ring->cur = ring->next = 0;
   1773       1.1       chs }
   1774       1.1       chs 
   1775       1.1       chs void
   1776       1.1       chs nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1777       1.1       chs {
   1778       1.1       chs 	struct nfe_tx_data *data;
   1779       1.1       chs 	void *desc;
   1780       1.1       chs 	int i, descsize;
   1781       1.1       chs 
   1782       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1783       1.1       chs 		desc = ring->desc64;
   1784       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1785       1.1       chs 	} else {
   1786       1.1       chs 		desc = ring->desc32;
   1787       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1788       1.1       chs 	}
   1789       1.1       chs 
   1790       1.1       chs 	if (desc != NULL) {
   1791       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
   1792       1.1       chs 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1793       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->map);
   1794      1.15  christos 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
   1795       1.1       chs 		    NFE_TX_RING_COUNT * descsize);
   1796       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
   1797       1.1       chs 	}
   1798       1.1       chs 
   1799       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1800       1.1       chs 		data = &ring->data[i];
   1801       1.1       chs 
   1802       1.1       chs 		if (data->m != NULL) {
   1803       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1804       1.1       chs 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1805       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->active);
   1806       1.1       chs 			m_freem(data->m);
   1807       1.1       chs 		}
   1808       1.1       chs 	}
   1809       1.1       chs 
   1810       1.1       chs 	/* ..and now actually destroy the DMA mappings */
   1811       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1812       1.1       chs 		data = &ring->data[i];
   1813       1.1       chs 		if (data->map == NULL)
   1814       1.1       chs 			continue;
   1815       1.1       chs 		bus_dmamap_destroy(sc->sc_dmat, data->map);
   1816       1.1       chs 	}
   1817       1.1       chs }
   1818       1.1       chs 
   1819       1.1       chs void
   1820       1.1       chs nfe_setmulti(struct nfe_softc *sc)
   1821       1.1       chs {
   1822       1.1       chs 	struct ethercom *ec = &sc->sc_ethercom;
   1823       1.1       chs 	struct ifnet *ifp = &ec->ec_if;
   1824       1.1       chs 	struct ether_multi *enm;
   1825       1.1       chs 	struct ether_multistep step;
   1826       1.1       chs 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
   1827       1.1       chs 	uint32_t filter = NFE_RXFILTER_MAGIC;
   1828       1.1       chs 	int i;
   1829       1.1       chs 
   1830       1.1       chs 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   1831      1.43    cegger 		memset(addr, 0, ETHER_ADDR_LEN);
   1832      1.43    cegger 		memset(mask, 0, ETHER_ADDR_LEN);
   1833       1.1       chs 		goto done;
   1834       1.1       chs 	}
   1835       1.1       chs 
   1836      1.43    cegger 	memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
   1837      1.43    cegger 	memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
   1838       1.1       chs 
   1839       1.1       chs 	ETHER_FIRST_MULTI(step, ec, enm);
   1840       1.1       chs 	while (enm != NULL) {
   1841      1.44    cegger 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1842       1.1       chs 			ifp->if_flags |= IFF_ALLMULTI;
   1843      1.43    cegger 			memset(addr, 0, ETHER_ADDR_LEN);
   1844      1.43    cegger 			memset(mask, 0, ETHER_ADDR_LEN);
   1845       1.1       chs 			goto done;
   1846       1.1       chs 		}
   1847       1.1       chs 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
   1848       1.1       chs 			addr[i] &=  enm->enm_addrlo[i];
   1849       1.1       chs 			mask[i] &= ~enm->enm_addrlo[i];
   1850       1.1       chs 		}
   1851       1.1       chs 		ETHER_NEXT_MULTI(step, enm);
   1852       1.1       chs 	}
   1853       1.1       chs 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1854       1.1       chs 		mask[i] |= addr[i];
   1855       1.1       chs 
   1856       1.1       chs done:
   1857       1.1       chs 	addr[0] |= 0x01;	/* make sure multicast bit is set */
   1858       1.1       chs 
   1859       1.1       chs 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
   1860       1.1       chs 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1861       1.1       chs 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
   1862       1.1       chs 	    addr[5] <<  8 | addr[4]);
   1863       1.1       chs 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
   1864       1.1       chs 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
   1865       1.1       chs 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
   1866       1.1       chs 	    mask[5] <<  8 | mask[4]);
   1867       1.1       chs 
   1868       1.1       chs 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
   1869       1.1       chs 	NFE_WRITE(sc, NFE_RXFILTER, filter);
   1870       1.1       chs }
   1871       1.1       chs 
   1872       1.1       chs void
   1873       1.1       chs nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
   1874       1.1       chs {
   1875       1.1       chs 	uint32_t tmp;
   1876       1.1       chs 
   1877      1.31  christos 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
   1878      1.31  christos 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
   1879      1.31  christos 		addr[0] = (tmp & 0xff);
   1880      1.31  christos 		addr[1] = (tmp >>  8) & 0xff;
   1881      1.31  christos 		addr[2] = (tmp >> 16) & 0xff;
   1882      1.31  christos 		addr[3] = (tmp >> 24) & 0xff;
   1883      1.31  christos 
   1884      1.31  christos 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
   1885      1.31  christos 		addr[4] = (tmp & 0xff);
   1886      1.31  christos 		addr[5] = (tmp >> 8) & 0xff;
   1887      1.31  christos 
   1888      1.31  christos 	} else {
   1889      1.25   tsutsui 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
   1890      1.25   tsutsui 		addr[0] = (tmp >> 8) & 0xff;
   1891      1.25   tsutsui 		addr[1] = (tmp & 0xff);
   1892      1.25   tsutsui 
   1893      1.25   tsutsui 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
   1894      1.25   tsutsui 		addr[2] = (tmp >> 24) & 0xff;
   1895      1.25   tsutsui 		addr[3] = (tmp >> 16) & 0xff;
   1896      1.25   tsutsui 		addr[4] = (tmp >>  8) & 0xff;
   1897      1.25   tsutsui 		addr[5] = (tmp & 0xff);
   1898      1.25   tsutsui 	}
   1899       1.1       chs }
   1900       1.1       chs 
   1901       1.1       chs void
   1902       1.1       chs nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
   1903       1.1       chs {
   1904       1.1       chs 	NFE_WRITE(sc, NFE_MACADDR_LO,
   1905       1.1       chs 	    addr[5] <<  8 | addr[4]);
   1906       1.1       chs 	NFE_WRITE(sc, NFE_MACADDR_HI,
   1907       1.1       chs 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1908       1.1       chs }
   1909       1.1       chs 
   1910       1.1       chs void
   1911       1.1       chs nfe_tick(void *arg)
   1912       1.1       chs {
   1913       1.1       chs 	struct nfe_softc *sc = arg;
   1914       1.1       chs 	int s;
   1915       1.1       chs 
   1916       1.1       chs 	s = splnet();
   1917       1.1       chs 	mii_tick(&sc->sc_mii);
   1918       1.1       chs 	splx(s);
   1919       1.1       chs 
   1920       1.1       chs 	callout_schedule(&sc->sc_tick_ch, hz);
   1921       1.1       chs }
   1922      1.35  jmcneill 
   1923      1.35  jmcneill void
   1924      1.35  jmcneill nfe_poweron(device_t self)
   1925      1.35  jmcneill {
   1926      1.35  jmcneill 	struct nfe_softc *sc = device_private(self);
   1927      1.35  jmcneill 
   1928      1.35  jmcneill 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
   1929      1.35  jmcneill 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
   1930      1.35  jmcneill 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
   1931      1.35  jmcneill 		DELAY(100);
   1932      1.35  jmcneill 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
   1933      1.35  jmcneill 		DELAY(100);
   1934      1.35  jmcneill 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
   1935      1.35  jmcneill 		NFE_WRITE(sc, NFE_PWR2_CTL,
   1936      1.35  jmcneill 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
   1937      1.35  jmcneill 	}
   1938      1.35  jmcneill }
   1939      1.35  jmcneill 
   1940      1.35  jmcneill bool
   1941  1.49.2.1  uebayasi nfe_resume(device_t dv, const pmf_qual_t *qual)
   1942      1.35  jmcneill {
   1943      1.35  jmcneill 	nfe_poweron(dv);
   1944      1.35  jmcneill 
   1945      1.35  jmcneill 	return true;
   1946      1.35  jmcneill }
   1947