if_nfe.c revision 1.64 1 1.64 knakahar /* $NetBSD: if_nfe.c,v 1.64 2017/09/26 07:42:06 knakahara Exp $ */
2 1.31 christos /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
3 1.1 chs
4 1.1 chs /*-
5 1.31 christos * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 1.1 chs * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 1.1 chs *
8 1.1 chs * Permission to use, copy, modify, and distribute this software for any
9 1.1 chs * purpose with or without fee is hereby granted, provided that the above
10 1.1 chs * copyright notice and this permission notice appear in all copies.
11 1.1 chs *
12 1.1 chs * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 1.1 chs * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 1.1 chs * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 1.1 chs * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 1.1 chs * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 1.1 chs * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 1.1 chs * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 1.1 chs */
20 1.1 chs
21 1.1 chs /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22 1.1 chs
23 1.1 chs #include <sys/cdefs.h>
24 1.64 knakahar __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.64 2017/09/26 07:42:06 knakahara Exp $");
25 1.1 chs
26 1.1 chs #include "opt_inet.h"
27 1.1 chs #include "vlan.h"
28 1.1 chs
29 1.1 chs #include <sys/param.h>
30 1.1 chs #include <sys/endian.h>
31 1.1 chs #include <sys/systm.h>
32 1.1 chs #include <sys/types.h>
33 1.1 chs #include <sys/sockio.h>
34 1.1 chs #include <sys/mbuf.h>
35 1.34 cube #include <sys/mutex.h>
36 1.1 chs #include <sys/queue.h>
37 1.1 chs #include <sys/kernel.h>
38 1.1 chs #include <sys/device.h>
39 1.31 christos #include <sys/callout.h>
40 1.1 chs #include <sys/socket.h>
41 1.1 chs
42 1.20 ad #include <sys/bus.h>
43 1.1 chs
44 1.1 chs #include <net/if.h>
45 1.1 chs #include <net/if_dl.h>
46 1.1 chs #include <net/if_media.h>
47 1.1 chs #include <net/if_ether.h>
48 1.1 chs #include <net/if_arp.h>
49 1.1 chs
50 1.1 chs #ifdef INET
51 1.1 chs #include <netinet/in.h>
52 1.1 chs #include <netinet/in_systm.h>
53 1.1 chs #include <netinet/in_var.h>
54 1.1 chs #include <netinet/ip.h>
55 1.1 chs #include <netinet/if_inarp.h>
56 1.1 chs #endif
57 1.1 chs
58 1.1 chs #if NVLAN > 0
59 1.1 chs #include <net/if_types.h>
60 1.1 chs #endif
61 1.1 chs
62 1.1 chs #include <net/bpf.h>
63 1.1 chs
64 1.1 chs #include <dev/mii/mii.h>
65 1.1 chs #include <dev/mii/miivar.h>
66 1.1 chs
67 1.1 chs #include <dev/pci/pcireg.h>
68 1.1 chs #include <dev/pci/pcivar.h>
69 1.1 chs #include <dev/pci/pcidevs.h>
70 1.1 chs
71 1.1 chs #include <dev/pci/if_nfereg.h>
72 1.1 chs #include <dev/pci/if_nfevar.h>
73 1.1 chs
74 1.37 dyoung static int nfe_ifflags_cb(struct ethercom *);
75 1.37 dyoung
76 1.30 cube int nfe_match(device_t, cfdata_t, void *);
77 1.30 cube void nfe_attach(device_t, device_t, void *);
78 1.53 jakllsch int nfe_detach(device_t, int);
79 1.1 chs void nfe_power(int, void *);
80 1.56 matt void nfe_miibus_statchg(struct ifnet *);
81 1.30 cube int nfe_miibus_readreg(device_t, int, int);
82 1.30 cube void nfe_miibus_writereg(device_t, int, int, int);
83 1.1 chs int nfe_intr(void *);
84 1.15 christos int nfe_ioctl(struct ifnet *, u_long, void *);
85 1.1 chs void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86 1.1 chs void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87 1.1 chs void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88 1.1 chs void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89 1.1 chs void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90 1.1 chs void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91 1.1 chs void nfe_rxeof(struct nfe_softc *);
92 1.1 chs void nfe_txeof(struct nfe_softc *);
93 1.1 chs int nfe_encap(struct nfe_softc *, struct mbuf *);
94 1.1 chs void nfe_start(struct ifnet *);
95 1.1 chs void nfe_watchdog(struct ifnet *);
96 1.1 chs int nfe_init(struct ifnet *);
97 1.1 chs void nfe_stop(struct ifnet *, int);
98 1.19 cube struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99 1.15 christos void nfe_jfree(struct mbuf *, void *, size_t, void *);
100 1.1 chs int nfe_jpool_alloc(struct nfe_softc *);
101 1.1 chs void nfe_jpool_free(struct nfe_softc *);
102 1.1 chs int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 1.1 chs void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 1.1 chs void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 1.1 chs int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 1.1 chs void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 1.1 chs void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 1.1 chs void nfe_setmulti(struct nfe_softc *);
109 1.1 chs void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110 1.1 chs void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111 1.1 chs void nfe_tick(void *);
112 1.35 jmcneill void nfe_poweron(device_t);
113 1.50 dyoung bool nfe_resume(device_t, const pmf_qual_t *);
114 1.1 chs
115 1.53 jakllsch CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
116 1.53 jakllsch nfe_match, nfe_attach, nfe_detach, NULL);
117 1.1 chs
118 1.34 cube /* #define NFE_NO_JUMBO */
119 1.34 cube
120 1.1 chs #ifdef NFE_DEBUG
121 1.1 chs int nfedebug = 0;
122 1.1 chs #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
123 1.1 chs #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
124 1.1 chs #else
125 1.1 chs #define DPRINTF(x)
126 1.1 chs #define DPRINTFN(n,x)
127 1.1 chs #endif
128 1.1 chs
129 1.1 chs /* deal with naming differences */
130 1.1 chs
131 1.1 chs #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
132 1.1 chs PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
133 1.1 chs #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
134 1.1 chs PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
135 1.1 chs #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
136 1.1 chs PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
137 1.1 chs
138 1.1 chs #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
139 1.1 chs PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
140 1.1 chs #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
141 1.1 chs PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
142 1.1 chs
143 1.1 chs #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
144 1.1 chs PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
145 1.1 chs #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
146 1.1 chs PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
147 1.1 chs
148 1.1 chs #ifdef _LP64
149 1.1 chs #define __LP64__ 1
150 1.1 chs #endif
151 1.1 chs
152 1.1 chs const struct nfe_product {
153 1.1 chs pci_vendor_id_t vendor;
154 1.1 chs pci_product_id_t product;
155 1.1 chs } nfe_devices[] = {
156 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
157 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
158 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
159 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
160 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
161 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
162 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
163 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
164 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
165 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
166 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
167 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
168 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
169 1.1 chs { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
170 1.4 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
171 1.4 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
172 1.4 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
173 1.4 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
174 1.4 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
175 1.4 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
176 1.4 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
177 1.4 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
178 1.22 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
179 1.22 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
180 1.22 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
181 1.22 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
182 1.22 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
183 1.22 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
184 1.22 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
185 1.22 xtraeme { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
186 1.29 isaki { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
187 1.31 christos { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
188 1.31 christos { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
189 1.31 christos { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
190 1.31 christos { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
191 1.31 christos { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
192 1.31 christos { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
193 1.31 christos { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
194 1.31 christos { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
195 1.1 chs };
196 1.1 chs
197 1.1 chs int
198 1.30 cube nfe_match(device_t dev, cfdata_t match, void *aux)
199 1.1 chs {
200 1.1 chs struct pci_attach_args *pa = aux;
201 1.1 chs const struct nfe_product *np;
202 1.1 chs int i;
203 1.1 chs
204 1.45 cegger for (i = 0; i < __arraycount(nfe_devices); i++) {
205 1.1 chs np = &nfe_devices[i];
206 1.1 chs if (PCI_VENDOR(pa->pa_id) == np->vendor &&
207 1.1 chs PCI_PRODUCT(pa->pa_id) == np->product)
208 1.1 chs return 1;
209 1.1 chs }
210 1.1 chs return 0;
211 1.1 chs }
212 1.1 chs
213 1.1 chs void
214 1.30 cube nfe_attach(device_t parent, device_t self, void *aux)
215 1.1 chs {
216 1.30 cube struct nfe_softc *sc = device_private(self);
217 1.1 chs struct pci_attach_args *pa = aux;
218 1.1 chs pci_chipset_tag_t pc = pa->pa_pc;
219 1.1 chs pci_intr_handle_t ih;
220 1.1 chs const char *intrstr;
221 1.1 chs struct ifnet *ifp;
222 1.52 jakllsch pcireg_t memtype, csr;
223 1.40 cegger int mii_flags = 0;
224 1.59 christos char intrbuf[PCI_INTRSTR_LEN];
225 1.10 tsutsui
226 1.30 cube sc->sc_dev = self;
227 1.53 jakllsch sc->sc_pc = pa->pa_pc;
228 1.55 drochner pci_aprint_devinfo(pa, NULL);
229 1.1 chs
230 1.1 chs memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
231 1.1 chs switch (memtype) {
232 1.1 chs case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
233 1.1 chs case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
234 1.1 chs if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
235 1.53 jakllsch &sc->sc_memh, NULL, &sc->sc_mems) == 0)
236 1.1 chs break;
237 1.1 chs /* FALLTHROUGH */
238 1.1 chs default:
239 1.30 cube aprint_error_dev(self, "could not map mem space\n");
240 1.1 chs return;
241 1.1 chs }
242 1.1 chs
243 1.1 chs if (pci_intr_map(pa, &ih) != 0) {
244 1.30 cube aprint_error_dev(self, "could not map interrupt\n");
245 1.42 cegger goto fail;
246 1.1 chs }
247 1.1 chs
248 1.59 christos intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
249 1.1 chs sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
250 1.1 chs if (sc->sc_ih == NULL) {
251 1.30 cube aprint_error_dev(self, "could not establish interrupt");
252 1.1 chs if (intrstr != NULL)
253 1.47 njoly aprint_error(" at %s", intrstr);
254 1.47 njoly aprint_error("\n");
255 1.42 cegger goto fail;
256 1.1 chs }
257 1.30 cube aprint_normal_dev(self, "interrupting at %s\n", intrstr);
258 1.1 chs
259 1.52 jakllsch csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
260 1.52 jakllsch csr |= PCI_COMMAND_MASTER_ENABLE;
261 1.52 jakllsch pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
262 1.52 jakllsch
263 1.1 chs sc->sc_flags = 0;
264 1.1 chs
265 1.1 chs switch (PCI_PRODUCT(pa->pa_id)) {
266 1.1 chs case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
267 1.1 chs case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
268 1.1 chs case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
269 1.1 chs case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
270 1.1 chs sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
271 1.1 chs break;
272 1.1 chs case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
273 1.1 chs case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
274 1.31 christos sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
275 1.31 christos break;
276 1.4 xtraeme case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
277 1.4 xtraeme case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
278 1.4 xtraeme case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
279 1.4 xtraeme case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
280 1.23 xtraeme case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
281 1.23 xtraeme case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
282 1.23 xtraeme case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
283 1.23 xtraeme case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
284 1.23 xtraeme case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
285 1.23 xtraeme case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
286 1.23 xtraeme case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
287 1.23 xtraeme case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
288 1.31 christos sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
289 1.31 christos NFE_PWR_MGMT;
290 1.31 christos break;
291 1.31 christos case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
292 1.31 christos case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
293 1.31 christos case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
294 1.31 christos case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
295 1.41 cegger sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
296 1.41 cegger NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
297 1.41 cegger break;
298 1.31 christos case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
299 1.31 christos case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
300 1.31 christos case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
301 1.31 christos case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
302 1.41 cegger sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
303 1.31 christos NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
304 1.1 chs break;
305 1.1 chs case PCI_PRODUCT_NVIDIA_CK804_LAN1:
306 1.1 chs case PCI_PRODUCT_NVIDIA_CK804_LAN2:
307 1.1 chs case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
308 1.1 chs case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
309 1.1 chs sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
310 1.1 chs break;
311 1.4 xtraeme case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
312 1.4 xtraeme case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
313 1.4 xtraeme case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
314 1.4 xtraeme case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
315 1.31 christos sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
316 1.31 christos NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
317 1.40 cegger mii_flags = MIIF_DOPAUSE;
318 1.31 christos break;
319 1.31 christos case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
320 1.31 christos case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
321 1.1 chs sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
322 1.27 tsutsui NFE_HW_VLAN | NFE_PWR_MGMT;
323 1.1 chs break;
324 1.1 chs }
325 1.1 chs
326 1.57 chs if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0)
327 1.57 chs sc->sc_dmat = pa->pa_dmat64;
328 1.57 chs else
329 1.57 chs sc->sc_dmat = pa->pa_dmat;
330 1.57 chs
331 1.35 jmcneill nfe_poweron(self);
332 1.27 tsutsui
333 1.34 cube #ifndef NFE_NO_JUMBO
334 1.1 chs /* enable jumbo frames for adapters that support it */
335 1.1 chs if (sc->sc_flags & NFE_JUMBO_SUP)
336 1.1 chs sc->sc_flags |= NFE_USE_JUMBO;
337 1.1 chs #endif
338 1.1 chs
339 1.31 christos /* Check for reversed ethernet address */
340 1.31 christos if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
341 1.31 christos sc->sc_flags |= NFE_CORRECT_MACADDR;
342 1.31 christos
343 1.31 christos nfe_get_macaddr(sc, sc->sc_enaddr);
344 1.31 christos aprint_normal_dev(self, "Ethernet address %s\n",
345 1.31 christos ether_sprintf(sc->sc_enaddr));
346 1.31 christos
347 1.1 chs /*
348 1.1 chs * Allocate Tx and Rx rings.
349 1.1 chs */
350 1.1 chs if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
351 1.30 cube aprint_error_dev(self, "could not allocate Tx ring\n");
352 1.42 cegger goto fail;
353 1.1 chs }
354 1.1 chs
355 1.36 cube mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
356 1.34 cube
357 1.1 chs if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
358 1.30 cube aprint_error_dev(self, "could not allocate Rx ring\n");
359 1.1 chs nfe_free_tx_ring(sc, &sc->txq);
360 1.42 cegger goto fail;
361 1.1 chs }
362 1.1 chs
363 1.1 chs ifp = &sc->sc_ethercom.ec_if;
364 1.1 chs ifp->if_softc = sc;
365 1.1 chs ifp->if_mtu = ETHERMTU;
366 1.1 chs ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 1.1 chs ifp->if_ioctl = nfe_ioctl;
368 1.1 chs ifp->if_start = nfe_start;
369 1.24 jmcneill ifp->if_stop = nfe_stop;
370 1.1 chs ifp->if_watchdog = nfe_watchdog;
371 1.1 chs ifp->if_init = nfe_init;
372 1.1 chs ifp->if_baudrate = IF_Gbps(1);
373 1.1 chs IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
374 1.1 chs IFQ_SET_READY(&ifp->if_snd);
375 1.30 cube strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
376 1.1 chs
377 1.31 christos if (sc->sc_flags & NFE_USE_JUMBO)
378 1.37 dyoung sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
379 1.31 christos
380 1.1 chs #if NVLAN > 0
381 1.1 chs if (sc->sc_flags & NFE_HW_VLAN)
382 1.1 chs sc->sc_ethercom.ec_capabilities |=
383 1.1 chs ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
384 1.1 chs #endif
385 1.1 chs if (sc->sc_flags & NFE_HW_CSUM) {
386 1.13 tsutsui ifp->if_capabilities |=
387 1.13 tsutsui IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
388 1.13 tsutsui IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
389 1.13 tsutsui IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
390 1.1 chs }
391 1.1 chs
392 1.1 chs sc->sc_mii.mii_ifp = ifp;
393 1.1 chs sc->sc_mii.mii_readreg = nfe_miibus_readreg;
394 1.1 chs sc->sc_mii.mii_writereg = nfe_miibus_writereg;
395 1.1 chs sc->sc_mii.mii_statchg = nfe_miibus_statchg;
396 1.1 chs
397 1.26 dyoung sc->sc_ethercom.ec_mii = &sc->sc_mii;
398 1.26 dyoung ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
399 1.26 dyoung ether_mediastatus);
400 1.40 cegger
401 1.54 tsutsui mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
402 1.40 cegger
403 1.1 chs if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
404 1.30 cube aprint_error_dev(self, "no PHY found!\n");
405 1.1 chs ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
406 1.1 chs 0, NULL);
407 1.1 chs ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
408 1.1 chs } else
409 1.1 chs ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
410 1.1 chs
411 1.1 chs if_attach(ifp);
412 1.62 ozaki if_deferred_start_init(ifp, NULL);
413 1.1 chs ether_ifattach(ifp, sc->sc_enaddr);
414 1.37 dyoung ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
415 1.1 chs
416 1.16 ad callout_init(&sc->sc_tick_ch, 0);
417 1.1 chs callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
418 1.1 chs
419 1.46 tsutsui if (pmf_device_register(self, NULL, nfe_resume))
420 1.46 tsutsui pmf_class_network_register(self, ifp);
421 1.46 tsutsui else
422 1.24 jmcneill aprint_error_dev(self, "couldn't establish power handler\n");
423 1.42 cegger
424 1.42 cegger return;
425 1.42 cegger
426 1.42 cegger fail:
427 1.42 cegger if (sc->sc_ih != NULL) {
428 1.42 cegger pci_intr_disestablish(pc, sc->sc_ih);
429 1.42 cegger sc->sc_ih = NULL;
430 1.42 cegger }
431 1.53 jakllsch if (sc->sc_mems != 0) {
432 1.53 jakllsch bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
433 1.53 jakllsch sc->sc_mems = 0;
434 1.53 jakllsch }
435 1.53 jakllsch }
436 1.53 jakllsch
437 1.53 jakllsch int
438 1.53 jakllsch nfe_detach(device_t self, int flags)
439 1.53 jakllsch {
440 1.53 jakllsch struct nfe_softc *sc = device_private(self);
441 1.53 jakllsch struct ifnet *ifp = &sc->sc_ethercom.ec_if;
442 1.53 jakllsch int s;
443 1.53 jakllsch
444 1.53 jakllsch s = splnet();
445 1.53 jakllsch
446 1.53 jakllsch nfe_stop(ifp, 1);
447 1.53 jakllsch
448 1.53 jakllsch pmf_device_deregister(self);
449 1.53 jakllsch callout_destroy(&sc->sc_tick_ch);
450 1.53 jakllsch ether_ifdetach(ifp);
451 1.53 jakllsch if_detach(ifp);
452 1.53 jakllsch mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
453 1.53 jakllsch
454 1.53 jakllsch nfe_free_rx_ring(sc, &sc->rxq);
455 1.53 jakllsch mutex_destroy(&sc->rxq.mtx);
456 1.53 jakllsch nfe_free_tx_ring(sc, &sc->txq);
457 1.53 jakllsch
458 1.53 jakllsch if (sc->sc_ih != NULL) {
459 1.53 jakllsch pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
460 1.53 jakllsch sc->sc_ih = NULL;
461 1.53 jakllsch }
462 1.53 jakllsch
463 1.53 jakllsch if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
464 1.53 jakllsch nfe_set_macaddr(sc, sc->sc_enaddr);
465 1.53 jakllsch } else {
466 1.53 jakllsch NFE_WRITE(sc, NFE_MACADDR_LO,
467 1.53 jakllsch sc->sc_enaddr[0] << 8 | sc->sc_enaddr[1]);
468 1.53 jakllsch NFE_WRITE(sc, NFE_MACADDR_HI,
469 1.53 jakllsch sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
470 1.53 jakllsch sc->sc_enaddr[4] << 8 | sc->sc_enaddr[5]);
471 1.53 jakllsch }
472 1.53 jakllsch
473 1.53 jakllsch if (sc->sc_mems != 0) {
474 1.53 jakllsch bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
475 1.53 jakllsch sc->sc_mems = 0;
476 1.53 jakllsch }
477 1.53 jakllsch
478 1.53 jakllsch splx(s);
479 1.53 jakllsch
480 1.53 jakllsch return 0;
481 1.1 chs }
482 1.1 chs
483 1.1 chs void
484 1.56 matt nfe_miibus_statchg(struct ifnet *ifp)
485 1.1 chs {
486 1.56 matt struct nfe_softc *sc = ifp->if_softc;
487 1.1 chs struct mii_data *mii = &sc->sc_mii;
488 1.1 chs uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
489 1.1 chs
490 1.1 chs phy = NFE_READ(sc, NFE_PHY_IFACE);
491 1.1 chs phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
492 1.1 chs
493 1.1 chs seed = NFE_READ(sc, NFE_RNDSEED);
494 1.1 chs seed &= ~NFE_SEED_MASK;
495 1.1 chs
496 1.1 chs if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
497 1.1 chs phy |= NFE_PHY_HDX; /* half-duplex */
498 1.1 chs misc |= NFE_MISC1_HDX;
499 1.1 chs }
500 1.1 chs
501 1.1 chs switch (IFM_SUBTYPE(mii->mii_media_active)) {
502 1.1 chs case IFM_1000_T: /* full-duplex only */
503 1.1 chs link |= NFE_MEDIA_1000T;
504 1.1 chs seed |= NFE_SEED_1000T;
505 1.1 chs phy |= NFE_PHY_1000T;
506 1.1 chs break;
507 1.1 chs case IFM_100_TX:
508 1.1 chs link |= NFE_MEDIA_100TX;
509 1.1 chs seed |= NFE_SEED_100TX;
510 1.1 chs phy |= NFE_PHY_100TX;
511 1.1 chs break;
512 1.1 chs case IFM_10_T:
513 1.1 chs link |= NFE_MEDIA_10T;
514 1.1 chs seed |= NFE_SEED_10T;
515 1.1 chs break;
516 1.1 chs }
517 1.1 chs
518 1.1 chs NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
519 1.1 chs
520 1.1 chs NFE_WRITE(sc, NFE_PHY_IFACE, phy);
521 1.1 chs NFE_WRITE(sc, NFE_MISC1, misc);
522 1.1 chs NFE_WRITE(sc, NFE_LINKSPEED, link);
523 1.1 chs }
524 1.1 chs
525 1.1 chs int
526 1.30 cube nfe_miibus_readreg(device_t dev, int phy, int reg)
527 1.1 chs {
528 1.30 cube struct nfe_softc *sc = device_private(dev);
529 1.1 chs uint32_t val;
530 1.1 chs int ntries;
531 1.1 chs
532 1.1 chs NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
533 1.1 chs
534 1.1 chs if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
535 1.1 chs NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
536 1.1 chs DELAY(100);
537 1.1 chs }
538 1.1 chs
539 1.1 chs NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
540 1.1 chs
541 1.1 chs for (ntries = 0; ntries < 1000; ntries++) {
542 1.1 chs DELAY(100);
543 1.1 chs if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
544 1.1 chs break;
545 1.1 chs }
546 1.1 chs if (ntries == 1000) {
547 1.1 chs DPRINTFN(2, ("%s: timeout waiting for PHY\n",
548 1.30 cube device_xname(sc->sc_dev)));
549 1.1 chs return 0;
550 1.1 chs }
551 1.1 chs
552 1.1 chs if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
553 1.1 chs DPRINTFN(2, ("%s: could not read PHY\n",
554 1.30 cube device_xname(sc->sc_dev)));
555 1.1 chs return 0;
556 1.1 chs }
557 1.1 chs
558 1.1 chs val = NFE_READ(sc, NFE_PHY_DATA);
559 1.1 chs if (val != 0xffffffff && val != 0)
560 1.1 chs sc->mii_phyaddr = phy;
561 1.1 chs
562 1.1 chs DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
563 1.30 cube device_xname(sc->sc_dev), phy, reg, val));
564 1.1 chs
565 1.1 chs return val;
566 1.1 chs }
567 1.1 chs
568 1.1 chs void
569 1.30 cube nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
570 1.1 chs {
571 1.30 cube struct nfe_softc *sc = device_private(dev);
572 1.1 chs uint32_t ctl;
573 1.1 chs int ntries;
574 1.1 chs
575 1.1 chs NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
576 1.1 chs
577 1.1 chs if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
578 1.1 chs NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
579 1.1 chs DELAY(100);
580 1.1 chs }
581 1.1 chs
582 1.1 chs NFE_WRITE(sc, NFE_PHY_DATA, val);
583 1.1 chs ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
584 1.1 chs NFE_WRITE(sc, NFE_PHY_CTL, ctl);
585 1.1 chs
586 1.1 chs for (ntries = 0; ntries < 1000; ntries++) {
587 1.1 chs DELAY(100);
588 1.1 chs if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
589 1.1 chs break;
590 1.1 chs }
591 1.1 chs #ifdef NFE_DEBUG
592 1.1 chs if (nfedebug >= 2 && ntries == 1000)
593 1.1 chs printf("could not write to PHY\n");
594 1.1 chs #endif
595 1.1 chs }
596 1.1 chs
597 1.1 chs int
598 1.1 chs nfe_intr(void *arg)
599 1.1 chs {
600 1.1 chs struct nfe_softc *sc = arg;
601 1.1 chs struct ifnet *ifp = &sc->sc_ethercom.ec_if;
602 1.1 chs uint32_t r;
603 1.14 tsutsui int handled;
604 1.1 chs
605 1.14 tsutsui if ((ifp->if_flags & IFF_UP) == 0)
606 1.14 tsutsui return 0;
607 1.1 chs
608 1.14 tsutsui handled = 0;
609 1.1 chs
610 1.14 tsutsui for (;;) {
611 1.14 tsutsui r = NFE_READ(sc, NFE_IRQ_STATUS);
612 1.14 tsutsui if ((r & NFE_IRQ_WANTED) == 0)
613 1.14 tsutsui break;
614 1.1 chs
615 1.14 tsutsui NFE_WRITE(sc, NFE_IRQ_STATUS, r);
616 1.14 tsutsui handled = 1;
617 1.14 tsutsui DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
618 1.14 tsutsui
619 1.31 christos if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
620 1.14 tsutsui /* check Rx ring */
621 1.14 tsutsui nfe_rxeof(sc);
622 1.14 tsutsui }
623 1.31 christos if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
624 1.14 tsutsui /* check Tx ring */
625 1.14 tsutsui nfe_txeof(sc);
626 1.14 tsutsui }
627 1.14 tsutsui if ((r & NFE_IRQ_LINK) != 0) {
628 1.14 tsutsui NFE_READ(sc, NFE_PHY_STATUS);
629 1.14 tsutsui NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
630 1.14 tsutsui DPRINTF(("%s: link state changed\n",
631 1.30 cube device_xname(sc->sc_dev)));
632 1.14 tsutsui }
633 1.1 chs }
634 1.1 chs
635 1.62 ozaki if (handled)
636 1.62 ozaki if_schedule_deferred_start(ifp);
637 1.12 jmcneill
638 1.14 tsutsui return handled;
639 1.1 chs }
640 1.1 chs
641 1.37 dyoung static int
642 1.37 dyoung nfe_ifflags_cb(struct ethercom *ec)
643 1.37 dyoung {
644 1.37 dyoung struct ifnet *ifp = &ec->ec_if;
645 1.37 dyoung struct nfe_softc *sc = ifp->if_softc;
646 1.37 dyoung int change = ifp->if_flags ^ sc->sc_if_flags;
647 1.37 dyoung
648 1.37 dyoung /*
649 1.37 dyoung * If only the PROMISC flag changes, then
650 1.37 dyoung * don't do a full re-init of the chip, just update
651 1.37 dyoung * the Rx filter.
652 1.37 dyoung */
653 1.37 dyoung if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
654 1.37 dyoung return ENETRESET;
655 1.37 dyoung else if ((change & IFF_PROMISC) != 0)
656 1.37 dyoung nfe_setmulti(sc);
657 1.37 dyoung
658 1.37 dyoung return 0;
659 1.37 dyoung }
660 1.37 dyoung
661 1.1 chs int
662 1.15 christos nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
663 1.1 chs {
664 1.1 chs struct nfe_softc *sc = ifp->if_softc;
665 1.1 chs struct ifaddr *ifa = (struct ifaddr *)data;
666 1.1 chs int s, error = 0;
667 1.1 chs
668 1.1 chs s = splnet();
669 1.1 chs
670 1.1 chs switch (cmd) {
671 1.37 dyoung case SIOCINITIFADDR:
672 1.1 chs ifp->if_flags |= IFF_UP;
673 1.1 chs nfe_init(ifp);
674 1.1 chs switch (ifa->ifa_addr->sa_family) {
675 1.1 chs #ifdef INET
676 1.1 chs case AF_INET:
677 1.1 chs arp_ifinit(ifp, ifa);
678 1.1 chs break;
679 1.1 chs #endif
680 1.1 chs default:
681 1.1 chs break;
682 1.1 chs }
683 1.1 chs break;
684 1.26 dyoung default:
685 1.28 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
686 1.28 dyoung break;
687 1.31 christos
688 1.28 dyoung error = 0;
689 1.28 dyoung
690 1.28 dyoung if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
691 1.28 dyoung ;
692 1.28 dyoung else if (ifp->if_flags & IFF_RUNNING)
693 1.28 dyoung nfe_setmulti(sc);
694 1.1 chs break;
695 1.1 chs }
696 1.37 dyoung sc->sc_if_flags = ifp->if_flags;
697 1.1 chs
698 1.1 chs splx(s);
699 1.1 chs
700 1.1 chs return error;
701 1.1 chs }
702 1.1 chs
703 1.1 chs void
704 1.1 chs nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
705 1.1 chs {
706 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
707 1.15 christos (char *)desc32 - (char *)sc->txq.desc32,
708 1.1 chs sizeof (struct nfe_desc32), ops);
709 1.1 chs }
710 1.1 chs
711 1.1 chs void
712 1.1 chs nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
713 1.1 chs {
714 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
715 1.15 christos (char *)desc64 - (char *)sc->txq.desc64,
716 1.1 chs sizeof (struct nfe_desc64), ops);
717 1.1 chs }
718 1.1 chs
719 1.1 chs void
720 1.1 chs nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
721 1.1 chs {
722 1.1 chs if (end > start) {
723 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
724 1.15 christos (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
725 1.15 christos (char *)&sc->txq.desc32[end] -
726 1.15 christos (char *)&sc->txq.desc32[start], ops);
727 1.1 chs return;
728 1.1 chs }
729 1.1 chs /* sync from 'start' to end of ring */
730 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
731 1.15 christos (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
732 1.15 christos (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
733 1.15 christos (char *)&sc->txq.desc32[start], ops);
734 1.1 chs
735 1.1 chs /* sync from start of ring to 'end' */
736 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
737 1.15 christos (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
738 1.1 chs }
739 1.1 chs
740 1.1 chs void
741 1.1 chs nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
742 1.1 chs {
743 1.1 chs if (end > start) {
744 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
745 1.15 christos (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
746 1.15 christos (char *)&sc->txq.desc64[end] -
747 1.15 christos (char *)&sc->txq.desc64[start], ops);
748 1.1 chs return;
749 1.1 chs }
750 1.1 chs /* sync from 'start' to end of ring */
751 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
752 1.15 christos (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
753 1.15 christos (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
754 1.15 christos (char *)&sc->txq.desc64[start], ops);
755 1.1 chs
756 1.1 chs /* sync from start of ring to 'end' */
757 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
758 1.15 christos (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
759 1.1 chs }
760 1.1 chs
761 1.1 chs void
762 1.1 chs nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
763 1.1 chs {
764 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
765 1.15 christos (char *)desc32 - (char *)sc->rxq.desc32,
766 1.1 chs sizeof (struct nfe_desc32), ops);
767 1.1 chs }
768 1.1 chs
769 1.1 chs void
770 1.1 chs nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
771 1.1 chs {
772 1.1 chs bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
773 1.15 christos (char *)desc64 - (char *)sc->rxq.desc64,
774 1.1 chs sizeof (struct nfe_desc64), ops);
775 1.1 chs }
776 1.1 chs
777 1.1 chs void
778 1.1 chs nfe_rxeof(struct nfe_softc *sc)
779 1.1 chs {
780 1.1 chs struct ifnet *ifp = &sc->sc_ethercom.ec_if;
781 1.1 chs struct nfe_desc32 *desc32;
782 1.1 chs struct nfe_desc64 *desc64;
783 1.1 chs struct nfe_rx_data *data;
784 1.1 chs struct nfe_jbuf *jbuf;
785 1.1 chs struct mbuf *m, *mnew;
786 1.1 chs bus_addr_t physaddr;
787 1.1 chs uint16_t flags;
788 1.14 tsutsui int error, len, i;
789 1.1 chs
790 1.1 chs desc32 = NULL;
791 1.1 chs desc64 = NULL;
792 1.14 tsutsui for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
793 1.14 tsutsui data = &sc->rxq.data[i];
794 1.1 chs
795 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
796 1.14 tsutsui desc64 = &sc->rxq.desc64[i];
797 1.14 tsutsui nfe_rxdesc64_sync(sc, desc64,
798 1.14 tsutsui BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
799 1.1 chs
800 1.1 chs flags = le16toh(desc64->flags);
801 1.1 chs len = le16toh(desc64->length) & 0x3fff;
802 1.1 chs } else {
803 1.14 tsutsui desc32 = &sc->rxq.desc32[i];
804 1.14 tsutsui nfe_rxdesc32_sync(sc, desc32,
805 1.14 tsutsui BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
806 1.1 chs
807 1.1 chs flags = le16toh(desc32->flags);
808 1.1 chs len = le16toh(desc32->length) & 0x3fff;
809 1.1 chs }
810 1.1 chs
811 1.14 tsutsui if ((flags & NFE_RX_READY) != 0)
812 1.1 chs break;
813 1.1 chs
814 1.1 chs if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
815 1.14 tsutsui if ((flags & NFE_RX_VALID_V1) == 0)
816 1.1 chs goto skip;
817 1.1 chs
818 1.1 chs if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
819 1.1 chs flags &= ~NFE_RX_ERROR;
820 1.1 chs len--; /* fix buffer length */
821 1.1 chs }
822 1.1 chs } else {
823 1.14 tsutsui if ((flags & NFE_RX_VALID_V2) == 0)
824 1.1 chs goto skip;
825 1.1 chs
826 1.1 chs if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
827 1.1 chs flags &= ~NFE_RX_ERROR;
828 1.1 chs len--; /* fix buffer length */
829 1.1 chs }
830 1.1 chs }
831 1.1 chs
832 1.1 chs if (flags & NFE_RX_ERROR) {
833 1.1 chs ifp->if_ierrors++;
834 1.1 chs goto skip;
835 1.1 chs }
836 1.1 chs
837 1.1 chs /*
838 1.1 chs * Try to allocate a new mbuf for this ring element and load
839 1.1 chs * it before processing the current mbuf. If the ring element
840 1.1 chs * cannot be loaded, drop the received packet and reuse the
841 1.1 chs * old mbuf. In the unlikely case that the old mbuf can't be
842 1.1 chs * reloaded either, explicitly panic.
843 1.1 chs */
844 1.1 chs MGETHDR(mnew, M_DONTWAIT, MT_DATA);
845 1.1 chs if (mnew == NULL) {
846 1.1 chs ifp->if_ierrors++;
847 1.1 chs goto skip;
848 1.1 chs }
849 1.1 chs
850 1.1 chs if (sc->sc_flags & NFE_USE_JUMBO) {
851 1.19 cube physaddr =
852 1.19 cube sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
853 1.19 cube if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
854 1.19 cube if (len > MCLBYTES) {
855 1.19 cube m_freem(mnew);
856 1.19 cube ifp->if_ierrors++;
857 1.19 cube goto skip1;
858 1.19 cube }
859 1.19 cube MCLGET(mnew, M_DONTWAIT);
860 1.19 cube if ((mnew->m_flags & M_EXT) == 0) {
861 1.19 cube m_freem(mnew);
862 1.19 cube ifp->if_ierrors++;
863 1.19 cube goto skip1;
864 1.19 cube }
865 1.1 chs
866 1.31 christos (void)memcpy(mtod(mnew, void *),
867 1.19 cube mtod(data->m, const void *), len);
868 1.19 cube m = mnew;
869 1.19 cube goto mbufcopied;
870 1.19 cube } else {
871 1.19 cube MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
872 1.19 cube bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
873 1.19 cube mtod(data->m, char *) - (char *)sc->rxq.jpool,
874 1.19 cube NFE_JBYTES, BUS_DMASYNC_POSTREAD);
875 1.1 chs
876 1.19 cube physaddr = jbuf->physaddr;
877 1.19 cube }
878 1.1 chs } else {
879 1.1 chs MCLGET(mnew, M_DONTWAIT);
880 1.14 tsutsui if ((mnew->m_flags & M_EXT) == 0) {
881 1.1 chs m_freem(mnew);
882 1.1 chs ifp->if_ierrors++;
883 1.1 chs goto skip;
884 1.1 chs }
885 1.1 chs
886 1.1 chs bus_dmamap_sync(sc->sc_dmat, data->map, 0,
887 1.1 chs data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
888 1.1 chs bus_dmamap_unload(sc->sc_dmat, data->map);
889 1.1 chs
890 1.19 cube error = bus_dmamap_load(sc->sc_dmat, data->map,
891 1.19 cube mtod(mnew, void *), MCLBYTES, NULL,
892 1.19 cube BUS_DMA_READ | BUS_DMA_NOWAIT);
893 1.1 chs if (error != 0) {
894 1.1 chs m_freem(mnew);
895 1.1 chs
896 1.1 chs /* try to reload the old mbuf */
897 1.19 cube error = bus_dmamap_load(sc->sc_dmat, data->map,
898 1.19 cube mtod(data->m, void *), MCLBYTES, NULL,
899 1.1 chs BUS_DMA_READ | BUS_DMA_NOWAIT);
900 1.1 chs if (error != 0) {
901 1.1 chs /* very unlikely that it will fail.. */
902 1.1 chs panic("%s: could not load old rx mbuf",
903 1.30 cube device_xname(sc->sc_dev));
904 1.1 chs }
905 1.1 chs ifp->if_ierrors++;
906 1.1 chs goto skip;
907 1.1 chs }
908 1.1 chs physaddr = data->map->dm_segs[0].ds_addr;
909 1.1 chs }
910 1.1 chs
911 1.1 chs /*
912 1.1 chs * New mbuf successfully loaded, update Rx ring and continue
913 1.1 chs * processing.
914 1.1 chs */
915 1.1 chs m = data->m;
916 1.1 chs data->m = mnew;
917 1.1 chs
918 1.19 cube mbufcopied:
919 1.1 chs /* finalize mbuf */
920 1.1 chs m->m_pkthdr.len = m->m_len = len;
921 1.61 ozaki m_set_rcvif(m, ifp);
922 1.1 chs
923 1.13 tsutsui if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
924 1.13 tsutsui /*
925 1.13 tsutsui * XXX
926 1.13 tsutsui * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
927 1.13 tsutsui */
928 1.13 tsutsui if (flags & NFE_RX_IP_CSUMOK) {
929 1.13 tsutsui m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
930 1.13 tsutsui DPRINTFN(3, ("%s: ip4csum-rx ok\n",
931 1.30 cube device_xname(sc->sc_dev)));
932 1.13 tsutsui }
933 1.13 tsutsui /*
934 1.13 tsutsui * XXX
935 1.13 tsutsui * no way to check M_CSUM_TCP_UDP_BAD or
936 1.13 tsutsui * other protocols?
937 1.13 tsutsui */
938 1.13 tsutsui if (flags & NFE_RX_UDP_CSUMOK) {
939 1.13 tsutsui m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
940 1.13 tsutsui DPRINTFN(3, ("%s: udp4csum-rx ok\n",
941 1.30 cube device_xname(sc->sc_dev)));
942 1.13 tsutsui } else if (flags & NFE_RX_TCP_CSUMOK) {
943 1.13 tsutsui m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
944 1.13 tsutsui DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
945 1.30 cube device_xname(sc->sc_dev)));
946 1.13 tsutsui }
947 1.13 tsutsui }
948 1.60 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
949 1.1 chs
950 1.19 cube skip1:
951 1.1 chs /* update mapping address in h/w descriptor */
952 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
953 1.1 chs #if defined(__LP64__)
954 1.1 chs desc64->physaddr[0] = htole32(physaddr >> 32);
955 1.1 chs #endif
956 1.1 chs desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
957 1.1 chs } else {
958 1.1 chs desc32->physaddr = htole32(physaddr);
959 1.1 chs }
960 1.1 chs
961 1.58 christos skip:
962 1.14 tsutsui if (sc->sc_flags & NFE_40BIT_ADDR) {
963 1.1 chs desc64->length = htole16(sc->rxq.bufsz);
964 1.1 chs desc64->flags = htole16(NFE_RX_READY);
965 1.1 chs
966 1.14 tsutsui nfe_rxdesc64_sync(sc, desc64,
967 1.14 tsutsui BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
968 1.1 chs } else {
969 1.1 chs desc32->length = htole16(sc->rxq.bufsz);
970 1.1 chs desc32->flags = htole16(NFE_RX_READY);
971 1.1 chs
972 1.14 tsutsui nfe_rxdesc32_sync(sc, desc32,
973 1.14 tsutsui BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
974 1.1 chs }
975 1.1 chs }
976 1.14 tsutsui /* update current RX pointer */
977 1.14 tsutsui sc->rxq.cur = i;
978 1.1 chs }
979 1.1 chs
980 1.1 chs void
981 1.1 chs nfe_txeof(struct nfe_softc *sc)
982 1.1 chs {
983 1.1 chs struct ifnet *ifp = &sc->sc_ethercom.ec_if;
984 1.1 chs struct nfe_desc32 *desc32;
985 1.1 chs struct nfe_desc64 *desc64;
986 1.1 chs struct nfe_tx_data *data = NULL;
987 1.14 tsutsui int i;
988 1.1 chs uint16_t flags;
989 1.31 christos char buf[128];
990 1.1 chs
991 1.14 tsutsui for (i = sc->txq.next;
992 1.14 tsutsui sc->txq.queued > 0;
993 1.14 tsutsui i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
994 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
995 1.14 tsutsui desc64 = &sc->txq.desc64[i];
996 1.14 tsutsui nfe_txdesc64_sync(sc, desc64,
997 1.14 tsutsui BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
998 1.1 chs
999 1.1 chs flags = le16toh(desc64->flags);
1000 1.1 chs } else {
1001 1.14 tsutsui desc32 = &sc->txq.desc32[i];
1002 1.14 tsutsui nfe_txdesc32_sync(sc, desc32,
1003 1.14 tsutsui BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1004 1.1 chs
1005 1.1 chs flags = le16toh(desc32->flags);
1006 1.1 chs }
1007 1.1 chs
1008 1.14 tsutsui if ((flags & NFE_TX_VALID) != 0)
1009 1.1 chs break;
1010 1.1 chs
1011 1.14 tsutsui data = &sc->txq.data[i];
1012 1.1 chs
1013 1.1 chs if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1014 1.14 tsutsui if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
1015 1.14 tsutsui data->m == NULL)
1016 1.14 tsutsui continue;
1017 1.1 chs
1018 1.1 chs if ((flags & NFE_TX_ERROR_V1) != 0) {
1019 1.38 christos snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
1020 1.33 christos aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
1021 1.38 christos buf);
1022 1.1 chs ifp->if_oerrors++;
1023 1.1 chs } else
1024 1.1 chs ifp->if_opackets++;
1025 1.1 chs } else {
1026 1.14 tsutsui if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
1027 1.14 tsutsui data->m == NULL)
1028 1.14 tsutsui continue;
1029 1.1 chs
1030 1.1 chs if ((flags & NFE_TX_ERROR_V2) != 0) {
1031 1.38 christos snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
1032 1.32 xtraeme aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
1033 1.38 christos buf);
1034 1.1 chs ifp->if_oerrors++;
1035 1.1 chs } else
1036 1.1 chs ifp->if_opackets++;
1037 1.1 chs }
1038 1.1 chs
1039 1.1 chs if (data->m == NULL) { /* should not get there */
1040 1.30 cube aprint_error_dev(sc->sc_dev,
1041 1.30 cube "last fragment bit w/o associated mbuf!\n");
1042 1.14 tsutsui continue;
1043 1.1 chs }
1044 1.1 chs
1045 1.1 chs /* last fragment of the mbuf chain transmitted */
1046 1.1 chs bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1047 1.1 chs data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1048 1.1 chs bus_dmamap_unload(sc->sc_dmat, data->active);
1049 1.1 chs m_freem(data->m);
1050 1.1 chs data->m = NULL;
1051 1.14 tsutsui }
1052 1.1 chs
1053 1.14 tsutsui sc->txq.next = i;
1054 1.1 chs
1055 1.14 tsutsui if (sc->txq.queued < NFE_TX_RING_COUNT) {
1056 1.14 tsutsui /* at least one slot freed */
1057 1.14 tsutsui ifp->if_flags &= ~IFF_OACTIVE;
1058 1.1 chs }
1059 1.1 chs
1060 1.14 tsutsui if (sc->txq.queued == 0) {
1061 1.14 tsutsui /* all queued packets are sent */
1062 1.14 tsutsui ifp->if_timer = 0;
1063 1.1 chs }
1064 1.1 chs }
1065 1.1 chs
1066 1.1 chs int
1067 1.1 chs nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1068 1.1 chs {
1069 1.1 chs struct nfe_desc32 *desc32;
1070 1.1 chs struct nfe_desc64 *desc64;
1071 1.1 chs struct nfe_tx_data *data;
1072 1.1 chs bus_dmamap_t map;
1073 1.13 tsutsui uint16_t flags, csumflags;
1074 1.1 chs #if NVLAN > 0
1075 1.1 chs uint32_t vtag = 0;
1076 1.1 chs #endif
1077 1.11 tsutsui int error, i, first;
1078 1.1 chs
1079 1.1 chs desc32 = NULL;
1080 1.1 chs desc64 = NULL;
1081 1.1 chs data = NULL;
1082 1.11 tsutsui
1083 1.11 tsutsui flags = 0;
1084 1.13 tsutsui csumflags = 0;
1085 1.11 tsutsui first = sc->txq.cur;
1086 1.11 tsutsui
1087 1.11 tsutsui map = sc->txq.data[first].map;
1088 1.1 chs
1089 1.1 chs error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1090 1.1 chs if (error != 0) {
1091 1.30 cube aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1092 1.30 cube error);
1093 1.1 chs return error;
1094 1.1 chs }
1095 1.1 chs
1096 1.1 chs if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1097 1.1 chs bus_dmamap_unload(sc->sc_dmat, map);
1098 1.1 chs return ENOBUFS;
1099 1.1 chs }
1100 1.1 chs
1101 1.1 chs #if NVLAN > 0
1102 1.1 chs /* setup h/w VLAN tagging */
1103 1.64 knakahar if (vlan_has_tag(m0))
1104 1.64 knakahar vtag = NFE_TX_VTAG | vlan_get_tag(m0);
1105 1.1 chs #endif
1106 1.13 tsutsui if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1107 1.13 tsutsui if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1108 1.13 tsutsui csumflags |= NFE_TX_IP_CSUM;
1109 1.13 tsutsui if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1110 1.14 tsutsui csumflags |= NFE_TX_TCP_UDP_CSUM;
1111 1.13 tsutsui }
1112 1.1 chs
1113 1.1 chs for (i = 0; i < map->dm_nsegs; i++) {
1114 1.1 chs data = &sc->txq.data[sc->txq.cur];
1115 1.1 chs
1116 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
1117 1.1 chs desc64 = &sc->txq.desc64[sc->txq.cur];
1118 1.1 chs #if defined(__LP64__)
1119 1.1 chs desc64->physaddr[0] =
1120 1.1 chs htole32(map->dm_segs[i].ds_addr >> 32);
1121 1.1 chs #endif
1122 1.1 chs desc64->physaddr[1] =
1123 1.1 chs htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1124 1.1 chs desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1125 1.1 chs desc64->flags = htole16(flags);
1126 1.13 tsutsui desc64->vtag = 0;
1127 1.1 chs } else {
1128 1.1 chs desc32 = &sc->txq.desc32[sc->txq.cur];
1129 1.1 chs
1130 1.1 chs desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1131 1.1 chs desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1132 1.1 chs desc32->flags = htole16(flags);
1133 1.1 chs }
1134 1.1 chs
1135 1.13 tsutsui /*
1136 1.13 tsutsui * Setting of the valid bit in the first descriptor is
1137 1.13 tsutsui * deferred until the whole chain is fully setup.
1138 1.13 tsutsui */
1139 1.13 tsutsui flags |= NFE_TX_VALID;
1140 1.1 chs
1141 1.1 chs sc->txq.queued++;
1142 1.14 tsutsui sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1143 1.1 chs }
1144 1.1 chs
1145 1.11 tsutsui /* the whole mbuf chain has been setup */
1146 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
1147 1.11 tsutsui /* fix last descriptor */
1148 1.1 chs flags |= NFE_TX_LASTFRAG_V2;
1149 1.1 chs desc64->flags = htole16(flags);
1150 1.11 tsutsui
1151 1.13 tsutsui /* Checksum flags and vtag belong to the first fragment only. */
1152 1.13 tsutsui #if NVLAN > 0
1153 1.13 tsutsui sc->txq.desc64[first].vtag = htole32(vtag);
1154 1.13 tsutsui #endif
1155 1.13 tsutsui sc->txq.desc64[first].flags |= htole16(csumflags);
1156 1.13 tsutsui
1157 1.11 tsutsui /* finally, set the valid bit in the first descriptor */
1158 1.11 tsutsui sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1159 1.1 chs } else {
1160 1.11 tsutsui /* fix last descriptor */
1161 1.1 chs if (sc->sc_flags & NFE_JUMBO_SUP)
1162 1.1 chs flags |= NFE_TX_LASTFRAG_V2;
1163 1.1 chs else
1164 1.1 chs flags |= NFE_TX_LASTFRAG_V1;
1165 1.1 chs desc32->flags = htole16(flags);
1166 1.11 tsutsui
1167 1.13 tsutsui /* Checksum flags belong to the first fragment only. */
1168 1.13 tsutsui sc->txq.desc32[first].flags |= htole16(csumflags);
1169 1.13 tsutsui
1170 1.11 tsutsui /* finally, set the valid bit in the first descriptor */
1171 1.11 tsutsui sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1172 1.1 chs }
1173 1.1 chs
1174 1.1 chs data->m = m0;
1175 1.1 chs data->active = map;
1176 1.1 chs
1177 1.1 chs bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1178 1.1 chs BUS_DMASYNC_PREWRITE);
1179 1.1 chs
1180 1.1 chs return 0;
1181 1.1 chs }
1182 1.1 chs
1183 1.1 chs void
1184 1.1 chs nfe_start(struct ifnet *ifp)
1185 1.1 chs {
1186 1.1 chs struct nfe_softc *sc = ifp->if_softc;
1187 1.14 tsutsui int old = sc->txq.queued;
1188 1.1 chs struct mbuf *m0;
1189 1.1 chs
1190 1.31 christos if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1191 1.18 cube return;
1192 1.18 cube
1193 1.1 chs for (;;) {
1194 1.1 chs IFQ_POLL(&ifp->if_snd, m0);
1195 1.1 chs if (m0 == NULL)
1196 1.1 chs break;
1197 1.1 chs
1198 1.1 chs if (nfe_encap(sc, m0) != 0) {
1199 1.1 chs ifp->if_flags |= IFF_OACTIVE;
1200 1.1 chs break;
1201 1.1 chs }
1202 1.1 chs
1203 1.1 chs /* packet put in h/w queue, remove from s/w queue */
1204 1.1 chs IFQ_DEQUEUE(&ifp->if_snd, m0);
1205 1.1 chs
1206 1.51 joerg bpf_mtap(ifp, m0);
1207 1.1 chs }
1208 1.1 chs
1209 1.14 tsutsui if (sc->txq.queued != old) {
1210 1.14 tsutsui /* packets are queued */
1211 1.14 tsutsui if (sc->sc_flags & NFE_40BIT_ADDR)
1212 1.14 tsutsui nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1213 1.14 tsutsui BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1214 1.14 tsutsui else
1215 1.14 tsutsui nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1216 1.14 tsutsui BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1217 1.14 tsutsui /* kick Tx */
1218 1.14 tsutsui NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1219 1.1 chs
1220 1.14 tsutsui /*
1221 1.14 tsutsui * Set a timeout in case the chip goes out to lunch.
1222 1.14 tsutsui */
1223 1.14 tsutsui ifp->if_timer = 5;
1224 1.14 tsutsui }
1225 1.1 chs }
1226 1.1 chs
1227 1.1 chs void
1228 1.1 chs nfe_watchdog(struct ifnet *ifp)
1229 1.1 chs {
1230 1.1 chs struct nfe_softc *sc = ifp->if_softc;
1231 1.1 chs
1232 1.30 cube aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1233 1.1 chs
1234 1.1 chs ifp->if_flags &= ~IFF_RUNNING;
1235 1.1 chs nfe_init(ifp);
1236 1.1 chs
1237 1.1 chs ifp->if_oerrors++;
1238 1.1 chs }
1239 1.1 chs
1240 1.1 chs int
1241 1.1 chs nfe_init(struct ifnet *ifp)
1242 1.1 chs {
1243 1.1 chs struct nfe_softc *sc = ifp->if_softc;
1244 1.1 chs uint32_t tmp;
1245 1.26 dyoung int rc = 0, s;
1246 1.1 chs
1247 1.1 chs if (ifp->if_flags & IFF_RUNNING)
1248 1.1 chs return 0;
1249 1.1 chs
1250 1.1 chs nfe_stop(ifp, 0);
1251 1.1 chs
1252 1.1 chs NFE_WRITE(sc, NFE_TX_UNK, 0);
1253 1.1 chs NFE_WRITE(sc, NFE_STATUS, 0);
1254 1.1 chs
1255 1.1 chs sc->rxtxctl = NFE_RXTX_BIT2;
1256 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR)
1257 1.1 chs sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1258 1.1 chs else if (sc->sc_flags & NFE_JUMBO_SUP)
1259 1.1 chs sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1260 1.1 chs if (sc->sc_flags & NFE_HW_CSUM)
1261 1.1 chs sc->rxtxctl |= NFE_RXTX_RXCSUM;
1262 1.1 chs #if NVLAN > 0
1263 1.1 chs /*
1264 1.1 chs * Although the adapter is capable of stripping VLAN tags from received
1265 1.1 chs * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1266 1.1 chs * purpose. This will be done in software by our network stack.
1267 1.1 chs */
1268 1.1 chs if (sc->sc_flags & NFE_HW_VLAN)
1269 1.1 chs sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1270 1.1 chs #endif
1271 1.1 chs NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1272 1.1 chs DELAY(10);
1273 1.1 chs NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1274 1.1 chs
1275 1.1 chs #if NVLAN
1276 1.1 chs if (sc->sc_flags & NFE_HW_VLAN)
1277 1.1 chs NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1278 1.1 chs #endif
1279 1.1 chs
1280 1.1 chs NFE_WRITE(sc, NFE_SETUP_R6, 0);
1281 1.1 chs
1282 1.1 chs /* set MAC address */
1283 1.1 chs nfe_set_macaddr(sc, sc->sc_enaddr);
1284 1.1 chs
1285 1.1 chs /* tell MAC where rings are in memory */
1286 1.1 chs #ifdef __LP64__
1287 1.1 chs NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1288 1.1 chs #endif
1289 1.1 chs NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1290 1.1 chs #ifdef __LP64__
1291 1.1 chs NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1292 1.1 chs #endif
1293 1.1 chs NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1294 1.1 chs
1295 1.1 chs NFE_WRITE(sc, NFE_RING_SIZE,
1296 1.1 chs (NFE_RX_RING_COUNT - 1) << 16 |
1297 1.1 chs (NFE_TX_RING_COUNT - 1));
1298 1.1 chs
1299 1.1 chs NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1300 1.1 chs
1301 1.1 chs /* force MAC to wakeup */
1302 1.1 chs tmp = NFE_READ(sc, NFE_PWR_STATE);
1303 1.1 chs NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1304 1.1 chs DELAY(10);
1305 1.1 chs tmp = NFE_READ(sc, NFE_PWR_STATE);
1306 1.1 chs NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1307 1.1 chs
1308 1.12 jmcneill s = splnet();
1309 1.39 cegger NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1310 1.12 jmcneill nfe_intr(sc); /* XXX clear IRQ status registers */
1311 1.39 cegger NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1312 1.12 jmcneill splx(s);
1313 1.12 jmcneill
1314 1.1 chs #if 1
1315 1.1 chs /* configure interrupts coalescing/mitigation */
1316 1.1 chs NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1317 1.1 chs #else
1318 1.1 chs /* no interrupt mitigation: one interrupt per packet */
1319 1.1 chs NFE_WRITE(sc, NFE_IMTIMER, 970);
1320 1.1 chs #endif
1321 1.1 chs
1322 1.1 chs NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1323 1.1 chs NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1324 1.1 chs NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1325 1.1 chs
1326 1.1 chs /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1327 1.1 chs NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1328 1.1 chs
1329 1.1 chs NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1330 1.31 christos NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1331 1.1 chs
1332 1.1 chs sc->rxtxctl &= ~NFE_RXTX_BIT2;
1333 1.1 chs NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1334 1.1 chs DELAY(10);
1335 1.1 chs NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1336 1.1 chs
1337 1.1 chs /* set Rx filter */
1338 1.1 chs nfe_setmulti(sc);
1339 1.1 chs
1340 1.26 dyoung if ((rc = ether_mediachange(ifp)) != 0)
1341 1.26 dyoung goto out;
1342 1.1 chs
1343 1.12 jmcneill nfe_tick(sc);
1344 1.12 jmcneill
1345 1.1 chs /* enable Rx */
1346 1.1 chs NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1347 1.1 chs
1348 1.1 chs /* enable Tx */
1349 1.1 chs NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1350 1.1 chs
1351 1.1 chs NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1352 1.1 chs
1353 1.1 chs /* enable interrupts */
1354 1.1 chs NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1355 1.1 chs
1356 1.1 chs callout_schedule(&sc->sc_tick_ch, hz);
1357 1.1 chs
1358 1.1 chs ifp->if_flags |= IFF_RUNNING;
1359 1.1 chs ifp->if_flags &= ~IFF_OACTIVE;
1360 1.1 chs
1361 1.26 dyoung out:
1362 1.26 dyoung return rc;
1363 1.1 chs }
1364 1.1 chs
1365 1.1 chs void
1366 1.7 christos nfe_stop(struct ifnet *ifp, int disable)
1367 1.1 chs {
1368 1.1 chs struct nfe_softc *sc = ifp->if_softc;
1369 1.1 chs
1370 1.1 chs callout_stop(&sc->sc_tick_ch);
1371 1.1 chs
1372 1.1 chs ifp->if_timer = 0;
1373 1.1 chs ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1374 1.1 chs
1375 1.1 chs mii_down(&sc->sc_mii);
1376 1.1 chs
1377 1.1 chs /* abort Tx */
1378 1.1 chs NFE_WRITE(sc, NFE_TX_CTL, 0);
1379 1.1 chs
1380 1.1 chs /* disable Rx */
1381 1.1 chs NFE_WRITE(sc, NFE_RX_CTL, 0);
1382 1.1 chs
1383 1.1 chs /* disable interrupts */
1384 1.1 chs NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1385 1.1 chs
1386 1.1 chs /* reset Tx and Rx rings */
1387 1.1 chs nfe_reset_tx_ring(sc, &sc->txq);
1388 1.1 chs nfe_reset_rx_ring(sc, &sc->rxq);
1389 1.1 chs }
1390 1.1 chs
1391 1.1 chs int
1392 1.1 chs nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1393 1.1 chs {
1394 1.1 chs struct nfe_desc32 *desc32;
1395 1.1 chs struct nfe_desc64 *desc64;
1396 1.1 chs struct nfe_rx_data *data;
1397 1.1 chs struct nfe_jbuf *jbuf;
1398 1.1 chs void **desc;
1399 1.1 chs bus_addr_t physaddr;
1400 1.1 chs int i, nsegs, error, descsize;
1401 1.1 chs
1402 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
1403 1.1 chs desc = (void **)&ring->desc64;
1404 1.1 chs descsize = sizeof (struct nfe_desc64);
1405 1.1 chs } else {
1406 1.1 chs desc = (void **)&ring->desc32;
1407 1.1 chs descsize = sizeof (struct nfe_desc32);
1408 1.1 chs }
1409 1.1 chs
1410 1.1 chs ring->cur = ring->next = 0;
1411 1.1 chs ring->bufsz = MCLBYTES;
1412 1.1 chs
1413 1.1 chs error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1414 1.1 chs NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1415 1.1 chs if (error != 0) {
1416 1.30 cube aprint_error_dev(sc->sc_dev,
1417 1.30 cube "could not create desc DMA map\n");
1418 1.42 cegger ring->map = NULL;
1419 1.1 chs goto fail;
1420 1.1 chs }
1421 1.1 chs
1422 1.1 chs error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1423 1.1 chs PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1424 1.1 chs if (error != 0) {
1425 1.30 cube aprint_error_dev(sc->sc_dev,
1426 1.30 cube "could not allocate DMA memory\n");
1427 1.1 chs goto fail;
1428 1.1 chs }
1429 1.1 chs
1430 1.1 chs error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1431 1.15 christos NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1432 1.1 chs if (error != 0) {
1433 1.30 cube aprint_error_dev(sc->sc_dev,
1434 1.30 cube "could not map desc DMA memory\n");
1435 1.1 chs goto fail;
1436 1.1 chs }
1437 1.1 chs
1438 1.1 chs error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1439 1.1 chs NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1440 1.1 chs if (error != 0) {
1441 1.30 cube aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1442 1.1 chs goto fail;
1443 1.1 chs }
1444 1.1 chs
1445 1.43 cegger memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
1446 1.1 chs ring->physaddr = ring->map->dm_segs[0].ds_addr;
1447 1.1 chs
1448 1.1 chs if (sc->sc_flags & NFE_USE_JUMBO) {
1449 1.1 chs ring->bufsz = NFE_JBYTES;
1450 1.1 chs if ((error = nfe_jpool_alloc(sc)) != 0) {
1451 1.30 cube aprint_error_dev(sc->sc_dev,
1452 1.30 cube "could not allocate jumbo frames\n");
1453 1.1 chs goto fail;
1454 1.1 chs }
1455 1.1 chs }
1456 1.1 chs
1457 1.1 chs /*
1458 1.1 chs * Pre-allocate Rx buffers and populate Rx ring.
1459 1.1 chs */
1460 1.1 chs for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1461 1.1 chs data = &sc->rxq.data[i];
1462 1.1 chs
1463 1.1 chs MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1464 1.1 chs if (data->m == NULL) {
1465 1.30 cube aprint_error_dev(sc->sc_dev,
1466 1.30 cube "could not allocate rx mbuf\n");
1467 1.1 chs error = ENOMEM;
1468 1.1 chs goto fail;
1469 1.1 chs }
1470 1.1 chs
1471 1.1 chs if (sc->sc_flags & NFE_USE_JUMBO) {
1472 1.19 cube if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1473 1.30 cube aprint_error_dev(sc->sc_dev,
1474 1.30 cube "could not allocate jumbo buffer\n");
1475 1.1 chs goto fail;
1476 1.1 chs }
1477 1.1 chs MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1478 1.1 chs sc);
1479 1.1 chs
1480 1.1 chs physaddr = jbuf->physaddr;
1481 1.1 chs } else {
1482 1.1 chs error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1483 1.1 chs MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1484 1.1 chs if (error != 0) {
1485 1.30 cube aprint_error_dev(sc->sc_dev,
1486 1.30 cube "could not create DMA map\n");
1487 1.42 cegger data->map = NULL;
1488 1.1 chs goto fail;
1489 1.1 chs }
1490 1.1 chs MCLGET(data->m, M_DONTWAIT);
1491 1.1 chs if (!(data->m->m_flags & M_EXT)) {
1492 1.30 cube aprint_error_dev(sc->sc_dev,
1493 1.30 cube "could not allocate mbuf cluster\n");
1494 1.1 chs error = ENOMEM;
1495 1.1 chs goto fail;
1496 1.1 chs }
1497 1.1 chs
1498 1.1 chs error = bus_dmamap_load(sc->sc_dmat, data->map,
1499 1.1 chs mtod(data->m, void *), MCLBYTES, NULL,
1500 1.1 chs BUS_DMA_READ | BUS_DMA_NOWAIT);
1501 1.1 chs if (error != 0) {
1502 1.30 cube aprint_error_dev(sc->sc_dev,
1503 1.30 cube "could not load rx buf DMA map");
1504 1.1 chs goto fail;
1505 1.1 chs }
1506 1.1 chs physaddr = data->map->dm_segs[0].ds_addr;
1507 1.1 chs }
1508 1.1 chs
1509 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
1510 1.1 chs desc64 = &sc->rxq.desc64[i];
1511 1.1 chs #if defined(__LP64__)
1512 1.1 chs desc64->physaddr[0] = htole32(physaddr >> 32);
1513 1.1 chs #endif
1514 1.1 chs desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1515 1.1 chs desc64->length = htole16(sc->rxq.bufsz);
1516 1.1 chs desc64->flags = htole16(NFE_RX_READY);
1517 1.1 chs } else {
1518 1.1 chs desc32 = &sc->rxq.desc32[i];
1519 1.1 chs desc32->physaddr = htole32(physaddr);
1520 1.1 chs desc32->length = htole16(sc->rxq.bufsz);
1521 1.1 chs desc32->flags = htole16(NFE_RX_READY);
1522 1.1 chs }
1523 1.1 chs }
1524 1.1 chs
1525 1.1 chs bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1526 1.1 chs BUS_DMASYNC_PREWRITE);
1527 1.1 chs
1528 1.1 chs return 0;
1529 1.1 chs
1530 1.1 chs fail: nfe_free_rx_ring(sc, ring);
1531 1.1 chs return error;
1532 1.1 chs }
1533 1.1 chs
1534 1.1 chs void
1535 1.1 chs nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1536 1.1 chs {
1537 1.1 chs int i;
1538 1.1 chs
1539 1.1 chs for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1540 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
1541 1.1 chs ring->desc64[i].length = htole16(ring->bufsz);
1542 1.1 chs ring->desc64[i].flags = htole16(NFE_RX_READY);
1543 1.1 chs } else {
1544 1.1 chs ring->desc32[i].length = htole16(ring->bufsz);
1545 1.1 chs ring->desc32[i].flags = htole16(NFE_RX_READY);
1546 1.1 chs }
1547 1.1 chs }
1548 1.1 chs
1549 1.1 chs bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1550 1.1 chs BUS_DMASYNC_PREWRITE);
1551 1.1 chs
1552 1.1 chs ring->cur = ring->next = 0;
1553 1.1 chs }
1554 1.1 chs
1555 1.1 chs void
1556 1.1 chs nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1557 1.1 chs {
1558 1.1 chs struct nfe_rx_data *data;
1559 1.1 chs void *desc;
1560 1.1 chs int i, descsize;
1561 1.1 chs
1562 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
1563 1.1 chs desc = ring->desc64;
1564 1.1 chs descsize = sizeof (struct nfe_desc64);
1565 1.1 chs } else {
1566 1.1 chs desc = ring->desc32;
1567 1.1 chs descsize = sizeof (struct nfe_desc32);
1568 1.1 chs }
1569 1.1 chs
1570 1.1 chs if (desc != NULL) {
1571 1.1 chs bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1572 1.1 chs ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1573 1.1 chs bus_dmamap_unload(sc->sc_dmat, ring->map);
1574 1.15 christos bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1575 1.1 chs NFE_RX_RING_COUNT * descsize);
1576 1.1 chs bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1577 1.1 chs }
1578 1.1 chs
1579 1.1 chs for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1580 1.1 chs data = &ring->data[i];
1581 1.1 chs
1582 1.1 chs if (data->map != NULL) {
1583 1.1 chs bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1584 1.1 chs data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1585 1.1 chs bus_dmamap_unload(sc->sc_dmat, data->map);
1586 1.1 chs bus_dmamap_destroy(sc->sc_dmat, data->map);
1587 1.1 chs }
1588 1.1 chs if (data->m != NULL)
1589 1.1 chs m_freem(data->m);
1590 1.1 chs }
1591 1.53 jakllsch
1592 1.53 jakllsch nfe_jpool_free(sc);
1593 1.1 chs }
1594 1.1 chs
1595 1.1 chs struct nfe_jbuf *
1596 1.19 cube nfe_jalloc(struct nfe_softc *sc, int i)
1597 1.1 chs {
1598 1.1 chs struct nfe_jbuf *jbuf;
1599 1.1 chs
1600 1.34 cube mutex_enter(&sc->rxq.mtx);
1601 1.1 chs jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1602 1.34 cube if (jbuf != NULL)
1603 1.34 cube SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1604 1.34 cube mutex_exit(&sc->rxq.mtx);
1605 1.1 chs if (jbuf == NULL)
1606 1.1 chs return NULL;
1607 1.19 cube sc->rxq.jbufmap[i] =
1608 1.19 cube ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1609 1.1 chs return jbuf;
1610 1.1 chs }
1611 1.1 chs
1612 1.1 chs /*
1613 1.1 chs * This is called automatically by the network stack when the mbuf is freed.
1614 1.1 chs * Caution must be taken that the NIC might be reset by the time the mbuf is
1615 1.1 chs * freed.
1616 1.1 chs */
1617 1.1 chs void
1618 1.15 christos nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1619 1.1 chs {
1620 1.1 chs struct nfe_softc *sc = arg;
1621 1.1 chs struct nfe_jbuf *jbuf;
1622 1.1 chs int i;
1623 1.1 chs
1624 1.1 chs /* find the jbuf from the base pointer */
1625 1.15 christos i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1626 1.1 chs if (i < 0 || i >= NFE_JPOOL_COUNT) {
1627 1.30 cube aprint_error_dev(sc->sc_dev,
1628 1.30 cube "request to free a buffer (%p) not managed by us\n", buf);
1629 1.1 chs return;
1630 1.1 chs }
1631 1.1 chs jbuf = &sc->rxq.jbuf[i];
1632 1.1 chs
1633 1.1 chs /* ..and put it back in the free list */
1634 1.34 cube mutex_enter(&sc->rxq.mtx);
1635 1.1 chs SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1636 1.34 cube mutex_exit(&sc->rxq.mtx);
1637 1.2 chs
1638 1.31 christos if (m != NULL)
1639 1.31 christos pool_cache_put(mb_cache, m);
1640 1.1 chs }
1641 1.1 chs
1642 1.1 chs int
1643 1.1 chs nfe_jpool_alloc(struct nfe_softc *sc)
1644 1.1 chs {
1645 1.1 chs struct nfe_rx_ring *ring = &sc->rxq;
1646 1.1 chs struct nfe_jbuf *jbuf;
1647 1.1 chs bus_addr_t physaddr;
1648 1.15 christos char *buf;
1649 1.1 chs int i, nsegs, error;
1650 1.1 chs
1651 1.1 chs /*
1652 1.1 chs * Allocate a big chunk of DMA'able memory.
1653 1.1 chs */
1654 1.1 chs error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1655 1.1 chs NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1656 1.1 chs if (error != 0) {
1657 1.30 cube aprint_error_dev(sc->sc_dev,
1658 1.30 cube "could not create jumbo DMA map\n");
1659 1.42 cegger ring->jmap = NULL;
1660 1.1 chs goto fail;
1661 1.1 chs }
1662 1.1 chs
1663 1.1 chs error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1664 1.1 chs &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1665 1.1 chs if (error != 0) {
1666 1.30 cube aprint_error_dev(sc->sc_dev,
1667 1.30 cube "could not allocate jumbo DMA memory\n");
1668 1.1 chs goto fail;
1669 1.1 chs }
1670 1.1 chs
1671 1.1 chs error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1672 1.1 chs &ring->jpool, BUS_DMA_NOWAIT);
1673 1.1 chs if (error != 0) {
1674 1.30 cube aprint_error_dev(sc->sc_dev,
1675 1.30 cube "could not map jumbo DMA memory\n");
1676 1.1 chs goto fail;
1677 1.1 chs }
1678 1.1 chs
1679 1.1 chs error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1680 1.1 chs NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1681 1.1 chs if (error != 0) {
1682 1.30 cube aprint_error_dev(sc->sc_dev,
1683 1.30 cube "could not load jumbo DMA map\n");
1684 1.1 chs goto fail;
1685 1.1 chs }
1686 1.1 chs
1687 1.1 chs /* ..and split it into 9KB chunks */
1688 1.1 chs SLIST_INIT(&ring->jfreelist);
1689 1.1 chs
1690 1.1 chs buf = ring->jpool;
1691 1.1 chs physaddr = ring->jmap->dm_segs[0].ds_addr;
1692 1.1 chs for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1693 1.1 chs jbuf = &ring->jbuf[i];
1694 1.1 chs
1695 1.1 chs jbuf->buf = buf;
1696 1.1 chs jbuf->physaddr = physaddr;
1697 1.1 chs
1698 1.1 chs SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1699 1.1 chs
1700 1.1 chs buf += NFE_JBYTES;
1701 1.1 chs physaddr += NFE_JBYTES;
1702 1.1 chs }
1703 1.1 chs
1704 1.1 chs return 0;
1705 1.1 chs
1706 1.1 chs fail: nfe_jpool_free(sc);
1707 1.1 chs return error;
1708 1.1 chs }
1709 1.1 chs
1710 1.1 chs void
1711 1.1 chs nfe_jpool_free(struct nfe_softc *sc)
1712 1.1 chs {
1713 1.1 chs struct nfe_rx_ring *ring = &sc->rxq;
1714 1.1 chs
1715 1.1 chs if (ring->jmap != NULL) {
1716 1.1 chs bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1717 1.1 chs ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1718 1.1 chs bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1719 1.1 chs bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1720 1.53 jakllsch ring->jmap = NULL;
1721 1.1 chs }
1722 1.1 chs if (ring->jpool != NULL) {
1723 1.1 chs bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1724 1.1 chs bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1725 1.53 jakllsch ring->jpool = NULL;
1726 1.1 chs }
1727 1.1 chs }
1728 1.1 chs
1729 1.1 chs int
1730 1.1 chs nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1731 1.1 chs {
1732 1.1 chs int i, nsegs, error;
1733 1.1 chs void **desc;
1734 1.1 chs int descsize;
1735 1.1 chs
1736 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
1737 1.1 chs desc = (void **)&ring->desc64;
1738 1.1 chs descsize = sizeof (struct nfe_desc64);
1739 1.1 chs } else {
1740 1.1 chs desc = (void **)&ring->desc32;
1741 1.1 chs descsize = sizeof (struct nfe_desc32);
1742 1.1 chs }
1743 1.1 chs
1744 1.1 chs ring->queued = 0;
1745 1.1 chs ring->cur = ring->next = 0;
1746 1.1 chs
1747 1.1 chs error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1748 1.1 chs NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1749 1.1 chs
1750 1.1 chs if (error != 0) {
1751 1.30 cube aprint_error_dev(sc->sc_dev,
1752 1.30 cube "could not create desc DMA map\n");
1753 1.42 cegger ring->map = NULL;
1754 1.1 chs goto fail;
1755 1.1 chs }
1756 1.1 chs
1757 1.1 chs error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1758 1.1 chs PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1759 1.1 chs if (error != 0) {
1760 1.30 cube aprint_error_dev(sc->sc_dev,
1761 1.30 cube "could not allocate DMA memory\n");
1762 1.1 chs goto fail;
1763 1.1 chs }
1764 1.1 chs
1765 1.1 chs error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1766 1.15 christos NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1767 1.1 chs if (error != 0) {
1768 1.30 cube aprint_error_dev(sc->sc_dev,
1769 1.30 cube "could not map desc DMA memory\n");
1770 1.1 chs goto fail;
1771 1.1 chs }
1772 1.1 chs
1773 1.1 chs error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1774 1.1 chs NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1775 1.1 chs if (error != 0) {
1776 1.30 cube aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1777 1.1 chs goto fail;
1778 1.1 chs }
1779 1.1 chs
1780 1.43 cegger memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
1781 1.1 chs ring->physaddr = ring->map->dm_segs[0].ds_addr;
1782 1.1 chs
1783 1.1 chs for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1784 1.1 chs error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1785 1.1 chs NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1786 1.1 chs &ring->data[i].map);
1787 1.1 chs if (error != 0) {
1788 1.30 cube aprint_error_dev(sc->sc_dev,
1789 1.30 cube "could not create DMA map\n");
1790 1.42 cegger ring->data[i].map = NULL;
1791 1.1 chs goto fail;
1792 1.1 chs }
1793 1.1 chs }
1794 1.1 chs
1795 1.1 chs return 0;
1796 1.1 chs
1797 1.1 chs fail: nfe_free_tx_ring(sc, ring);
1798 1.1 chs return error;
1799 1.1 chs }
1800 1.1 chs
1801 1.1 chs void
1802 1.1 chs nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1803 1.1 chs {
1804 1.1 chs struct nfe_tx_data *data;
1805 1.1 chs int i;
1806 1.1 chs
1807 1.1 chs for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1808 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR)
1809 1.1 chs ring->desc64[i].flags = 0;
1810 1.1 chs else
1811 1.1 chs ring->desc32[i].flags = 0;
1812 1.1 chs
1813 1.1 chs data = &ring->data[i];
1814 1.1 chs
1815 1.1 chs if (data->m != NULL) {
1816 1.1 chs bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1817 1.1 chs data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1818 1.1 chs bus_dmamap_unload(sc->sc_dmat, data->active);
1819 1.1 chs m_freem(data->m);
1820 1.1 chs data->m = NULL;
1821 1.1 chs }
1822 1.1 chs }
1823 1.1 chs
1824 1.1 chs bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1825 1.1 chs BUS_DMASYNC_PREWRITE);
1826 1.1 chs
1827 1.1 chs ring->queued = 0;
1828 1.1 chs ring->cur = ring->next = 0;
1829 1.1 chs }
1830 1.1 chs
1831 1.1 chs void
1832 1.1 chs nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1833 1.1 chs {
1834 1.1 chs struct nfe_tx_data *data;
1835 1.1 chs void *desc;
1836 1.1 chs int i, descsize;
1837 1.1 chs
1838 1.1 chs if (sc->sc_flags & NFE_40BIT_ADDR) {
1839 1.1 chs desc = ring->desc64;
1840 1.1 chs descsize = sizeof (struct nfe_desc64);
1841 1.1 chs } else {
1842 1.1 chs desc = ring->desc32;
1843 1.1 chs descsize = sizeof (struct nfe_desc32);
1844 1.1 chs }
1845 1.1 chs
1846 1.1 chs if (desc != NULL) {
1847 1.1 chs bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1848 1.1 chs ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1849 1.1 chs bus_dmamap_unload(sc->sc_dmat, ring->map);
1850 1.15 christos bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1851 1.1 chs NFE_TX_RING_COUNT * descsize);
1852 1.1 chs bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1853 1.1 chs }
1854 1.1 chs
1855 1.1 chs for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1856 1.1 chs data = &ring->data[i];
1857 1.1 chs
1858 1.1 chs if (data->m != NULL) {
1859 1.1 chs bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1860 1.1 chs data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1861 1.1 chs bus_dmamap_unload(sc->sc_dmat, data->active);
1862 1.1 chs m_freem(data->m);
1863 1.1 chs }
1864 1.1 chs }
1865 1.1 chs
1866 1.1 chs /* ..and now actually destroy the DMA mappings */
1867 1.1 chs for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1868 1.1 chs data = &ring->data[i];
1869 1.1 chs if (data->map == NULL)
1870 1.1 chs continue;
1871 1.1 chs bus_dmamap_destroy(sc->sc_dmat, data->map);
1872 1.1 chs }
1873 1.1 chs }
1874 1.1 chs
1875 1.1 chs void
1876 1.1 chs nfe_setmulti(struct nfe_softc *sc)
1877 1.1 chs {
1878 1.1 chs struct ethercom *ec = &sc->sc_ethercom;
1879 1.1 chs struct ifnet *ifp = &ec->ec_if;
1880 1.1 chs struct ether_multi *enm;
1881 1.1 chs struct ether_multistep step;
1882 1.1 chs uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1883 1.1 chs uint32_t filter = NFE_RXFILTER_MAGIC;
1884 1.1 chs int i;
1885 1.1 chs
1886 1.1 chs if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1887 1.43 cegger memset(addr, 0, ETHER_ADDR_LEN);
1888 1.43 cegger memset(mask, 0, ETHER_ADDR_LEN);
1889 1.1 chs goto done;
1890 1.1 chs }
1891 1.1 chs
1892 1.43 cegger memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
1893 1.43 cegger memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
1894 1.1 chs
1895 1.1 chs ETHER_FIRST_MULTI(step, ec, enm);
1896 1.1 chs while (enm != NULL) {
1897 1.44 cegger if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1898 1.1 chs ifp->if_flags |= IFF_ALLMULTI;
1899 1.43 cegger memset(addr, 0, ETHER_ADDR_LEN);
1900 1.43 cegger memset(mask, 0, ETHER_ADDR_LEN);
1901 1.1 chs goto done;
1902 1.1 chs }
1903 1.1 chs for (i = 0; i < ETHER_ADDR_LEN; i++) {
1904 1.1 chs addr[i] &= enm->enm_addrlo[i];
1905 1.1 chs mask[i] &= ~enm->enm_addrlo[i];
1906 1.1 chs }
1907 1.1 chs ETHER_NEXT_MULTI(step, enm);
1908 1.1 chs }
1909 1.1 chs for (i = 0; i < ETHER_ADDR_LEN; i++)
1910 1.1 chs mask[i] |= addr[i];
1911 1.1 chs
1912 1.1 chs done:
1913 1.1 chs addr[0] |= 0x01; /* make sure multicast bit is set */
1914 1.1 chs
1915 1.1 chs NFE_WRITE(sc, NFE_MULTIADDR_HI,
1916 1.1 chs addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1917 1.1 chs NFE_WRITE(sc, NFE_MULTIADDR_LO,
1918 1.1 chs addr[5] << 8 | addr[4]);
1919 1.1 chs NFE_WRITE(sc, NFE_MULTIMASK_HI,
1920 1.1 chs mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1921 1.1 chs NFE_WRITE(sc, NFE_MULTIMASK_LO,
1922 1.1 chs mask[5] << 8 | mask[4]);
1923 1.1 chs
1924 1.1 chs filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1925 1.1 chs NFE_WRITE(sc, NFE_RXFILTER, filter);
1926 1.1 chs }
1927 1.1 chs
1928 1.1 chs void
1929 1.1 chs nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1930 1.1 chs {
1931 1.1 chs uint32_t tmp;
1932 1.1 chs
1933 1.31 christos if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1934 1.31 christos tmp = NFE_READ(sc, NFE_MACADDR_HI);
1935 1.31 christos addr[0] = (tmp & 0xff);
1936 1.31 christos addr[1] = (tmp >> 8) & 0xff;
1937 1.31 christos addr[2] = (tmp >> 16) & 0xff;
1938 1.31 christos addr[3] = (tmp >> 24) & 0xff;
1939 1.31 christos
1940 1.31 christos tmp = NFE_READ(sc, NFE_MACADDR_LO);
1941 1.31 christos addr[4] = (tmp & 0xff);
1942 1.31 christos addr[5] = (tmp >> 8) & 0xff;
1943 1.31 christos
1944 1.31 christos } else {
1945 1.25 tsutsui tmp = NFE_READ(sc, NFE_MACADDR_LO);
1946 1.25 tsutsui addr[0] = (tmp >> 8) & 0xff;
1947 1.25 tsutsui addr[1] = (tmp & 0xff);
1948 1.25 tsutsui
1949 1.25 tsutsui tmp = NFE_READ(sc, NFE_MACADDR_HI);
1950 1.25 tsutsui addr[2] = (tmp >> 24) & 0xff;
1951 1.25 tsutsui addr[3] = (tmp >> 16) & 0xff;
1952 1.25 tsutsui addr[4] = (tmp >> 8) & 0xff;
1953 1.25 tsutsui addr[5] = (tmp & 0xff);
1954 1.25 tsutsui }
1955 1.1 chs }
1956 1.1 chs
1957 1.1 chs void
1958 1.1 chs nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1959 1.1 chs {
1960 1.1 chs NFE_WRITE(sc, NFE_MACADDR_LO,
1961 1.1 chs addr[5] << 8 | addr[4]);
1962 1.1 chs NFE_WRITE(sc, NFE_MACADDR_HI,
1963 1.1 chs addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1964 1.1 chs }
1965 1.1 chs
1966 1.1 chs void
1967 1.1 chs nfe_tick(void *arg)
1968 1.1 chs {
1969 1.1 chs struct nfe_softc *sc = arg;
1970 1.1 chs int s;
1971 1.1 chs
1972 1.1 chs s = splnet();
1973 1.1 chs mii_tick(&sc->sc_mii);
1974 1.1 chs splx(s);
1975 1.1 chs
1976 1.1 chs callout_schedule(&sc->sc_tick_ch, hz);
1977 1.1 chs }
1978 1.35 jmcneill
1979 1.35 jmcneill void
1980 1.35 jmcneill nfe_poweron(device_t self)
1981 1.35 jmcneill {
1982 1.35 jmcneill struct nfe_softc *sc = device_private(self);
1983 1.35 jmcneill
1984 1.35 jmcneill if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1985 1.35 jmcneill NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1986 1.35 jmcneill NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1987 1.35 jmcneill DELAY(100);
1988 1.35 jmcneill NFE_WRITE(sc, NFE_MAC_RESET, 0);
1989 1.35 jmcneill DELAY(100);
1990 1.35 jmcneill NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1991 1.35 jmcneill NFE_WRITE(sc, NFE_PWR2_CTL,
1992 1.35 jmcneill NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1993 1.35 jmcneill }
1994 1.35 jmcneill }
1995 1.35 jmcneill
1996 1.35 jmcneill bool
1997 1.50 dyoung nfe_resume(device_t dv, const pmf_qual_t *qual)
1998 1.35 jmcneill {
1999 1.35 jmcneill nfe_poweron(dv);
2000 1.35 jmcneill
2001 1.35 jmcneill return true;
2002 1.35 jmcneill }
2003