Home | History | Annotate | Line # | Download | only in pci
if_nfe.c revision 1.64
      1  1.64  knakahar /*	$NetBSD: if_nfe.c,v 1.64 2017/09/26 07:42:06 knakahara Exp $	*/
      2  1.31  christos /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
      3   1.1       chs 
      4   1.1       chs /*-
      5  1.31  christos  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6   1.1       chs  * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
      7   1.1       chs  *
      8   1.1       chs  * Permission to use, copy, modify, and distribute this software for any
      9   1.1       chs  * purpose with or without fee is hereby granted, provided that the above
     10   1.1       chs  * copyright notice and this permission notice appear in all copies.
     11   1.1       chs  *
     12   1.1       chs  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13   1.1       chs  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14   1.1       chs  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15   1.1       chs  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16   1.1       chs  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17   1.1       chs  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18   1.1       chs  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19   1.1       chs  */
     20   1.1       chs 
     21   1.1       chs /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
     22   1.1       chs 
     23   1.1       chs #include <sys/cdefs.h>
     24  1.64  knakahar __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.64 2017/09/26 07:42:06 knakahara Exp $");
     25   1.1       chs 
     26   1.1       chs #include "opt_inet.h"
     27   1.1       chs #include "vlan.h"
     28   1.1       chs 
     29   1.1       chs #include <sys/param.h>
     30   1.1       chs #include <sys/endian.h>
     31   1.1       chs #include <sys/systm.h>
     32   1.1       chs #include <sys/types.h>
     33   1.1       chs #include <sys/sockio.h>
     34   1.1       chs #include <sys/mbuf.h>
     35  1.34      cube #include <sys/mutex.h>
     36   1.1       chs #include <sys/queue.h>
     37   1.1       chs #include <sys/kernel.h>
     38   1.1       chs #include <sys/device.h>
     39  1.31  christos #include <sys/callout.h>
     40   1.1       chs #include <sys/socket.h>
     41   1.1       chs 
     42  1.20        ad #include <sys/bus.h>
     43   1.1       chs 
     44   1.1       chs #include <net/if.h>
     45   1.1       chs #include <net/if_dl.h>
     46   1.1       chs #include <net/if_media.h>
     47   1.1       chs #include <net/if_ether.h>
     48   1.1       chs #include <net/if_arp.h>
     49   1.1       chs 
     50   1.1       chs #ifdef INET
     51   1.1       chs #include <netinet/in.h>
     52   1.1       chs #include <netinet/in_systm.h>
     53   1.1       chs #include <netinet/in_var.h>
     54   1.1       chs #include <netinet/ip.h>
     55   1.1       chs #include <netinet/if_inarp.h>
     56   1.1       chs #endif
     57   1.1       chs 
     58   1.1       chs #if NVLAN > 0
     59   1.1       chs #include <net/if_types.h>
     60   1.1       chs #endif
     61   1.1       chs 
     62   1.1       chs #include <net/bpf.h>
     63   1.1       chs 
     64   1.1       chs #include <dev/mii/mii.h>
     65   1.1       chs #include <dev/mii/miivar.h>
     66   1.1       chs 
     67   1.1       chs #include <dev/pci/pcireg.h>
     68   1.1       chs #include <dev/pci/pcivar.h>
     69   1.1       chs #include <dev/pci/pcidevs.h>
     70   1.1       chs 
     71   1.1       chs #include <dev/pci/if_nfereg.h>
     72   1.1       chs #include <dev/pci/if_nfevar.h>
     73   1.1       chs 
     74  1.37    dyoung static int nfe_ifflags_cb(struct ethercom *);
     75  1.37    dyoung 
     76  1.30      cube int	nfe_match(device_t, cfdata_t, void *);
     77  1.30      cube void	nfe_attach(device_t, device_t, void *);
     78  1.53  jakllsch int	nfe_detach(device_t, int);
     79   1.1       chs void	nfe_power(int, void *);
     80  1.56      matt void	nfe_miibus_statchg(struct ifnet *);
     81  1.30      cube int	nfe_miibus_readreg(device_t, int, int);
     82  1.30      cube void	nfe_miibus_writereg(device_t, int, int, int);
     83   1.1       chs int	nfe_intr(void *);
     84  1.15  christos int	nfe_ioctl(struct ifnet *, u_long, void *);
     85   1.1       chs void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
     86   1.1       chs void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
     87   1.1       chs void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
     88   1.1       chs void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
     89   1.1       chs void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
     90   1.1       chs void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
     91   1.1       chs void	nfe_rxeof(struct nfe_softc *);
     92   1.1       chs void	nfe_txeof(struct nfe_softc *);
     93   1.1       chs int	nfe_encap(struct nfe_softc *, struct mbuf *);
     94   1.1       chs void	nfe_start(struct ifnet *);
     95   1.1       chs void	nfe_watchdog(struct ifnet *);
     96   1.1       chs int	nfe_init(struct ifnet *);
     97   1.1       chs void	nfe_stop(struct ifnet *, int);
     98  1.19      cube struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
     99  1.15  christos void	nfe_jfree(struct mbuf *, void *, size_t, void *);
    100   1.1       chs int	nfe_jpool_alloc(struct nfe_softc *);
    101   1.1       chs void	nfe_jpool_free(struct nfe_softc *);
    102   1.1       chs int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    103   1.1       chs void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    104   1.1       chs void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    105   1.1       chs int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    106   1.1       chs void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    107   1.1       chs void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    108   1.1       chs void	nfe_setmulti(struct nfe_softc *);
    109   1.1       chs void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
    110   1.1       chs void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
    111   1.1       chs void	nfe_tick(void *);
    112  1.35  jmcneill void	nfe_poweron(device_t);
    113  1.50    dyoung bool	nfe_resume(device_t, const pmf_qual_t *);
    114   1.1       chs 
    115  1.53  jakllsch CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
    116  1.53  jakllsch     nfe_match, nfe_attach, nfe_detach, NULL);
    117   1.1       chs 
    118  1.34      cube /* #define NFE_NO_JUMBO */
    119  1.34      cube 
    120   1.1       chs #ifdef NFE_DEBUG
    121   1.1       chs int nfedebug = 0;
    122   1.1       chs #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
    123   1.1       chs #define DPRINTFN(n,x)	do { if (nfedebug >= (n)) printf x; } while (0)
    124   1.1       chs #else
    125   1.1       chs #define DPRINTF(x)
    126   1.1       chs #define DPRINTFN(n,x)
    127   1.1       chs #endif
    128   1.1       chs 
    129   1.1       chs /* deal with naming differences */
    130   1.1       chs 
    131   1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
    132   1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
    133   1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
    134   1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
    135   1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
    136   1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
    137   1.1       chs 
    138   1.1       chs #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
    139   1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
    140   1.1       chs #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
    141   1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
    142   1.1       chs 
    143   1.1       chs #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
    144   1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
    145   1.1       chs #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
    146   1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
    147   1.1       chs 
    148   1.1       chs #ifdef	_LP64
    149   1.1       chs #define	__LP64__ 1
    150   1.1       chs #endif
    151   1.1       chs 
    152   1.1       chs const struct nfe_product {
    153   1.1       chs 	pci_vendor_id_t		vendor;
    154   1.1       chs 	pci_product_id_t	product;
    155   1.1       chs } nfe_devices[] = {
    156   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
    157   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
    158   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
    159   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
    160   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
    161   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
    162   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
    163   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
    164   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
    165   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
    166   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
    167   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
    168   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
    169   1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
    170   1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
    171   1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
    172   1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
    173   1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
    174   1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
    175   1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
    176   1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
    177   1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
    178  1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
    179  1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
    180  1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
    181  1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
    182  1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
    183  1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
    184  1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
    185  1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
    186  1.29     isaki 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
    187  1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
    188  1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
    189  1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
    190  1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
    191  1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
    192  1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
    193  1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
    194  1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
    195   1.1       chs };
    196   1.1       chs 
    197   1.1       chs int
    198  1.30      cube nfe_match(device_t dev, cfdata_t match, void *aux)
    199   1.1       chs {
    200   1.1       chs 	struct pci_attach_args *pa = aux;
    201   1.1       chs 	const struct nfe_product *np;
    202   1.1       chs 	int i;
    203   1.1       chs 
    204  1.45    cegger 	for (i = 0; i < __arraycount(nfe_devices); i++) {
    205   1.1       chs 		np = &nfe_devices[i];
    206   1.1       chs 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
    207   1.1       chs 		    PCI_PRODUCT(pa->pa_id) == np->product)
    208   1.1       chs 			return 1;
    209   1.1       chs 	}
    210   1.1       chs 	return 0;
    211   1.1       chs }
    212   1.1       chs 
    213   1.1       chs void
    214  1.30      cube nfe_attach(device_t parent, device_t self, void *aux)
    215   1.1       chs {
    216  1.30      cube 	struct nfe_softc *sc = device_private(self);
    217   1.1       chs 	struct pci_attach_args *pa = aux;
    218   1.1       chs 	pci_chipset_tag_t pc = pa->pa_pc;
    219   1.1       chs 	pci_intr_handle_t ih;
    220   1.1       chs 	const char *intrstr;
    221   1.1       chs 	struct ifnet *ifp;
    222  1.52  jakllsch 	pcireg_t memtype, csr;
    223  1.40    cegger 	int mii_flags = 0;
    224  1.59  christos 	char intrbuf[PCI_INTRSTR_LEN];
    225  1.10   tsutsui 
    226  1.30      cube 	sc->sc_dev = self;
    227  1.53  jakllsch 	sc->sc_pc = pa->pa_pc;
    228  1.55  drochner 	pci_aprint_devinfo(pa, NULL);
    229   1.1       chs 
    230   1.1       chs 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
    231   1.1       chs 	switch (memtype) {
    232   1.1       chs 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    233   1.1       chs 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    234   1.1       chs 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
    235  1.53  jakllsch 		    &sc->sc_memh, NULL, &sc->sc_mems) == 0)
    236   1.1       chs 			break;
    237   1.1       chs 		/* FALLTHROUGH */
    238   1.1       chs 	default:
    239  1.30      cube 		aprint_error_dev(self, "could not map mem space\n");
    240   1.1       chs 		return;
    241   1.1       chs 	}
    242   1.1       chs 
    243   1.1       chs 	if (pci_intr_map(pa, &ih) != 0) {
    244  1.30      cube 		aprint_error_dev(self, "could not map interrupt\n");
    245  1.42    cegger 		goto fail;
    246   1.1       chs 	}
    247   1.1       chs 
    248  1.59  christos 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    249   1.1       chs 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
    250   1.1       chs 	if (sc->sc_ih == NULL) {
    251  1.30      cube 		aprint_error_dev(self, "could not establish interrupt");
    252   1.1       chs 		if (intrstr != NULL)
    253  1.47     njoly 			aprint_error(" at %s", intrstr);
    254  1.47     njoly 		aprint_error("\n");
    255  1.42    cegger 		goto fail;
    256   1.1       chs 	}
    257  1.30      cube 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    258   1.1       chs 
    259  1.52  jakllsch 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    260  1.52  jakllsch 	csr |= PCI_COMMAND_MASTER_ENABLE;
    261  1.52  jakllsch 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
    262  1.52  jakllsch 
    263   1.1       chs 	sc->sc_flags = 0;
    264   1.1       chs 
    265   1.1       chs 	switch (PCI_PRODUCT(pa->pa_id)) {
    266   1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
    267   1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
    268   1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
    269   1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
    270   1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
    271   1.1       chs 		break;
    272   1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
    273   1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
    274  1.31  christos 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
    275  1.31  christos 		break;
    276   1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
    277   1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
    278   1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
    279   1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
    280  1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
    281  1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
    282  1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
    283  1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
    284  1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
    285  1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
    286  1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
    287  1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
    288  1.31  christos 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
    289  1.31  christos 		    NFE_PWR_MGMT;
    290  1.31  christos 		break;
    291  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
    292  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
    293  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
    294  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
    295  1.41    cegger 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
    296  1.41    cegger 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    297  1.41    cegger 		break;
    298  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
    299  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
    300  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
    301  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
    302  1.41    cegger 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
    303  1.31  christos 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    304   1.1       chs 		break;
    305   1.1       chs 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
    306   1.1       chs 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
    307   1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
    308   1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
    309   1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
    310   1.1       chs 		break;
    311   1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
    312   1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
    313   1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
    314   1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
    315  1.31  christos 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
    316  1.31  christos 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    317  1.40    cegger 		mii_flags = MIIF_DOPAUSE;
    318  1.31  christos 		break;
    319  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
    320  1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
    321   1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
    322  1.27   tsutsui 		    NFE_HW_VLAN | NFE_PWR_MGMT;
    323   1.1       chs 		break;
    324   1.1       chs 	}
    325   1.1       chs 
    326  1.57       chs 	if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0)
    327  1.57       chs 		sc->sc_dmat = pa->pa_dmat64;
    328  1.57       chs 	else
    329  1.57       chs 		sc->sc_dmat = pa->pa_dmat;
    330  1.57       chs 
    331  1.35  jmcneill 	nfe_poweron(self);
    332  1.27   tsutsui 
    333  1.34      cube #ifndef NFE_NO_JUMBO
    334   1.1       chs 	/* enable jumbo frames for adapters that support it */
    335   1.1       chs 	if (sc->sc_flags & NFE_JUMBO_SUP)
    336   1.1       chs 		sc->sc_flags |= NFE_USE_JUMBO;
    337   1.1       chs #endif
    338   1.1       chs 
    339  1.31  christos 	/* Check for reversed ethernet address */
    340  1.31  christos 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
    341  1.31  christos 		sc->sc_flags |= NFE_CORRECT_MACADDR;
    342  1.31  christos 
    343  1.31  christos 	nfe_get_macaddr(sc, sc->sc_enaddr);
    344  1.31  christos 	aprint_normal_dev(self, "Ethernet address %s\n",
    345  1.31  christos 	    ether_sprintf(sc->sc_enaddr));
    346  1.31  christos 
    347   1.1       chs 	/*
    348   1.1       chs 	 * Allocate Tx and Rx rings.
    349   1.1       chs 	 */
    350   1.1       chs 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
    351  1.30      cube 		aprint_error_dev(self, "could not allocate Tx ring\n");
    352  1.42    cegger 		goto fail;
    353   1.1       chs 	}
    354   1.1       chs 
    355  1.36      cube 	mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
    356  1.34      cube 
    357   1.1       chs 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
    358  1.30      cube 		aprint_error_dev(self, "could not allocate Rx ring\n");
    359   1.1       chs 		nfe_free_tx_ring(sc, &sc->txq);
    360  1.42    cegger 		goto fail;
    361   1.1       chs 	}
    362   1.1       chs 
    363   1.1       chs 	ifp = &sc->sc_ethercom.ec_if;
    364   1.1       chs 	ifp->if_softc = sc;
    365   1.1       chs 	ifp->if_mtu = ETHERMTU;
    366   1.1       chs 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    367   1.1       chs 	ifp->if_ioctl = nfe_ioctl;
    368   1.1       chs 	ifp->if_start = nfe_start;
    369  1.24  jmcneill 	ifp->if_stop = nfe_stop;
    370   1.1       chs 	ifp->if_watchdog = nfe_watchdog;
    371   1.1       chs 	ifp->if_init = nfe_init;
    372   1.1       chs 	ifp->if_baudrate = IF_Gbps(1);
    373   1.1       chs 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
    374   1.1       chs 	IFQ_SET_READY(&ifp->if_snd);
    375  1.30      cube 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    376   1.1       chs 
    377  1.31  christos 	if (sc->sc_flags & NFE_USE_JUMBO)
    378  1.37    dyoung 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    379  1.31  christos 
    380   1.1       chs #if NVLAN > 0
    381   1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
    382   1.1       chs 		sc->sc_ethercom.ec_capabilities |=
    383   1.1       chs 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
    384   1.1       chs #endif
    385   1.1       chs 	if (sc->sc_flags & NFE_HW_CSUM) {
    386  1.13   tsutsui 		ifp->if_capabilities |=
    387  1.13   tsutsui 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    388  1.13   tsutsui 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    389  1.13   tsutsui 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    390   1.1       chs 	}
    391   1.1       chs 
    392   1.1       chs 	sc->sc_mii.mii_ifp = ifp;
    393   1.1       chs 	sc->sc_mii.mii_readreg = nfe_miibus_readreg;
    394   1.1       chs 	sc->sc_mii.mii_writereg = nfe_miibus_writereg;
    395   1.1       chs 	sc->sc_mii.mii_statchg = nfe_miibus_statchg;
    396   1.1       chs 
    397  1.26    dyoung 	sc->sc_ethercom.ec_mii = &sc->sc_mii;
    398  1.26    dyoung 	ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
    399  1.26    dyoung 	    ether_mediastatus);
    400  1.40    cegger 
    401  1.54   tsutsui 	mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
    402  1.40    cegger 
    403   1.1       chs 	if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
    404  1.30      cube 		aprint_error_dev(self, "no PHY found!\n");
    405   1.1       chs 		ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
    406   1.1       chs 		    0, NULL);
    407   1.1       chs 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    408   1.1       chs 	} else
    409   1.1       chs 		ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
    410   1.1       chs 
    411   1.1       chs 	if_attach(ifp);
    412  1.62     ozaki 	if_deferred_start_init(ifp, NULL);
    413   1.1       chs 	ether_ifattach(ifp, sc->sc_enaddr);
    414  1.37    dyoung 	ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
    415   1.1       chs 
    416  1.16        ad 	callout_init(&sc->sc_tick_ch, 0);
    417   1.1       chs 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
    418   1.1       chs 
    419  1.46   tsutsui 	if (pmf_device_register(self, NULL, nfe_resume))
    420  1.46   tsutsui 		pmf_class_network_register(self, ifp);
    421  1.46   tsutsui 	else
    422  1.24  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    423  1.42    cegger 
    424  1.42    cegger 	return;
    425  1.42    cegger 
    426  1.42    cegger fail:
    427  1.42    cegger 	if (sc->sc_ih != NULL) {
    428  1.42    cegger 		pci_intr_disestablish(pc, sc->sc_ih);
    429  1.42    cegger 		sc->sc_ih = NULL;
    430  1.42    cegger 	}
    431  1.53  jakllsch 	if (sc->sc_mems != 0) {
    432  1.53  jakllsch 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
    433  1.53  jakllsch 		sc->sc_mems = 0;
    434  1.53  jakllsch 	}
    435  1.53  jakllsch }
    436  1.53  jakllsch 
    437  1.53  jakllsch int
    438  1.53  jakllsch nfe_detach(device_t self, int flags)
    439  1.53  jakllsch {
    440  1.53  jakllsch 	struct nfe_softc *sc = device_private(self);
    441  1.53  jakllsch 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    442  1.53  jakllsch 	int s;
    443  1.53  jakllsch 
    444  1.53  jakllsch 	s = splnet();
    445  1.53  jakllsch 
    446  1.53  jakllsch 	nfe_stop(ifp, 1);
    447  1.53  jakllsch 
    448  1.53  jakllsch 	pmf_device_deregister(self);
    449  1.53  jakllsch 	callout_destroy(&sc->sc_tick_ch);
    450  1.53  jakllsch 	ether_ifdetach(ifp);
    451  1.53  jakllsch 	if_detach(ifp);
    452  1.53  jakllsch 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    453  1.53  jakllsch 
    454  1.53  jakllsch 	nfe_free_rx_ring(sc, &sc->rxq);
    455  1.53  jakllsch 	mutex_destroy(&sc->rxq.mtx);
    456  1.53  jakllsch 	nfe_free_tx_ring(sc, &sc->txq);
    457  1.53  jakllsch 
    458  1.53  jakllsch 	if (sc->sc_ih != NULL) {
    459  1.53  jakllsch 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    460  1.53  jakllsch 		sc->sc_ih = NULL;
    461  1.53  jakllsch 	}
    462  1.53  jakllsch 
    463  1.53  jakllsch 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
    464  1.53  jakllsch 		nfe_set_macaddr(sc, sc->sc_enaddr);
    465  1.53  jakllsch 	} else {
    466  1.53  jakllsch 		NFE_WRITE(sc, NFE_MACADDR_LO,
    467  1.53  jakllsch 		    sc->sc_enaddr[0] <<  8 | sc->sc_enaddr[1]);
    468  1.53  jakllsch 		NFE_WRITE(sc, NFE_MACADDR_HI,
    469  1.53  jakllsch 		    sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
    470  1.53  jakllsch 		    sc->sc_enaddr[4] <<  8 | sc->sc_enaddr[5]);
    471  1.53  jakllsch 	}
    472  1.53  jakllsch 
    473  1.53  jakllsch 	if (sc->sc_mems != 0) {
    474  1.53  jakllsch 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
    475  1.53  jakllsch 		sc->sc_mems = 0;
    476  1.53  jakllsch 	}
    477  1.53  jakllsch 
    478  1.53  jakllsch 	splx(s);
    479  1.53  jakllsch 
    480  1.53  jakllsch 	return 0;
    481   1.1       chs }
    482   1.1       chs 
    483   1.1       chs void
    484  1.56      matt nfe_miibus_statchg(struct ifnet *ifp)
    485   1.1       chs {
    486  1.56      matt 	struct nfe_softc *sc = ifp->if_softc;
    487   1.1       chs 	struct mii_data *mii = &sc->sc_mii;
    488   1.1       chs 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
    489   1.1       chs 
    490   1.1       chs 	phy = NFE_READ(sc, NFE_PHY_IFACE);
    491   1.1       chs 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
    492   1.1       chs 
    493   1.1       chs 	seed = NFE_READ(sc, NFE_RNDSEED);
    494   1.1       chs 	seed &= ~NFE_SEED_MASK;
    495   1.1       chs 
    496   1.1       chs 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
    497   1.1       chs 		phy  |= NFE_PHY_HDX;	/* half-duplex */
    498   1.1       chs 		misc |= NFE_MISC1_HDX;
    499   1.1       chs 	}
    500   1.1       chs 
    501   1.1       chs 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
    502   1.1       chs 	case IFM_1000_T:	/* full-duplex only */
    503   1.1       chs 		link |= NFE_MEDIA_1000T;
    504   1.1       chs 		seed |= NFE_SEED_1000T;
    505   1.1       chs 		phy  |= NFE_PHY_1000T;
    506   1.1       chs 		break;
    507   1.1       chs 	case IFM_100_TX:
    508   1.1       chs 		link |= NFE_MEDIA_100TX;
    509   1.1       chs 		seed |= NFE_SEED_100TX;
    510   1.1       chs 		phy  |= NFE_PHY_100TX;
    511   1.1       chs 		break;
    512   1.1       chs 	case IFM_10_T:
    513   1.1       chs 		link |= NFE_MEDIA_10T;
    514   1.1       chs 		seed |= NFE_SEED_10T;
    515   1.1       chs 		break;
    516   1.1       chs 	}
    517   1.1       chs 
    518   1.1       chs 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
    519   1.1       chs 
    520   1.1       chs 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
    521   1.1       chs 	NFE_WRITE(sc, NFE_MISC1, misc);
    522   1.1       chs 	NFE_WRITE(sc, NFE_LINKSPEED, link);
    523   1.1       chs }
    524   1.1       chs 
    525   1.1       chs int
    526  1.30      cube nfe_miibus_readreg(device_t dev, int phy, int reg)
    527   1.1       chs {
    528  1.30      cube 	struct nfe_softc *sc = device_private(dev);
    529   1.1       chs 	uint32_t val;
    530   1.1       chs 	int ntries;
    531   1.1       chs 
    532   1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    533   1.1       chs 
    534   1.1       chs 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
    535   1.1       chs 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
    536   1.1       chs 		DELAY(100);
    537   1.1       chs 	}
    538   1.1       chs 
    539   1.1       chs 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
    540   1.1       chs 
    541   1.1       chs 	for (ntries = 0; ntries < 1000; ntries++) {
    542   1.1       chs 		DELAY(100);
    543   1.1       chs 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
    544   1.1       chs 			break;
    545   1.1       chs 	}
    546   1.1       chs 	if (ntries == 1000) {
    547   1.1       chs 		DPRINTFN(2, ("%s: timeout waiting for PHY\n",
    548  1.30      cube 		    device_xname(sc->sc_dev)));
    549   1.1       chs 		return 0;
    550   1.1       chs 	}
    551   1.1       chs 
    552   1.1       chs 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
    553   1.1       chs 		DPRINTFN(2, ("%s: could not read PHY\n",
    554  1.30      cube 		    device_xname(sc->sc_dev)));
    555   1.1       chs 		return 0;
    556   1.1       chs 	}
    557   1.1       chs 
    558   1.1       chs 	val = NFE_READ(sc, NFE_PHY_DATA);
    559   1.1       chs 	if (val != 0xffffffff && val != 0)
    560   1.1       chs 		sc->mii_phyaddr = phy;
    561   1.1       chs 
    562   1.1       chs 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
    563  1.30      cube 	    device_xname(sc->sc_dev), phy, reg, val));
    564   1.1       chs 
    565   1.1       chs 	return val;
    566   1.1       chs }
    567   1.1       chs 
    568   1.1       chs void
    569  1.30      cube nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
    570   1.1       chs {
    571  1.30      cube 	struct nfe_softc *sc = device_private(dev);
    572   1.1       chs 	uint32_t ctl;
    573   1.1       chs 	int ntries;
    574   1.1       chs 
    575   1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    576   1.1       chs 
    577   1.1       chs 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
    578   1.1       chs 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
    579   1.1       chs 		DELAY(100);
    580   1.1       chs 	}
    581   1.1       chs 
    582   1.1       chs 	NFE_WRITE(sc, NFE_PHY_DATA, val);
    583   1.1       chs 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
    584   1.1       chs 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
    585   1.1       chs 
    586   1.1       chs 	for (ntries = 0; ntries < 1000; ntries++) {
    587   1.1       chs 		DELAY(100);
    588   1.1       chs 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
    589   1.1       chs 			break;
    590   1.1       chs 	}
    591   1.1       chs #ifdef NFE_DEBUG
    592   1.1       chs 	if (nfedebug >= 2 && ntries == 1000)
    593   1.1       chs 		printf("could not write to PHY\n");
    594   1.1       chs #endif
    595   1.1       chs }
    596   1.1       chs 
    597   1.1       chs int
    598   1.1       chs nfe_intr(void *arg)
    599   1.1       chs {
    600   1.1       chs 	struct nfe_softc *sc = arg;
    601   1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    602   1.1       chs 	uint32_t r;
    603  1.14   tsutsui 	int handled;
    604   1.1       chs 
    605  1.14   tsutsui 	if ((ifp->if_flags & IFF_UP) == 0)
    606  1.14   tsutsui 		return 0;
    607   1.1       chs 
    608  1.14   tsutsui 	handled = 0;
    609   1.1       chs 
    610  1.14   tsutsui 	for (;;) {
    611  1.14   tsutsui 		r = NFE_READ(sc, NFE_IRQ_STATUS);
    612  1.14   tsutsui 		if ((r & NFE_IRQ_WANTED) == 0)
    613  1.14   tsutsui 			break;
    614   1.1       chs 
    615  1.14   tsutsui 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
    616  1.14   tsutsui 		handled = 1;
    617  1.14   tsutsui 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
    618  1.14   tsutsui 
    619  1.31  christos 		if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
    620  1.14   tsutsui 			/* check Rx ring */
    621  1.14   tsutsui 			nfe_rxeof(sc);
    622  1.14   tsutsui 		}
    623  1.31  christos 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
    624  1.14   tsutsui 			/* check Tx ring */
    625  1.14   tsutsui 			nfe_txeof(sc);
    626  1.14   tsutsui 		}
    627  1.14   tsutsui 		if ((r & NFE_IRQ_LINK) != 0) {
    628  1.14   tsutsui 			NFE_READ(sc, NFE_PHY_STATUS);
    629  1.14   tsutsui 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    630  1.14   tsutsui 			DPRINTF(("%s: link state changed\n",
    631  1.30      cube 			    device_xname(sc->sc_dev)));
    632  1.14   tsutsui 		}
    633   1.1       chs 	}
    634   1.1       chs 
    635  1.62     ozaki 	if (handled)
    636  1.62     ozaki 		if_schedule_deferred_start(ifp);
    637  1.12  jmcneill 
    638  1.14   tsutsui 	return handled;
    639   1.1       chs }
    640   1.1       chs 
    641  1.37    dyoung static int
    642  1.37    dyoung nfe_ifflags_cb(struct ethercom *ec)
    643  1.37    dyoung {
    644  1.37    dyoung 	struct ifnet *ifp = &ec->ec_if;
    645  1.37    dyoung 	struct nfe_softc *sc = ifp->if_softc;
    646  1.37    dyoung 	int change = ifp->if_flags ^ sc->sc_if_flags;
    647  1.37    dyoung 
    648  1.37    dyoung 	/*
    649  1.37    dyoung 	 * If only the PROMISC flag changes, then
    650  1.37    dyoung 	 * don't do a full re-init of the chip, just update
    651  1.37    dyoung 	 * the Rx filter.
    652  1.37    dyoung 	 */
    653  1.37    dyoung 	if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
    654  1.37    dyoung 		return ENETRESET;
    655  1.37    dyoung 	else if ((change & IFF_PROMISC) != 0)
    656  1.37    dyoung 		nfe_setmulti(sc);
    657  1.37    dyoung 
    658  1.37    dyoung 	return 0;
    659  1.37    dyoung }
    660  1.37    dyoung 
    661   1.1       chs int
    662  1.15  christos nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    663   1.1       chs {
    664   1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
    665   1.1       chs 	struct ifaddr *ifa = (struct ifaddr *)data;
    666   1.1       chs 	int s, error = 0;
    667   1.1       chs 
    668   1.1       chs 	s = splnet();
    669   1.1       chs 
    670   1.1       chs 	switch (cmd) {
    671  1.37    dyoung 	case SIOCINITIFADDR:
    672   1.1       chs 		ifp->if_flags |= IFF_UP;
    673   1.1       chs 		nfe_init(ifp);
    674   1.1       chs 		switch (ifa->ifa_addr->sa_family) {
    675   1.1       chs #ifdef INET
    676   1.1       chs 		case AF_INET:
    677   1.1       chs 			arp_ifinit(ifp, ifa);
    678   1.1       chs 			break;
    679   1.1       chs #endif
    680   1.1       chs 		default:
    681   1.1       chs 			break;
    682   1.1       chs 		}
    683   1.1       chs 		break;
    684  1.26    dyoung 	default:
    685  1.28    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    686  1.28    dyoung 			break;
    687  1.31  christos 
    688  1.28    dyoung 		error = 0;
    689  1.28    dyoung 
    690  1.28    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    691  1.28    dyoung 			;
    692  1.28    dyoung 		else if (ifp->if_flags & IFF_RUNNING)
    693  1.28    dyoung 			nfe_setmulti(sc);
    694   1.1       chs 		break;
    695   1.1       chs 	}
    696  1.37    dyoung 	sc->sc_if_flags = ifp->if_flags;
    697   1.1       chs 
    698   1.1       chs 	splx(s);
    699   1.1       chs 
    700   1.1       chs 	return error;
    701   1.1       chs }
    702   1.1       chs 
    703   1.1       chs void
    704   1.1       chs nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
    705   1.1       chs {
    706   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    707  1.15  christos 	    (char *)desc32 - (char *)sc->txq.desc32,
    708   1.1       chs 	    sizeof (struct nfe_desc32), ops);
    709   1.1       chs }
    710   1.1       chs 
    711   1.1       chs void
    712   1.1       chs nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
    713   1.1       chs {
    714   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    715  1.15  christos 	    (char *)desc64 - (char *)sc->txq.desc64,
    716   1.1       chs 	    sizeof (struct nfe_desc64), ops);
    717   1.1       chs }
    718   1.1       chs 
    719   1.1       chs void
    720   1.1       chs nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
    721   1.1       chs {
    722   1.1       chs 	if (end > start) {
    723   1.1       chs 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    724  1.15  christos 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
    725  1.15  christos 		    (char *)&sc->txq.desc32[end] -
    726  1.15  christos 		    (char *)&sc->txq.desc32[start], ops);
    727   1.1       chs 		return;
    728   1.1       chs 	}
    729   1.1       chs 	/* sync from 'start' to end of ring */
    730   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    731  1.15  christos 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
    732  1.15  christos 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
    733  1.15  christos 	    (char *)&sc->txq.desc32[start], ops);
    734   1.1       chs 
    735   1.1       chs 	/* sync from start of ring to 'end' */
    736   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
    737  1.15  christos 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
    738   1.1       chs }
    739   1.1       chs 
    740   1.1       chs void
    741   1.1       chs nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
    742   1.1       chs {
    743   1.1       chs 	if (end > start) {
    744   1.1       chs 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    745  1.15  christos 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
    746  1.15  christos 		    (char *)&sc->txq.desc64[end] -
    747  1.15  christos 		    (char *)&sc->txq.desc64[start], ops);
    748   1.1       chs 		return;
    749   1.1       chs 	}
    750   1.1       chs 	/* sync from 'start' to end of ring */
    751   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    752  1.15  christos 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
    753  1.15  christos 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
    754  1.15  christos 	    (char *)&sc->txq.desc64[start], ops);
    755   1.1       chs 
    756   1.1       chs 	/* sync from start of ring to 'end' */
    757   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
    758  1.15  christos 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
    759   1.1       chs }
    760   1.1       chs 
    761   1.1       chs void
    762   1.1       chs nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
    763   1.1       chs {
    764   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
    765  1.15  christos 	    (char *)desc32 - (char *)sc->rxq.desc32,
    766   1.1       chs 	    sizeof (struct nfe_desc32), ops);
    767   1.1       chs }
    768   1.1       chs 
    769   1.1       chs void
    770   1.1       chs nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
    771   1.1       chs {
    772   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
    773  1.15  christos 	    (char *)desc64 - (char *)sc->rxq.desc64,
    774   1.1       chs 	    sizeof (struct nfe_desc64), ops);
    775   1.1       chs }
    776   1.1       chs 
    777   1.1       chs void
    778   1.1       chs nfe_rxeof(struct nfe_softc *sc)
    779   1.1       chs {
    780   1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    781   1.1       chs 	struct nfe_desc32 *desc32;
    782   1.1       chs 	struct nfe_desc64 *desc64;
    783   1.1       chs 	struct nfe_rx_data *data;
    784   1.1       chs 	struct nfe_jbuf *jbuf;
    785   1.1       chs 	struct mbuf *m, *mnew;
    786   1.1       chs 	bus_addr_t physaddr;
    787   1.1       chs 	uint16_t flags;
    788  1.14   tsutsui 	int error, len, i;
    789   1.1       chs 
    790   1.1       chs 	desc32 = NULL;
    791   1.1       chs 	desc64 = NULL;
    792  1.14   tsutsui 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
    793  1.14   tsutsui 		data = &sc->rxq.data[i];
    794   1.1       chs 
    795   1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    796  1.14   tsutsui 			desc64 = &sc->rxq.desc64[i];
    797  1.14   tsutsui 			nfe_rxdesc64_sync(sc, desc64,
    798  1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    799   1.1       chs 
    800   1.1       chs 			flags = le16toh(desc64->flags);
    801   1.1       chs 			len = le16toh(desc64->length) & 0x3fff;
    802   1.1       chs 		} else {
    803  1.14   tsutsui 			desc32 = &sc->rxq.desc32[i];
    804  1.14   tsutsui 			nfe_rxdesc32_sync(sc, desc32,
    805  1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    806   1.1       chs 
    807   1.1       chs 			flags = le16toh(desc32->flags);
    808   1.1       chs 			len = le16toh(desc32->length) & 0x3fff;
    809   1.1       chs 		}
    810   1.1       chs 
    811  1.14   tsutsui 		if ((flags & NFE_RX_READY) != 0)
    812   1.1       chs 			break;
    813   1.1       chs 
    814   1.1       chs 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
    815  1.14   tsutsui 			if ((flags & NFE_RX_VALID_V1) == 0)
    816   1.1       chs 				goto skip;
    817   1.1       chs 
    818   1.1       chs 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
    819   1.1       chs 				flags &= ~NFE_RX_ERROR;
    820   1.1       chs 				len--;	/* fix buffer length */
    821   1.1       chs 			}
    822   1.1       chs 		} else {
    823  1.14   tsutsui 			if ((flags & NFE_RX_VALID_V2) == 0)
    824   1.1       chs 				goto skip;
    825   1.1       chs 
    826   1.1       chs 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
    827   1.1       chs 				flags &= ~NFE_RX_ERROR;
    828   1.1       chs 				len--;	/* fix buffer length */
    829   1.1       chs 			}
    830   1.1       chs 		}
    831   1.1       chs 
    832   1.1       chs 		if (flags & NFE_RX_ERROR) {
    833   1.1       chs 			ifp->if_ierrors++;
    834   1.1       chs 			goto skip;
    835   1.1       chs 		}
    836   1.1       chs 
    837   1.1       chs 		/*
    838   1.1       chs 		 * Try to allocate a new mbuf for this ring element and load
    839   1.1       chs 		 * it before processing the current mbuf. If the ring element
    840   1.1       chs 		 * cannot be loaded, drop the received packet and reuse the
    841   1.1       chs 		 * old mbuf. In the unlikely case that the old mbuf can't be
    842   1.1       chs 		 * reloaded either, explicitly panic.
    843   1.1       chs 		 */
    844   1.1       chs 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    845   1.1       chs 		if (mnew == NULL) {
    846   1.1       chs 			ifp->if_ierrors++;
    847   1.1       chs 			goto skip;
    848   1.1       chs 		}
    849   1.1       chs 
    850   1.1       chs 		if (sc->sc_flags & NFE_USE_JUMBO) {
    851  1.19      cube 			physaddr =
    852  1.19      cube 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
    853  1.19      cube 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
    854  1.19      cube 				if (len > MCLBYTES) {
    855  1.19      cube 					m_freem(mnew);
    856  1.19      cube 					ifp->if_ierrors++;
    857  1.19      cube 					goto skip1;
    858  1.19      cube 				}
    859  1.19      cube 				MCLGET(mnew, M_DONTWAIT);
    860  1.19      cube 				if ((mnew->m_flags & M_EXT) == 0) {
    861  1.19      cube 					m_freem(mnew);
    862  1.19      cube 					ifp->if_ierrors++;
    863  1.19      cube 					goto skip1;
    864  1.19      cube 				}
    865   1.1       chs 
    866  1.31  christos 				(void)memcpy(mtod(mnew, void *),
    867  1.19      cube 				    mtod(data->m, const void *), len);
    868  1.19      cube 				m = mnew;
    869  1.19      cube 				goto mbufcopied;
    870  1.19      cube 			} else {
    871  1.19      cube 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
    872  1.19      cube 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
    873  1.19      cube 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
    874  1.19      cube 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
    875   1.1       chs 
    876  1.19      cube 				physaddr = jbuf->physaddr;
    877  1.19      cube 			}
    878   1.1       chs 		} else {
    879   1.1       chs 			MCLGET(mnew, M_DONTWAIT);
    880  1.14   tsutsui 			if ((mnew->m_flags & M_EXT) == 0) {
    881   1.1       chs 				m_freem(mnew);
    882   1.1       chs 				ifp->if_ierrors++;
    883   1.1       chs 				goto skip;
    884   1.1       chs 			}
    885   1.1       chs 
    886   1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    887   1.1       chs 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    888   1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->map);
    889   1.1       chs 
    890  1.19      cube 			error = bus_dmamap_load(sc->sc_dmat, data->map,
    891  1.19      cube 			    mtod(mnew, void *), MCLBYTES, NULL,
    892  1.19      cube 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
    893   1.1       chs 			if (error != 0) {
    894   1.1       chs 				m_freem(mnew);
    895   1.1       chs 
    896   1.1       chs 				/* try to reload the old mbuf */
    897  1.19      cube 				error = bus_dmamap_load(sc->sc_dmat, data->map,
    898  1.19      cube 				    mtod(data->m, void *), MCLBYTES, NULL,
    899   1.1       chs 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
    900   1.1       chs 				if (error != 0) {
    901   1.1       chs 					/* very unlikely that it will fail.. */
    902   1.1       chs 					panic("%s: could not load old rx mbuf",
    903  1.30      cube 					    device_xname(sc->sc_dev));
    904   1.1       chs 				}
    905   1.1       chs 				ifp->if_ierrors++;
    906   1.1       chs 				goto skip;
    907   1.1       chs 			}
    908   1.1       chs 			physaddr = data->map->dm_segs[0].ds_addr;
    909   1.1       chs 		}
    910   1.1       chs 
    911   1.1       chs 		/*
    912   1.1       chs 		 * New mbuf successfully loaded, update Rx ring and continue
    913   1.1       chs 		 * processing.
    914   1.1       chs 		 */
    915   1.1       chs 		m = data->m;
    916   1.1       chs 		data->m = mnew;
    917   1.1       chs 
    918  1.19      cube mbufcopied:
    919   1.1       chs 		/* finalize mbuf */
    920   1.1       chs 		m->m_pkthdr.len = m->m_len = len;
    921  1.61     ozaki 		m_set_rcvif(m, ifp);
    922   1.1       chs 
    923  1.13   tsutsui 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
    924  1.13   tsutsui 			/*
    925  1.13   tsutsui 			 * XXX
    926  1.13   tsutsui 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
    927  1.13   tsutsui 			 */
    928  1.13   tsutsui 			if (flags & NFE_RX_IP_CSUMOK) {
    929  1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    930  1.13   tsutsui 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
    931  1.30      cube 				    device_xname(sc->sc_dev)));
    932  1.13   tsutsui 			}
    933  1.13   tsutsui 			/*
    934  1.13   tsutsui 			 * XXX
    935  1.13   tsutsui 			 * no way to check M_CSUM_TCP_UDP_BAD or
    936  1.13   tsutsui 			 * other protocols?
    937  1.13   tsutsui 			 */
    938  1.13   tsutsui 			if (flags & NFE_RX_UDP_CSUMOK) {
    939  1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
    940  1.13   tsutsui 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
    941  1.30      cube 				    device_xname(sc->sc_dev)));
    942  1.13   tsutsui 			} else if (flags & NFE_RX_TCP_CSUMOK) {
    943  1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
    944  1.13   tsutsui 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
    945  1.30      cube 				    device_xname(sc->sc_dev)));
    946  1.13   tsutsui 			}
    947  1.13   tsutsui 		}
    948  1.60     ozaki 		if_percpuq_enqueue(ifp->if_percpuq, m);
    949   1.1       chs 
    950  1.19      cube skip1:
    951   1.1       chs 		/* update mapping address in h/w descriptor */
    952   1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    953   1.1       chs #if defined(__LP64__)
    954   1.1       chs 			desc64->physaddr[0] = htole32(physaddr >> 32);
    955   1.1       chs #endif
    956   1.1       chs 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
    957   1.1       chs 		} else {
    958   1.1       chs 			desc32->physaddr = htole32(physaddr);
    959   1.1       chs 		}
    960   1.1       chs 
    961  1.58  christos skip:
    962  1.14   tsutsui 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    963   1.1       chs 			desc64->length = htole16(sc->rxq.bufsz);
    964   1.1       chs 			desc64->flags = htole16(NFE_RX_READY);
    965   1.1       chs 
    966  1.14   tsutsui 			nfe_rxdesc64_sync(sc, desc64,
    967  1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    968   1.1       chs 		} else {
    969   1.1       chs 			desc32->length = htole16(sc->rxq.bufsz);
    970   1.1       chs 			desc32->flags = htole16(NFE_RX_READY);
    971   1.1       chs 
    972  1.14   tsutsui 			nfe_rxdesc32_sync(sc, desc32,
    973  1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    974   1.1       chs 		}
    975   1.1       chs 	}
    976  1.14   tsutsui 	/* update current RX pointer */
    977  1.14   tsutsui 	sc->rxq.cur = i;
    978   1.1       chs }
    979   1.1       chs 
    980   1.1       chs void
    981   1.1       chs nfe_txeof(struct nfe_softc *sc)
    982   1.1       chs {
    983   1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    984   1.1       chs 	struct nfe_desc32 *desc32;
    985   1.1       chs 	struct nfe_desc64 *desc64;
    986   1.1       chs 	struct nfe_tx_data *data = NULL;
    987  1.14   tsutsui 	int i;
    988   1.1       chs 	uint16_t flags;
    989  1.31  christos 	char buf[128];
    990   1.1       chs 
    991  1.14   tsutsui 	for (i = sc->txq.next;
    992  1.14   tsutsui 	    sc->txq.queued > 0;
    993  1.14   tsutsui 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
    994   1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    995  1.14   tsutsui 			desc64 = &sc->txq.desc64[i];
    996  1.14   tsutsui 			nfe_txdesc64_sync(sc, desc64,
    997  1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    998   1.1       chs 
    999   1.1       chs 			flags = le16toh(desc64->flags);
   1000   1.1       chs 		} else {
   1001  1.14   tsutsui 			desc32 = &sc->txq.desc32[i];
   1002  1.14   tsutsui 			nfe_txdesc32_sync(sc, desc32,
   1003  1.14   tsutsui 			    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1004   1.1       chs 
   1005   1.1       chs 			flags = le16toh(desc32->flags);
   1006   1.1       chs 		}
   1007   1.1       chs 
   1008  1.14   tsutsui 		if ((flags & NFE_TX_VALID) != 0)
   1009   1.1       chs 			break;
   1010   1.1       chs 
   1011  1.14   tsutsui 		data = &sc->txq.data[i];
   1012   1.1       chs 
   1013   1.1       chs 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
   1014  1.14   tsutsui 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
   1015  1.14   tsutsui 			    data->m == NULL)
   1016  1.14   tsutsui 				continue;
   1017   1.1       chs 
   1018   1.1       chs 			if ((flags & NFE_TX_ERROR_V1) != 0) {
   1019  1.38  christos 				snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
   1020  1.33  christos 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
   1021  1.38  christos 				    buf);
   1022   1.1       chs 				ifp->if_oerrors++;
   1023   1.1       chs 			} else
   1024   1.1       chs 				ifp->if_opackets++;
   1025   1.1       chs 		} else {
   1026  1.14   tsutsui 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
   1027  1.14   tsutsui 			    data->m == NULL)
   1028  1.14   tsutsui 				continue;
   1029   1.1       chs 
   1030   1.1       chs 			if ((flags & NFE_TX_ERROR_V2) != 0) {
   1031  1.38  christos 				snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
   1032  1.32   xtraeme 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
   1033  1.38  christos 				    buf);
   1034   1.1       chs 				ifp->if_oerrors++;
   1035   1.1       chs 			} else
   1036   1.1       chs 				ifp->if_opackets++;
   1037   1.1       chs 		}
   1038   1.1       chs 
   1039   1.1       chs 		if (data->m == NULL) {	/* should not get there */
   1040  1.30      cube 			aprint_error_dev(sc->sc_dev,
   1041  1.30      cube 			    "last fragment bit w/o associated mbuf!\n");
   1042  1.14   tsutsui 			continue;
   1043   1.1       chs 		}
   1044   1.1       chs 
   1045   1.1       chs 		/* last fragment of the mbuf chain transmitted */
   1046   1.1       chs 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1047   1.1       chs 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1048   1.1       chs 		bus_dmamap_unload(sc->sc_dmat, data->active);
   1049   1.1       chs 		m_freem(data->m);
   1050   1.1       chs 		data->m = NULL;
   1051  1.14   tsutsui 	}
   1052   1.1       chs 
   1053  1.14   tsutsui 	sc->txq.next = i;
   1054   1.1       chs 
   1055  1.14   tsutsui 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
   1056  1.14   tsutsui 		/* at least one slot freed */
   1057  1.14   tsutsui 		ifp->if_flags &= ~IFF_OACTIVE;
   1058   1.1       chs 	}
   1059   1.1       chs 
   1060  1.14   tsutsui 	if (sc->txq.queued == 0) {
   1061  1.14   tsutsui 		/* all queued packets are sent */
   1062  1.14   tsutsui 		ifp->if_timer = 0;
   1063   1.1       chs 	}
   1064   1.1       chs }
   1065   1.1       chs 
   1066   1.1       chs int
   1067   1.1       chs nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
   1068   1.1       chs {
   1069   1.1       chs 	struct nfe_desc32 *desc32;
   1070   1.1       chs 	struct nfe_desc64 *desc64;
   1071   1.1       chs 	struct nfe_tx_data *data;
   1072   1.1       chs 	bus_dmamap_t map;
   1073  1.13   tsutsui 	uint16_t flags, csumflags;
   1074   1.1       chs #if NVLAN > 0
   1075   1.1       chs 	uint32_t vtag = 0;
   1076   1.1       chs #endif
   1077  1.11   tsutsui 	int error, i, first;
   1078   1.1       chs 
   1079   1.1       chs 	desc32 = NULL;
   1080   1.1       chs 	desc64 = NULL;
   1081   1.1       chs 	data = NULL;
   1082  1.11   tsutsui 
   1083  1.11   tsutsui 	flags = 0;
   1084  1.13   tsutsui 	csumflags = 0;
   1085  1.11   tsutsui 	first = sc->txq.cur;
   1086  1.11   tsutsui 
   1087  1.11   tsutsui 	map = sc->txq.data[first].map;
   1088   1.1       chs 
   1089   1.1       chs 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
   1090   1.1       chs 	if (error != 0) {
   1091  1.30      cube 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1092  1.30      cube 		    error);
   1093   1.1       chs 		return error;
   1094   1.1       chs 	}
   1095   1.1       chs 
   1096   1.1       chs 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
   1097   1.1       chs 		bus_dmamap_unload(sc->sc_dmat, map);
   1098   1.1       chs 		return ENOBUFS;
   1099   1.1       chs 	}
   1100   1.1       chs 
   1101   1.1       chs #if NVLAN > 0
   1102   1.1       chs 	/* setup h/w VLAN tagging */
   1103  1.64  knakahar 	if (vlan_has_tag(m0))
   1104  1.64  knakahar 		vtag = NFE_TX_VTAG | vlan_get_tag(m0);
   1105   1.1       chs #endif
   1106  1.13   tsutsui 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
   1107  1.13   tsutsui 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1108  1.13   tsutsui 			csumflags |= NFE_TX_IP_CSUM;
   1109  1.13   tsutsui 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1110  1.14   tsutsui 			csumflags |= NFE_TX_TCP_UDP_CSUM;
   1111  1.13   tsutsui 	}
   1112   1.1       chs 
   1113   1.1       chs 	for (i = 0; i < map->dm_nsegs; i++) {
   1114   1.1       chs 		data = &sc->txq.data[sc->txq.cur];
   1115   1.1       chs 
   1116   1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1117   1.1       chs 			desc64 = &sc->txq.desc64[sc->txq.cur];
   1118   1.1       chs #if defined(__LP64__)
   1119   1.1       chs 			desc64->physaddr[0] =
   1120   1.1       chs 			    htole32(map->dm_segs[i].ds_addr >> 32);
   1121   1.1       chs #endif
   1122   1.1       chs 			desc64->physaddr[1] =
   1123   1.1       chs 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
   1124   1.1       chs 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
   1125   1.1       chs 			desc64->flags = htole16(flags);
   1126  1.13   tsutsui 			desc64->vtag = 0;
   1127   1.1       chs 		} else {
   1128   1.1       chs 			desc32 = &sc->txq.desc32[sc->txq.cur];
   1129   1.1       chs 
   1130   1.1       chs 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
   1131   1.1       chs 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
   1132   1.1       chs 			desc32->flags = htole16(flags);
   1133   1.1       chs 		}
   1134   1.1       chs 
   1135  1.13   tsutsui 		/*
   1136  1.13   tsutsui 		 * Setting of the valid bit in the first descriptor is
   1137  1.13   tsutsui 		 * deferred until the whole chain is fully setup.
   1138  1.13   tsutsui 		 */
   1139  1.13   tsutsui 		flags |= NFE_TX_VALID;
   1140   1.1       chs 
   1141   1.1       chs 		sc->txq.queued++;
   1142  1.14   tsutsui 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
   1143   1.1       chs 	}
   1144   1.1       chs 
   1145  1.11   tsutsui 	/* the whole mbuf chain has been setup */
   1146   1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1147  1.11   tsutsui 		/* fix last descriptor */
   1148   1.1       chs 		flags |= NFE_TX_LASTFRAG_V2;
   1149   1.1       chs 		desc64->flags = htole16(flags);
   1150  1.11   tsutsui 
   1151  1.13   tsutsui 		/* Checksum flags and vtag belong to the first fragment only. */
   1152  1.13   tsutsui #if NVLAN > 0
   1153  1.13   tsutsui 		sc->txq.desc64[first].vtag = htole32(vtag);
   1154  1.13   tsutsui #endif
   1155  1.13   tsutsui 		sc->txq.desc64[first].flags |= htole16(csumflags);
   1156  1.13   tsutsui 
   1157  1.11   tsutsui 		/* finally, set the valid bit in the first descriptor */
   1158  1.11   tsutsui 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
   1159   1.1       chs 	} else {
   1160  1.11   tsutsui 		/* fix last descriptor */
   1161   1.1       chs 		if (sc->sc_flags & NFE_JUMBO_SUP)
   1162   1.1       chs 			flags |= NFE_TX_LASTFRAG_V2;
   1163   1.1       chs 		else
   1164   1.1       chs 			flags |= NFE_TX_LASTFRAG_V1;
   1165   1.1       chs 		desc32->flags = htole16(flags);
   1166  1.11   tsutsui 
   1167  1.13   tsutsui 		/* Checksum flags belong to the first fragment only. */
   1168  1.13   tsutsui 		sc->txq.desc32[first].flags |= htole16(csumflags);
   1169  1.13   tsutsui 
   1170  1.11   tsutsui 		/* finally, set the valid bit in the first descriptor */
   1171  1.11   tsutsui 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
   1172   1.1       chs 	}
   1173   1.1       chs 
   1174   1.1       chs 	data->m = m0;
   1175   1.1       chs 	data->active = map;
   1176   1.1       chs 
   1177   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1178   1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1179   1.1       chs 
   1180   1.1       chs 	return 0;
   1181   1.1       chs }
   1182   1.1       chs 
   1183   1.1       chs void
   1184   1.1       chs nfe_start(struct ifnet *ifp)
   1185   1.1       chs {
   1186   1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1187  1.14   tsutsui 	int old = sc->txq.queued;
   1188   1.1       chs 	struct mbuf *m0;
   1189   1.1       chs 
   1190  1.31  christos 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1191  1.18      cube 		return;
   1192  1.18      cube 
   1193   1.1       chs 	for (;;) {
   1194   1.1       chs 		IFQ_POLL(&ifp->if_snd, m0);
   1195   1.1       chs 		if (m0 == NULL)
   1196   1.1       chs 			break;
   1197   1.1       chs 
   1198   1.1       chs 		if (nfe_encap(sc, m0) != 0) {
   1199   1.1       chs 			ifp->if_flags |= IFF_OACTIVE;
   1200   1.1       chs 			break;
   1201   1.1       chs 		}
   1202   1.1       chs 
   1203   1.1       chs 		/* packet put in h/w queue, remove from s/w queue */
   1204   1.1       chs 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1205   1.1       chs 
   1206  1.51     joerg 		bpf_mtap(ifp, m0);
   1207   1.1       chs 	}
   1208   1.1       chs 
   1209  1.14   tsutsui 	if (sc->txq.queued != old) {
   1210  1.14   tsutsui 		/* packets are queued */
   1211  1.14   tsutsui 		if (sc->sc_flags & NFE_40BIT_ADDR)
   1212  1.14   tsutsui 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
   1213  1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1214  1.14   tsutsui 		else
   1215  1.14   tsutsui 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
   1216  1.14   tsutsui 			    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1217  1.14   tsutsui 		/* kick Tx */
   1218  1.14   tsutsui 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
   1219   1.1       chs 
   1220  1.14   tsutsui 		/*
   1221  1.14   tsutsui 		 * Set a timeout in case the chip goes out to lunch.
   1222  1.14   tsutsui 		 */
   1223  1.14   tsutsui 		ifp->if_timer = 5;
   1224  1.14   tsutsui 	}
   1225   1.1       chs }
   1226   1.1       chs 
   1227   1.1       chs void
   1228   1.1       chs nfe_watchdog(struct ifnet *ifp)
   1229   1.1       chs {
   1230   1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1231   1.1       chs 
   1232  1.30      cube 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1233   1.1       chs 
   1234   1.1       chs 	ifp->if_flags &= ~IFF_RUNNING;
   1235   1.1       chs 	nfe_init(ifp);
   1236   1.1       chs 
   1237   1.1       chs 	ifp->if_oerrors++;
   1238   1.1       chs }
   1239   1.1       chs 
   1240   1.1       chs int
   1241   1.1       chs nfe_init(struct ifnet *ifp)
   1242   1.1       chs {
   1243   1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1244   1.1       chs 	uint32_t tmp;
   1245  1.26    dyoung 	int rc = 0, s;
   1246   1.1       chs 
   1247   1.1       chs 	if (ifp->if_flags & IFF_RUNNING)
   1248   1.1       chs 		return 0;
   1249   1.1       chs 
   1250   1.1       chs 	nfe_stop(ifp, 0);
   1251   1.1       chs 
   1252   1.1       chs 	NFE_WRITE(sc, NFE_TX_UNK, 0);
   1253   1.1       chs 	NFE_WRITE(sc, NFE_STATUS, 0);
   1254   1.1       chs 
   1255   1.1       chs 	sc->rxtxctl = NFE_RXTX_BIT2;
   1256   1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR)
   1257   1.1       chs 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
   1258   1.1       chs 	else if (sc->sc_flags & NFE_JUMBO_SUP)
   1259   1.1       chs 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
   1260   1.1       chs 	if (sc->sc_flags & NFE_HW_CSUM)
   1261   1.1       chs 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
   1262   1.1       chs #if NVLAN > 0
   1263   1.1       chs 	/*
   1264   1.1       chs 	 * Although the adapter is capable of stripping VLAN tags from received
   1265   1.1       chs 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
   1266   1.1       chs 	 * purpose.  This will be done in software by our network stack.
   1267   1.1       chs 	 */
   1268   1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
   1269   1.1       chs 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
   1270   1.1       chs #endif
   1271   1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
   1272   1.1       chs 	DELAY(10);
   1273   1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
   1274   1.1       chs 
   1275   1.1       chs #if NVLAN
   1276   1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
   1277   1.1       chs 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
   1278   1.1       chs #endif
   1279   1.1       chs 
   1280   1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
   1281   1.1       chs 
   1282   1.1       chs 	/* set MAC address */
   1283   1.1       chs 	nfe_set_macaddr(sc, sc->sc_enaddr);
   1284   1.1       chs 
   1285   1.1       chs 	/* tell MAC where rings are in memory */
   1286   1.1       chs #ifdef __LP64__
   1287   1.1       chs 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
   1288   1.1       chs #endif
   1289   1.1       chs 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
   1290   1.1       chs #ifdef __LP64__
   1291   1.1       chs 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
   1292   1.1       chs #endif
   1293   1.1       chs 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
   1294   1.1       chs 
   1295   1.1       chs 	NFE_WRITE(sc, NFE_RING_SIZE,
   1296   1.1       chs 	    (NFE_RX_RING_COUNT - 1) << 16 |
   1297   1.1       chs 	    (NFE_TX_RING_COUNT - 1));
   1298   1.1       chs 
   1299   1.1       chs 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
   1300   1.1       chs 
   1301   1.1       chs 	/* force MAC to wakeup */
   1302   1.1       chs 	tmp = NFE_READ(sc, NFE_PWR_STATE);
   1303   1.1       chs 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
   1304   1.1       chs 	DELAY(10);
   1305   1.1       chs 	tmp = NFE_READ(sc, NFE_PWR_STATE);
   1306   1.1       chs 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
   1307   1.1       chs 
   1308  1.12  jmcneill 	s = splnet();
   1309  1.39    cegger 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
   1310  1.12  jmcneill 	nfe_intr(sc); /* XXX clear IRQ status registers */
   1311  1.39    cegger 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
   1312  1.12  jmcneill 	splx(s);
   1313  1.12  jmcneill 
   1314   1.1       chs #if 1
   1315   1.1       chs 	/* configure interrupts coalescing/mitigation */
   1316   1.1       chs 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
   1317   1.1       chs #else
   1318   1.1       chs 	/* no interrupt mitigation: one interrupt per packet */
   1319   1.1       chs 	NFE_WRITE(sc, NFE_IMTIMER, 970);
   1320   1.1       chs #endif
   1321   1.1       chs 
   1322   1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
   1323   1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
   1324   1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
   1325   1.1       chs 
   1326   1.1       chs 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
   1327   1.1       chs 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
   1328   1.1       chs 
   1329   1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
   1330  1.31  christos 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
   1331   1.1       chs 
   1332   1.1       chs 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
   1333   1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
   1334   1.1       chs 	DELAY(10);
   1335   1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
   1336   1.1       chs 
   1337   1.1       chs 	/* set Rx filter */
   1338   1.1       chs 	nfe_setmulti(sc);
   1339   1.1       chs 
   1340  1.26    dyoung 	if ((rc = ether_mediachange(ifp)) != 0)
   1341  1.26    dyoung 		goto out;
   1342   1.1       chs 
   1343  1.12  jmcneill 	nfe_tick(sc);
   1344  1.12  jmcneill 
   1345   1.1       chs 	/* enable Rx */
   1346   1.1       chs 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
   1347   1.1       chs 
   1348   1.1       chs 	/* enable Tx */
   1349   1.1       chs 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
   1350   1.1       chs 
   1351   1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
   1352   1.1       chs 
   1353   1.1       chs 	/* enable interrupts */
   1354   1.1       chs 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
   1355   1.1       chs 
   1356   1.1       chs 	callout_schedule(&sc->sc_tick_ch, hz);
   1357   1.1       chs 
   1358   1.1       chs 	ifp->if_flags |= IFF_RUNNING;
   1359   1.1       chs 	ifp->if_flags &= ~IFF_OACTIVE;
   1360   1.1       chs 
   1361  1.26    dyoung out:
   1362  1.26    dyoung 	return rc;
   1363   1.1       chs }
   1364   1.1       chs 
   1365   1.1       chs void
   1366   1.7  christos nfe_stop(struct ifnet *ifp, int disable)
   1367   1.1       chs {
   1368   1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1369   1.1       chs 
   1370   1.1       chs 	callout_stop(&sc->sc_tick_ch);
   1371   1.1       chs 
   1372   1.1       chs 	ifp->if_timer = 0;
   1373   1.1       chs 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1374   1.1       chs 
   1375   1.1       chs 	mii_down(&sc->sc_mii);
   1376   1.1       chs 
   1377   1.1       chs 	/* abort Tx */
   1378   1.1       chs 	NFE_WRITE(sc, NFE_TX_CTL, 0);
   1379   1.1       chs 
   1380   1.1       chs 	/* disable Rx */
   1381   1.1       chs 	NFE_WRITE(sc, NFE_RX_CTL, 0);
   1382   1.1       chs 
   1383   1.1       chs 	/* disable interrupts */
   1384   1.1       chs 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
   1385   1.1       chs 
   1386   1.1       chs 	/* reset Tx and Rx rings */
   1387   1.1       chs 	nfe_reset_tx_ring(sc, &sc->txq);
   1388   1.1       chs 	nfe_reset_rx_ring(sc, &sc->rxq);
   1389   1.1       chs }
   1390   1.1       chs 
   1391   1.1       chs int
   1392   1.1       chs nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1393   1.1       chs {
   1394   1.1       chs 	struct nfe_desc32 *desc32;
   1395   1.1       chs 	struct nfe_desc64 *desc64;
   1396   1.1       chs 	struct nfe_rx_data *data;
   1397   1.1       chs 	struct nfe_jbuf *jbuf;
   1398   1.1       chs 	void **desc;
   1399   1.1       chs 	bus_addr_t physaddr;
   1400   1.1       chs 	int i, nsegs, error, descsize;
   1401   1.1       chs 
   1402   1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1403   1.1       chs 		desc = (void **)&ring->desc64;
   1404   1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1405   1.1       chs 	} else {
   1406   1.1       chs 		desc = (void **)&ring->desc32;
   1407   1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1408   1.1       chs 	}
   1409   1.1       chs 
   1410   1.1       chs 	ring->cur = ring->next = 0;
   1411   1.1       chs 	ring->bufsz = MCLBYTES;
   1412   1.1       chs 
   1413   1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
   1414   1.1       chs 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
   1415   1.1       chs 	if (error != 0) {
   1416  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1417  1.30      cube 		    "could not create desc DMA map\n");
   1418  1.42    cegger 		ring->map = NULL;
   1419   1.1       chs 		goto fail;
   1420   1.1       chs 	}
   1421   1.1       chs 
   1422   1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
   1423   1.1       chs 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
   1424   1.1       chs 	if (error != 0) {
   1425  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1426  1.30      cube 		    "could not allocate DMA memory\n");
   1427   1.1       chs 		goto fail;
   1428   1.1       chs 	}
   1429   1.1       chs 
   1430   1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
   1431  1.15  christos 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
   1432   1.1       chs 	if (error != 0) {
   1433  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1434  1.30      cube 		    "could not map desc DMA memory\n");
   1435   1.1       chs 		goto fail;
   1436   1.1       chs 	}
   1437   1.1       chs 
   1438   1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
   1439   1.1       chs 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
   1440   1.1       chs 	if (error != 0) {
   1441  1.30      cube 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
   1442   1.1       chs 		goto fail;
   1443   1.1       chs 	}
   1444   1.1       chs 
   1445  1.43    cegger 	memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
   1446   1.1       chs 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
   1447   1.1       chs 
   1448   1.1       chs 	if (sc->sc_flags & NFE_USE_JUMBO) {
   1449   1.1       chs 		ring->bufsz = NFE_JBYTES;
   1450   1.1       chs 		if ((error = nfe_jpool_alloc(sc)) != 0) {
   1451  1.30      cube 			aprint_error_dev(sc->sc_dev,
   1452  1.30      cube 			    "could not allocate jumbo frames\n");
   1453   1.1       chs 			goto fail;
   1454   1.1       chs 		}
   1455   1.1       chs 	}
   1456   1.1       chs 
   1457   1.1       chs 	/*
   1458   1.1       chs 	 * Pre-allocate Rx buffers and populate Rx ring.
   1459   1.1       chs 	 */
   1460   1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1461   1.1       chs 		data = &sc->rxq.data[i];
   1462   1.1       chs 
   1463   1.1       chs 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   1464   1.1       chs 		if (data->m == NULL) {
   1465  1.30      cube 			aprint_error_dev(sc->sc_dev,
   1466  1.30      cube 			    "could not allocate rx mbuf\n");
   1467   1.1       chs 			error = ENOMEM;
   1468   1.1       chs 			goto fail;
   1469   1.1       chs 		}
   1470   1.1       chs 
   1471   1.1       chs 		if (sc->sc_flags & NFE_USE_JUMBO) {
   1472  1.19      cube 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
   1473  1.30      cube 				aprint_error_dev(sc->sc_dev,
   1474  1.30      cube 				    "could not allocate jumbo buffer\n");
   1475   1.1       chs 				goto fail;
   1476   1.1       chs 			}
   1477   1.1       chs 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
   1478   1.1       chs 			    sc);
   1479   1.1       chs 
   1480   1.1       chs 			physaddr = jbuf->physaddr;
   1481   1.1       chs 		} else {
   1482   1.1       chs 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1483   1.1       chs 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
   1484   1.1       chs 			if (error != 0) {
   1485  1.30      cube 				aprint_error_dev(sc->sc_dev,
   1486  1.30      cube 				    "could not create DMA map\n");
   1487  1.42    cegger 				data->map = NULL;
   1488   1.1       chs 				goto fail;
   1489   1.1       chs 			}
   1490   1.1       chs 			MCLGET(data->m, M_DONTWAIT);
   1491   1.1       chs 			if (!(data->m->m_flags & M_EXT)) {
   1492  1.30      cube 				aprint_error_dev(sc->sc_dev,
   1493  1.30      cube 				    "could not allocate mbuf cluster\n");
   1494   1.1       chs 				error = ENOMEM;
   1495   1.1       chs 				goto fail;
   1496   1.1       chs 			}
   1497   1.1       chs 
   1498   1.1       chs 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1499   1.1       chs 			    mtod(data->m, void *), MCLBYTES, NULL,
   1500   1.1       chs 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1501   1.1       chs 			if (error != 0) {
   1502  1.30      cube 				aprint_error_dev(sc->sc_dev,
   1503  1.30      cube 				    "could not load rx buf DMA map");
   1504   1.1       chs 				goto fail;
   1505   1.1       chs 			}
   1506   1.1       chs 			physaddr = data->map->dm_segs[0].ds_addr;
   1507   1.1       chs 		}
   1508   1.1       chs 
   1509   1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1510   1.1       chs 			desc64 = &sc->rxq.desc64[i];
   1511   1.1       chs #if defined(__LP64__)
   1512   1.1       chs 			desc64->physaddr[0] = htole32(physaddr >> 32);
   1513   1.1       chs #endif
   1514   1.1       chs 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
   1515   1.1       chs 			desc64->length = htole16(sc->rxq.bufsz);
   1516   1.1       chs 			desc64->flags = htole16(NFE_RX_READY);
   1517   1.1       chs 		} else {
   1518   1.1       chs 			desc32 = &sc->rxq.desc32[i];
   1519   1.1       chs 			desc32->physaddr = htole32(physaddr);
   1520   1.1       chs 			desc32->length = htole16(sc->rxq.bufsz);
   1521   1.1       chs 			desc32->flags = htole16(NFE_RX_READY);
   1522   1.1       chs 		}
   1523   1.1       chs 	}
   1524   1.1       chs 
   1525   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1526   1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1527   1.1       chs 
   1528   1.1       chs 	return 0;
   1529   1.1       chs 
   1530   1.1       chs fail:	nfe_free_rx_ring(sc, ring);
   1531   1.1       chs 	return error;
   1532   1.1       chs }
   1533   1.1       chs 
   1534   1.1       chs void
   1535   1.1       chs nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1536   1.1       chs {
   1537   1.1       chs 	int i;
   1538   1.1       chs 
   1539   1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1540   1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1541   1.1       chs 			ring->desc64[i].length = htole16(ring->bufsz);
   1542   1.1       chs 			ring->desc64[i].flags = htole16(NFE_RX_READY);
   1543   1.1       chs 		} else {
   1544   1.1       chs 			ring->desc32[i].length = htole16(ring->bufsz);
   1545   1.1       chs 			ring->desc32[i].flags = htole16(NFE_RX_READY);
   1546   1.1       chs 		}
   1547   1.1       chs 	}
   1548   1.1       chs 
   1549   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1550   1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1551   1.1       chs 
   1552   1.1       chs 	ring->cur = ring->next = 0;
   1553   1.1       chs }
   1554   1.1       chs 
   1555   1.1       chs void
   1556   1.1       chs nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1557   1.1       chs {
   1558   1.1       chs 	struct nfe_rx_data *data;
   1559   1.1       chs 	void *desc;
   1560   1.1       chs 	int i, descsize;
   1561   1.1       chs 
   1562   1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1563   1.1       chs 		desc = ring->desc64;
   1564   1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1565   1.1       chs 	} else {
   1566   1.1       chs 		desc = ring->desc32;
   1567   1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1568   1.1       chs 	}
   1569   1.1       chs 
   1570   1.1       chs 	if (desc != NULL) {
   1571   1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
   1572   1.1       chs 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1573   1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->map);
   1574  1.15  christos 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
   1575   1.1       chs 		    NFE_RX_RING_COUNT * descsize);
   1576   1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
   1577   1.1       chs 	}
   1578   1.1       chs 
   1579   1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1580   1.1       chs 		data = &ring->data[i];
   1581   1.1       chs 
   1582   1.1       chs 		if (data->map != NULL) {
   1583   1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1584   1.1       chs 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1585   1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1586   1.1       chs 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1587   1.1       chs 		}
   1588   1.1       chs 		if (data->m != NULL)
   1589   1.1       chs 			m_freem(data->m);
   1590   1.1       chs 	}
   1591  1.53  jakllsch 
   1592  1.53  jakllsch 	nfe_jpool_free(sc);
   1593   1.1       chs }
   1594   1.1       chs 
   1595   1.1       chs struct nfe_jbuf *
   1596  1.19      cube nfe_jalloc(struct nfe_softc *sc, int i)
   1597   1.1       chs {
   1598   1.1       chs 	struct nfe_jbuf *jbuf;
   1599   1.1       chs 
   1600  1.34      cube 	mutex_enter(&sc->rxq.mtx);
   1601   1.1       chs 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
   1602  1.34      cube 	if (jbuf != NULL)
   1603  1.34      cube 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
   1604  1.34      cube 	mutex_exit(&sc->rxq.mtx);
   1605   1.1       chs 	if (jbuf == NULL)
   1606   1.1       chs 		return NULL;
   1607  1.19      cube 	sc->rxq.jbufmap[i] =
   1608  1.19      cube 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
   1609   1.1       chs 	return jbuf;
   1610   1.1       chs }
   1611   1.1       chs 
   1612   1.1       chs /*
   1613   1.1       chs  * This is called automatically by the network stack when the mbuf is freed.
   1614   1.1       chs  * Caution must be taken that the NIC might be reset by the time the mbuf is
   1615   1.1       chs  * freed.
   1616   1.1       chs  */
   1617   1.1       chs void
   1618  1.15  christos nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1619   1.1       chs {
   1620   1.1       chs 	struct nfe_softc *sc = arg;
   1621   1.1       chs 	struct nfe_jbuf *jbuf;
   1622   1.1       chs 	int i;
   1623   1.1       chs 
   1624   1.1       chs 	/* find the jbuf from the base pointer */
   1625  1.15  christos 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
   1626   1.1       chs 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
   1627  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1628  1.30      cube 		    "request to free a buffer (%p) not managed by us\n", buf);
   1629   1.1       chs 		return;
   1630   1.1       chs 	}
   1631   1.1       chs 	jbuf = &sc->rxq.jbuf[i];
   1632   1.1       chs 
   1633   1.1       chs 	/* ..and put it back in the free list */
   1634  1.34      cube 	mutex_enter(&sc->rxq.mtx);
   1635   1.1       chs 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
   1636  1.34      cube 	mutex_exit(&sc->rxq.mtx);
   1637   1.2       chs 
   1638  1.31  christos 	if (m != NULL)
   1639  1.31  christos 		pool_cache_put(mb_cache, m);
   1640   1.1       chs }
   1641   1.1       chs 
   1642   1.1       chs int
   1643   1.1       chs nfe_jpool_alloc(struct nfe_softc *sc)
   1644   1.1       chs {
   1645   1.1       chs 	struct nfe_rx_ring *ring = &sc->rxq;
   1646   1.1       chs 	struct nfe_jbuf *jbuf;
   1647   1.1       chs 	bus_addr_t physaddr;
   1648  1.15  christos 	char *buf;
   1649   1.1       chs 	int i, nsegs, error;
   1650   1.1       chs 
   1651   1.1       chs 	/*
   1652   1.1       chs 	 * Allocate a big chunk of DMA'able memory.
   1653   1.1       chs 	 */
   1654   1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
   1655   1.1       chs 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
   1656   1.1       chs 	if (error != 0) {
   1657  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1658  1.30      cube 		    "could not create jumbo DMA map\n");
   1659  1.42    cegger 		ring->jmap = NULL;
   1660   1.1       chs 		goto fail;
   1661   1.1       chs 	}
   1662   1.1       chs 
   1663   1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
   1664   1.1       chs 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
   1665   1.1       chs 	if (error != 0) {
   1666  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1667  1.30      cube 		    "could not allocate jumbo DMA memory\n");
   1668   1.1       chs 		goto fail;
   1669   1.1       chs 	}
   1670   1.1       chs 
   1671   1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
   1672   1.1       chs 	    &ring->jpool, BUS_DMA_NOWAIT);
   1673   1.1       chs 	if (error != 0) {
   1674  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1675  1.30      cube 		    "could not map jumbo DMA memory\n");
   1676   1.1       chs 		goto fail;
   1677   1.1       chs 	}
   1678   1.1       chs 
   1679   1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
   1680   1.1       chs 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
   1681   1.1       chs 	if (error != 0) {
   1682  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1683  1.30      cube 		    "could not load jumbo DMA map\n");
   1684   1.1       chs 		goto fail;
   1685   1.1       chs 	}
   1686   1.1       chs 
   1687   1.1       chs 	/* ..and split it into 9KB chunks */
   1688   1.1       chs 	SLIST_INIT(&ring->jfreelist);
   1689   1.1       chs 
   1690   1.1       chs 	buf = ring->jpool;
   1691   1.1       chs 	physaddr = ring->jmap->dm_segs[0].ds_addr;
   1692   1.1       chs 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
   1693   1.1       chs 		jbuf = &ring->jbuf[i];
   1694   1.1       chs 
   1695   1.1       chs 		jbuf->buf = buf;
   1696   1.1       chs 		jbuf->physaddr = physaddr;
   1697   1.1       chs 
   1698   1.1       chs 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
   1699   1.1       chs 
   1700   1.1       chs 		buf += NFE_JBYTES;
   1701   1.1       chs 		physaddr += NFE_JBYTES;
   1702   1.1       chs 	}
   1703   1.1       chs 
   1704   1.1       chs 	return 0;
   1705   1.1       chs 
   1706   1.1       chs fail:	nfe_jpool_free(sc);
   1707   1.1       chs 	return error;
   1708   1.1       chs }
   1709   1.1       chs 
   1710   1.1       chs void
   1711   1.1       chs nfe_jpool_free(struct nfe_softc *sc)
   1712   1.1       chs {
   1713   1.1       chs 	struct nfe_rx_ring *ring = &sc->rxq;
   1714   1.1       chs 
   1715   1.1       chs 	if (ring->jmap != NULL) {
   1716   1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
   1717   1.1       chs 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1718   1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
   1719   1.1       chs 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
   1720  1.53  jakllsch 		ring->jmap = NULL;
   1721   1.1       chs 	}
   1722   1.1       chs 	if (ring->jpool != NULL) {
   1723   1.1       chs 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
   1724   1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
   1725  1.53  jakllsch 		ring->jpool = NULL;
   1726   1.1       chs 	}
   1727   1.1       chs }
   1728   1.1       chs 
   1729   1.1       chs int
   1730   1.1       chs nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1731   1.1       chs {
   1732   1.1       chs 	int i, nsegs, error;
   1733   1.1       chs 	void **desc;
   1734   1.1       chs 	int descsize;
   1735   1.1       chs 
   1736   1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1737   1.1       chs 		desc = (void **)&ring->desc64;
   1738   1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1739   1.1       chs 	} else {
   1740   1.1       chs 		desc = (void **)&ring->desc32;
   1741   1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1742   1.1       chs 	}
   1743   1.1       chs 
   1744   1.1       chs 	ring->queued = 0;
   1745   1.1       chs 	ring->cur = ring->next = 0;
   1746   1.1       chs 
   1747   1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
   1748   1.1       chs 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
   1749   1.1       chs 
   1750   1.1       chs 	if (error != 0) {
   1751  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1752  1.30      cube 		    "could not create desc DMA map\n");
   1753  1.42    cegger 		ring->map = NULL;
   1754   1.1       chs 		goto fail;
   1755   1.1       chs 	}
   1756   1.1       chs 
   1757   1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
   1758   1.1       chs 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
   1759   1.1       chs 	if (error != 0) {
   1760  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1761  1.30      cube 		    "could not allocate DMA memory\n");
   1762   1.1       chs 		goto fail;
   1763   1.1       chs 	}
   1764   1.1       chs 
   1765   1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
   1766  1.15  christos 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
   1767   1.1       chs 	if (error != 0) {
   1768  1.30      cube 		aprint_error_dev(sc->sc_dev,
   1769  1.30      cube 		    "could not map desc DMA memory\n");
   1770   1.1       chs 		goto fail;
   1771   1.1       chs 	}
   1772   1.1       chs 
   1773   1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
   1774   1.1       chs 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
   1775   1.1       chs 	if (error != 0) {
   1776  1.30      cube 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
   1777   1.1       chs 		goto fail;
   1778   1.1       chs 	}
   1779   1.1       chs 
   1780  1.43    cegger 	memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
   1781   1.1       chs 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
   1782   1.1       chs 
   1783   1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1784   1.1       chs 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
   1785   1.1       chs 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
   1786   1.1       chs 		    &ring->data[i].map);
   1787   1.1       chs 		if (error != 0) {
   1788  1.30      cube 			aprint_error_dev(sc->sc_dev,
   1789  1.30      cube 			    "could not create DMA map\n");
   1790  1.42    cegger 			ring->data[i].map = NULL;
   1791   1.1       chs 			goto fail;
   1792   1.1       chs 		}
   1793   1.1       chs 	}
   1794   1.1       chs 
   1795   1.1       chs 	return 0;
   1796   1.1       chs 
   1797   1.1       chs fail:	nfe_free_tx_ring(sc, ring);
   1798   1.1       chs 	return error;
   1799   1.1       chs }
   1800   1.1       chs 
   1801   1.1       chs void
   1802   1.1       chs nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1803   1.1       chs {
   1804   1.1       chs 	struct nfe_tx_data *data;
   1805   1.1       chs 	int i;
   1806   1.1       chs 
   1807   1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1808   1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR)
   1809   1.1       chs 			ring->desc64[i].flags = 0;
   1810   1.1       chs 		else
   1811   1.1       chs 			ring->desc32[i].flags = 0;
   1812   1.1       chs 
   1813   1.1       chs 		data = &ring->data[i];
   1814   1.1       chs 
   1815   1.1       chs 		if (data->m != NULL) {
   1816   1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1817   1.1       chs 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1818   1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->active);
   1819   1.1       chs 			m_freem(data->m);
   1820   1.1       chs 			data->m = NULL;
   1821   1.1       chs 		}
   1822   1.1       chs 	}
   1823   1.1       chs 
   1824   1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1825   1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1826   1.1       chs 
   1827   1.1       chs 	ring->queued = 0;
   1828   1.1       chs 	ring->cur = ring->next = 0;
   1829   1.1       chs }
   1830   1.1       chs 
   1831   1.1       chs void
   1832   1.1       chs nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1833   1.1       chs {
   1834   1.1       chs 	struct nfe_tx_data *data;
   1835   1.1       chs 	void *desc;
   1836   1.1       chs 	int i, descsize;
   1837   1.1       chs 
   1838   1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1839   1.1       chs 		desc = ring->desc64;
   1840   1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1841   1.1       chs 	} else {
   1842   1.1       chs 		desc = ring->desc32;
   1843   1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1844   1.1       chs 	}
   1845   1.1       chs 
   1846   1.1       chs 	if (desc != NULL) {
   1847   1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
   1848   1.1       chs 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1849   1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->map);
   1850  1.15  christos 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
   1851   1.1       chs 		    NFE_TX_RING_COUNT * descsize);
   1852   1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
   1853   1.1       chs 	}
   1854   1.1       chs 
   1855   1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1856   1.1       chs 		data = &ring->data[i];
   1857   1.1       chs 
   1858   1.1       chs 		if (data->m != NULL) {
   1859   1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1860   1.1       chs 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1861   1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->active);
   1862   1.1       chs 			m_freem(data->m);
   1863   1.1       chs 		}
   1864   1.1       chs 	}
   1865   1.1       chs 
   1866   1.1       chs 	/* ..and now actually destroy the DMA mappings */
   1867   1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1868   1.1       chs 		data = &ring->data[i];
   1869   1.1       chs 		if (data->map == NULL)
   1870   1.1       chs 			continue;
   1871   1.1       chs 		bus_dmamap_destroy(sc->sc_dmat, data->map);
   1872   1.1       chs 	}
   1873   1.1       chs }
   1874   1.1       chs 
   1875   1.1       chs void
   1876   1.1       chs nfe_setmulti(struct nfe_softc *sc)
   1877   1.1       chs {
   1878   1.1       chs 	struct ethercom *ec = &sc->sc_ethercom;
   1879   1.1       chs 	struct ifnet *ifp = &ec->ec_if;
   1880   1.1       chs 	struct ether_multi *enm;
   1881   1.1       chs 	struct ether_multistep step;
   1882   1.1       chs 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
   1883   1.1       chs 	uint32_t filter = NFE_RXFILTER_MAGIC;
   1884   1.1       chs 	int i;
   1885   1.1       chs 
   1886   1.1       chs 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   1887  1.43    cegger 		memset(addr, 0, ETHER_ADDR_LEN);
   1888  1.43    cegger 		memset(mask, 0, ETHER_ADDR_LEN);
   1889   1.1       chs 		goto done;
   1890   1.1       chs 	}
   1891   1.1       chs 
   1892  1.43    cegger 	memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
   1893  1.43    cegger 	memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
   1894   1.1       chs 
   1895   1.1       chs 	ETHER_FIRST_MULTI(step, ec, enm);
   1896   1.1       chs 	while (enm != NULL) {
   1897  1.44    cegger 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1898   1.1       chs 			ifp->if_flags |= IFF_ALLMULTI;
   1899  1.43    cegger 			memset(addr, 0, ETHER_ADDR_LEN);
   1900  1.43    cegger 			memset(mask, 0, ETHER_ADDR_LEN);
   1901   1.1       chs 			goto done;
   1902   1.1       chs 		}
   1903   1.1       chs 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
   1904   1.1       chs 			addr[i] &=  enm->enm_addrlo[i];
   1905   1.1       chs 			mask[i] &= ~enm->enm_addrlo[i];
   1906   1.1       chs 		}
   1907   1.1       chs 		ETHER_NEXT_MULTI(step, enm);
   1908   1.1       chs 	}
   1909   1.1       chs 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1910   1.1       chs 		mask[i] |= addr[i];
   1911   1.1       chs 
   1912   1.1       chs done:
   1913   1.1       chs 	addr[0] |= 0x01;	/* make sure multicast bit is set */
   1914   1.1       chs 
   1915   1.1       chs 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
   1916   1.1       chs 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1917   1.1       chs 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
   1918   1.1       chs 	    addr[5] <<  8 | addr[4]);
   1919   1.1       chs 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
   1920   1.1       chs 	    mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
   1921   1.1       chs 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
   1922   1.1       chs 	    mask[5] <<  8 | mask[4]);
   1923   1.1       chs 
   1924   1.1       chs 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
   1925   1.1       chs 	NFE_WRITE(sc, NFE_RXFILTER, filter);
   1926   1.1       chs }
   1927   1.1       chs 
   1928   1.1       chs void
   1929   1.1       chs nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
   1930   1.1       chs {
   1931   1.1       chs 	uint32_t tmp;
   1932   1.1       chs 
   1933  1.31  christos 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
   1934  1.31  christos 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
   1935  1.31  christos 		addr[0] = (tmp & 0xff);
   1936  1.31  christos 		addr[1] = (tmp >>  8) & 0xff;
   1937  1.31  christos 		addr[2] = (tmp >> 16) & 0xff;
   1938  1.31  christos 		addr[3] = (tmp >> 24) & 0xff;
   1939  1.31  christos 
   1940  1.31  christos 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
   1941  1.31  christos 		addr[4] = (tmp & 0xff);
   1942  1.31  christos 		addr[5] = (tmp >> 8) & 0xff;
   1943  1.31  christos 
   1944  1.31  christos 	} else {
   1945  1.25   tsutsui 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
   1946  1.25   tsutsui 		addr[0] = (tmp >> 8) & 0xff;
   1947  1.25   tsutsui 		addr[1] = (tmp & 0xff);
   1948  1.25   tsutsui 
   1949  1.25   tsutsui 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
   1950  1.25   tsutsui 		addr[2] = (tmp >> 24) & 0xff;
   1951  1.25   tsutsui 		addr[3] = (tmp >> 16) & 0xff;
   1952  1.25   tsutsui 		addr[4] = (tmp >>  8) & 0xff;
   1953  1.25   tsutsui 		addr[5] = (tmp & 0xff);
   1954  1.25   tsutsui 	}
   1955   1.1       chs }
   1956   1.1       chs 
   1957   1.1       chs void
   1958   1.1       chs nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
   1959   1.1       chs {
   1960   1.1       chs 	NFE_WRITE(sc, NFE_MACADDR_LO,
   1961   1.1       chs 	    addr[5] <<  8 | addr[4]);
   1962   1.1       chs 	NFE_WRITE(sc, NFE_MACADDR_HI,
   1963   1.1       chs 	    addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1964   1.1       chs }
   1965   1.1       chs 
   1966   1.1       chs void
   1967   1.1       chs nfe_tick(void *arg)
   1968   1.1       chs {
   1969   1.1       chs 	struct nfe_softc *sc = arg;
   1970   1.1       chs 	int s;
   1971   1.1       chs 
   1972   1.1       chs 	s = splnet();
   1973   1.1       chs 	mii_tick(&sc->sc_mii);
   1974   1.1       chs 	splx(s);
   1975   1.1       chs 
   1976   1.1       chs 	callout_schedule(&sc->sc_tick_ch, hz);
   1977   1.1       chs }
   1978  1.35  jmcneill 
   1979  1.35  jmcneill void
   1980  1.35  jmcneill nfe_poweron(device_t self)
   1981  1.35  jmcneill {
   1982  1.35  jmcneill 	struct nfe_softc *sc = device_private(self);
   1983  1.35  jmcneill 
   1984  1.35  jmcneill 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
   1985  1.35  jmcneill 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
   1986  1.35  jmcneill 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
   1987  1.35  jmcneill 		DELAY(100);
   1988  1.35  jmcneill 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
   1989  1.35  jmcneill 		DELAY(100);
   1990  1.35  jmcneill 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
   1991  1.35  jmcneill 		NFE_WRITE(sc, NFE_PWR2_CTL,
   1992  1.35  jmcneill 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
   1993  1.35  jmcneill 	}
   1994  1.35  jmcneill }
   1995  1.35  jmcneill 
   1996  1.35  jmcneill bool
   1997  1.50    dyoung nfe_resume(device_t dv, const pmf_qual_t *qual)
   1998  1.35  jmcneill {
   1999  1.35  jmcneill 	nfe_poweron(dv);
   2000  1.35  jmcneill 
   2001  1.35  jmcneill 	return true;
   2002  1.35  jmcneill }
   2003