Home | History | Annotate | Line # | Download | only in pci
if_nfe.c revision 1.65.2.2
      1  1.65.2.2    martin /*	$NetBSD: if_nfe.c,v 1.65.2.2 2020/04/08 14:08:09 martin Exp $	*/
      2      1.31  christos /*	$OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $	*/
      3       1.1       chs 
      4       1.1       chs /*-
      5      1.31  christos  * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
      6       1.1       chs  * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
      7       1.1       chs  *
      8       1.1       chs  * Permission to use, copy, modify, and distribute this software for any
      9       1.1       chs  * purpose with or without fee is hereby granted, provided that the above
     10       1.1       chs  * copyright notice and this permission notice appear in all copies.
     11       1.1       chs  *
     12       1.1       chs  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13       1.1       chs  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14       1.1       chs  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15       1.1       chs  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16       1.1       chs  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17       1.1       chs  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18       1.1       chs  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19       1.1       chs  */
     20       1.1       chs 
     21       1.1       chs /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
     22       1.1       chs 
     23       1.1       chs #include <sys/cdefs.h>
     24  1.65.2.2    martin __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.65.2.2 2020/04/08 14:08:09 martin Exp $");
     25       1.1       chs 
     26       1.1       chs #include "opt_inet.h"
     27       1.1       chs #include "vlan.h"
     28       1.1       chs 
     29       1.1       chs #include <sys/param.h>
     30       1.1       chs #include <sys/endian.h>
     31       1.1       chs #include <sys/systm.h>
     32       1.1       chs #include <sys/types.h>
     33       1.1       chs #include <sys/sockio.h>
     34       1.1       chs #include <sys/mbuf.h>
     35      1.34      cube #include <sys/mutex.h>
     36       1.1       chs #include <sys/queue.h>
     37       1.1       chs #include <sys/kernel.h>
     38       1.1       chs #include <sys/device.h>
     39      1.31  christos #include <sys/callout.h>
     40       1.1       chs #include <sys/socket.h>
     41       1.1       chs 
     42      1.20        ad #include <sys/bus.h>
     43       1.1       chs 
     44       1.1       chs #include <net/if.h>
     45       1.1       chs #include <net/if_dl.h>
     46       1.1       chs #include <net/if_media.h>
     47       1.1       chs #include <net/if_ether.h>
     48       1.1       chs #include <net/if_arp.h>
     49       1.1       chs 
     50       1.1       chs #ifdef INET
     51       1.1       chs #include <netinet/in.h>
     52       1.1       chs #include <netinet/in_systm.h>
     53       1.1       chs #include <netinet/in_var.h>
     54       1.1       chs #include <netinet/ip.h>
     55       1.1       chs #include <netinet/if_inarp.h>
     56       1.1       chs #endif
     57       1.1       chs 
     58       1.1       chs #if NVLAN > 0
     59       1.1       chs #include <net/if_types.h>
     60       1.1       chs #endif
     61       1.1       chs 
     62       1.1       chs #include <net/bpf.h>
     63       1.1       chs 
     64       1.1       chs #include <dev/mii/mii.h>
     65       1.1       chs #include <dev/mii/miivar.h>
     66       1.1       chs 
     67       1.1       chs #include <dev/pci/pcireg.h>
     68       1.1       chs #include <dev/pci/pcivar.h>
     69       1.1       chs #include <dev/pci/pcidevs.h>
     70       1.1       chs 
     71       1.1       chs #include <dev/pci/if_nfereg.h>
     72       1.1       chs #include <dev/pci/if_nfevar.h>
     73       1.1       chs 
     74      1.37    dyoung static int nfe_ifflags_cb(struct ethercom *);
     75      1.37    dyoung 
     76      1.30      cube int	nfe_match(device_t, cfdata_t, void *);
     77      1.30      cube void	nfe_attach(device_t, device_t, void *);
     78      1.53  jakllsch int	nfe_detach(device_t, int);
     79       1.1       chs void	nfe_power(int, void *);
     80      1.56      matt void	nfe_miibus_statchg(struct ifnet *);
     81  1.65.2.1  christos int	nfe_miibus_readreg(device_t, int, int, uint16_t *);
     82  1.65.2.1  christos int	nfe_miibus_writereg(device_t, int, int, uint16_t);
     83       1.1       chs int	nfe_intr(void *);
     84      1.15  christos int	nfe_ioctl(struct ifnet *, u_long, void *);
     85       1.1       chs void	nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
     86       1.1       chs void	nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
     87       1.1       chs void	nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
     88       1.1       chs void	nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
     89       1.1       chs void	nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
     90       1.1       chs void	nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
     91       1.1       chs void	nfe_rxeof(struct nfe_softc *);
     92       1.1       chs void	nfe_txeof(struct nfe_softc *);
     93       1.1       chs int	nfe_encap(struct nfe_softc *, struct mbuf *);
     94       1.1       chs void	nfe_start(struct ifnet *);
     95       1.1       chs void	nfe_watchdog(struct ifnet *);
     96       1.1       chs int	nfe_init(struct ifnet *);
     97       1.1       chs void	nfe_stop(struct ifnet *, int);
     98      1.19      cube struct	nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
     99      1.15  christos void	nfe_jfree(struct mbuf *, void *, size_t, void *);
    100       1.1       chs int	nfe_jpool_alloc(struct nfe_softc *);
    101       1.1       chs void	nfe_jpool_free(struct nfe_softc *);
    102       1.1       chs int	nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    103       1.1       chs void	nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    104       1.1       chs void	nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
    105       1.1       chs int	nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    106       1.1       chs void	nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    107       1.1       chs void	nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
    108       1.1       chs void	nfe_setmulti(struct nfe_softc *);
    109       1.1       chs void	nfe_get_macaddr(struct nfe_softc *, uint8_t *);
    110       1.1       chs void	nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
    111       1.1       chs void	nfe_tick(void *);
    112      1.35  jmcneill void	nfe_poweron(device_t);
    113      1.50    dyoung bool	nfe_resume(device_t, const pmf_qual_t *);
    114       1.1       chs 
    115      1.53  jakllsch CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
    116      1.53  jakllsch     nfe_match, nfe_attach, nfe_detach, NULL);
    117       1.1       chs 
    118      1.34      cube /* #define NFE_NO_JUMBO */
    119      1.34      cube 
    120       1.1       chs #ifdef NFE_DEBUG
    121       1.1       chs int nfedebug = 0;
    122       1.1       chs #define DPRINTF(x)	do { if (nfedebug) printf x; } while (0)
    123  1.65.2.1  christos #define DPRINTFN(n, x)	do { if (nfedebug >= (n)) printf x; } while (0)
    124       1.1       chs #else
    125       1.1       chs #define DPRINTF(x)
    126  1.65.2.1  christos #define DPRINTFN(n, x)
    127       1.1       chs #endif
    128       1.1       chs 
    129       1.1       chs /* deal with naming differences */
    130       1.1       chs 
    131       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
    132       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
    133       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
    134       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
    135       1.1       chs #define	PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
    136       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
    137       1.1       chs 
    138       1.1       chs #define	PCI_PRODUCT_NVIDIA_CK804_LAN1 \
    139       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
    140       1.1       chs #define	PCI_PRODUCT_NVIDIA_CK804_LAN2 \
    141       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
    142       1.1       chs 
    143       1.1       chs #define	PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
    144       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
    145       1.1       chs #define	PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
    146       1.1       chs 	PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
    147       1.1       chs 
    148       1.1       chs const struct nfe_product {
    149       1.1       chs 	pci_vendor_id_t		vendor;
    150       1.1       chs 	pci_product_id_t	product;
    151       1.1       chs } nfe_devices[] = {
    152       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
    153       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
    154       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
    155       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
    156       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
    157       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
    158       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
    159       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
    160       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
    161       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
    162       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
    163       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
    164       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
    165       1.1       chs 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
    166       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
    167       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
    168       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
    169       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
    170       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
    171       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
    172       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
    173       1.4   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
    174      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
    175      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
    176      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
    177      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
    178      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
    179      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
    180      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
    181      1.22   xtraeme 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
    182      1.29     isaki 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
    183      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
    184      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
    185      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
    186      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
    187      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
    188      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
    189      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
    190      1.31  christos 	{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
    191       1.1       chs };
    192       1.1       chs 
    193       1.1       chs int
    194      1.30      cube nfe_match(device_t dev, cfdata_t match, void *aux)
    195       1.1       chs {
    196       1.1       chs 	struct pci_attach_args *pa = aux;
    197       1.1       chs 	const struct nfe_product *np;
    198       1.1       chs 	int i;
    199       1.1       chs 
    200      1.45    cegger 	for (i = 0; i < __arraycount(nfe_devices); i++) {
    201       1.1       chs 		np = &nfe_devices[i];
    202       1.1       chs 		if (PCI_VENDOR(pa->pa_id) == np->vendor &&
    203       1.1       chs 		    PCI_PRODUCT(pa->pa_id) == np->product)
    204       1.1       chs 			return 1;
    205       1.1       chs 	}
    206       1.1       chs 	return 0;
    207       1.1       chs }
    208       1.1       chs 
    209       1.1       chs void
    210      1.30      cube nfe_attach(device_t parent, device_t self, void *aux)
    211       1.1       chs {
    212      1.30      cube 	struct nfe_softc *sc = device_private(self);
    213       1.1       chs 	struct pci_attach_args *pa = aux;
    214       1.1       chs 	pci_chipset_tag_t pc = pa->pa_pc;
    215       1.1       chs 	pci_intr_handle_t ih;
    216       1.1       chs 	const char *intrstr;
    217       1.1       chs 	struct ifnet *ifp;
    218  1.65.2.1  christos 	struct mii_data * const mii = &sc->sc_mii;
    219      1.52  jakllsch 	pcireg_t memtype, csr;
    220      1.40    cegger 	int mii_flags = 0;
    221      1.59  christos 	char intrbuf[PCI_INTRSTR_LEN];
    222      1.10   tsutsui 
    223      1.30      cube 	sc->sc_dev = self;
    224      1.53  jakllsch 	sc->sc_pc = pa->pa_pc;
    225      1.55  drochner 	pci_aprint_devinfo(pa, NULL);
    226       1.1       chs 
    227       1.1       chs 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
    228       1.1       chs 	switch (memtype) {
    229       1.1       chs 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    230       1.1       chs 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    231       1.1       chs 		if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
    232      1.53  jakllsch 		    &sc->sc_memh, NULL, &sc->sc_mems) == 0)
    233       1.1       chs 			break;
    234       1.1       chs 		/* FALLTHROUGH */
    235       1.1       chs 	default:
    236      1.30      cube 		aprint_error_dev(self, "could not map mem space\n");
    237       1.1       chs 		return;
    238       1.1       chs 	}
    239       1.1       chs 
    240       1.1       chs 	if (pci_intr_map(pa, &ih) != 0) {
    241      1.30      cube 		aprint_error_dev(self, "could not map interrupt\n");
    242      1.42    cegger 		goto fail;
    243       1.1       chs 	}
    244       1.1       chs 
    245      1.59  christos 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    246  1.65.2.1  christos 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, nfe_intr, sc,
    247  1.65.2.1  christos 	    device_xname(self));
    248       1.1       chs 	if (sc->sc_ih == NULL) {
    249      1.30      cube 		aprint_error_dev(self, "could not establish interrupt");
    250       1.1       chs 		if (intrstr != NULL)
    251      1.47     njoly 			aprint_error(" at %s", intrstr);
    252      1.47     njoly 		aprint_error("\n");
    253      1.42    cegger 		goto fail;
    254       1.1       chs 	}
    255      1.30      cube 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
    256       1.1       chs 
    257      1.52  jakllsch 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    258      1.52  jakllsch 	csr |= PCI_COMMAND_MASTER_ENABLE;
    259      1.52  jakllsch 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
    260      1.52  jakllsch 
    261       1.1       chs 	sc->sc_flags = 0;
    262       1.1       chs 
    263       1.1       chs 	switch (PCI_PRODUCT(pa->pa_id)) {
    264       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
    265       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
    266       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
    267       1.1       chs 	case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
    268       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
    269       1.1       chs 		break;
    270       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
    271       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
    272      1.31  christos 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
    273      1.31  christos 		break;
    274       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
    275       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
    276       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
    277       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
    278      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
    279      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
    280      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
    281      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
    282      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
    283      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
    284      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
    285      1.23   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
    286      1.31  christos 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
    287      1.31  christos 		    NFE_PWR_MGMT;
    288      1.31  christos 		break;
    289      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
    290      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
    291      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
    292      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
    293      1.41    cegger 		sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
    294      1.41    cegger 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    295      1.41    cegger 		break;
    296      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
    297      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
    298      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
    299      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
    300      1.41    cegger 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
    301      1.31  christos 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    302       1.1       chs 		break;
    303       1.1       chs 	case PCI_PRODUCT_NVIDIA_CK804_LAN1:
    304       1.1       chs 	case PCI_PRODUCT_NVIDIA_CK804_LAN2:
    305       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
    306       1.1       chs 	case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
    307       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
    308       1.1       chs 		break;
    309       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
    310       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
    311       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
    312       1.4   xtraeme 	case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
    313      1.31  christos 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
    314      1.31  christos 		    NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
    315      1.40    cegger 		mii_flags = MIIF_DOPAUSE;
    316      1.31  christos 		break;
    317      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
    318      1.31  christos 	case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
    319       1.1       chs 		sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
    320      1.27   tsutsui 		    NFE_HW_VLAN | NFE_PWR_MGMT;
    321       1.1       chs 		break;
    322       1.1       chs 	}
    323       1.1       chs 
    324  1.65.2.2    martin 	if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0) {
    325  1.65.2.2    martin 		if (bus_dmatag_subregion(pa->pa_dmat64,
    326  1.65.2.2    martin 					 0,
    327  1.65.2.2    martin 					 (bus_addr_t)(1ULL << 40),
    328  1.65.2.2    martin 					 &sc->sc_dmat,
    329  1.65.2.2    martin 					 BUS_DMA_WAITOK) != 0) {
    330  1.65.2.2    martin 			aprint_error_dev(self,
    331  1.65.2.2    martin 			    "unable to create 40-bit DMA tag\n");
    332  1.65.2.2    martin 			sc->sc_dmat = pa->pa_dmat64;
    333  1.65.2.2    martin 		} else
    334  1.65.2.2    martin 			sc->sc_dmat_needs_free = true;
    335  1.65.2.2    martin 	} else
    336      1.57       chs 		sc->sc_dmat = pa->pa_dmat;
    337      1.57       chs 
    338      1.35  jmcneill 	nfe_poweron(self);
    339      1.27   tsutsui 
    340      1.34      cube #ifndef NFE_NO_JUMBO
    341       1.1       chs 	/* enable jumbo frames for adapters that support it */
    342       1.1       chs 	if (sc->sc_flags & NFE_JUMBO_SUP)
    343       1.1       chs 		sc->sc_flags |= NFE_USE_JUMBO;
    344       1.1       chs #endif
    345       1.1       chs 
    346      1.31  christos 	/* Check for reversed ethernet address */
    347      1.31  christos 	if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
    348      1.31  christos 		sc->sc_flags |= NFE_CORRECT_MACADDR;
    349      1.31  christos 
    350      1.31  christos 	nfe_get_macaddr(sc, sc->sc_enaddr);
    351      1.31  christos 	aprint_normal_dev(self, "Ethernet address %s\n",
    352      1.31  christos 	    ether_sprintf(sc->sc_enaddr));
    353      1.31  christos 
    354       1.1       chs 	/*
    355       1.1       chs 	 * Allocate Tx and Rx rings.
    356       1.1       chs 	 */
    357       1.1       chs 	if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
    358      1.30      cube 		aprint_error_dev(self, "could not allocate Tx ring\n");
    359      1.42    cegger 		goto fail;
    360       1.1       chs 	}
    361       1.1       chs 
    362      1.36      cube 	mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
    363      1.34      cube 
    364       1.1       chs 	if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
    365      1.30      cube 		aprint_error_dev(self, "could not allocate Rx ring\n");
    366       1.1       chs 		nfe_free_tx_ring(sc, &sc->txq);
    367      1.42    cegger 		goto fail;
    368       1.1       chs 	}
    369       1.1       chs 
    370       1.1       chs 	ifp = &sc->sc_ethercom.ec_if;
    371       1.1       chs 	ifp->if_softc = sc;
    372       1.1       chs 	ifp->if_mtu = ETHERMTU;
    373       1.1       chs 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    374       1.1       chs 	ifp->if_ioctl = nfe_ioctl;
    375       1.1       chs 	ifp->if_start = nfe_start;
    376      1.24  jmcneill 	ifp->if_stop = nfe_stop;
    377       1.1       chs 	ifp->if_watchdog = nfe_watchdog;
    378       1.1       chs 	ifp->if_init = nfe_init;
    379       1.1       chs 	ifp->if_baudrate = IF_Gbps(1);
    380       1.1       chs 	IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
    381       1.1       chs 	IFQ_SET_READY(&ifp->if_snd);
    382      1.30      cube 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    383       1.1       chs 
    384      1.31  christos 	if (sc->sc_flags & NFE_USE_JUMBO)
    385      1.37    dyoung 		sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
    386      1.31  christos 
    387       1.1       chs #if NVLAN > 0
    388       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
    389       1.1       chs 		sc->sc_ethercom.ec_capabilities |=
    390       1.1       chs 			ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
    391       1.1       chs #endif
    392       1.1       chs 	if (sc->sc_flags & NFE_HW_CSUM) {
    393      1.13   tsutsui 		ifp->if_capabilities |=
    394      1.13   tsutsui 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    395      1.13   tsutsui 		    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    396      1.13   tsutsui 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    397       1.1       chs 	}
    398       1.1       chs 
    399  1.65.2.1  christos 	mii->mii_ifp = ifp;
    400  1.65.2.1  christos 	mii->mii_readreg = nfe_miibus_readreg;
    401  1.65.2.1  christos 	mii->mii_writereg = nfe_miibus_writereg;
    402  1.65.2.1  christos 	mii->mii_statchg = nfe_miibus_statchg;
    403      1.40    cegger 
    404  1.65.2.1  christos 	sc->sc_ethercom.ec_mii = mii;
    405  1.65.2.1  christos 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
    406      1.40    cegger 
    407  1.65.2.1  christos 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
    408  1.65.2.1  christos 
    409  1.65.2.1  christos 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    410      1.30      cube 		aprint_error_dev(self, "no PHY found!\n");
    411  1.65.2.1  christos 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    412  1.65.2.1  christos 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    413       1.1       chs 	} else
    414  1.65.2.1  christos 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    415       1.1       chs 
    416       1.1       chs 	if_attach(ifp);
    417      1.62     ozaki 	if_deferred_start_init(ifp, NULL);
    418       1.1       chs 	ether_ifattach(ifp, sc->sc_enaddr);
    419      1.37    dyoung 	ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
    420       1.1       chs 
    421      1.16        ad 	callout_init(&sc->sc_tick_ch, 0);
    422       1.1       chs 	callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
    423       1.1       chs 
    424      1.46   tsutsui 	if (pmf_device_register(self, NULL, nfe_resume))
    425      1.46   tsutsui 		pmf_class_network_register(self, ifp);
    426      1.46   tsutsui 	else
    427      1.24  jmcneill 		aprint_error_dev(self, "couldn't establish power handler\n");
    428      1.42    cegger 
    429      1.42    cegger 	return;
    430      1.42    cegger 
    431      1.42    cegger fail:
    432      1.42    cegger 	if (sc->sc_ih != NULL) {
    433      1.42    cegger 		pci_intr_disestablish(pc, sc->sc_ih);
    434      1.42    cegger 		sc->sc_ih = NULL;
    435      1.42    cegger 	}
    436      1.53  jakllsch 	if (sc->sc_mems != 0) {
    437      1.53  jakllsch 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
    438      1.53  jakllsch 		sc->sc_mems = 0;
    439      1.53  jakllsch 	}
    440      1.53  jakllsch }
    441      1.53  jakllsch 
    442      1.53  jakllsch int
    443      1.53  jakllsch nfe_detach(device_t self, int flags)
    444      1.53  jakllsch {
    445      1.53  jakllsch 	struct nfe_softc *sc = device_private(self);
    446      1.53  jakllsch 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    447      1.53  jakllsch 	int s;
    448      1.53  jakllsch 
    449      1.53  jakllsch 	s = splnet();
    450      1.53  jakllsch 
    451      1.53  jakllsch 	nfe_stop(ifp, 1);
    452      1.53  jakllsch 
    453      1.53  jakllsch 	pmf_device_deregister(self);
    454      1.53  jakllsch 	callout_destroy(&sc->sc_tick_ch);
    455      1.53  jakllsch 	ether_ifdetach(ifp);
    456      1.53  jakllsch 	if_detach(ifp);
    457      1.53  jakllsch 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    458  1.65.2.2    martin 	ifmedia_fini(&sc->sc_mii.mii_media);
    459      1.53  jakllsch 
    460      1.53  jakllsch 	nfe_free_rx_ring(sc, &sc->rxq);
    461      1.53  jakllsch 	mutex_destroy(&sc->rxq.mtx);
    462      1.53  jakllsch 	nfe_free_tx_ring(sc, &sc->txq);
    463      1.53  jakllsch 
    464  1.65.2.2    martin 	if (sc->sc_dmat_needs_free)
    465  1.65.2.2    martin 		bus_dmatag_destroy(sc->sc_dmat);
    466  1.65.2.2    martin 
    467      1.53  jakllsch 	if (sc->sc_ih != NULL) {
    468      1.53  jakllsch 		pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
    469      1.53  jakllsch 		sc->sc_ih = NULL;
    470      1.53  jakllsch 	}
    471      1.53  jakllsch 
    472      1.53  jakllsch 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
    473      1.53  jakllsch 		nfe_set_macaddr(sc, sc->sc_enaddr);
    474      1.53  jakllsch 	} else {
    475      1.53  jakllsch 		NFE_WRITE(sc, NFE_MACADDR_LO,
    476      1.53  jakllsch 		    sc->sc_enaddr[0] <<  8 | sc->sc_enaddr[1]);
    477      1.53  jakllsch 		NFE_WRITE(sc, NFE_MACADDR_HI,
    478      1.53  jakllsch 		    sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
    479      1.53  jakllsch 		    sc->sc_enaddr[4] <<  8 | sc->sc_enaddr[5]);
    480      1.53  jakllsch 	}
    481      1.53  jakllsch 
    482      1.53  jakllsch 	if (sc->sc_mems != 0) {
    483      1.53  jakllsch 		bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
    484      1.53  jakllsch 		sc->sc_mems = 0;
    485      1.53  jakllsch 	}
    486      1.53  jakllsch 
    487      1.53  jakllsch 	splx(s);
    488      1.53  jakllsch 
    489      1.53  jakllsch 	return 0;
    490       1.1       chs }
    491       1.1       chs 
    492       1.1       chs void
    493      1.56      matt nfe_miibus_statchg(struct ifnet *ifp)
    494       1.1       chs {
    495      1.56      matt 	struct nfe_softc *sc = ifp->if_softc;
    496       1.1       chs 	struct mii_data *mii = &sc->sc_mii;
    497       1.1       chs 	uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
    498       1.1       chs 
    499       1.1       chs 	phy = NFE_READ(sc, NFE_PHY_IFACE);
    500       1.1       chs 	phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
    501       1.1       chs 
    502       1.1       chs 	seed = NFE_READ(sc, NFE_RNDSEED);
    503       1.1       chs 	seed &= ~NFE_SEED_MASK;
    504       1.1       chs 
    505  1.65.2.1  christos 	if ((mii->mii_media_active & IFM_HDX) != 0) {
    506       1.1       chs 		phy  |= NFE_PHY_HDX;	/* half-duplex */
    507       1.1       chs 		misc |= NFE_MISC1_HDX;
    508       1.1       chs 	}
    509       1.1       chs 
    510       1.1       chs 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
    511       1.1       chs 	case IFM_1000_T:	/* full-duplex only */
    512       1.1       chs 		link |= NFE_MEDIA_1000T;
    513       1.1       chs 		seed |= NFE_SEED_1000T;
    514       1.1       chs 		phy  |= NFE_PHY_1000T;
    515       1.1       chs 		break;
    516       1.1       chs 	case IFM_100_TX:
    517       1.1       chs 		link |= NFE_MEDIA_100TX;
    518       1.1       chs 		seed |= NFE_SEED_100TX;
    519       1.1       chs 		phy  |= NFE_PHY_100TX;
    520       1.1       chs 		break;
    521       1.1       chs 	case IFM_10_T:
    522       1.1       chs 		link |= NFE_MEDIA_10T;
    523       1.1       chs 		seed |= NFE_SEED_10T;
    524       1.1       chs 		break;
    525       1.1       chs 	}
    526       1.1       chs 
    527       1.1       chs 	NFE_WRITE(sc, NFE_RNDSEED, seed);	/* XXX: gigabit NICs only? */
    528       1.1       chs 
    529       1.1       chs 	NFE_WRITE(sc, NFE_PHY_IFACE, phy);
    530       1.1       chs 	NFE_WRITE(sc, NFE_MISC1, misc);
    531       1.1       chs 	NFE_WRITE(sc, NFE_LINKSPEED, link);
    532       1.1       chs }
    533       1.1       chs 
    534       1.1       chs int
    535  1.65.2.1  christos nfe_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
    536       1.1       chs {
    537      1.30      cube 	struct nfe_softc *sc = device_private(dev);
    538  1.65.2.1  christos 	uint32_t data;
    539       1.1       chs 	int ntries;
    540       1.1       chs 
    541       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    542       1.1       chs 
    543       1.1       chs 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
    544       1.1       chs 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
    545       1.1       chs 		DELAY(100);
    546       1.1       chs 	}
    547       1.1       chs 
    548       1.1       chs 	NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
    549       1.1       chs 
    550       1.1       chs 	for (ntries = 0; ntries < 1000; ntries++) {
    551       1.1       chs 		DELAY(100);
    552       1.1       chs 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
    553       1.1       chs 			break;
    554       1.1       chs 	}
    555       1.1       chs 	if (ntries == 1000) {
    556  1.65.2.2    martin 		DPRINTFN(2, ("%s: timeout waiting for PHY read (%d, %d)\n",
    557  1.65.2.2    martin 		    device_xname(sc->sc_dev), phy, reg));
    558  1.65.2.1  christos 		return ETIMEDOUT;
    559       1.1       chs 	}
    560       1.1       chs 
    561       1.1       chs 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
    562  1.65.2.2    martin 		DPRINTFN(2, ("%s: could not read PHY (%d, %d)\n",
    563  1.65.2.2    martin 		    device_xname(sc->sc_dev), phy, reg));
    564  1.65.2.1  christos 		return -1;
    565       1.1       chs 	}
    566       1.1       chs 
    567  1.65.2.1  christos 	data = NFE_READ(sc, NFE_PHY_DATA);
    568  1.65.2.2    martin 	sc->mii_phyaddr = phy;
    569       1.1       chs 
    570  1.65.2.1  christos 	DPRINTFN(2, ("%s: mii read phy %d reg 0x%x data 0x%x\n",
    571  1.65.2.1  christos 	    device_xname(sc->sc_dev), phy, reg, data));
    572       1.1       chs 
    573  1.65.2.1  christos 	*val = data & 0x0000ffff;
    574  1.65.2.1  christos 	return 0;
    575       1.1       chs }
    576       1.1       chs 
    577  1.65.2.1  christos int
    578  1.65.2.1  christos nfe_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
    579       1.1       chs {
    580      1.30      cube 	struct nfe_softc *sc = device_private(dev);
    581       1.1       chs 	uint32_t ctl;
    582       1.1       chs 	int ntries;
    583       1.1       chs 
    584       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    585       1.1       chs 
    586       1.1       chs 	if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
    587       1.1       chs 		NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
    588       1.1       chs 		DELAY(100);
    589       1.1       chs 	}
    590       1.1       chs 
    591       1.1       chs 	NFE_WRITE(sc, NFE_PHY_DATA, val);
    592       1.1       chs 	ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
    593       1.1       chs 	NFE_WRITE(sc, NFE_PHY_CTL, ctl);
    594       1.1       chs 
    595       1.1       chs 	for (ntries = 0; ntries < 1000; ntries++) {
    596       1.1       chs 		DELAY(100);
    597       1.1       chs 		if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
    598       1.1       chs 			break;
    599       1.1       chs 	}
    600  1.65.2.1  christos 	if (ntries == 1000) {
    601       1.1       chs #ifdef NFE_DEBUG
    602  1.65.2.1  christos 		if (nfedebug >= 2)
    603  1.65.2.2    martin 			printf("timeout waiting for PHY write (%d, %d)\n",
    604  1.65.2.2    martin 			    phy, reg);
    605       1.1       chs #endif
    606  1.65.2.1  christos 		return ETIMEDOUT;
    607  1.65.2.1  christos 	}
    608  1.65.2.2    martin 	if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
    609  1.65.2.2    martin 		DPRINTFN(2, ("%s: could not write PHY (%d, %d)\n",
    610  1.65.2.2    martin 		    device_xname(sc->sc_dev), phy, reg));
    611  1.65.2.2    martin 		return -1;
    612  1.65.2.2    martin 	}
    613  1.65.2.1  christos 	return 0;
    614       1.1       chs }
    615       1.1       chs 
    616       1.1       chs int
    617       1.1       chs nfe_intr(void *arg)
    618       1.1       chs {
    619       1.1       chs 	struct nfe_softc *sc = arg;
    620       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    621       1.1       chs 	uint32_t r;
    622      1.14   tsutsui 	int handled;
    623       1.1       chs 
    624      1.14   tsutsui 	if ((ifp->if_flags & IFF_UP) == 0)
    625      1.14   tsutsui 		return 0;
    626       1.1       chs 
    627      1.14   tsutsui 	handled = 0;
    628       1.1       chs 
    629      1.14   tsutsui 	for (;;) {
    630      1.14   tsutsui 		r = NFE_READ(sc, NFE_IRQ_STATUS);
    631      1.14   tsutsui 		if ((r & NFE_IRQ_WANTED) == 0)
    632      1.14   tsutsui 			break;
    633       1.1       chs 
    634      1.14   tsutsui 		NFE_WRITE(sc, NFE_IRQ_STATUS, r);
    635      1.14   tsutsui 		handled = 1;
    636      1.14   tsutsui 		DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
    637      1.14   tsutsui 
    638  1.65.2.1  christos 		if ((r & (NFE_IRQ_RXERR |NFE_IRQ_RX_NOBUF |NFE_IRQ_RX)) != 0) {
    639      1.14   tsutsui 			/* check Rx ring */
    640      1.14   tsutsui 			nfe_rxeof(sc);
    641      1.14   tsutsui 		}
    642      1.31  christos 		if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
    643      1.14   tsutsui 			/* check Tx ring */
    644      1.14   tsutsui 			nfe_txeof(sc);
    645      1.14   tsutsui 		}
    646      1.14   tsutsui 		if ((r & NFE_IRQ_LINK) != 0) {
    647      1.14   tsutsui 			NFE_READ(sc, NFE_PHY_STATUS);
    648      1.14   tsutsui 			NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
    649      1.14   tsutsui 			DPRINTF(("%s: link state changed\n",
    650      1.30      cube 			    device_xname(sc->sc_dev)));
    651      1.14   tsutsui 		}
    652       1.1       chs 	}
    653       1.1       chs 
    654      1.62     ozaki 	if (handled)
    655      1.62     ozaki 		if_schedule_deferred_start(ifp);
    656      1.12  jmcneill 
    657      1.14   tsutsui 	return handled;
    658       1.1       chs }
    659       1.1       chs 
    660      1.37    dyoung static int
    661      1.37    dyoung nfe_ifflags_cb(struct ethercom *ec)
    662      1.37    dyoung {
    663      1.37    dyoung 	struct ifnet *ifp = &ec->ec_if;
    664      1.37    dyoung 	struct nfe_softc *sc = ifp->if_softc;
    665      1.37    dyoung 	int change = ifp->if_flags ^ sc->sc_if_flags;
    666      1.37    dyoung 
    667      1.37    dyoung 	/*
    668      1.37    dyoung 	 * If only the PROMISC flag changes, then
    669      1.37    dyoung 	 * don't do a full re-init of the chip, just update
    670      1.37    dyoung 	 * the Rx filter.
    671      1.37    dyoung 	 */
    672  1.65.2.1  christos 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
    673      1.37    dyoung 		return ENETRESET;
    674      1.37    dyoung 	else if ((change & IFF_PROMISC) != 0)
    675      1.37    dyoung 		nfe_setmulti(sc);
    676      1.37    dyoung 
    677      1.37    dyoung 	return 0;
    678      1.37    dyoung }
    679      1.37    dyoung 
    680       1.1       chs int
    681      1.15  christos nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    682       1.1       chs {
    683       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
    684       1.1       chs 	struct ifaddr *ifa = (struct ifaddr *)data;
    685       1.1       chs 	int s, error = 0;
    686       1.1       chs 
    687       1.1       chs 	s = splnet();
    688       1.1       chs 
    689       1.1       chs 	switch (cmd) {
    690      1.37    dyoung 	case SIOCINITIFADDR:
    691       1.1       chs 		ifp->if_flags |= IFF_UP;
    692       1.1       chs 		nfe_init(ifp);
    693       1.1       chs 		switch (ifa->ifa_addr->sa_family) {
    694       1.1       chs #ifdef INET
    695       1.1       chs 		case AF_INET:
    696       1.1       chs 			arp_ifinit(ifp, ifa);
    697       1.1       chs 			break;
    698       1.1       chs #endif
    699       1.1       chs 		default:
    700       1.1       chs 			break;
    701       1.1       chs 		}
    702       1.1       chs 		break;
    703      1.26    dyoung 	default:
    704      1.28    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
    705      1.28    dyoung 			break;
    706      1.31  christos 
    707      1.28    dyoung 		error = 0;
    708      1.28    dyoung 
    709      1.28    dyoung 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
    710      1.28    dyoung 			;
    711      1.28    dyoung 		else if (ifp->if_flags & IFF_RUNNING)
    712      1.28    dyoung 			nfe_setmulti(sc);
    713       1.1       chs 		break;
    714       1.1       chs 	}
    715      1.37    dyoung 	sc->sc_if_flags = ifp->if_flags;
    716       1.1       chs 
    717       1.1       chs 	splx(s);
    718       1.1       chs 
    719       1.1       chs 	return error;
    720       1.1       chs }
    721       1.1       chs 
    722       1.1       chs void
    723       1.1       chs nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
    724       1.1       chs {
    725       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    726      1.15  christos 	    (char *)desc32 - (char *)sc->txq.desc32,
    727       1.1       chs 	    sizeof (struct nfe_desc32), ops);
    728       1.1       chs }
    729       1.1       chs 
    730       1.1       chs void
    731       1.1       chs nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
    732       1.1       chs {
    733       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    734      1.15  christos 	    (char *)desc64 - (char *)sc->txq.desc64,
    735       1.1       chs 	    sizeof (struct nfe_desc64), ops);
    736       1.1       chs }
    737       1.1       chs 
    738       1.1       chs void
    739       1.1       chs nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
    740       1.1       chs {
    741       1.1       chs 	if (end > start) {
    742       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    743      1.15  christos 		    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
    744      1.15  christos 		    (char *)&sc->txq.desc32[end] -
    745      1.15  christos 		    (char *)&sc->txq.desc32[start], ops);
    746       1.1       chs 		return;
    747       1.1       chs 	}
    748       1.1       chs 	/* sync from 'start' to end of ring */
    749       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    750      1.15  christos 	    (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
    751      1.15  christos 	    (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
    752      1.15  christos 	    (char *)&sc->txq.desc32[start], ops);
    753       1.1       chs 
    754       1.1       chs 	/* sync from start of ring to 'end' */
    755       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
    756      1.15  christos 	    (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
    757       1.1       chs }
    758       1.1       chs 
    759       1.1       chs void
    760       1.1       chs nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
    761       1.1       chs {
    762       1.1       chs 	if (end > start) {
    763       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    764      1.15  christos 		    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
    765      1.15  christos 		    (char *)&sc->txq.desc64[end] -
    766      1.15  christos 		    (char *)&sc->txq.desc64[start], ops);
    767       1.1       chs 		return;
    768       1.1       chs 	}
    769       1.1       chs 	/* sync from 'start' to end of ring */
    770       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
    771      1.15  christos 	    (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
    772      1.15  christos 	    (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
    773      1.15  christos 	    (char *)&sc->txq.desc64[start], ops);
    774       1.1       chs 
    775       1.1       chs 	/* sync from start of ring to 'end' */
    776       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
    777      1.15  christos 	    (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
    778       1.1       chs }
    779       1.1       chs 
    780       1.1       chs void
    781       1.1       chs nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
    782       1.1       chs {
    783       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
    784      1.15  christos 	    (char *)desc32 - (char *)sc->rxq.desc32,
    785       1.1       chs 	    sizeof (struct nfe_desc32), ops);
    786       1.1       chs }
    787       1.1       chs 
    788       1.1       chs void
    789       1.1       chs nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
    790       1.1       chs {
    791       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
    792      1.15  christos 	    (char *)desc64 - (char *)sc->rxq.desc64,
    793       1.1       chs 	    sizeof (struct nfe_desc64), ops);
    794       1.1       chs }
    795       1.1       chs 
    796       1.1       chs void
    797       1.1       chs nfe_rxeof(struct nfe_softc *sc)
    798       1.1       chs {
    799       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    800       1.1       chs 	struct nfe_desc32 *desc32;
    801       1.1       chs 	struct nfe_desc64 *desc64;
    802       1.1       chs 	struct nfe_rx_data *data;
    803       1.1       chs 	struct nfe_jbuf *jbuf;
    804       1.1       chs 	struct mbuf *m, *mnew;
    805       1.1       chs 	bus_addr_t physaddr;
    806       1.1       chs 	uint16_t flags;
    807      1.14   tsutsui 	int error, len, i;
    808       1.1       chs 
    809       1.1       chs 	desc32 = NULL;
    810       1.1       chs 	desc64 = NULL;
    811      1.14   tsutsui 	for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
    812      1.14   tsutsui 		data = &sc->rxq.data[i];
    813       1.1       chs 
    814       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    815      1.14   tsutsui 			desc64 = &sc->rxq.desc64[i];
    816      1.14   tsutsui 			nfe_rxdesc64_sync(sc, desc64,
    817  1.65.2.1  christos 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    818       1.1       chs 
    819       1.1       chs 			flags = le16toh(desc64->flags);
    820       1.1       chs 			len = le16toh(desc64->length) & 0x3fff;
    821       1.1       chs 		} else {
    822      1.14   tsutsui 			desc32 = &sc->rxq.desc32[i];
    823      1.14   tsutsui 			nfe_rxdesc32_sync(sc, desc32,
    824  1.65.2.1  christos 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
    825       1.1       chs 
    826       1.1       chs 			flags = le16toh(desc32->flags);
    827       1.1       chs 			len = le16toh(desc32->length) & 0x3fff;
    828       1.1       chs 		}
    829       1.1       chs 
    830      1.14   tsutsui 		if ((flags & NFE_RX_READY) != 0)
    831       1.1       chs 			break;
    832       1.1       chs 
    833       1.1       chs 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
    834      1.14   tsutsui 			if ((flags & NFE_RX_VALID_V1) == 0)
    835       1.1       chs 				goto skip;
    836       1.1       chs 
    837       1.1       chs 			if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
    838       1.1       chs 				flags &= ~NFE_RX_ERROR;
    839       1.1       chs 				len--;	/* fix buffer length */
    840       1.1       chs 			}
    841       1.1       chs 		} else {
    842      1.14   tsutsui 			if ((flags & NFE_RX_VALID_V2) == 0)
    843       1.1       chs 				goto skip;
    844       1.1       chs 
    845       1.1       chs 			if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
    846       1.1       chs 				flags &= ~NFE_RX_ERROR;
    847       1.1       chs 				len--;	/* fix buffer length */
    848       1.1       chs 			}
    849       1.1       chs 		}
    850       1.1       chs 
    851       1.1       chs 		if (flags & NFE_RX_ERROR) {
    852  1.65.2.2    martin 			if_statinc(ifp, if_ierrors);
    853       1.1       chs 			goto skip;
    854       1.1       chs 		}
    855       1.1       chs 
    856       1.1       chs 		/*
    857       1.1       chs 		 * Try to allocate a new mbuf for this ring element and load
    858       1.1       chs 		 * it before processing the current mbuf. If the ring element
    859       1.1       chs 		 * cannot be loaded, drop the received packet and reuse the
    860       1.1       chs 		 * old mbuf. In the unlikely case that the old mbuf can't be
    861       1.1       chs 		 * reloaded either, explicitly panic.
    862       1.1       chs 		 */
    863       1.1       chs 		MGETHDR(mnew, M_DONTWAIT, MT_DATA);
    864       1.1       chs 		if (mnew == NULL) {
    865  1.65.2.2    martin 			if_statinc(ifp, if_ierrors);
    866       1.1       chs 			goto skip;
    867       1.1       chs 		}
    868       1.1       chs 
    869       1.1       chs 		if (sc->sc_flags & NFE_USE_JUMBO) {
    870      1.19      cube 			physaddr =
    871      1.19      cube 			    sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
    872      1.19      cube 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
    873      1.19      cube 				if (len > MCLBYTES) {
    874      1.19      cube 					m_freem(mnew);
    875  1.65.2.2    martin 					if_statinc(ifp, if_ierrors);
    876      1.19      cube 					goto skip1;
    877      1.19      cube 				}
    878      1.19      cube 				MCLGET(mnew, M_DONTWAIT);
    879      1.19      cube 				if ((mnew->m_flags & M_EXT) == 0) {
    880      1.19      cube 					m_freem(mnew);
    881  1.65.2.2    martin 					if_statinc(ifp, if_ierrors);
    882      1.19      cube 					goto skip1;
    883      1.19      cube 				}
    884       1.1       chs 
    885      1.31  christos 				(void)memcpy(mtod(mnew, void *),
    886      1.19      cube 				    mtod(data->m, const void *), len);
    887      1.19      cube 				m = mnew;
    888      1.19      cube 				goto mbufcopied;
    889      1.19      cube 			} else {
    890      1.19      cube 				MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
    891      1.19      cube 				bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
    892      1.19      cube 				    mtod(data->m, char *) - (char *)sc->rxq.jpool,
    893      1.19      cube 				    NFE_JBYTES, BUS_DMASYNC_POSTREAD);
    894       1.1       chs 
    895      1.19      cube 				physaddr = jbuf->physaddr;
    896      1.19      cube 			}
    897       1.1       chs 		} else {
    898       1.1       chs 			MCLGET(mnew, M_DONTWAIT);
    899      1.14   tsutsui 			if ((mnew->m_flags & M_EXT) == 0) {
    900       1.1       chs 				m_freem(mnew);
    901  1.65.2.2    martin 				if_statinc(ifp, if_ierrors);
    902       1.1       chs 				goto skip;
    903       1.1       chs 			}
    904       1.1       chs 
    905       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
    906       1.1       chs 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
    907       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->map);
    908       1.1       chs 
    909      1.19      cube 			error = bus_dmamap_load(sc->sc_dmat, data->map,
    910      1.19      cube 			    mtod(mnew, void *), MCLBYTES, NULL,
    911      1.19      cube 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
    912       1.1       chs 			if (error != 0) {
    913       1.1       chs 				m_freem(mnew);
    914       1.1       chs 
    915       1.1       chs 				/* try to reload the old mbuf */
    916      1.19      cube 				error = bus_dmamap_load(sc->sc_dmat, data->map,
    917      1.19      cube 				    mtod(data->m, void *), MCLBYTES, NULL,
    918       1.1       chs 				    BUS_DMA_READ | BUS_DMA_NOWAIT);
    919       1.1       chs 				if (error != 0) {
    920       1.1       chs 					/* very unlikely that it will fail.. */
    921       1.1       chs 					panic("%s: could not load old rx mbuf",
    922      1.30      cube 					    device_xname(sc->sc_dev));
    923       1.1       chs 				}
    924  1.65.2.2    martin 				if_statinc(ifp, if_ierrors);
    925       1.1       chs 				goto skip;
    926       1.1       chs 			}
    927       1.1       chs 			physaddr = data->map->dm_segs[0].ds_addr;
    928       1.1       chs 		}
    929       1.1       chs 
    930       1.1       chs 		/*
    931       1.1       chs 		 * New mbuf successfully loaded, update Rx ring and continue
    932       1.1       chs 		 * processing.
    933       1.1       chs 		 */
    934       1.1       chs 		m = data->m;
    935       1.1       chs 		data->m = mnew;
    936       1.1       chs 
    937      1.19      cube mbufcopied:
    938       1.1       chs 		/* finalize mbuf */
    939       1.1       chs 		m->m_pkthdr.len = m->m_len = len;
    940      1.61     ozaki 		m_set_rcvif(m, ifp);
    941       1.1       chs 
    942      1.13   tsutsui 		if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
    943      1.13   tsutsui 			/*
    944      1.13   tsutsui 			 * XXX
    945      1.13   tsutsui 			 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
    946      1.13   tsutsui 			 */
    947      1.13   tsutsui 			if (flags & NFE_RX_IP_CSUMOK) {
    948      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
    949      1.13   tsutsui 				DPRINTFN(3, ("%s: ip4csum-rx ok\n",
    950      1.30      cube 				    device_xname(sc->sc_dev)));
    951      1.13   tsutsui 			}
    952      1.13   tsutsui 			/*
    953      1.13   tsutsui 			 * XXX
    954      1.13   tsutsui 			 * no way to check M_CSUM_TCP_UDP_BAD or
    955      1.13   tsutsui 			 * other protocols?
    956      1.13   tsutsui 			 */
    957      1.13   tsutsui 			if (flags & NFE_RX_UDP_CSUMOK) {
    958      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
    959      1.13   tsutsui 				DPRINTFN(3, ("%s: udp4csum-rx ok\n",
    960      1.30      cube 				    device_xname(sc->sc_dev)));
    961      1.13   tsutsui 			} else if (flags & NFE_RX_TCP_CSUMOK) {
    962      1.13   tsutsui 				m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
    963      1.13   tsutsui 				DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
    964      1.30      cube 				    device_xname(sc->sc_dev)));
    965      1.13   tsutsui 			}
    966      1.13   tsutsui 		}
    967      1.60     ozaki 		if_percpuq_enqueue(ifp->if_percpuq, m);
    968       1.1       chs 
    969      1.19      cube skip1:
    970       1.1       chs 		/* update mapping address in h/w descriptor */
    971       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    972  1.65.2.2    martin 			desc64->physaddr[0] =
    973  1.65.2.2    martin 			    htole32(((uint64_t)physaddr) >> 32);
    974       1.1       chs 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
    975       1.1       chs 		} else {
    976       1.1       chs 			desc32->physaddr = htole32(physaddr);
    977       1.1       chs 		}
    978       1.1       chs 
    979      1.58  christos skip:
    980      1.14   tsutsui 		if (sc->sc_flags & NFE_40BIT_ADDR) {
    981       1.1       chs 			desc64->length = htole16(sc->rxq.bufsz);
    982       1.1       chs 			desc64->flags = htole16(NFE_RX_READY);
    983       1.1       chs 
    984      1.14   tsutsui 			nfe_rxdesc64_sync(sc, desc64,
    985  1.65.2.1  christos 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    986       1.1       chs 		} else {
    987       1.1       chs 			desc32->length = htole16(sc->rxq.bufsz);
    988       1.1       chs 			desc32->flags = htole16(NFE_RX_READY);
    989       1.1       chs 
    990      1.14   tsutsui 			nfe_rxdesc32_sync(sc, desc32,
    991  1.65.2.1  christos 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    992       1.1       chs 		}
    993       1.1       chs 	}
    994      1.14   tsutsui 	/* update current RX pointer */
    995      1.14   tsutsui 	sc->rxq.cur = i;
    996       1.1       chs }
    997       1.1       chs 
    998       1.1       chs void
    999       1.1       chs nfe_txeof(struct nfe_softc *sc)
   1000       1.1       chs {
   1001       1.1       chs 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1002       1.1       chs 	struct nfe_desc32 *desc32;
   1003       1.1       chs 	struct nfe_desc64 *desc64;
   1004       1.1       chs 	struct nfe_tx_data *data = NULL;
   1005      1.14   tsutsui 	int i;
   1006       1.1       chs 	uint16_t flags;
   1007      1.31  christos 	char buf[128];
   1008       1.1       chs 
   1009      1.14   tsutsui 	for (i = sc->txq.next;
   1010      1.14   tsutsui 	    sc->txq.queued > 0;
   1011      1.14   tsutsui 	    i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
   1012       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1013      1.14   tsutsui 			desc64 = &sc->txq.desc64[i];
   1014      1.14   tsutsui 			nfe_txdesc64_sync(sc, desc64,
   1015  1.65.2.1  christos 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1016       1.1       chs 
   1017       1.1       chs 			flags = le16toh(desc64->flags);
   1018       1.1       chs 		} else {
   1019      1.14   tsutsui 			desc32 = &sc->txq.desc32[i];
   1020      1.14   tsutsui 			nfe_txdesc32_sync(sc, desc32,
   1021  1.65.2.1  christos 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1022       1.1       chs 
   1023       1.1       chs 			flags = le16toh(desc32->flags);
   1024       1.1       chs 		}
   1025       1.1       chs 
   1026      1.14   tsutsui 		if ((flags & NFE_TX_VALID) != 0)
   1027       1.1       chs 			break;
   1028       1.1       chs 
   1029      1.14   tsutsui 		data = &sc->txq.data[i];
   1030       1.1       chs 
   1031       1.1       chs 		if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
   1032      1.14   tsutsui 			if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
   1033      1.14   tsutsui 			    data->m == NULL)
   1034      1.14   tsutsui 				continue;
   1035       1.1       chs 
   1036       1.1       chs 			if ((flags & NFE_TX_ERROR_V1) != 0) {
   1037      1.38  christos 				snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
   1038      1.33  christos 				aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
   1039      1.38  christos 				    buf);
   1040  1.65.2.2    martin 				if_statinc(ifp, if_oerrors);
   1041       1.1       chs 			} else
   1042  1.65.2.2    martin 				if_statinc(ifp, if_opackets);
   1043       1.1       chs 		} else {
   1044      1.14   tsutsui 			if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
   1045      1.14   tsutsui 			    data->m == NULL)
   1046      1.14   tsutsui 				continue;
   1047       1.1       chs 
   1048       1.1       chs 			if ((flags & NFE_TX_ERROR_V2) != 0) {
   1049      1.38  christos 				snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
   1050      1.32   xtraeme 				aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
   1051      1.38  christos 				    buf);
   1052  1.65.2.2    martin 				if_statinc(ifp, if_oerrors);
   1053       1.1       chs 			} else
   1054  1.65.2.2    martin 				if_statinc(ifp, if_opackets);
   1055       1.1       chs 		}
   1056       1.1       chs 
   1057       1.1       chs 		if (data->m == NULL) {	/* should not get there */
   1058      1.30      cube 			aprint_error_dev(sc->sc_dev,
   1059      1.30      cube 			    "last fragment bit w/o associated mbuf!\n");
   1060      1.14   tsutsui 			continue;
   1061       1.1       chs 		}
   1062       1.1       chs 
   1063       1.1       chs 		/* last fragment of the mbuf chain transmitted */
   1064       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1065       1.1       chs 		    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1066       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, data->active);
   1067       1.1       chs 		m_freem(data->m);
   1068       1.1       chs 		data->m = NULL;
   1069      1.14   tsutsui 	}
   1070       1.1       chs 
   1071      1.14   tsutsui 	sc->txq.next = i;
   1072       1.1       chs 
   1073      1.14   tsutsui 	if (sc->txq.queued < NFE_TX_RING_COUNT) {
   1074      1.14   tsutsui 		/* at least one slot freed */
   1075      1.14   tsutsui 		ifp->if_flags &= ~IFF_OACTIVE;
   1076       1.1       chs 	}
   1077       1.1       chs 
   1078      1.14   tsutsui 	if (sc->txq.queued == 0) {
   1079      1.14   tsutsui 		/* all queued packets are sent */
   1080      1.14   tsutsui 		ifp->if_timer = 0;
   1081       1.1       chs 	}
   1082       1.1       chs }
   1083       1.1       chs 
   1084       1.1       chs int
   1085       1.1       chs nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
   1086       1.1       chs {
   1087       1.1       chs 	struct nfe_desc32 *desc32;
   1088       1.1       chs 	struct nfe_desc64 *desc64;
   1089       1.1       chs 	struct nfe_tx_data *data;
   1090       1.1       chs 	bus_dmamap_t map;
   1091      1.13   tsutsui 	uint16_t flags, csumflags;
   1092       1.1       chs #if NVLAN > 0
   1093       1.1       chs 	uint32_t vtag = 0;
   1094       1.1       chs #endif
   1095      1.11   tsutsui 	int error, i, first;
   1096       1.1       chs 
   1097       1.1       chs 	desc32 = NULL;
   1098       1.1       chs 	desc64 = NULL;
   1099       1.1       chs 	data = NULL;
   1100      1.11   tsutsui 
   1101      1.11   tsutsui 	flags = 0;
   1102      1.13   tsutsui 	csumflags = 0;
   1103      1.11   tsutsui 	first = sc->txq.cur;
   1104      1.11   tsutsui 
   1105      1.11   tsutsui 	map = sc->txq.data[first].map;
   1106       1.1       chs 
   1107       1.1       chs 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
   1108       1.1       chs 	if (error != 0) {
   1109      1.30      cube 		aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
   1110      1.30      cube 		    error);
   1111       1.1       chs 		return error;
   1112       1.1       chs 	}
   1113       1.1       chs 
   1114       1.1       chs 	if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
   1115       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, map);
   1116       1.1       chs 		return ENOBUFS;
   1117       1.1       chs 	}
   1118       1.1       chs 
   1119       1.1       chs #if NVLAN > 0
   1120       1.1       chs 	/* setup h/w VLAN tagging */
   1121      1.64  knakahar 	if (vlan_has_tag(m0))
   1122      1.64  knakahar 		vtag = NFE_TX_VTAG | vlan_get_tag(m0);
   1123       1.1       chs #endif
   1124      1.13   tsutsui 	if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
   1125      1.13   tsutsui 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   1126      1.13   tsutsui 			csumflags |= NFE_TX_IP_CSUM;
   1127      1.13   tsutsui 		if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   1128      1.14   tsutsui 			csumflags |= NFE_TX_TCP_UDP_CSUM;
   1129      1.13   tsutsui 	}
   1130       1.1       chs 
   1131       1.1       chs 	for (i = 0; i < map->dm_nsegs; i++) {
   1132       1.1       chs 		data = &sc->txq.data[sc->txq.cur];
   1133       1.1       chs 
   1134       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1135       1.1       chs 			desc64 = &sc->txq.desc64[sc->txq.cur];
   1136       1.1       chs 			desc64->physaddr[0] =
   1137  1.65.2.2    martin 			    htole32(((uint64_t)map->dm_segs[i].ds_addr) >> 32);
   1138       1.1       chs 			desc64->physaddr[1] =
   1139       1.1       chs 			    htole32(map->dm_segs[i].ds_addr & 0xffffffff);
   1140       1.1       chs 			desc64->length = htole16(map->dm_segs[i].ds_len - 1);
   1141       1.1       chs 			desc64->flags = htole16(flags);
   1142      1.13   tsutsui 			desc64->vtag = 0;
   1143       1.1       chs 		} else {
   1144       1.1       chs 			desc32 = &sc->txq.desc32[sc->txq.cur];
   1145       1.1       chs 
   1146       1.1       chs 			desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
   1147       1.1       chs 			desc32->length = htole16(map->dm_segs[i].ds_len - 1);
   1148       1.1       chs 			desc32->flags = htole16(flags);
   1149       1.1       chs 		}
   1150       1.1       chs 
   1151      1.13   tsutsui 		/*
   1152      1.13   tsutsui 		 * Setting of the valid bit in the first descriptor is
   1153      1.13   tsutsui 		 * deferred until the whole chain is fully setup.
   1154      1.13   tsutsui 		 */
   1155      1.13   tsutsui 		flags |= NFE_TX_VALID;
   1156       1.1       chs 
   1157       1.1       chs 		sc->txq.queued++;
   1158      1.14   tsutsui 		sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
   1159       1.1       chs 	}
   1160       1.1       chs 
   1161      1.11   tsutsui 	/* the whole mbuf chain has been setup */
   1162       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1163      1.11   tsutsui 		/* fix last descriptor */
   1164       1.1       chs 		flags |= NFE_TX_LASTFRAG_V2;
   1165       1.1       chs 		desc64->flags = htole16(flags);
   1166      1.11   tsutsui 
   1167      1.13   tsutsui 		/* Checksum flags and vtag belong to the first fragment only. */
   1168      1.13   tsutsui #if NVLAN > 0
   1169      1.13   tsutsui 		sc->txq.desc64[first].vtag = htole32(vtag);
   1170      1.13   tsutsui #endif
   1171      1.13   tsutsui 		sc->txq.desc64[first].flags |= htole16(csumflags);
   1172      1.13   tsutsui 
   1173      1.11   tsutsui 		/* finally, set the valid bit in the first descriptor */
   1174      1.11   tsutsui 		sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
   1175       1.1       chs 	} else {
   1176      1.11   tsutsui 		/* fix last descriptor */
   1177       1.1       chs 		if (sc->sc_flags & NFE_JUMBO_SUP)
   1178       1.1       chs 			flags |= NFE_TX_LASTFRAG_V2;
   1179       1.1       chs 		else
   1180       1.1       chs 			flags |= NFE_TX_LASTFRAG_V1;
   1181       1.1       chs 		desc32->flags = htole16(flags);
   1182      1.11   tsutsui 
   1183      1.13   tsutsui 		/* Checksum flags belong to the first fragment only. */
   1184      1.13   tsutsui 		sc->txq.desc32[first].flags |= htole16(csumflags);
   1185      1.13   tsutsui 
   1186      1.11   tsutsui 		/* finally, set the valid bit in the first descriptor */
   1187      1.11   tsutsui 		sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
   1188       1.1       chs 	}
   1189       1.1       chs 
   1190       1.1       chs 	data->m = m0;
   1191       1.1       chs 	data->active = map;
   1192       1.1       chs 
   1193       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1194       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1195       1.1       chs 
   1196       1.1       chs 	return 0;
   1197       1.1       chs }
   1198       1.1       chs 
   1199       1.1       chs void
   1200       1.1       chs nfe_start(struct ifnet *ifp)
   1201       1.1       chs {
   1202       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1203      1.14   tsutsui 	int old = sc->txq.queued;
   1204       1.1       chs 	struct mbuf *m0;
   1205       1.1       chs 
   1206      1.31  christos 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1207      1.18      cube 		return;
   1208      1.18      cube 
   1209       1.1       chs 	for (;;) {
   1210       1.1       chs 		IFQ_POLL(&ifp->if_snd, m0);
   1211       1.1       chs 		if (m0 == NULL)
   1212       1.1       chs 			break;
   1213       1.1       chs 
   1214       1.1       chs 		if (nfe_encap(sc, m0) != 0) {
   1215       1.1       chs 			ifp->if_flags |= IFF_OACTIVE;
   1216       1.1       chs 			break;
   1217       1.1       chs 		}
   1218       1.1       chs 
   1219       1.1       chs 		/* packet put in h/w queue, remove from s/w queue */
   1220       1.1       chs 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1221       1.1       chs 
   1222      1.65   msaitoh 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1223       1.1       chs 	}
   1224       1.1       chs 
   1225      1.14   tsutsui 	if (sc->txq.queued != old) {
   1226      1.14   tsutsui 		/* packets are queued */
   1227      1.14   tsutsui 		if (sc->sc_flags & NFE_40BIT_ADDR)
   1228      1.14   tsutsui 			nfe_txdesc64_rsync(sc, old, sc->txq.cur,
   1229  1.65.2.1  christos 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1230      1.14   tsutsui 		else
   1231      1.14   tsutsui 			nfe_txdesc32_rsync(sc, old, sc->txq.cur,
   1232  1.65.2.1  christos 			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1233      1.14   tsutsui 		/* kick Tx */
   1234      1.14   tsutsui 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
   1235       1.1       chs 
   1236      1.14   tsutsui 		/*
   1237      1.14   tsutsui 		 * Set a timeout in case the chip goes out to lunch.
   1238      1.14   tsutsui 		 */
   1239      1.14   tsutsui 		ifp->if_timer = 5;
   1240      1.14   tsutsui 	}
   1241       1.1       chs }
   1242       1.1       chs 
   1243       1.1       chs void
   1244       1.1       chs nfe_watchdog(struct ifnet *ifp)
   1245       1.1       chs {
   1246       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1247       1.1       chs 
   1248      1.30      cube 	aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
   1249       1.1       chs 
   1250       1.1       chs 	ifp->if_flags &= ~IFF_RUNNING;
   1251       1.1       chs 	nfe_init(ifp);
   1252       1.1       chs 
   1253  1.65.2.2    martin 	if_statinc(ifp, if_oerrors);
   1254       1.1       chs }
   1255       1.1       chs 
   1256       1.1       chs int
   1257       1.1       chs nfe_init(struct ifnet *ifp)
   1258       1.1       chs {
   1259       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1260       1.1       chs 	uint32_t tmp;
   1261      1.26    dyoung 	int rc = 0, s;
   1262       1.1       chs 
   1263       1.1       chs 	if (ifp->if_flags & IFF_RUNNING)
   1264       1.1       chs 		return 0;
   1265       1.1       chs 
   1266       1.1       chs 	nfe_stop(ifp, 0);
   1267       1.1       chs 
   1268       1.1       chs 	NFE_WRITE(sc, NFE_TX_UNK, 0);
   1269       1.1       chs 	NFE_WRITE(sc, NFE_STATUS, 0);
   1270       1.1       chs 
   1271       1.1       chs 	sc->rxtxctl = NFE_RXTX_BIT2;
   1272       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR)
   1273       1.1       chs 		sc->rxtxctl |= NFE_RXTX_V3MAGIC;
   1274       1.1       chs 	else if (sc->sc_flags & NFE_JUMBO_SUP)
   1275       1.1       chs 		sc->rxtxctl |= NFE_RXTX_V2MAGIC;
   1276       1.1       chs 	if (sc->sc_flags & NFE_HW_CSUM)
   1277       1.1       chs 		sc->rxtxctl |= NFE_RXTX_RXCSUM;
   1278       1.1       chs #if NVLAN > 0
   1279       1.1       chs 	/*
   1280       1.1       chs 	 * Although the adapter is capable of stripping VLAN tags from received
   1281       1.1       chs 	 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
   1282       1.1       chs 	 * purpose.  This will be done in software by our network stack.
   1283       1.1       chs 	 */
   1284       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
   1285       1.1       chs 		sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
   1286       1.1       chs #endif
   1287       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
   1288       1.1       chs 	DELAY(10);
   1289       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
   1290       1.1       chs 
   1291       1.1       chs #if NVLAN
   1292       1.1       chs 	if (sc->sc_flags & NFE_HW_VLAN)
   1293       1.1       chs 		NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
   1294       1.1       chs #endif
   1295       1.1       chs 
   1296       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R6, 0);
   1297       1.1       chs 
   1298       1.1       chs 	/* set MAC address */
   1299       1.1       chs 	nfe_set_macaddr(sc, sc->sc_enaddr);
   1300       1.1       chs 
   1301       1.1       chs 	/* tell MAC where rings are in memory */
   1302  1.65.2.2    martin 	NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, ((uint64_t)sc->rxq.physaddr) >> 32);
   1303       1.1       chs 	NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
   1304  1.65.2.2    martin 	NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, ((uint64_t)sc->txq.physaddr) >> 32);
   1305       1.1       chs 	NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
   1306       1.1       chs 
   1307       1.1       chs 	NFE_WRITE(sc, NFE_RING_SIZE,
   1308       1.1       chs 	    (NFE_RX_RING_COUNT - 1) << 16 |
   1309       1.1       chs 	    (NFE_TX_RING_COUNT - 1));
   1310       1.1       chs 
   1311       1.1       chs 	NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
   1312       1.1       chs 
   1313       1.1       chs 	/* force MAC to wakeup */
   1314       1.1       chs 	tmp = NFE_READ(sc, NFE_PWR_STATE);
   1315       1.1       chs 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
   1316       1.1       chs 	DELAY(10);
   1317       1.1       chs 	tmp = NFE_READ(sc, NFE_PWR_STATE);
   1318       1.1       chs 	NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
   1319       1.1       chs 
   1320      1.12  jmcneill 	s = splnet();
   1321      1.39    cegger 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
   1322      1.12  jmcneill 	nfe_intr(sc); /* XXX clear IRQ status registers */
   1323      1.39    cegger 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
   1324      1.12  jmcneill 	splx(s);
   1325      1.12  jmcneill 
   1326       1.1       chs #if 1
   1327       1.1       chs 	/* configure interrupts coalescing/mitigation */
   1328       1.1       chs 	NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
   1329       1.1       chs #else
   1330       1.1       chs 	/* no interrupt mitigation: one interrupt per packet */
   1331       1.1       chs 	NFE_WRITE(sc, NFE_IMTIMER, 970);
   1332       1.1       chs #endif
   1333       1.1       chs 
   1334       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
   1335       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
   1336       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
   1337       1.1       chs 
   1338       1.1       chs 	/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
   1339       1.1       chs 	NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
   1340       1.1       chs 
   1341       1.1       chs 	NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
   1342      1.31  christos 	NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
   1343       1.1       chs 
   1344       1.1       chs 	sc->rxtxctl &= ~NFE_RXTX_BIT2;
   1345       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
   1346       1.1       chs 	DELAY(10);
   1347       1.1       chs 	NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
   1348       1.1       chs 
   1349       1.1       chs 	/* set Rx filter */
   1350       1.1       chs 	nfe_setmulti(sc);
   1351       1.1       chs 
   1352      1.26    dyoung 	if ((rc = ether_mediachange(ifp)) != 0)
   1353      1.26    dyoung 		goto out;
   1354       1.1       chs 
   1355      1.12  jmcneill 	nfe_tick(sc);
   1356      1.12  jmcneill 
   1357       1.1       chs 	/* enable Rx */
   1358       1.1       chs 	NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
   1359       1.1       chs 
   1360       1.1       chs 	/* enable Tx */
   1361       1.1       chs 	NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
   1362       1.1       chs 
   1363       1.1       chs 	NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
   1364       1.1       chs 
   1365       1.1       chs 	/* enable interrupts */
   1366       1.1       chs 	NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
   1367       1.1       chs 
   1368       1.1       chs 	callout_schedule(&sc->sc_tick_ch, hz);
   1369       1.1       chs 
   1370       1.1       chs 	ifp->if_flags |= IFF_RUNNING;
   1371       1.1       chs 	ifp->if_flags &= ~IFF_OACTIVE;
   1372       1.1       chs 
   1373      1.26    dyoung out:
   1374      1.26    dyoung 	return rc;
   1375       1.1       chs }
   1376       1.1       chs 
   1377       1.1       chs void
   1378       1.7  christos nfe_stop(struct ifnet *ifp, int disable)
   1379       1.1       chs {
   1380       1.1       chs 	struct nfe_softc *sc = ifp->if_softc;
   1381       1.1       chs 
   1382       1.1       chs 	callout_stop(&sc->sc_tick_ch);
   1383       1.1       chs 
   1384       1.1       chs 	ifp->if_timer = 0;
   1385       1.1       chs 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1386       1.1       chs 
   1387       1.1       chs 	mii_down(&sc->sc_mii);
   1388       1.1       chs 
   1389       1.1       chs 	/* abort Tx */
   1390       1.1       chs 	NFE_WRITE(sc, NFE_TX_CTL, 0);
   1391       1.1       chs 
   1392       1.1       chs 	/* disable Rx */
   1393       1.1       chs 	NFE_WRITE(sc, NFE_RX_CTL, 0);
   1394       1.1       chs 
   1395       1.1       chs 	/* disable interrupts */
   1396       1.1       chs 	NFE_WRITE(sc, NFE_IRQ_MASK, 0);
   1397       1.1       chs 
   1398       1.1       chs 	/* reset Tx and Rx rings */
   1399       1.1       chs 	nfe_reset_tx_ring(sc, &sc->txq);
   1400       1.1       chs 	nfe_reset_rx_ring(sc, &sc->rxq);
   1401       1.1       chs }
   1402       1.1       chs 
   1403       1.1       chs int
   1404       1.1       chs nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1405       1.1       chs {
   1406       1.1       chs 	struct nfe_desc32 *desc32;
   1407       1.1       chs 	struct nfe_desc64 *desc64;
   1408       1.1       chs 	struct nfe_rx_data *data;
   1409       1.1       chs 	struct nfe_jbuf *jbuf;
   1410       1.1       chs 	void **desc;
   1411       1.1       chs 	bus_addr_t physaddr;
   1412       1.1       chs 	int i, nsegs, error, descsize;
   1413       1.1       chs 
   1414       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1415       1.1       chs 		desc = (void **)&ring->desc64;
   1416       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1417       1.1       chs 	} else {
   1418       1.1       chs 		desc = (void **)&ring->desc32;
   1419       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1420       1.1       chs 	}
   1421       1.1       chs 
   1422       1.1       chs 	ring->cur = ring->next = 0;
   1423       1.1       chs 	ring->bufsz = MCLBYTES;
   1424       1.1       chs 
   1425       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
   1426       1.1       chs 	    NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
   1427       1.1       chs 	if (error != 0) {
   1428      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1429      1.30      cube 		    "could not create desc DMA map\n");
   1430      1.42    cegger 		ring->map = NULL;
   1431       1.1       chs 		goto fail;
   1432       1.1       chs 	}
   1433       1.1       chs 
   1434       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
   1435       1.1       chs 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
   1436       1.1       chs 	if (error != 0) {
   1437      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1438      1.30      cube 		    "could not allocate DMA memory\n");
   1439       1.1       chs 		goto fail;
   1440       1.1       chs 	}
   1441       1.1       chs 
   1442       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
   1443      1.15  christos 	    NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
   1444       1.1       chs 	if (error != 0) {
   1445      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1446      1.30      cube 		    "could not map desc DMA memory\n");
   1447       1.1       chs 		goto fail;
   1448       1.1       chs 	}
   1449       1.1       chs 
   1450       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
   1451       1.1       chs 	    NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
   1452       1.1       chs 	if (error != 0) {
   1453      1.30      cube 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
   1454       1.1       chs 		goto fail;
   1455       1.1       chs 	}
   1456       1.1       chs 
   1457      1.43    cegger 	memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
   1458       1.1       chs 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
   1459       1.1       chs 
   1460       1.1       chs 	if (sc->sc_flags & NFE_USE_JUMBO) {
   1461       1.1       chs 		ring->bufsz = NFE_JBYTES;
   1462       1.1       chs 		if ((error = nfe_jpool_alloc(sc)) != 0) {
   1463      1.30      cube 			aprint_error_dev(sc->sc_dev,
   1464      1.30      cube 			    "could not allocate jumbo frames\n");
   1465       1.1       chs 			goto fail;
   1466       1.1       chs 		}
   1467       1.1       chs 	}
   1468       1.1       chs 
   1469       1.1       chs 	/*
   1470       1.1       chs 	 * Pre-allocate Rx buffers and populate Rx ring.
   1471       1.1       chs 	 */
   1472       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1473       1.1       chs 		data = &sc->rxq.data[i];
   1474       1.1       chs 
   1475       1.1       chs 		MGETHDR(data->m, M_DONTWAIT, MT_DATA);
   1476       1.1       chs 		if (data->m == NULL) {
   1477      1.30      cube 			aprint_error_dev(sc->sc_dev,
   1478      1.30      cube 			    "could not allocate rx mbuf\n");
   1479       1.1       chs 			error = ENOMEM;
   1480       1.1       chs 			goto fail;
   1481       1.1       chs 		}
   1482       1.1       chs 
   1483       1.1       chs 		if (sc->sc_flags & NFE_USE_JUMBO) {
   1484      1.19      cube 			if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
   1485      1.30      cube 				aprint_error_dev(sc->sc_dev,
   1486      1.30      cube 				    "could not allocate jumbo buffer\n");
   1487       1.1       chs 				goto fail;
   1488       1.1       chs 			}
   1489       1.1       chs 			MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
   1490       1.1       chs 			    sc);
   1491       1.1       chs 
   1492       1.1       chs 			physaddr = jbuf->physaddr;
   1493       1.1       chs 		} else {
   1494       1.1       chs 			error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
   1495       1.1       chs 			    MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
   1496       1.1       chs 			if (error != 0) {
   1497      1.30      cube 				aprint_error_dev(sc->sc_dev,
   1498      1.30      cube 				    "could not create DMA map\n");
   1499      1.42    cegger 				data->map = NULL;
   1500       1.1       chs 				goto fail;
   1501       1.1       chs 			}
   1502       1.1       chs 			MCLGET(data->m, M_DONTWAIT);
   1503       1.1       chs 			if (!(data->m->m_flags & M_EXT)) {
   1504      1.30      cube 				aprint_error_dev(sc->sc_dev,
   1505      1.30      cube 				    "could not allocate mbuf cluster\n");
   1506       1.1       chs 				error = ENOMEM;
   1507       1.1       chs 				goto fail;
   1508       1.1       chs 			}
   1509       1.1       chs 
   1510       1.1       chs 			error = bus_dmamap_load(sc->sc_dmat, data->map,
   1511       1.1       chs 			    mtod(data->m, void *), MCLBYTES, NULL,
   1512       1.1       chs 			    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1513       1.1       chs 			if (error != 0) {
   1514      1.30      cube 				aprint_error_dev(sc->sc_dev,
   1515      1.30      cube 				    "could not load rx buf DMA map");
   1516       1.1       chs 				goto fail;
   1517       1.1       chs 			}
   1518       1.1       chs 			physaddr = data->map->dm_segs[0].ds_addr;
   1519       1.1       chs 		}
   1520       1.1       chs 
   1521       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1522       1.1       chs 			desc64 = &sc->rxq.desc64[i];
   1523  1.65.2.2    martin 			desc64->physaddr[0] =
   1524  1.65.2.2    martin 			    htole32(((uint64_t)physaddr) >> 32);
   1525       1.1       chs 			desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
   1526       1.1       chs 			desc64->length = htole16(sc->rxq.bufsz);
   1527       1.1       chs 			desc64->flags = htole16(NFE_RX_READY);
   1528       1.1       chs 		} else {
   1529       1.1       chs 			desc32 = &sc->rxq.desc32[i];
   1530       1.1       chs 			desc32->physaddr = htole32(physaddr);
   1531       1.1       chs 			desc32->length = htole16(sc->rxq.bufsz);
   1532       1.1       chs 			desc32->flags = htole16(NFE_RX_READY);
   1533       1.1       chs 		}
   1534       1.1       chs 	}
   1535       1.1       chs 
   1536       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1537       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1538       1.1       chs 
   1539       1.1       chs 	return 0;
   1540       1.1       chs 
   1541       1.1       chs fail:	nfe_free_rx_ring(sc, ring);
   1542       1.1       chs 	return error;
   1543       1.1       chs }
   1544       1.1       chs 
   1545       1.1       chs void
   1546       1.1       chs nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1547       1.1       chs {
   1548       1.1       chs 	int i;
   1549       1.1       chs 
   1550       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1551       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR) {
   1552       1.1       chs 			ring->desc64[i].length = htole16(ring->bufsz);
   1553       1.1       chs 			ring->desc64[i].flags = htole16(NFE_RX_READY);
   1554       1.1       chs 		} else {
   1555       1.1       chs 			ring->desc32[i].length = htole16(ring->bufsz);
   1556       1.1       chs 			ring->desc32[i].flags = htole16(NFE_RX_READY);
   1557       1.1       chs 		}
   1558       1.1       chs 	}
   1559       1.1       chs 
   1560       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1561       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1562       1.1       chs 
   1563       1.1       chs 	ring->cur = ring->next = 0;
   1564       1.1       chs }
   1565       1.1       chs 
   1566       1.1       chs void
   1567       1.1       chs nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
   1568       1.1       chs {
   1569       1.1       chs 	struct nfe_rx_data *data;
   1570       1.1       chs 	void *desc;
   1571       1.1       chs 	int i, descsize;
   1572       1.1       chs 
   1573       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1574       1.1       chs 		desc = ring->desc64;
   1575       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1576       1.1       chs 	} else {
   1577       1.1       chs 		desc = ring->desc32;
   1578       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1579       1.1       chs 	}
   1580       1.1       chs 
   1581       1.1       chs 	if (desc != NULL) {
   1582       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
   1583       1.1       chs 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1584       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->map);
   1585      1.15  christos 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
   1586       1.1       chs 		    NFE_RX_RING_COUNT * descsize);
   1587       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
   1588       1.1       chs 	}
   1589       1.1       chs 
   1590       1.1       chs 	for (i = 0; i < NFE_RX_RING_COUNT; i++) {
   1591       1.1       chs 		data = &ring->data[i];
   1592       1.1       chs 
   1593       1.1       chs 		if (data->map != NULL) {
   1594       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
   1595       1.1       chs 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1596       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->map);
   1597       1.1       chs 			bus_dmamap_destroy(sc->sc_dmat, data->map);
   1598       1.1       chs 		}
   1599       1.1       chs 		if (data->m != NULL)
   1600       1.1       chs 			m_freem(data->m);
   1601       1.1       chs 	}
   1602      1.53  jakllsch 
   1603      1.53  jakllsch 	nfe_jpool_free(sc);
   1604       1.1       chs }
   1605       1.1       chs 
   1606       1.1       chs struct nfe_jbuf *
   1607      1.19      cube nfe_jalloc(struct nfe_softc *sc, int i)
   1608       1.1       chs {
   1609       1.1       chs 	struct nfe_jbuf *jbuf;
   1610       1.1       chs 
   1611      1.34      cube 	mutex_enter(&sc->rxq.mtx);
   1612       1.1       chs 	jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
   1613      1.34      cube 	if (jbuf != NULL)
   1614      1.34      cube 		SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
   1615      1.34      cube 	mutex_exit(&sc->rxq.mtx);
   1616       1.1       chs 	if (jbuf == NULL)
   1617       1.1       chs 		return NULL;
   1618      1.19      cube 	sc->rxq.jbufmap[i] =
   1619      1.19      cube 	    ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
   1620       1.1       chs 	return jbuf;
   1621       1.1       chs }
   1622       1.1       chs 
   1623       1.1       chs /*
   1624       1.1       chs  * This is called automatically by the network stack when the mbuf is freed.
   1625       1.1       chs  * Caution must be taken that the NIC might be reset by the time the mbuf is
   1626       1.1       chs  * freed.
   1627       1.1       chs  */
   1628       1.1       chs void
   1629      1.15  christos nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
   1630       1.1       chs {
   1631       1.1       chs 	struct nfe_softc *sc = arg;
   1632       1.1       chs 	struct nfe_jbuf *jbuf;
   1633       1.1       chs 	int i;
   1634       1.1       chs 
   1635       1.1       chs 	/* find the jbuf from the base pointer */
   1636      1.15  christos 	i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
   1637       1.1       chs 	if (i < 0 || i >= NFE_JPOOL_COUNT) {
   1638      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1639      1.30      cube 		    "request to free a buffer (%p) not managed by us\n", buf);
   1640       1.1       chs 		return;
   1641       1.1       chs 	}
   1642       1.1       chs 	jbuf = &sc->rxq.jbuf[i];
   1643       1.1       chs 
   1644       1.1       chs 	/* ..and put it back in the free list */
   1645      1.34      cube 	mutex_enter(&sc->rxq.mtx);
   1646       1.1       chs 	SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
   1647      1.34      cube 	mutex_exit(&sc->rxq.mtx);
   1648       1.2       chs 
   1649      1.31  christos 	if (m != NULL)
   1650      1.31  christos 		pool_cache_put(mb_cache, m);
   1651       1.1       chs }
   1652       1.1       chs 
   1653       1.1       chs int
   1654       1.1       chs nfe_jpool_alloc(struct nfe_softc *sc)
   1655       1.1       chs {
   1656       1.1       chs 	struct nfe_rx_ring *ring = &sc->rxq;
   1657       1.1       chs 	struct nfe_jbuf *jbuf;
   1658       1.1       chs 	bus_addr_t physaddr;
   1659      1.15  christos 	char *buf;
   1660       1.1       chs 	int i, nsegs, error;
   1661       1.1       chs 
   1662       1.1       chs 	/*
   1663       1.1       chs 	 * Allocate a big chunk of DMA'able memory.
   1664       1.1       chs 	 */
   1665       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
   1666       1.1       chs 	    NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
   1667       1.1       chs 	if (error != 0) {
   1668      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1669      1.30      cube 		    "could not create jumbo DMA map\n");
   1670      1.42    cegger 		ring->jmap = NULL;
   1671       1.1       chs 		goto fail;
   1672       1.1       chs 	}
   1673       1.1       chs 
   1674       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
   1675       1.1       chs 	    &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
   1676       1.1       chs 	if (error != 0) {
   1677      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1678      1.30      cube 		    "could not allocate jumbo DMA memory\n");
   1679       1.1       chs 		goto fail;
   1680       1.1       chs 	}
   1681       1.1       chs 
   1682       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
   1683       1.1       chs 	    &ring->jpool, BUS_DMA_NOWAIT);
   1684       1.1       chs 	if (error != 0) {
   1685      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1686      1.30      cube 		    "could not map jumbo DMA memory\n");
   1687       1.1       chs 		goto fail;
   1688       1.1       chs 	}
   1689       1.1       chs 
   1690       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
   1691       1.1       chs 	    NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
   1692       1.1       chs 	if (error != 0) {
   1693      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1694      1.30      cube 		    "could not load jumbo DMA map\n");
   1695       1.1       chs 		goto fail;
   1696       1.1       chs 	}
   1697       1.1       chs 
   1698       1.1       chs 	/* ..and split it into 9KB chunks */
   1699       1.1       chs 	SLIST_INIT(&ring->jfreelist);
   1700       1.1       chs 
   1701       1.1       chs 	buf = ring->jpool;
   1702       1.1       chs 	physaddr = ring->jmap->dm_segs[0].ds_addr;
   1703       1.1       chs 	for (i = 0; i < NFE_JPOOL_COUNT; i++) {
   1704       1.1       chs 		jbuf = &ring->jbuf[i];
   1705       1.1       chs 
   1706       1.1       chs 		jbuf->buf = buf;
   1707       1.1       chs 		jbuf->physaddr = physaddr;
   1708       1.1       chs 
   1709       1.1       chs 		SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
   1710       1.1       chs 
   1711       1.1       chs 		buf += NFE_JBYTES;
   1712       1.1       chs 		physaddr += NFE_JBYTES;
   1713       1.1       chs 	}
   1714       1.1       chs 
   1715       1.1       chs 	return 0;
   1716       1.1       chs 
   1717       1.1       chs fail:	nfe_jpool_free(sc);
   1718       1.1       chs 	return error;
   1719       1.1       chs }
   1720       1.1       chs 
   1721       1.1       chs void
   1722       1.1       chs nfe_jpool_free(struct nfe_softc *sc)
   1723       1.1       chs {
   1724       1.1       chs 	struct nfe_rx_ring *ring = &sc->rxq;
   1725       1.1       chs 
   1726       1.1       chs 	if (ring->jmap != NULL) {
   1727       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
   1728       1.1       chs 		    ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1729       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->jmap);
   1730       1.1       chs 		bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
   1731      1.53  jakllsch 		ring->jmap = NULL;
   1732       1.1       chs 	}
   1733       1.1       chs 	if (ring->jpool != NULL) {
   1734       1.1       chs 		bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
   1735       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
   1736      1.53  jakllsch 		ring->jpool = NULL;
   1737       1.1       chs 	}
   1738       1.1       chs }
   1739       1.1       chs 
   1740       1.1       chs int
   1741       1.1       chs nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1742       1.1       chs {
   1743       1.1       chs 	int i, nsegs, error;
   1744       1.1       chs 	void **desc;
   1745       1.1       chs 	int descsize;
   1746       1.1       chs 
   1747       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1748       1.1       chs 		desc = (void **)&ring->desc64;
   1749       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1750       1.1       chs 	} else {
   1751       1.1       chs 		desc = (void **)&ring->desc32;
   1752       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1753       1.1       chs 	}
   1754       1.1       chs 
   1755       1.1       chs 	ring->queued = 0;
   1756       1.1       chs 	ring->cur = ring->next = 0;
   1757       1.1       chs 
   1758       1.1       chs 	error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
   1759       1.1       chs 	    NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
   1760       1.1       chs 
   1761       1.1       chs 	if (error != 0) {
   1762      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1763      1.30      cube 		    "could not create desc DMA map\n");
   1764      1.42    cegger 		ring->map = NULL;
   1765       1.1       chs 		goto fail;
   1766       1.1       chs 	}
   1767       1.1       chs 
   1768       1.1       chs 	error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
   1769       1.1       chs 	    PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
   1770       1.1       chs 	if (error != 0) {
   1771      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1772      1.30      cube 		    "could not allocate DMA memory\n");
   1773       1.1       chs 		goto fail;
   1774       1.1       chs 	}
   1775       1.1       chs 
   1776       1.1       chs 	error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
   1777      1.15  christos 	    NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
   1778       1.1       chs 	if (error != 0) {
   1779      1.30      cube 		aprint_error_dev(sc->sc_dev,
   1780      1.30      cube 		    "could not map desc DMA memory\n");
   1781       1.1       chs 		goto fail;
   1782       1.1       chs 	}
   1783       1.1       chs 
   1784       1.1       chs 	error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
   1785       1.1       chs 	    NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
   1786       1.1       chs 	if (error != 0) {
   1787      1.30      cube 		aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
   1788       1.1       chs 		goto fail;
   1789       1.1       chs 	}
   1790       1.1       chs 
   1791      1.43    cegger 	memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
   1792       1.1       chs 	ring->physaddr = ring->map->dm_segs[0].ds_addr;
   1793       1.1       chs 
   1794       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1795       1.1       chs 		error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
   1796       1.1       chs 		    NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
   1797       1.1       chs 		    &ring->data[i].map);
   1798       1.1       chs 		if (error != 0) {
   1799      1.30      cube 			aprint_error_dev(sc->sc_dev,
   1800      1.30      cube 			    "could not create DMA map\n");
   1801      1.42    cegger 			ring->data[i].map = NULL;
   1802       1.1       chs 			goto fail;
   1803       1.1       chs 		}
   1804       1.1       chs 	}
   1805       1.1       chs 
   1806       1.1       chs 	return 0;
   1807       1.1       chs 
   1808       1.1       chs fail:	nfe_free_tx_ring(sc, ring);
   1809       1.1       chs 	return error;
   1810       1.1       chs }
   1811       1.1       chs 
   1812       1.1       chs void
   1813       1.1       chs nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1814       1.1       chs {
   1815       1.1       chs 	struct nfe_tx_data *data;
   1816       1.1       chs 	int i;
   1817       1.1       chs 
   1818       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1819       1.1       chs 		if (sc->sc_flags & NFE_40BIT_ADDR)
   1820       1.1       chs 			ring->desc64[i].flags = 0;
   1821       1.1       chs 		else
   1822       1.1       chs 			ring->desc32[i].flags = 0;
   1823       1.1       chs 
   1824       1.1       chs 		data = &ring->data[i];
   1825       1.1       chs 
   1826       1.1       chs 		if (data->m != NULL) {
   1827       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1828       1.1       chs 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1829       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->active);
   1830       1.1       chs 			m_freem(data->m);
   1831       1.1       chs 			data->m = NULL;
   1832       1.1       chs 		}
   1833       1.1       chs 	}
   1834       1.1       chs 
   1835       1.1       chs 	bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
   1836       1.1       chs 	    BUS_DMASYNC_PREWRITE);
   1837       1.1       chs 
   1838       1.1       chs 	ring->queued = 0;
   1839       1.1       chs 	ring->cur = ring->next = 0;
   1840       1.1       chs }
   1841       1.1       chs 
   1842       1.1       chs void
   1843       1.1       chs nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
   1844       1.1       chs {
   1845       1.1       chs 	struct nfe_tx_data *data;
   1846       1.1       chs 	void *desc;
   1847       1.1       chs 	int i, descsize;
   1848       1.1       chs 
   1849       1.1       chs 	if (sc->sc_flags & NFE_40BIT_ADDR) {
   1850       1.1       chs 		desc = ring->desc64;
   1851       1.1       chs 		descsize = sizeof (struct nfe_desc64);
   1852       1.1       chs 	} else {
   1853       1.1       chs 		desc = ring->desc32;
   1854       1.1       chs 		descsize = sizeof (struct nfe_desc32);
   1855       1.1       chs 	}
   1856       1.1       chs 
   1857       1.1       chs 	if (desc != NULL) {
   1858       1.1       chs 		bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
   1859       1.1       chs 		    ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1860       1.1       chs 		bus_dmamap_unload(sc->sc_dmat, ring->map);
   1861      1.15  christos 		bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
   1862       1.1       chs 		    NFE_TX_RING_COUNT * descsize);
   1863       1.1       chs 		bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
   1864       1.1       chs 	}
   1865       1.1       chs 
   1866       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1867       1.1       chs 		data = &ring->data[i];
   1868       1.1       chs 
   1869       1.1       chs 		if (data->m != NULL) {
   1870       1.1       chs 			bus_dmamap_sync(sc->sc_dmat, data->active, 0,
   1871       1.1       chs 			    data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1872       1.1       chs 			bus_dmamap_unload(sc->sc_dmat, data->active);
   1873       1.1       chs 			m_freem(data->m);
   1874       1.1       chs 		}
   1875       1.1       chs 	}
   1876       1.1       chs 
   1877       1.1       chs 	/* ..and now actually destroy the DMA mappings */
   1878       1.1       chs 	for (i = 0; i < NFE_TX_RING_COUNT; i++) {
   1879       1.1       chs 		data = &ring->data[i];
   1880       1.1       chs 		if (data->map == NULL)
   1881       1.1       chs 			continue;
   1882       1.1       chs 		bus_dmamap_destroy(sc->sc_dmat, data->map);
   1883       1.1       chs 	}
   1884       1.1       chs }
   1885       1.1       chs 
   1886       1.1       chs void
   1887       1.1       chs nfe_setmulti(struct nfe_softc *sc)
   1888       1.1       chs {
   1889       1.1       chs 	struct ethercom *ec = &sc->sc_ethercom;
   1890       1.1       chs 	struct ifnet *ifp = &ec->ec_if;
   1891       1.1       chs 	struct ether_multi *enm;
   1892       1.1       chs 	struct ether_multistep step;
   1893       1.1       chs 	uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
   1894       1.1       chs 	uint32_t filter = NFE_RXFILTER_MAGIC;
   1895       1.1       chs 	int i;
   1896       1.1       chs 
   1897       1.1       chs 	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   1898      1.43    cegger 		memset(addr, 0, ETHER_ADDR_LEN);
   1899      1.43    cegger 		memset(mask, 0, ETHER_ADDR_LEN);
   1900       1.1       chs 		goto done;
   1901       1.1       chs 	}
   1902       1.1       chs 
   1903      1.43    cegger 	memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
   1904      1.43    cegger 	memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
   1905       1.1       chs 
   1906  1.65.2.1  christos 	ETHER_LOCK(ec);
   1907       1.1       chs 	ETHER_FIRST_MULTI(step, ec, enm);
   1908       1.1       chs 	while (enm != NULL) {
   1909      1.44    cegger 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1910       1.1       chs 			ifp->if_flags |= IFF_ALLMULTI;
   1911      1.43    cegger 			memset(addr, 0, ETHER_ADDR_LEN);
   1912      1.43    cegger 			memset(mask, 0, ETHER_ADDR_LEN);
   1913  1.65.2.1  christos 			ETHER_UNLOCK(ec);
   1914       1.1       chs 			goto done;
   1915       1.1       chs 		}
   1916       1.1       chs 		for (i = 0; i < ETHER_ADDR_LEN; i++) {
   1917       1.1       chs 			addr[i] &=  enm->enm_addrlo[i];
   1918       1.1       chs 			mask[i] &= ~enm->enm_addrlo[i];
   1919       1.1       chs 		}
   1920       1.1       chs 		ETHER_NEXT_MULTI(step, enm);
   1921       1.1       chs 	}
   1922  1.65.2.1  christos 	ETHER_UNLOCK(ec);
   1923       1.1       chs 	for (i = 0; i < ETHER_ADDR_LEN; i++)
   1924       1.1       chs 		mask[i] |= addr[i];
   1925       1.1       chs 
   1926       1.1       chs done:
   1927       1.1       chs 	addr[0] |= 0x01;	/* make sure multicast bit is set */
   1928       1.1       chs 
   1929       1.1       chs 	NFE_WRITE(sc, NFE_MULTIADDR_HI,
   1930  1.65.2.2    martin 	    (uint32_t)addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1931       1.1       chs 	NFE_WRITE(sc, NFE_MULTIADDR_LO,
   1932       1.1       chs 	    addr[5] <<  8 | addr[4]);
   1933       1.1       chs 	NFE_WRITE(sc, NFE_MULTIMASK_HI,
   1934  1.65.2.2    martin 	    (uint32_t)mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
   1935       1.1       chs 	NFE_WRITE(sc, NFE_MULTIMASK_LO,
   1936       1.1       chs 	    mask[5] <<  8 | mask[4]);
   1937       1.1       chs 
   1938       1.1       chs 	filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
   1939       1.1       chs 	NFE_WRITE(sc, NFE_RXFILTER, filter);
   1940       1.1       chs }
   1941       1.1       chs 
   1942       1.1       chs void
   1943       1.1       chs nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
   1944       1.1       chs {
   1945       1.1       chs 	uint32_t tmp;
   1946       1.1       chs 
   1947      1.31  christos 	if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
   1948      1.31  christos 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
   1949      1.31  christos 		addr[0] = (tmp & 0xff);
   1950      1.31  christos 		addr[1] = (tmp >>  8) & 0xff;
   1951      1.31  christos 		addr[2] = (tmp >> 16) & 0xff;
   1952      1.31  christos 		addr[3] = (tmp >> 24) & 0xff;
   1953      1.31  christos 
   1954      1.31  christos 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
   1955      1.31  christos 		addr[4] = (tmp & 0xff);
   1956      1.31  christos 		addr[5] = (tmp >> 8) & 0xff;
   1957      1.31  christos 
   1958      1.31  christos 	} else {
   1959      1.25   tsutsui 		tmp = NFE_READ(sc, NFE_MACADDR_LO);
   1960      1.25   tsutsui 		addr[0] = (tmp >> 8) & 0xff;
   1961      1.25   tsutsui 		addr[1] = (tmp & 0xff);
   1962      1.25   tsutsui 
   1963      1.25   tsutsui 		tmp = NFE_READ(sc, NFE_MACADDR_HI);
   1964      1.25   tsutsui 		addr[2] = (tmp >> 24) & 0xff;
   1965      1.25   tsutsui 		addr[3] = (tmp >> 16) & 0xff;
   1966      1.25   tsutsui 		addr[4] = (tmp >>  8) & 0xff;
   1967      1.25   tsutsui 		addr[5] = (tmp & 0xff);
   1968      1.25   tsutsui 	}
   1969       1.1       chs }
   1970       1.1       chs 
   1971       1.1       chs void
   1972       1.1       chs nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
   1973       1.1       chs {
   1974       1.1       chs 	NFE_WRITE(sc, NFE_MACADDR_LO,
   1975       1.1       chs 	    addr[5] <<  8 | addr[4]);
   1976       1.1       chs 	NFE_WRITE(sc, NFE_MACADDR_HI,
   1977  1.65.2.2    martin 	    (uint32_t)addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
   1978       1.1       chs }
   1979       1.1       chs 
   1980       1.1       chs void
   1981       1.1       chs nfe_tick(void *arg)
   1982       1.1       chs {
   1983       1.1       chs 	struct nfe_softc *sc = arg;
   1984       1.1       chs 	int s;
   1985       1.1       chs 
   1986       1.1       chs 	s = splnet();
   1987       1.1       chs 	mii_tick(&sc->sc_mii);
   1988       1.1       chs 	splx(s);
   1989       1.1       chs 
   1990       1.1       chs 	callout_schedule(&sc->sc_tick_ch, hz);
   1991       1.1       chs }
   1992      1.35  jmcneill 
   1993      1.35  jmcneill void
   1994      1.35  jmcneill nfe_poweron(device_t self)
   1995      1.35  jmcneill {
   1996      1.35  jmcneill 	struct nfe_softc *sc = device_private(self);
   1997      1.35  jmcneill 
   1998      1.35  jmcneill 	if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
   1999      1.35  jmcneill 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
   2000      1.35  jmcneill 		NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
   2001      1.35  jmcneill 		DELAY(100);
   2002      1.35  jmcneill 		NFE_WRITE(sc, NFE_MAC_RESET, 0);
   2003      1.35  jmcneill 		DELAY(100);
   2004      1.35  jmcneill 		NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
   2005      1.35  jmcneill 		NFE_WRITE(sc, NFE_PWR2_CTL,
   2006      1.35  jmcneill 		    NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
   2007      1.35  jmcneill 	}
   2008      1.35  jmcneill }
   2009      1.35  jmcneill 
   2010      1.35  jmcneill bool
   2011      1.50    dyoung nfe_resume(device_t dv, const pmf_qual_t *qual)
   2012      1.35  jmcneill {
   2013      1.35  jmcneill 	nfe_poweron(dv);
   2014      1.35  jmcneill 
   2015      1.35  jmcneill 	return true;
   2016      1.35  jmcneill }
   2017