if_nfe.c revision 1.1 1 /* $NetBSD: if_nfe.c,v 1.1 2006/03/12 22:40:42 chs Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.1 2006/03/12 22:40:42 chs Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <machine/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, caddr_t);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
98 void nfe_jfree(struct mbuf *, caddr_t, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }
169 };
170
171 int
172 nfe_match(struct device *dev, struct cfdata *match, void *aux)
173 {
174 struct pci_attach_args *pa = aux;
175 const struct nfe_product *np;
176 int i;
177
178 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
179 np = &nfe_devices[i];
180 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
181 PCI_PRODUCT(pa->pa_id) == np->product)
182 return 1;
183 }
184 return 0;
185 }
186
187 void
188 nfe_attach(struct device *parent, struct device *self, void *aux)
189 {
190 struct nfe_softc *sc = (struct nfe_softc *)self;
191 struct pci_attach_args *pa = aux;
192 pci_chipset_tag_t pc = pa->pa_pc;
193 pci_intr_handle_t ih;
194 const char *intrstr;
195 struct ifnet *ifp;
196 bus_size_t memsize;
197 pcireg_t memtype;
198
199 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
200 switch (memtype) {
201 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
202 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
203 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
204 &sc->sc_memh, NULL, &memsize) == 0)
205 break;
206 /* FALLTHROUGH */
207 default:
208 printf(": could not map mem space\n");
209 return;
210 }
211
212 if (pci_intr_map(pa, &ih) != 0) {
213 printf(": could not map interrupt\n");
214 return;
215 }
216
217 intrstr = pci_intr_string(pc, ih);
218 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
219 if (sc->sc_ih == NULL) {
220 printf(": could not establish interrupt");
221 if (intrstr != NULL)
222 printf(" at %s", intrstr);
223 printf("\n");
224 return;
225 }
226 printf(": %s", intrstr);
227
228 sc->sc_dmat = pa->pa_dmat;
229
230 nfe_get_macaddr(sc, sc->sc_enaddr);
231 printf(", address %s\n", ether_sprintf(sc->sc_enaddr));
232
233 sc->sc_flags = 0;
234
235 switch (PCI_PRODUCT(pa->pa_id)) {
236 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
237 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
238 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
239 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
240 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
241 break;
242 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
243 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
244 sc->sc_flags |= NFE_40BIT_ADDR;
245 break;
246 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
247 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
248 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
249 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
250 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
251 break;
252 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
253 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
254 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
255 NFE_HW_VLAN;
256 break;
257 }
258
259 #ifndef NFE_NO_JUMBO
260 /* enable jumbo frames for adapters that support it */
261 if (sc->sc_flags & NFE_JUMBO_SUP)
262 sc->sc_flags |= NFE_USE_JUMBO;
263 #endif
264
265 /*
266 * Allocate Tx and Rx rings.
267 */
268 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
269 printf("%s: could not allocate Tx ring\n",
270 sc->sc_dev.dv_xname);
271 return;
272 }
273
274 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
275 printf("%s: could not allocate Rx ring\n",
276 sc->sc_dev.dv_xname);
277 nfe_free_tx_ring(sc, &sc->txq);
278 return;
279 }
280
281 ifp = &sc->sc_ethercom.ec_if;
282 ifp->if_softc = sc;
283 ifp->if_mtu = ETHERMTU;
284 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
285 ifp->if_ioctl = nfe_ioctl;
286 ifp->if_start = nfe_start;
287 ifp->if_watchdog = nfe_watchdog;
288 ifp->if_init = nfe_init;
289 ifp->if_baudrate = IF_Gbps(1);
290 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
291 IFQ_SET_READY(&ifp->if_snd);
292 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
293
294 #if NVLAN > 0
295 if (sc->sc_flags & NFE_HW_VLAN)
296 sc->sc_ethercom.ec_capabilities |=
297 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
298 #endif
299 #ifdef NFE_CSUM
300 if (sc->sc_flags & NFE_HW_CSUM) {
301 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
302 IFCAP_CSUM_UDPv4;
303 }
304 #endif
305
306 sc->sc_mii.mii_ifp = ifp;
307 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
308 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
309 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
310
311 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
312 nfe_ifmedia_sts);
313 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
314 MII_OFFSET_ANY, 0);
315 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
316 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
317 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
318 0, NULL);
319 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
320 } else
321 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
322
323 if_attach(ifp);
324 ether_ifattach(ifp, sc->sc_enaddr);
325
326 callout_init(&sc->sc_tick_ch);
327 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
328
329 sc->sc_powerhook = powerhook_establish(nfe_power, sc);
330 }
331
332 void
333 nfe_power(int why, void *arg)
334 {
335 struct nfe_softc *sc = arg;
336 struct ifnet *ifp;
337
338 if (why == PWR_RESUME) {
339 ifp = &sc->sc_ethercom.ec_if;
340 if (ifp->if_flags & IFF_UP) {
341 ifp->if_flags &= ~IFF_RUNNING;
342 nfe_init(ifp);
343 if (ifp->if_flags & IFF_RUNNING)
344 nfe_start(ifp);
345 }
346 }
347 }
348
349 void
350 nfe_miibus_statchg(struct device *dev)
351 {
352 struct nfe_softc *sc = (struct nfe_softc *)dev;
353 struct mii_data *mii = &sc->sc_mii;
354 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
355
356 phy = NFE_READ(sc, NFE_PHY_IFACE);
357 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
358
359 seed = NFE_READ(sc, NFE_RNDSEED);
360 seed &= ~NFE_SEED_MASK;
361
362 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
363 phy |= NFE_PHY_HDX; /* half-duplex */
364 misc |= NFE_MISC1_HDX;
365 }
366
367 switch (IFM_SUBTYPE(mii->mii_media_active)) {
368 case IFM_1000_T: /* full-duplex only */
369 link |= NFE_MEDIA_1000T;
370 seed |= NFE_SEED_1000T;
371 phy |= NFE_PHY_1000T;
372 break;
373 case IFM_100_TX:
374 link |= NFE_MEDIA_100TX;
375 seed |= NFE_SEED_100TX;
376 phy |= NFE_PHY_100TX;
377 break;
378 case IFM_10_T:
379 link |= NFE_MEDIA_10T;
380 seed |= NFE_SEED_10T;
381 break;
382 }
383
384 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
385
386 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
387 NFE_WRITE(sc, NFE_MISC1, misc);
388 NFE_WRITE(sc, NFE_LINKSPEED, link);
389 }
390
391 int
392 nfe_miibus_readreg(struct device *dev, int phy, int reg)
393 {
394 struct nfe_softc *sc = (struct nfe_softc *)dev;
395 uint32_t val;
396 int ntries;
397
398 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
399
400 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
401 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
402 DELAY(100);
403 }
404
405 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
406
407 for (ntries = 0; ntries < 1000; ntries++) {
408 DELAY(100);
409 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
410 break;
411 }
412 if (ntries == 1000) {
413 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
414 sc->sc_dev.dv_xname));
415 return 0;
416 }
417
418 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
419 DPRINTFN(2, ("%s: could not read PHY\n",
420 sc->sc_dev.dv_xname));
421 return 0;
422 }
423
424 val = NFE_READ(sc, NFE_PHY_DATA);
425 if (val != 0xffffffff && val != 0)
426 sc->mii_phyaddr = phy;
427
428 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
429 sc->sc_dev.dv_xname, phy, reg, val));
430
431 return val;
432 }
433
434 void
435 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
436 {
437 struct nfe_softc *sc = (struct nfe_softc *)dev;
438 uint32_t ctl;
439 int ntries;
440
441 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
442
443 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
444 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
445 DELAY(100);
446 }
447
448 NFE_WRITE(sc, NFE_PHY_DATA, val);
449 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
450 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
451
452 for (ntries = 0; ntries < 1000; ntries++) {
453 DELAY(100);
454 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
455 break;
456 }
457 #ifdef NFE_DEBUG
458 if (nfedebug >= 2 && ntries == 1000)
459 printf("could not write to PHY\n");
460 #endif
461 }
462
463 int
464 nfe_intr(void *arg)
465 {
466 struct nfe_softc *sc = arg;
467 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
468 uint32_t r;
469
470 if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0)
471 return 0; /* not for us */
472 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
473
474 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
475
476 if (r & NFE_IRQ_LINK) {
477 NFE_READ(sc, NFE_PHY_STATUS);
478 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
479 DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname));
480 }
481
482 if (ifp->if_flags & IFF_RUNNING) {
483 /* check Rx ring */
484 nfe_rxeof(sc);
485
486 /* check Tx ring */
487 nfe_txeof(sc);
488 }
489
490 return 1;
491 }
492
493 int
494 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
495 {
496 struct nfe_softc *sc = ifp->if_softc;
497 struct ifreq *ifr = (struct ifreq *)data;
498 struct ifaddr *ifa = (struct ifaddr *)data;
499 int s, error = 0;
500
501 s = splnet();
502
503 switch (cmd) {
504 case SIOCSIFADDR:
505 ifp->if_flags |= IFF_UP;
506 nfe_init(ifp);
507 switch (ifa->ifa_addr->sa_family) {
508 #ifdef INET
509 case AF_INET:
510 arp_ifinit(ifp, ifa);
511 break;
512 #endif
513 default:
514 break;
515 }
516 break;
517 case SIOCSIFMTU:
518 if (ifr->ifr_mtu < ETHERMIN ||
519 ((sc->sc_flags & NFE_USE_JUMBO) &&
520 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
521 (!(sc->sc_flags & NFE_USE_JUMBO) &&
522 ifr->ifr_mtu > ETHERMTU))
523 error = EINVAL;
524 else if (ifp->if_mtu != ifr->ifr_mtu)
525 ifp->if_mtu = ifr->ifr_mtu;
526 break;
527 case SIOCSIFFLAGS:
528 if (ifp->if_flags & IFF_UP) {
529 /*
530 * If only the PROMISC or ALLMULTI flag changes, then
531 * don't do a full re-init of the chip, just update
532 * the Rx filter.
533 */
534 if ((ifp->if_flags & IFF_RUNNING) &&
535 ((ifp->if_flags ^ sc->sc_if_flags) &
536 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
537 nfe_setmulti(sc);
538 else
539 nfe_init(ifp);
540 } else {
541 if (ifp->if_flags & IFF_RUNNING)
542 nfe_stop(ifp, 1);
543 }
544 sc->sc_if_flags = ifp->if_flags;
545 break;
546 case SIOCADDMULTI:
547 case SIOCDELMULTI:
548 error = (cmd == SIOCADDMULTI) ?
549 ether_addmulti(ifr, &sc->sc_ethercom) :
550 ether_delmulti(ifr, &sc->sc_ethercom);
551
552 if (error == ENETRESET) {
553 if (ifp->if_flags & IFF_RUNNING)
554 nfe_setmulti(sc);
555 error = 0;
556 }
557 break;
558 case SIOCSIFMEDIA:
559 case SIOCGIFMEDIA:
560 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
561 break;
562 default:
563 error = ether_ioctl(ifp, cmd, data);
564 if (error == ENETRESET) {
565 if (ifp->if_flags & IFF_RUNNING)
566 nfe_setmulti(sc);
567 error = 0;
568 }
569 break;
570
571 }
572
573 splx(s);
574
575 return error;
576 }
577
578 void
579 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
580 {
581 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
582 (caddr_t)desc32 - (caddr_t)sc->txq.desc32,
583 sizeof (struct nfe_desc32), ops);
584 }
585
586 void
587 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
588 {
589 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
590 (caddr_t)desc64 - (caddr_t)sc->txq.desc64,
591 sizeof (struct nfe_desc64), ops);
592 }
593
594 void
595 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
596 {
597 if (end > start) {
598 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
599 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
600 (caddr_t)&sc->txq.desc32[end] -
601 (caddr_t)&sc->txq.desc32[start], ops);
602 return;
603 }
604 /* sync from 'start' to end of ring */
605 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
606 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
607 (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] -
608 (caddr_t)&sc->txq.desc32[start], ops);
609
610 /* sync from start of ring to 'end' */
611 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
612 (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops);
613 }
614
615 void
616 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
617 {
618 if (end > start) {
619 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
620 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
621 (caddr_t)&sc->txq.desc64[end] -
622 (caddr_t)&sc->txq.desc64[start], ops);
623 return;
624 }
625 /* sync from 'start' to end of ring */
626 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
627 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
628 (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] -
629 (caddr_t)&sc->txq.desc64[start], ops);
630
631 /* sync from start of ring to 'end' */
632 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
633 (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops);
634 }
635
636 void
637 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
638 {
639 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
640 (caddr_t)desc32 - (caddr_t)sc->rxq.desc32,
641 sizeof (struct nfe_desc32), ops);
642 }
643
644 void
645 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
646 {
647 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
648 (caddr_t)desc64 - (caddr_t)sc->rxq.desc64,
649 sizeof (struct nfe_desc64), ops);
650 }
651
652 void
653 nfe_rxeof(struct nfe_softc *sc)
654 {
655 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
656 struct nfe_desc32 *desc32;
657 struct nfe_desc64 *desc64;
658 struct nfe_rx_data *data;
659 struct nfe_jbuf *jbuf;
660 struct mbuf *m, *mnew;
661 bus_addr_t physaddr;
662 uint16_t flags;
663 int error, len;
664
665 desc32 = NULL;
666 desc64 = NULL;
667 for (;;) {
668 data = &sc->rxq.data[sc->rxq.cur];
669
670 if (sc->sc_flags & NFE_40BIT_ADDR) {
671 desc64 = &sc->rxq.desc64[sc->rxq.cur];
672 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
673
674 flags = le16toh(desc64->flags);
675 len = le16toh(desc64->length) & 0x3fff;
676 } else {
677 desc32 = &sc->rxq.desc32[sc->rxq.cur];
678 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
679
680 flags = le16toh(desc32->flags);
681 len = le16toh(desc32->length) & 0x3fff;
682 }
683
684 if (flags & NFE_RX_READY)
685 break;
686
687 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
688 if (!(flags & NFE_RX_VALID_V1))
689 goto skip;
690
691 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
692 flags &= ~NFE_RX_ERROR;
693 len--; /* fix buffer length */
694 }
695 } else {
696 if (!(flags & NFE_RX_VALID_V2))
697 goto skip;
698
699 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
700 flags &= ~NFE_RX_ERROR;
701 len--; /* fix buffer length */
702 }
703 }
704
705 if (flags & NFE_RX_ERROR) {
706 ifp->if_ierrors++;
707 goto skip;
708 }
709
710 /*
711 * Try to allocate a new mbuf for this ring element and load
712 * it before processing the current mbuf. If the ring element
713 * cannot be loaded, drop the received packet and reuse the
714 * old mbuf. In the unlikely case that the old mbuf can't be
715 * reloaded either, explicitly panic.
716 */
717 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
718 if (mnew == NULL) {
719 ifp->if_ierrors++;
720 goto skip;
721 }
722
723 if (sc->sc_flags & NFE_USE_JUMBO) {
724 if ((jbuf = nfe_jalloc(sc)) == NULL) {
725 m_freem(mnew);
726 ifp->if_ierrors++;
727 goto skip;
728 }
729 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
730
731 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
732 mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES,
733 BUS_DMASYNC_POSTREAD);
734
735 physaddr = jbuf->physaddr;
736 } else {
737 MCLGET(mnew, M_DONTWAIT);
738 if (!(mnew->m_flags & M_EXT)) {
739 m_freem(mnew);
740 ifp->if_ierrors++;
741 goto skip;
742 }
743
744 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
745 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
746 bus_dmamap_unload(sc->sc_dmat, data->map);
747
748 error = bus_dmamap_load(sc->sc_dmat, data->map,
749 mtod(mnew, void *), MCLBYTES, NULL,
750 BUS_DMA_READ | BUS_DMA_NOWAIT);
751 if (error != 0) {
752 m_freem(mnew);
753
754 /* try to reload the old mbuf */
755 error = bus_dmamap_load(sc->sc_dmat, data->map,
756 mtod(data->m, void *), MCLBYTES, NULL,
757 BUS_DMA_READ | BUS_DMA_NOWAIT);
758 if (error != 0) {
759 /* very unlikely that it will fail.. */
760 panic("%s: could not load old rx mbuf",
761 sc->sc_dev.dv_xname);
762 }
763 ifp->if_ierrors++;
764 goto skip;
765 }
766 physaddr = data->map->dm_segs[0].ds_addr;
767 }
768
769 /*
770 * New mbuf successfully loaded, update Rx ring and continue
771 * processing.
772 */
773 m = data->m;
774 data->m = mnew;
775
776 /* finalize mbuf */
777 m->m_pkthdr.len = m->m_len = len;
778 m->m_pkthdr.rcvif = ifp;
779
780 #ifdef notyet
781 if (sc->sc_flags & NFE_HW_CSUM) {
782 if (flags & NFE_RX_IP_CSUMOK)
783 m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
784 if (flags & NFE_RX_UDP_CSUMOK)
785 m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
786 if (flags & NFE_RX_TCP_CSUMOK)
787 m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
788 }
789 #elif defined(NFE_CSUM)
790 if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
791 m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
792 #endif
793
794 #if NBPFILTER > 0
795 if (ifp->if_bpf)
796 bpf_mtap(ifp->if_bpf, m);
797 #endif
798 ifp->if_ipackets++;
799 (*ifp->if_input)(ifp, m);
800
801 /* update mapping address in h/w descriptor */
802 if (sc->sc_flags & NFE_40BIT_ADDR) {
803 #if defined(__LP64__)
804 desc64->physaddr[0] = htole32(physaddr >> 32);
805 #endif
806 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
807 } else {
808 desc32->physaddr = htole32(physaddr);
809 }
810
811 skip: if (sc->sc_flags & NFE_40BIT_ADDR) {
812 desc64->length = htole16(sc->rxq.bufsz);
813 desc64->flags = htole16(NFE_RX_READY);
814
815 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
816 } else {
817 desc32->length = htole16(sc->rxq.bufsz);
818 desc32->flags = htole16(NFE_RX_READY);
819
820 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
821 }
822
823 sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
824 }
825 }
826
827 void
828 nfe_txeof(struct nfe_softc *sc)
829 {
830 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
831 struct nfe_desc32 *desc32;
832 struct nfe_desc64 *desc64;
833 struct nfe_tx_data *data = NULL;
834 uint16_t flags;
835
836 while (sc->txq.next != sc->txq.cur) {
837 if (sc->sc_flags & NFE_40BIT_ADDR) {
838 desc64 = &sc->txq.desc64[sc->txq.next];
839 nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
840
841 flags = le16toh(desc64->flags);
842 } else {
843 desc32 = &sc->txq.desc32[sc->txq.next];
844 nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
845
846 flags = le16toh(desc32->flags);
847 }
848
849 if (flags & NFE_TX_VALID)
850 break;
851
852 data = &sc->txq.data[sc->txq.next];
853
854 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
855 if (!(flags & NFE_TX_LASTFRAG_V1))
856 goto skip;
857
858 if ((flags & NFE_TX_ERROR_V1) != 0) {
859 printf("%s: tx v1 error 0x%04x\n",
860 sc->sc_dev.dv_xname, flags);
861 ifp->if_oerrors++;
862 } else
863 ifp->if_opackets++;
864 } else {
865 if (!(flags & NFE_TX_LASTFRAG_V2))
866 goto skip;
867
868 if ((flags & NFE_TX_ERROR_V2) != 0) {
869 printf("%s: tx v2 error 0x%04x\n",
870 sc->sc_dev.dv_xname, flags);
871 ifp->if_oerrors++;
872 } else
873 ifp->if_opackets++;
874 }
875
876 if (data->m == NULL) { /* should not get there */
877 printf("%s: last fragment bit w/o associated mbuf!\n",
878 sc->sc_dev.dv_xname);
879 goto skip;
880 }
881
882 /* last fragment of the mbuf chain transmitted */
883 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
884 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
885 bus_dmamap_unload(sc->sc_dmat, data->active);
886 m_freem(data->m);
887 data->m = NULL;
888
889 ifp->if_timer = 0;
890
891 skip: sc->txq.queued--;
892 sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
893 }
894
895 if (data != NULL) { /* at least one slot freed */
896 ifp->if_flags &= ~IFF_OACTIVE;
897 nfe_start(ifp);
898 }
899 }
900
901 int
902 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
903 {
904 struct nfe_desc32 *desc32;
905 struct nfe_desc64 *desc64;
906 struct nfe_tx_data *data;
907 bus_dmamap_t map;
908 uint16_t flags = NFE_TX_VALID;
909 #if NVLAN > 0
910 struct m_tag *mtag;
911 uint32_t vtag = 0;
912 #endif
913 int error, i;
914
915 desc32 = NULL;
916 desc64 = NULL;
917 data = NULL;
918 map = sc->txq.data[sc->txq.cur].map;
919
920 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
921 if (error != 0) {
922 printf("%s: could not map mbuf (error %d)\n",
923 sc->sc_dev.dv_xname, error);
924 return error;
925 }
926
927 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
928 bus_dmamap_unload(sc->sc_dmat, map);
929 return ENOBUFS;
930 }
931
932 #if NVLAN > 0
933 /* setup h/w VLAN tagging */
934 if (sc->sc_ethercom.ec_nvlans) {
935 mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL);
936 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
937 }
938 #endif
939 #ifdef NFE_CSUM
940 if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
941 flags |= NFE_TX_IP_CSUM;
942 if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
943 flags |= NFE_TX_TCP_CSUM;
944 #endif
945
946 for (i = 0; i < map->dm_nsegs; i++) {
947 data = &sc->txq.data[sc->txq.cur];
948
949 if (sc->sc_flags & NFE_40BIT_ADDR) {
950 desc64 = &sc->txq.desc64[sc->txq.cur];
951 #if defined(__LP64__)
952 desc64->physaddr[0] =
953 htole32(map->dm_segs[i].ds_addr >> 32);
954 #endif
955 desc64->physaddr[1] =
956 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
957 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
958 desc64->flags = htole16(flags);
959 #if NVLAN > 0
960 desc64->vtag = htole32(vtag);
961 #endif
962 } else {
963 desc32 = &sc->txq.desc32[sc->txq.cur];
964
965 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
966 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
967 desc32->flags = htole16(flags);
968 }
969
970 /* csum flags and vtag belong to the first fragment only */
971 if (map->dm_nsegs > 1) {
972 flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
973 #if NVLAN > 0
974 vtag = 0;
975 #endif
976 }
977
978 sc->txq.queued++;
979 sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
980 }
981
982 /* the whole mbuf chain has been DMA mapped, fix last descriptor */
983 if (sc->sc_flags & NFE_40BIT_ADDR) {
984 flags |= NFE_TX_LASTFRAG_V2;
985 desc64->flags = htole16(flags);
986 } else {
987 if (sc->sc_flags & NFE_JUMBO_SUP)
988 flags |= NFE_TX_LASTFRAG_V2;
989 else
990 flags |= NFE_TX_LASTFRAG_V1;
991 desc32->flags = htole16(flags);
992 }
993
994 data->m = m0;
995 data->active = map;
996
997 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
998 BUS_DMASYNC_PREWRITE);
999
1000 return 0;
1001 }
1002
1003 void
1004 nfe_start(struct ifnet *ifp)
1005 {
1006 struct nfe_softc *sc = ifp->if_softc;
1007 int old = sc->txq.cur;
1008 struct mbuf *m0;
1009
1010 for (;;) {
1011 IFQ_POLL(&ifp->if_snd, m0);
1012 if (m0 == NULL)
1013 break;
1014
1015 if (nfe_encap(sc, m0) != 0) {
1016 ifp->if_flags |= IFF_OACTIVE;
1017 break;
1018 }
1019
1020 /* packet put in h/w queue, remove from s/w queue */
1021 IFQ_DEQUEUE(&ifp->if_snd, m0);
1022
1023 #if NBPFILTER > 0
1024 if (ifp->if_bpf != NULL)
1025 bpf_mtap(ifp->if_bpf, m0);
1026 #endif
1027 }
1028 if (sc->txq.cur == old) /* nothing sent */
1029 return;
1030
1031 if (sc->sc_flags & NFE_40BIT_ADDR)
1032 nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1033 else
1034 nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1035
1036 /* kick Tx */
1037 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1038
1039 /*
1040 * Set a timeout in case the chip goes out to lunch.
1041 */
1042 ifp->if_timer = 5;
1043 }
1044
1045 void
1046 nfe_watchdog(struct ifnet *ifp)
1047 {
1048 struct nfe_softc *sc = ifp->if_softc;
1049
1050 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1051
1052 ifp->if_flags &= ~IFF_RUNNING;
1053 nfe_init(ifp);
1054
1055 ifp->if_oerrors++;
1056 }
1057
1058 int
1059 nfe_init(struct ifnet *ifp)
1060 {
1061 struct nfe_softc *sc = ifp->if_softc;
1062 uint32_t tmp;
1063
1064 if (ifp->if_flags & IFF_RUNNING)
1065 return 0;
1066
1067 nfe_stop(ifp, 0);
1068
1069 NFE_WRITE(sc, NFE_TX_UNK, 0);
1070 NFE_WRITE(sc, NFE_STATUS, 0);
1071
1072 sc->rxtxctl = NFE_RXTX_BIT2;
1073 if (sc->sc_flags & NFE_40BIT_ADDR)
1074 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1075 else if (sc->sc_flags & NFE_JUMBO_SUP)
1076 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1077 #ifdef NFE_CSUM
1078 if (sc->sc_flags & NFE_HW_CSUM)
1079 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1080 #endif
1081 #if NVLAN > 0
1082 /*
1083 * Although the adapter is capable of stripping VLAN tags from received
1084 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1085 * purpose. This will be done in software by our network stack.
1086 */
1087 if (sc->sc_flags & NFE_HW_VLAN)
1088 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1089 #endif
1090 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1091 DELAY(10);
1092 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1093
1094 #if NVLAN
1095 if (sc->sc_flags & NFE_HW_VLAN)
1096 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1097 #endif
1098
1099 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1100
1101 /* set MAC address */
1102 nfe_set_macaddr(sc, sc->sc_enaddr);
1103
1104 /* tell MAC where rings are in memory */
1105 #ifdef __LP64__
1106 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1107 #endif
1108 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1109 #ifdef __LP64__
1110 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1111 #endif
1112 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1113
1114 NFE_WRITE(sc, NFE_RING_SIZE,
1115 (NFE_RX_RING_COUNT - 1) << 16 |
1116 (NFE_TX_RING_COUNT - 1));
1117
1118 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1119
1120 /* force MAC to wakeup */
1121 tmp = NFE_READ(sc, NFE_PWR_STATE);
1122 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1123 DELAY(10);
1124 tmp = NFE_READ(sc, NFE_PWR_STATE);
1125 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1126
1127 #if 1
1128 /* configure interrupts coalescing/mitigation */
1129 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1130 #else
1131 /* no interrupt mitigation: one interrupt per packet */
1132 NFE_WRITE(sc, NFE_IMTIMER, 970);
1133 #endif
1134
1135 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1136 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1137 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1138
1139 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1140 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1141
1142 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1143 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1144
1145 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1146 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1147 DELAY(10);
1148 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1149
1150 /* set Rx filter */
1151 nfe_setmulti(sc);
1152
1153 nfe_ifmedia_upd(ifp);
1154
1155 /* enable Rx */
1156 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1157
1158 /* enable Tx */
1159 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1160
1161 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1162
1163 /* enable interrupts */
1164 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1165
1166 callout_schedule(&sc->sc_tick_ch, hz);
1167
1168 ifp->if_flags |= IFF_RUNNING;
1169 ifp->if_flags &= ~IFF_OACTIVE;
1170
1171 return 0;
1172 }
1173
1174 void
1175 nfe_stop(struct ifnet *ifp, int disable)
1176 {
1177 struct nfe_softc *sc = ifp->if_softc;
1178
1179 callout_stop(&sc->sc_tick_ch);
1180
1181 ifp->if_timer = 0;
1182 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1183
1184 mii_down(&sc->sc_mii);
1185
1186 /* abort Tx */
1187 NFE_WRITE(sc, NFE_TX_CTL, 0);
1188
1189 /* disable Rx */
1190 NFE_WRITE(sc, NFE_RX_CTL, 0);
1191
1192 /* disable interrupts */
1193 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1194
1195 /* reset Tx and Rx rings */
1196 nfe_reset_tx_ring(sc, &sc->txq);
1197 nfe_reset_rx_ring(sc, &sc->rxq);
1198 }
1199
1200 int
1201 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1202 {
1203 struct nfe_desc32 *desc32;
1204 struct nfe_desc64 *desc64;
1205 struct nfe_rx_data *data;
1206 struct nfe_jbuf *jbuf;
1207 void **desc;
1208 bus_addr_t physaddr;
1209 int i, nsegs, error, descsize;
1210
1211 if (sc->sc_flags & NFE_40BIT_ADDR) {
1212 desc = (void **)&ring->desc64;
1213 descsize = sizeof (struct nfe_desc64);
1214 } else {
1215 desc = (void **)&ring->desc32;
1216 descsize = sizeof (struct nfe_desc32);
1217 }
1218
1219 ring->cur = ring->next = 0;
1220 ring->bufsz = MCLBYTES;
1221
1222 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1223 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1224 if (error != 0) {
1225 printf("%s: could not create desc DMA map\n",
1226 sc->sc_dev.dv_xname);
1227 goto fail;
1228 }
1229
1230 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1231 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1232 if (error != 0) {
1233 printf("%s: could not allocate DMA memory\n",
1234 sc->sc_dev.dv_xname);
1235 goto fail;
1236 }
1237
1238 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1239 NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1240 if (error != 0) {
1241 printf("%s: could not map desc DMA memory\n",
1242 sc->sc_dev.dv_xname);
1243 goto fail;
1244 }
1245
1246 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1247 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1248 if (error != 0) {
1249 printf("%s: could not load desc DMA map\n",
1250 sc->sc_dev.dv_xname);
1251 goto fail;
1252 }
1253
1254 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1255 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1256
1257 if (sc->sc_flags & NFE_USE_JUMBO) {
1258 ring->bufsz = NFE_JBYTES;
1259 if ((error = nfe_jpool_alloc(sc)) != 0) {
1260 printf("%s: could not allocate jumbo frames\n",
1261 sc->sc_dev.dv_xname);
1262 goto fail;
1263 }
1264 }
1265
1266 /*
1267 * Pre-allocate Rx buffers and populate Rx ring.
1268 */
1269 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1270 data = &sc->rxq.data[i];
1271
1272 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1273 if (data->m == NULL) {
1274 printf("%s: could not allocate rx mbuf\n",
1275 sc->sc_dev.dv_xname);
1276 error = ENOMEM;
1277 goto fail;
1278 }
1279
1280 if (sc->sc_flags & NFE_USE_JUMBO) {
1281 if ((jbuf = nfe_jalloc(sc)) == NULL) {
1282 printf("%s: could not allocate jumbo buffer\n",
1283 sc->sc_dev.dv_xname);
1284 goto fail;
1285 }
1286 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1287 sc);
1288
1289 physaddr = jbuf->physaddr;
1290 } else {
1291 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1292 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1293 if (error != 0) {
1294 printf("%s: could not create DMA map\n",
1295 sc->sc_dev.dv_xname);
1296 goto fail;
1297 }
1298 MCLGET(data->m, M_DONTWAIT);
1299 if (!(data->m->m_flags & M_EXT)) {
1300 printf("%s: could not allocate mbuf cluster\n",
1301 sc->sc_dev.dv_xname);
1302 error = ENOMEM;
1303 goto fail;
1304 }
1305
1306 error = bus_dmamap_load(sc->sc_dmat, data->map,
1307 mtod(data->m, void *), MCLBYTES, NULL,
1308 BUS_DMA_READ | BUS_DMA_NOWAIT);
1309 if (error != 0) {
1310 printf("%s: could not load rx buf DMA map",
1311 sc->sc_dev.dv_xname);
1312 goto fail;
1313 }
1314 physaddr = data->map->dm_segs[0].ds_addr;
1315 }
1316
1317 if (sc->sc_flags & NFE_40BIT_ADDR) {
1318 desc64 = &sc->rxq.desc64[i];
1319 #if defined(__LP64__)
1320 desc64->physaddr[0] = htole32(physaddr >> 32);
1321 #endif
1322 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1323 desc64->length = htole16(sc->rxq.bufsz);
1324 desc64->flags = htole16(NFE_RX_READY);
1325 } else {
1326 desc32 = &sc->rxq.desc32[i];
1327 desc32->physaddr = htole32(physaddr);
1328 desc32->length = htole16(sc->rxq.bufsz);
1329 desc32->flags = htole16(NFE_RX_READY);
1330 }
1331 }
1332
1333 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1334 BUS_DMASYNC_PREWRITE);
1335
1336 return 0;
1337
1338 fail: nfe_free_rx_ring(sc, ring);
1339 return error;
1340 }
1341
1342 void
1343 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1344 {
1345 int i;
1346
1347 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1348 if (sc->sc_flags & NFE_40BIT_ADDR) {
1349 ring->desc64[i].length = htole16(ring->bufsz);
1350 ring->desc64[i].flags = htole16(NFE_RX_READY);
1351 } else {
1352 ring->desc32[i].length = htole16(ring->bufsz);
1353 ring->desc32[i].flags = htole16(NFE_RX_READY);
1354 }
1355 }
1356
1357 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1358 BUS_DMASYNC_PREWRITE);
1359
1360 ring->cur = ring->next = 0;
1361 }
1362
1363 void
1364 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1365 {
1366 struct nfe_rx_data *data;
1367 void *desc;
1368 int i, descsize;
1369
1370 if (sc->sc_flags & NFE_40BIT_ADDR) {
1371 desc = ring->desc64;
1372 descsize = sizeof (struct nfe_desc64);
1373 } else {
1374 desc = ring->desc32;
1375 descsize = sizeof (struct nfe_desc32);
1376 }
1377
1378 if (desc != NULL) {
1379 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1380 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1381 bus_dmamap_unload(sc->sc_dmat, ring->map);
1382 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1383 NFE_RX_RING_COUNT * descsize);
1384 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1385 }
1386
1387 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1388 data = &ring->data[i];
1389
1390 if (data->map != NULL) {
1391 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1392 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1393 bus_dmamap_unload(sc->sc_dmat, data->map);
1394 bus_dmamap_destroy(sc->sc_dmat, data->map);
1395 }
1396 if (data->m != NULL)
1397 m_freem(data->m);
1398 }
1399 }
1400
1401 struct nfe_jbuf *
1402 nfe_jalloc(struct nfe_softc *sc)
1403 {
1404 struct nfe_jbuf *jbuf;
1405
1406 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1407 if (jbuf == NULL)
1408 return NULL;
1409 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1410 return jbuf;
1411 }
1412
1413 /*
1414 * This is called automatically by the network stack when the mbuf is freed.
1415 * Caution must be taken that the NIC might be reset by the time the mbuf is
1416 * freed.
1417 */
1418 void
1419 nfe_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
1420 {
1421 struct nfe_softc *sc = arg;
1422 struct nfe_jbuf *jbuf;
1423 int i;
1424
1425 /* find the jbuf from the base pointer */
1426 i = (buf - sc->rxq.jpool) / NFE_JBYTES;
1427 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1428 printf("%s: request to free a buffer (%p) not managed by us\n",
1429 sc->sc_dev.dv_xname, buf);
1430 return;
1431 }
1432 jbuf = &sc->rxq.jbuf[i];
1433
1434 /* ..and put it back in the free list */
1435 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1436 }
1437
1438 int
1439 nfe_jpool_alloc(struct nfe_softc *sc)
1440 {
1441 struct nfe_rx_ring *ring = &sc->rxq;
1442 struct nfe_jbuf *jbuf;
1443 bus_addr_t physaddr;
1444 caddr_t buf;
1445 int i, nsegs, error;
1446
1447 /*
1448 * Allocate a big chunk of DMA'able memory.
1449 */
1450 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1451 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1452 if (error != 0) {
1453 printf("%s: could not create jumbo DMA map\n",
1454 sc->sc_dev.dv_xname);
1455 goto fail;
1456 }
1457
1458 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1459 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1460 if (error != 0) {
1461 printf("%s could not allocate jumbo DMA memory\n",
1462 sc->sc_dev.dv_xname);
1463 goto fail;
1464 }
1465
1466 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1467 &ring->jpool, BUS_DMA_NOWAIT);
1468 if (error != 0) {
1469 printf("%s: could not map jumbo DMA memory\n",
1470 sc->sc_dev.dv_xname);
1471 goto fail;
1472 }
1473
1474 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1475 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1476 if (error != 0) {
1477 printf("%s: could not load jumbo DMA map\n",
1478 sc->sc_dev.dv_xname);
1479 goto fail;
1480 }
1481
1482 /* ..and split it into 9KB chunks */
1483 SLIST_INIT(&ring->jfreelist);
1484
1485 buf = ring->jpool;
1486 physaddr = ring->jmap->dm_segs[0].ds_addr;
1487 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1488 jbuf = &ring->jbuf[i];
1489
1490 jbuf->buf = buf;
1491 jbuf->physaddr = physaddr;
1492
1493 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1494
1495 buf += NFE_JBYTES;
1496 physaddr += NFE_JBYTES;
1497 }
1498
1499 return 0;
1500
1501 fail: nfe_jpool_free(sc);
1502 return error;
1503 }
1504
1505 void
1506 nfe_jpool_free(struct nfe_softc *sc)
1507 {
1508 struct nfe_rx_ring *ring = &sc->rxq;
1509
1510 if (ring->jmap != NULL) {
1511 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1512 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1513 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1514 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1515 }
1516 if (ring->jpool != NULL) {
1517 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1518 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1519 }
1520 }
1521
1522 int
1523 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1524 {
1525 int i, nsegs, error;
1526 void **desc;
1527 int descsize;
1528
1529 if (sc->sc_flags & NFE_40BIT_ADDR) {
1530 desc = (void **)&ring->desc64;
1531 descsize = sizeof (struct nfe_desc64);
1532 } else {
1533 desc = (void **)&ring->desc32;
1534 descsize = sizeof (struct nfe_desc32);
1535 }
1536
1537 ring->queued = 0;
1538 ring->cur = ring->next = 0;
1539
1540 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1541 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1542
1543 if (error != 0) {
1544 printf("%s: could not create desc DMA map\n",
1545 sc->sc_dev.dv_xname);
1546 goto fail;
1547 }
1548
1549 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1550 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1551 if (error != 0) {
1552 printf("%s: could not allocate DMA memory\n",
1553 sc->sc_dev.dv_xname);
1554 goto fail;
1555 }
1556
1557 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1558 NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1559 if (error != 0) {
1560 printf("%s: could not map desc DMA memory\n",
1561 sc->sc_dev.dv_xname);
1562 goto fail;
1563 }
1564
1565 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1566 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1567 if (error != 0) {
1568 printf("%s: could not load desc DMA map\n",
1569 sc->sc_dev.dv_xname);
1570 goto fail;
1571 }
1572
1573 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1574 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1575
1576 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1577 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1578 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1579 &ring->data[i].map);
1580 if (error != 0) {
1581 printf("%s: could not create DMA map\n",
1582 sc->sc_dev.dv_xname);
1583 goto fail;
1584 }
1585 }
1586
1587 return 0;
1588
1589 fail: nfe_free_tx_ring(sc, ring);
1590 return error;
1591 }
1592
1593 void
1594 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1595 {
1596 struct nfe_tx_data *data;
1597 int i;
1598
1599 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1600 if (sc->sc_flags & NFE_40BIT_ADDR)
1601 ring->desc64[i].flags = 0;
1602 else
1603 ring->desc32[i].flags = 0;
1604
1605 data = &ring->data[i];
1606
1607 if (data->m != NULL) {
1608 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1609 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1610 bus_dmamap_unload(sc->sc_dmat, data->active);
1611 m_freem(data->m);
1612 data->m = NULL;
1613 }
1614 }
1615
1616 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1617 BUS_DMASYNC_PREWRITE);
1618
1619 ring->queued = 0;
1620 ring->cur = ring->next = 0;
1621 }
1622
1623 void
1624 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1625 {
1626 struct nfe_tx_data *data;
1627 void *desc;
1628 int i, descsize;
1629
1630 if (sc->sc_flags & NFE_40BIT_ADDR) {
1631 desc = ring->desc64;
1632 descsize = sizeof (struct nfe_desc64);
1633 } else {
1634 desc = ring->desc32;
1635 descsize = sizeof (struct nfe_desc32);
1636 }
1637
1638 if (desc != NULL) {
1639 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1640 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1641 bus_dmamap_unload(sc->sc_dmat, ring->map);
1642 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1643 NFE_TX_RING_COUNT * descsize);
1644 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1645 }
1646
1647 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1648 data = &ring->data[i];
1649
1650 if (data->m != NULL) {
1651 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1652 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1653 bus_dmamap_unload(sc->sc_dmat, data->active);
1654 m_freem(data->m);
1655 }
1656 }
1657
1658 /* ..and now actually destroy the DMA mappings */
1659 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1660 data = &ring->data[i];
1661 if (data->map == NULL)
1662 continue;
1663 bus_dmamap_destroy(sc->sc_dmat, data->map);
1664 }
1665 }
1666
1667 int
1668 nfe_ifmedia_upd(struct ifnet *ifp)
1669 {
1670 struct nfe_softc *sc = ifp->if_softc;
1671 struct mii_data *mii = &sc->sc_mii;
1672 struct mii_softc *miisc;
1673
1674 if (mii->mii_instance != 0) {
1675 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1676 mii_phy_reset(miisc);
1677 }
1678 return mii_mediachg(mii);
1679 }
1680
1681 void
1682 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1683 {
1684 struct nfe_softc *sc = ifp->if_softc;
1685 struct mii_data *mii = &sc->sc_mii;
1686
1687 mii_pollstat(mii);
1688 ifmr->ifm_status = mii->mii_media_status;
1689 ifmr->ifm_active = mii->mii_media_active;
1690 }
1691
1692 void
1693 nfe_setmulti(struct nfe_softc *sc)
1694 {
1695 struct ethercom *ec = &sc->sc_ethercom;
1696 struct ifnet *ifp = &ec->ec_if;
1697 struct ether_multi *enm;
1698 struct ether_multistep step;
1699 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1700 uint32_t filter = NFE_RXFILTER_MAGIC;
1701 int i;
1702
1703 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1704 bzero(addr, ETHER_ADDR_LEN);
1705 bzero(mask, ETHER_ADDR_LEN);
1706 goto done;
1707 }
1708
1709 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1710 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1711
1712 ETHER_FIRST_MULTI(step, ec, enm);
1713 while (enm != NULL) {
1714 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1715 ifp->if_flags |= IFF_ALLMULTI;
1716 bzero(addr, ETHER_ADDR_LEN);
1717 bzero(mask, ETHER_ADDR_LEN);
1718 goto done;
1719 }
1720 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1721 addr[i] &= enm->enm_addrlo[i];
1722 mask[i] &= ~enm->enm_addrlo[i];
1723 }
1724 ETHER_NEXT_MULTI(step, enm);
1725 }
1726 for (i = 0; i < ETHER_ADDR_LEN; i++)
1727 mask[i] |= addr[i];
1728
1729 done:
1730 addr[0] |= 0x01; /* make sure multicast bit is set */
1731
1732 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1733 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1734 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1735 addr[5] << 8 | addr[4]);
1736 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1737 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1738 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1739 mask[5] << 8 | mask[4]);
1740
1741 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1742 NFE_WRITE(sc, NFE_RXFILTER, filter);
1743 }
1744
1745 void
1746 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1747 {
1748 uint32_t tmp;
1749
1750 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1751 addr[0] = (tmp >> 8) & 0xff;
1752 addr[1] = (tmp & 0xff);
1753
1754 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1755 addr[2] = (tmp >> 24) & 0xff;
1756 addr[3] = (tmp >> 16) & 0xff;
1757 addr[4] = (tmp >> 8) & 0xff;
1758 addr[5] = (tmp & 0xff);
1759 }
1760
1761 void
1762 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1763 {
1764 NFE_WRITE(sc, NFE_MACADDR_LO,
1765 addr[5] << 8 | addr[4]);
1766 NFE_WRITE(sc, NFE_MACADDR_HI,
1767 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1768 }
1769
1770 void
1771 nfe_tick(void *arg)
1772 {
1773 struct nfe_softc *sc = arg;
1774 int s;
1775
1776 s = splnet();
1777 mii_tick(&sc->sc_mii);
1778 splx(s);
1779
1780 callout_schedule(&sc->sc_tick_ch, hz);
1781 }
1782