if_nfe.c revision 1.12 1 /* $NetBSD: if_nfe.c,v 1.12 2007/01/05 01:33:57 jmcneill Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.12 2007/01/05 01:33:57 jmcneill Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <machine/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, caddr_t);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
98 void nfe_jfree(struct mbuf *, caddr_t, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206 char devinfo[256];
207
208 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
209 aprint_normal(": %s (rev. 0x%02x)\n",
210 devinfo, PCI_REVISION(pa->pa_class));
211
212 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
213 switch (memtype) {
214 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
215 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
216 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
217 &sc->sc_memh, NULL, &memsize) == 0)
218 break;
219 /* FALLTHROUGH */
220 default:
221 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
222 return;
223 }
224
225 if (pci_intr_map(pa, &ih) != 0) {
226 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
227 return;
228 }
229
230 intrstr = pci_intr_string(pc, ih);
231 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
232 if (sc->sc_ih == NULL) {
233 printf("%s: could not establish interrupt",
234 sc->sc_dev.dv_xname);
235 if (intrstr != NULL)
236 printf(" at %s", intrstr);
237 printf("\n");
238 return;
239 }
240 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
241
242 sc->sc_dmat = pa->pa_dmat;
243
244 nfe_get_macaddr(sc, sc->sc_enaddr);
245 printf("%s: Ethernet address %s\n",
246 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
247
248 sc->sc_flags = 0;
249
250 switch (PCI_PRODUCT(pa->pa_id)) {
251 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
252 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
253 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
254 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
255 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
256 break;
257 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
258 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
259 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
260 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
261 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
262 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
263 sc->sc_flags |= NFE_40BIT_ADDR;
264 break;
265 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
266 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
269 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
270 break;
271 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
276 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
277 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
278 NFE_HW_VLAN;
279 break;
280 }
281
282 #ifndef NFE_NO_JUMBO
283 /* enable jumbo frames for adapters that support it */
284 if (sc->sc_flags & NFE_JUMBO_SUP)
285 sc->sc_flags |= NFE_USE_JUMBO;
286 #endif
287
288 /*
289 * Allocate Tx and Rx rings.
290 */
291 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
292 printf("%s: could not allocate Tx ring\n",
293 sc->sc_dev.dv_xname);
294 return;
295 }
296
297 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
298 printf("%s: could not allocate Rx ring\n",
299 sc->sc_dev.dv_xname);
300 nfe_free_tx_ring(sc, &sc->txq);
301 return;
302 }
303
304 ifp = &sc->sc_ethercom.ec_if;
305 ifp->if_softc = sc;
306 ifp->if_mtu = ETHERMTU;
307 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
308 ifp->if_ioctl = nfe_ioctl;
309 ifp->if_start = nfe_start;
310 ifp->if_watchdog = nfe_watchdog;
311 ifp->if_init = nfe_init;
312 ifp->if_baudrate = IF_Gbps(1);
313 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
314 IFQ_SET_READY(&ifp->if_snd);
315 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
316
317 #if NVLAN > 0
318 if (sc->sc_flags & NFE_HW_VLAN)
319 sc->sc_ethercom.ec_capabilities |=
320 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
321 #endif
322 #ifdef NFE_CSUM
323 if (sc->sc_flags & NFE_HW_CSUM) {
324 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
325 IFCAP_CSUM_UDPv4;
326 }
327 #endif
328
329 sc->sc_mii.mii_ifp = ifp;
330 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
331 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
332 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
333
334 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
335 nfe_ifmedia_sts);
336 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
337 MII_OFFSET_ANY, 0);
338 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
339 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
340 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
341 0, NULL);
342 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
343 } else
344 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
345
346 if_attach(ifp);
347 ether_ifattach(ifp, sc->sc_enaddr);
348
349 callout_init(&sc->sc_tick_ch);
350 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
351
352 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
353 nfe_power, sc);
354 }
355
356 void
357 nfe_power(int why, void *arg)
358 {
359 struct nfe_softc *sc = arg;
360 struct ifnet *ifp;
361
362 if (why == PWR_RESUME) {
363 ifp = &sc->sc_ethercom.ec_if;
364 if (ifp->if_flags & IFF_UP) {
365 ifp->if_flags &= ~IFF_RUNNING;
366 nfe_init(ifp);
367 if (ifp->if_flags & IFF_RUNNING)
368 nfe_start(ifp);
369 }
370 }
371 }
372
373 void
374 nfe_miibus_statchg(struct device *dev)
375 {
376 struct nfe_softc *sc = (struct nfe_softc *)dev;
377 struct mii_data *mii = &sc->sc_mii;
378 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
379
380 phy = NFE_READ(sc, NFE_PHY_IFACE);
381 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
382
383 seed = NFE_READ(sc, NFE_RNDSEED);
384 seed &= ~NFE_SEED_MASK;
385
386 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
387 phy |= NFE_PHY_HDX; /* half-duplex */
388 misc |= NFE_MISC1_HDX;
389 }
390
391 switch (IFM_SUBTYPE(mii->mii_media_active)) {
392 case IFM_1000_T: /* full-duplex only */
393 link |= NFE_MEDIA_1000T;
394 seed |= NFE_SEED_1000T;
395 phy |= NFE_PHY_1000T;
396 break;
397 case IFM_100_TX:
398 link |= NFE_MEDIA_100TX;
399 seed |= NFE_SEED_100TX;
400 phy |= NFE_PHY_100TX;
401 break;
402 case IFM_10_T:
403 link |= NFE_MEDIA_10T;
404 seed |= NFE_SEED_10T;
405 break;
406 }
407
408 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
409
410 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
411 NFE_WRITE(sc, NFE_MISC1, misc);
412 NFE_WRITE(sc, NFE_LINKSPEED, link);
413 }
414
415 int
416 nfe_miibus_readreg(struct device *dev, int phy, int reg)
417 {
418 struct nfe_softc *sc = (struct nfe_softc *)dev;
419 uint32_t val;
420 int ntries;
421
422 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
423
424 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
425 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
426 DELAY(100);
427 }
428
429 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
430
431 for (ntries = 0; ntries < 1000; ntries++) {
432 DELAY(100);
433 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
434 break;
435 }
436 if (ntries == 1000) {
437 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
438 sc->sc_dev.dv_xname));
439 return 0;
440 }
441
442 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
443 DPRINTFN(2, ("%s: could not read PHY\n",
444 sc->sc_dev.dv_xname));
445 return 0;
446 }
447
448 val = NFE_READ(sc, NFE_PHY_DATA);
449 if (val != 0xffffffff && val != 0)
450 sc->mii_phyaddr = phy;
451
452 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
453 sc->sc_dev.dv_xname, phy, reg, val));
454
455 return val;
456 }
457
458 void
459 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
460 {
461 struct nfe_softc *sc = (struct nfe_softc *)dev;
462 uint32_t ctl;
463 int ntries;
464
465 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
466
467 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
468 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
469 DELAY(100);
470 }
471
472 NFE_WRITE(sc, NFE_PHY_DATA, val);
473 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
474 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
475
476 for (ntries = 0; ntries < 1000; ntries++) {
477 DELAY(100);
478 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
479 break;
480 }
481 #ifdef NFE_DEBUG
482 if (nfedebug >= 2 && ntries == 1000)
483 printf("could not write to PHY\n");
484 #endif
485 }
486
487 int
488 nfe_intr(void *arg)
489 {
490 struct nfe_softc *sc = arg;
491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
492 uint32_t r;
493
494 if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0)
495 return 0; /* not for us */
496 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
497
498 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
499
500 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
501
502 if (r & NFE_IRQ_LINK) {
503 NFE_READ(sc, NFE_PHY_STATUS);
504 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
505 DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname));
506 }
507
508 if (ifp->if_flags & IFF_RUNNING) {
509 /* check Rx ring */
510 nfe_rxeof(sc);
511
512 /* check Tx ring */
513 nfe_txeof(sc);
514 }
515
516 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
517
518 if (ifp->if_flags & IFF_RUNNING &&
519 !IF_IS_EMPTY(&ifp->if_snd))
520 nfe_start(ifp);
521
522 return 1;
523 }
524
525 int
526 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
527 {
528 struct nfe_softc *sc = ifp->if_softc;
529 struct ifreq *ifr = (struct ifreq *)data;
530 struct ifaddr *ifa = (struct ifaddr *)data;
531 int s, error = 0;
532
533 s = splnet();
534
535 switch (cmd) {
536 case SIOCSIFADDR:
537 ifp->if_flags |= IFF_UP;
538 nfe_init(ifp);
539 switch (ifa->ifa_addr->sa_family) {
540 #ifdef INET
541 case AF_INET:
542 arp_ifinit(ifp, ifa);
543 break;
544 #endif
545 default:
546 break;
547 }
548 break;
549 case SIOCSIFMTU:
550 if (ifr->ifr_mtu < ETHERMIN ||
551 ((sc->sc_flags & NFE_USE_JUMBO) &&
552 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
553 (!(sc->sc_flags & NFE_USE_JUMBO) &&
554 ifr->ifr_mtu > ETHERMTU))
555 error = EINVAL;
556 else if (ifp->if_mtu != ifr->ifr_mtu)
557 ifp->if_mtu = ifr->ifr_mtu;
558 break;
559 case SIOCSIFFLAGS:
560 if (ifp->if_flags & IFF_UP) {
561 /*
562 * If only the PROMISC or ALLMULTI flag changes, then
563 * don't do a full re-init of the chip, just update
564 * the Rx filter.
565 */
566 if ((ifp->if_flags & IFF_RUNNING) &&
567 ((ifp->if_flags ^ sc->sc_if_flags) &
568 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
569 nfe_setmulti(sc);
570 else
571 nfe_init(ifp);
572 } else {
573 if (ifp->if_flags & IFF_RUNNING)
574 nfe_stop(ifp, 1);
575 }
576 sc->sc_if_flags = ifp->if_flags;
577 break;
578 case SIOCADDMULTI:
579 case SIOCDELMULTI:
580 error = (cmd == SIOCADDMULTI) ?
581 ether_addmulti(ifr, &sc->sc_ethercom) :
582 ether_delmulti(ifr, &sc->sc_ethercom);
583
584 if (error == ENETRESET) {
585 if (ifp->if_flags & IFF_RUNNING)
586 nfe_setmulti(sc);
587 error = 0;
588 }
589 break;
590 case SIOCSIFMEDIA:
591 case SIOCGIFMEDIA:
592 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
593 break;
594 default:
595 error = ether_ioctl(ifp, cmd, data);
596 if (error == ENETRESET) {
597 if (ifp->if_flags & IFF_RUNNING)
598 nfe_setmulti(sc);
599 error = 0;
600 }
601 break;
602
603 }
604
605 splx(s);
606
607 return error;
608 }
609
610 void
611 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
612 {
613 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
614 (caddr_t)desc32 - (caddr_t)sc->txq.desc32,
615 sizeof (struct nfe_desc32), ops);
616 }
617
618 void
619 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
620 {
621 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
622 (caddr_t)desc64 - (caddr_t)sc->txq.desc64,
623 sizeof (struct nfe_desc64), ops);
624 }
625
626 void
627 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
628 {
629 if (end > start) {
630 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
631 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
632 (caddr_t)&sc->txq.desc32[end] -
633 (caddr_t)&sc->txq.desc32[start], ops);
634 return;
635 }
636 /* sync from 'start' to end of ring */
637 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
638 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
639 (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] -
640 (caddr_t)&sc->txq.desc32[start], ops);
641
642 /* sync from start of ring to 'end' */
643 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
644 (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops);
645 }
646
647 void
648 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
649 {
650 if (end > start) {
651 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
652 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
653 (caddr_t)&sc->txq.desc64[end] -
654 (caddr_t)&sc->txq.desc64[start], ops);
655 return;
656 }
657 /* sync from 'start' to end of ring */
658 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
659 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
660 (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] -
661 (caddr_t)&sc->txq.desc64[start], ops);
662
663 /* sync from start of ring to 'end' */
664 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
665 (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops);
666 }
667
668 void
669 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
670 {
671 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
672 (caddr_t)desc32 - (caddr_t)sc->rxq.desc32,
673 sizeof (struct nfe_desc32), ops);
674 }
675
676 void
677 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
678 {
679 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
680 (caddr_t)desc64 - (caddr_t)sc->rxq.desc64,
681 sizeof (struct nfe_desc64), ops);
682 }
683
684 void
685 nfe_rxeof(struct nfe_softc *sc)
686 {
687 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
688 struct nfe_desc32 *desc32;
689 struct nfe_desc64 *desc64;
690 struct nfe_rx_data *data;
691 struct nfe_jbuf *jbuf;
692 struct mbuf *m, *mnew;
693 bus_addr_t physaddr;
694 uint16_t flags;
695 int error, len;
696
697 desc32 = NULL;
698 desc64 = NULL;
699 for (;;) {
700 data = &sc->rxq.data[sc->rxq.cur];
701
702 if (sc->sc_flags & NFE_40BIT_ADDR) {
703 desc64 = &sc->rxq.desc64[sc->rxq.cur];
704 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
705
706 flags = le16toh(desc64->flags);
707 len = le16toh(desc64->length) & 0x3fff;
708 } else {
709 desc32 = &sc->rxq.desc32[sc->rxq.cur];
710 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
711
712 flags = le16toh(desc32->flags);
713 len = le16toh(desc32->length) & 0x3fff;
714 }
715
716 if (flags & NFE_RX_READY)
717 break;
718
719 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
720 if (!(flags & NFE_RX_VALID_V1))
721 goto skip;
722
723 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
724 flags &= ~NFE_RX_ERROR;
725 len--; /* fix buffer length */
726 }
727 } else {
728 if (!(flags & NFE_RX_VALID_V2))
729 goto skip;
730
731 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
732 flags &= ~NFE_RX_ERROR;
733 len--; /* fix buffer length */
734 }
735 }
736
737 if (flags & NFE_RX_ERROR) {
738 ifp->if_ierrors++;
739 goto skip;
740 }
741
742 /*
743 * Try to allocate a new mbuf for this ring element and load
744 * it before processing the current mbuf. If the ring element
745 * cannot be loaded, drop the received packet and reuse the
746 * old mbuf. In the unlikely case that the old mbuf can't be
747 * reloaded either, explicitly panic.
748 */
749 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
750 if (mnew == NULL) {
751 ifp->if_ierrors++;
752 goto skip;
753 }
754
755 if (sc->sc_flags & NFE_USE_JUMBO) {
756 if ((jbuf = nfe_jalloc(sc)) == NULL) {
757 m_freem(mnew);
758 ifp->if_ierrors++;
759 goto skip;
760 }
761 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
762
763 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
764 mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES,
765 BUS_DMASYNC_POSTREAD);
766
767 physaddr = jbuf->physaddr;
768 } else {
769 MCLGET(mnew, M_DONTWAIT);
770 if (!(mnew->m_flags & M_EXT)) {
771 m_freem(mnew);
772 ifp->if_ierrors++;
773 goto skip;
774 }
775
776 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
777 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
778 bus_dmamap_unload(sc->sc_dmat, data->map);
779
780 error = bus_dmamap_load(sc->sc_dmat, data->map,
781 mtod(mnew, void *), MCLBYTES, NULL,
782 BUS_DMA_READ | BUS_DMA_NOWAIT);
783 if (error != 0) {
784 m_freem(mnew);
785
786 /* try to reload the old mbuf */
787 error = bus_dmamap_load(sc->sc_dmat, data->map,
788 mtod(data->m, void *), MCLBYTES, NULL,
789 BUS_DMA_READ | BUS_DMA_NOWAIT);
790 if (error != 0) {
791 /* very unlikely that it will fail.. */
792 panic("%s: could not load old rx mbuf",
793 sc->sc_dev.dv_xname);
794 }
795 ifp->if_ierrors++;
796 goto skip;
797 }
798 physaddr = data->map->dm_segs[0].ds_addr;
799 }
800
801 /*
802 * New mbuf successfully loaded, update Rx ring and continue
803 * processing.
804 */
805 m = data->m;
806 data->m = mnew;
807
808 /* finalize mbuf */
809 m->m_pkthdr.len = m->m_len = len;
810 m->m_pkthdr.rcvif = ifp;
811
812 #ifdef notyet
813 if (sc->sc_flags & NFE_HW_CSUM) {
814 if (flags & NFE_RX_IP_CSUMOK)
815 m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
816 if (flags & NFE_RX_UDP_CSUMOK)
817 m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
818 if (flags & NFE_RX_TCP_CSUMOK)
819 m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
820 }
821 #elif defined(NFE_CSUM)
822 if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
823 m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
824 #endif
825
826 #if NBPFILTER > 0
827 if (ifp->if_bpf)
828 bpf_mtap(ifp->if_bpf, m);
829 #endif
830 ifp->if_ipackets++;
831 (*ifp->if_input)(ifp, m);
832
833 /* update mapping address in h/w descriptor */
834 if (sc->sc_flags & NFE_40BIT_ADDR) {
835 #if defined(__LP64__)
836 desc64->physaddr[0] = htole32(physaddr >> 32);
837 #endif
838 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
839 } else {
840 desc32->physaddr = htole32(physaddr);
841 }
842
843 skip: if (sc->sc_flags & NFE_40BIT_ADDR) {
844 desc64->length = htole16(sc->rxq.bufsz);
845 desc64->flags = htole16(NFE_RX_READY);
846
847 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
848 } else {
849 desc32->length = htole16(sc->rxq.bufsz);
850 desc32->flags = htole16(NFE_RX_READY);
851
852 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
853 }
854
855 sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
856 }
857 }
858
859 void
860 nfe_txeof(struct nfe_softc *sc)
861 {
862 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
863 struct nfe_desc32 *desc32;
864 struct nfe_desc64 *desc64;
865 struct nfe_tx_data *data = NULL;
866 uint16_t flags;
867
868 while (sc->txq.next != sc->txq.cur) {
869 if (sc->sc_flags & NFE_40BIT_ADDR) {
870 desc64 = &sc->txq.desc64[sc->txq.next];
871 nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
872
873 flags = le16toh(desc64->flags);
874 } else {
875 desc32 = &sc->txq.desc32[sc->txq.next];
876 nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
877
878 flags = le16toh(desc32->flags);
879 }
880
881 if (flags & NFE_TX_VALID)
882 break;
883
884 data = &sc->txq.data[sc->txq.next];
885
886 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
887 if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
888 goto skip;
889
890 if ((flags & NFE_TX_ERROR_V1) != 0) {
891 printf("%s: tx v1 error 0x%04x\n",
892 sc->sc_dev.dv_xname, flags);
893 ifp->if_oerrors++;
894 } else
895 ifp->if_opackets++;
896 } else {
897 if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
898 goto skip;
899
900 if ((flags & NFE_TX_ERROR_V2) != 0) {
901 printf("%s: tx v2 error 0x%04x\n",
902 sc->sc_dev.dv_xname, flags);
903 ifp->if_oerrors++;
904 } else
905 ifp->if_opackets++;
906 }
907
908 if (data->m == NULL) { /* should not get there */
909 printf("%s: last fragment bit w/o associated mbuf!\n",
910 sc->sc_dev.dv_xname);
911 goto skip;
912 }
913
914 /* last fragment of the mbuf chain transmitted */
915 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
916 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
917 bus_dmamap_unload(sc->sc_dmat, data->active);
918 m_freem(data->m);
919 data->m = NULL;
920
921 ifp->if_timer = 0;
922
923 skip: sc->txq.queued--;
924 sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
925 }
926
927 if (data != NULL) { /* at least one slot freed */
928 ifp->if_flags &= ~IFF_OACTIVE;
929 nfe_start(ifp);
930 }
931 }
932
933 int
934 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
935 {
936 struct nfe_desc32 *desc32;
937 struct nfe_desc64 *desc64;
938 struct nfe_tx_data *data;
939 bus_dmamap_t map;
940 uint16_t flags;
941 #if NVLAN > 0
942 struct m_tag *mtag;
943 uint32_t vtag = 0;
944 #endif
945 int error, i, first;
946
947 desc32 = NULL;
948 desc64 = NULL;
949 data = NULL;
950
951 flags = 0;
952 first = sc->txq.cur;
953
954 map = sc->txq.data[first].map;
955
956 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
957 if (error != 0) {
958 printf("%s: could not map mbuf (error %d)\n",
959 sc->sc_dev.dv_xname, error);
960 return error;
961 }
962
963 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
964 bus_dmamap_unload(sc->sc_dmat, map);
965 return ENOBUFS;
966 }
967
968 #if NVLAN > 0
969 /* setup h/w VLAN tagging */
970 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
971 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
972 #endif
973 #ifdef NFE_CSUM
974 if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
975 flags |= NFE_TX_IP_CSUM;
976 if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
977 flags |= NFE_TX_TCP_CSUM;
978 #endif
979
980 for (i = 0; i < map->dm_nsegs; i++) {
981 data = &sc->txq.data[sc->txq.cur];
982
983 if (sc->sc_flags & NFE_40BIT_ADDR) {
984 desc64 = &sc->txq.desc64[sc->txq.cur];
985 #if defined(__LP64__)
986 desc64->physaddr[0] =
987 htole32(map->dm_segs[i].ds_addr >> 32);
988 #endif
989 desc64->physaddr[1] =
990 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
991 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
992 desc64->flags = htole16(flags);
993 #if NVLAN > 0
994 desc64->vtag = htole32(vtag);
995 #endif
996 } else {
997 desc32 = &sc->txq.desc32[sc->txq.cur];
998
999 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1000 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1001 desc32->flags = htole16(flags);
1002 }
1003
1004 if (map->dm_nsegs > 1) {
1005 /*
1006 * Checksum flags and vtag belong to the first fragment
1007 * only.
1008 */
1009 flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
1010 #if NVLAN > 0
1011 vtag = 0;
1012 #endif
1013 /*
1014 * Setting of the valid bit in the first descriptor is
1015 * deferred until the whole chain is fully setup.
1016 */
1017 flags |= NFE_TX_VALID;
1018 }
1019
1020 sc->txq.queued++;
1021 sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
1022 }
1023
1024 /* the whole mbuf chain has been setup */
1025 if (sc->sc_flags & NFE_40BIT_ADDR) {
1026 /* fix last descriptor */
1027 flags |= NFE_TX_LASTFRAG_V2;
1028 desc64->flags = htole16(flags);
1029
1030 /* finally, set the valid bit in the first descriptor */
1031 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1032 } else {
1033 /* fix last descriptor */
1034 if (sc->sc_flags & NFE_JUMBO_SUP)
1035 flags |= NFE_TX_LASTFRAG_V2;
1036 else
1037 flags |= NFE_TX_LASTFRAG_V1;
1038 desc32->flags = htole16(flags);
1039
1040 /* finally, set the valid bit in the first descriptor */
1041 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1042 }
1043
1044 data->m = m0;
1045 data->active = map;
1046
1047 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1048 BUS_DMASYNC_PREWRITE);
1049
1050 return 0;
1051 }
1052
1053 void
1054 nfe_start(struct ifnet *ifp)
1055 {
1056 struct nfe_softc *sc = ifp->if_softc;
1057 int old = sc->txq.cur;
1058 struct mbuf *m0;
1059
1060 for (;;) {
1061 IFQ_POLL(&ifp->if_snd, m0);
1062 if (m0 == NULL)
1063 break;
1064
1065 if (nfe_encap(sc, m0) != 0) {
1066 ifp->if_flags |= IFF_OACTIVE;
1067 break;
1068 }
1069
1070 /* packet put in h/w queue, remove from s/w queue */
1071 IFQ_DEQUEUE(&ifp->if_snd, m0);
1072
1073 #if NBPFILTER > 0
1074 if (ifp->if_bpf != NULL)
1075 bpf_mtap(ifp->if_bpf, m0);
1076 #endif
1077 }
1078 if (sc->txq.cur == old) /* nothing sent */
1079 return;
1080
1081 if (sc->sc_flags & NFE_40BIT_ADDR)
1082 nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1083 else
1084 nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1085
1086 /* kick Tx */
1087 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1088
1089 /*
1090 * Set a timeout in case the chip goes out to lunch.
1091 */
1092 ifp->if_timer = 5;
1093 }
1094
1095 void
1096 nfe_watchdog(struct ifnet *ifp)
1097 {
1098 struct nfe_softc *sc = ifp->if_softc;
1099
1100 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1101
1102 ifp->if_flags &= ~IFF_RUNNING;
1103 nfe_init(ifp);
1104
1105 ifp->if_oerrors++;
1106 }
1107
1108 int
1109 nfe_init(struct ifnet *ifp)
1110 {
1111 struct nfe_softc *sc = ifp->if_softc;
1112 uint32_t tmp;
1113 int s;
1114
1115 if (ifp->if_flags & IFF_RUNNING)
1116 return 0;
1117
1118 nfe_stop(ifp, 0);
1119
1120 NFE_WRITE(sc, NFE_TX_UNK, 0);
1121 NFE_WRITE(sc, NFE_STATUS, 0);
1122
1123 sc->rxtxctl = NFE_RXTX_BIT2;
1124 if (sc->sc_flags & NFE_40BIT_ADDR)
1125 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1126 else if (sc->sc_flags & NFE_JUMBO_SUP)
1127 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1128 #ifdef NFE_CSUM
1129 if (sc->sc_flags & NFE_HW_CSUM)
1130 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1131 #endif
1132 #if NVLAN > 0
1133 /*
1134 * Although the adapter is capable of stripping VLAN tags from received
1135 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1136 * purpose. This will be done in software by our network stack.
1137 */
1138 if (sc->sc_flags & NFE_HW_VLAN)
1139 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1140 #endif
1141 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1142 DELAY(10);
1143 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1144
1145 #if NVLAN
1146 if (sc->sc_flags & NFE_HW_VLAN)
1147 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1148 #endif
1149
1150 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1151
1152 /* set MAC address */
1153 nfe_set_macaddr(sc, sc->sc_enaddr);
1154
1155 /* tell MAC where rings are in memory */
1156 #ifdef __LP64__
1157 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1158 #endif
1159 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1160 #ifdef __LP64__
1161 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1162 #endif
1163 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1164
1165 NFE_WRITE(sc, NFE_RING_SIZE,
1166 (NFE_RX_RING_COUNT - 1) << 16 |
1167 (NFE_TX_RING_COUNT - 1));
1168
1169 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1170
1171 /* force MAC to wakeup */
1172 tmp = NFE_READ(sc, NFE_PWR_STATE);
1173 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1174 DELAY(10);
1175 tmp = NFE_READ(sc, NFE_PWR_STATE);
1176 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1177
1178 s = splnet();
1179 nfe_intr(sc); /* XXX clear IRQ status registers */
1180 splx(s);
1181
1182 #if 1
1183 /* configure interrupts coalescing/mitigation */
1184 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1185 #else
1186 /* no interrupt mitigation: one interrupt per packet */
1187 NFE_WRITE(sc, NFE_IMTIMER, 970);
1188 #endif
1189
1190 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1191 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1192 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1193
1194 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1195 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1196
1197 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1198 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1199
1200 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1201 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1202 DELAY(10);
1203 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1204
1205 /* set Rx filter */
1206 nfe_setmulti(sc);
1207
1208 nfe_ifmedia_upd(ifp);
1209
1210 nfe_tick(sc);
1211
1212 /* enable Rx */
1213 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1214
1215 /* enable Tx */
1216 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1217
1218 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1219
1220 /* enable interrupts */
1221 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1222
1223 callout_schedule(&sc->sc_tick_ch, hz);
1224
1225 ifp->if_flags |= IFF_RUNNING;
1226 ifp->if_flags &= ~IFF_OACTIVE;
1227
1228 return 0;
1229 }
1230
1231 void
1232 nfe_stop(struct ifnet *ifp, int disable)
1233 {
1234 struct nfe_softc *sc = ifp->if_softc;
1235
1236 callout_stop(&sc->sc_tick_ch);
1237
1238 ifp->if_timer = 0;
1239 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1240
1241 mii_down(&sc->sc_mii);
1242
1243 /* abort Tx */
1244 NFE_WRITE(sc, NFE_TX_CTL, 0);
1245
1246 /* disable Rx */
1247 NFE_WRITE(sc, NFE_RX_CTL, 0);
1248
1249 /* disable interrupts */
1250 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1251
1252 /* reset Tx and Rx rings */
1253 nfe_reset_tx_ring(sc, &sc->txq);
1254 nfe_reset_rx_ring(sc, &sc->rxq);
1255 }
1256
1257 int
1258 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1259 {
1260 struct nfe_desc32 *desc32;
1261 struct nfe_desc64 *desc64;
1262 struct nfe_rx_data *data;
1263 struct nfe_jbuf *jbuf;
1264 void **desc;
1265 bus_addr_t physaddr;
1266 int i, nsegs, error, descsize;
1267
1268 if (sc->sc_flags & NFE_40BIT_ADDR) {
1269 desc = (void **)&ring->desc64;
1270 descsize = sizeof (struct nfe_desc64);
1271 } else {
1272 desc = (void **)&ring->desc32;
1273 descsize = sizeof (struct nfe_desc32);
1274 }
1275
1276 ring->cur = ring->next = 0;
1277 ring->bufsz = MCLBYTES;
1278
1279 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1280 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1281 if (error != 0) {
1282 printf("%s: could not create desc DMA map\n",
1283 sc->sc_dev.dv_xname);
1284 goto fail;
1285 }
1286
1287 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1288 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1289 if (error != 0) {
1290 printf("%s: could not allocate DMA memory\n",
1291 sc->sc_dev.dv_xname);
1292 goto fail;
1293 }
1294
1295 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1296 NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1297 if (error != 0) {
1298 printf("%s: could not map desc DMA memory\n",
1299 sc->sc_dev.dv_xname);
1300 goto fail;
1301 }
1302
1303 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1304 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1305 if (error != 0) {
1306 printf("%s: could not load desc DMA map\n",
1307 sc->sc_dev.dv_xname);
1308 goto fail;
1309 }
1310
1311 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1312 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1313
1314 if (sc->sc_flags & NFE_USE_JUMBO) {
1315 ring->bufsz = NFE_JBYTES;
1316 if ((error = nfe_jpool_alloc(sc)) != 0) {
1317 printf("%s: could not allocate jumbo frames\n",
1318 sc->sc_dev.dv_xname);
1319 goto fail;
1320 }
1321 }
1322
1323 /*
1324 * Pre-allocate Rx buffers and populate Rx ring.
1325 */
1326 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1327 data = &sc->rxq.data[i];
1328
1329 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1330 if (data->m == NULL) {
1331 printf("%s: could not allocate rx mbuf\n",
1332 sc->sc_dev.dv_xname);
1333 error = ENOMEM;
1334 goto fail;
1335 }
1336
1337 if (sc->sc_flags & NFE_USE_JUMBO) {
1338 if ((jbuf = nfe_jalloc(sc)) == NULL) {
1339 printf("%s: could not allocate jumbo buffer\n",
1340 sc->sc_dev.dv_xname);
1341 goto fail;
1342 }
1343 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1344 sc);
1345
1346 physaddr = jbuf->physaddr;
1347 } else {
1348 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1349 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1350 if (error != 0) {
1351 printf("%s: could not create DMA map\n",
1352 sc->sc_dev.dv_xname);
1353 goto fail;
1354 }
1355 MCLGET(data->m, M_DONTWAIT);
1356 if (!(data->m->m_flags & M_EXT)) {
1357 printf("%s: could not allocate mbuf cluster\n",
1358 sc->sc_dev.dv_xname);
1359 error = ENOMEM;
1360 goto fail;
1361 }
1362
1363 error = bus_dmamap_load(sc->sc_dmat, data->map,
1364 mtod(data->m, void *), MCLBYTES, NULL,
1365 BUS_DMA_READ | BUS_DMA_NOWAIT);
1366 if (error != 0) {
1367 printf("%s: could not load rx buf DMA map",
1368 sc->sc_dev.dv_xname);
1369 goto fail;
1370 }
1371 physaddr = data->map->dm_segs[0].ds_addr;
1372 }
1373
1374 if (sc->sc_flags & NFE_40BIT_ADDR) {
1375 desc64 = &sc->rxq.desc64[i];
1376 #if defined(__LP64__)
1377 desc64->physaddr[0] = htole32(physaddr >> 32);
1378 #endif
1379 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1380 desc64->length = htole16(sc->rxq.bufsz);
1381 desc64->flags = htole16(NFE_RX_READY);
1382 } else {
1383 desc32 = &sc->rxq.desc32[i];
1384 desc32->physaddr = htole32(physaddr);
1385 desc32->length = htole16(sc->rxq.bufsz);
1386 desc32->flags = htole16(NFE_RX_READY);
1387 }
1388 }
1389
1390 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1391 BUS_DMASYNC_PREWRITE);
1392
1393 return 0;
1394
1395 fail: nfe_free_rx_ring(sc, ring);
1396 return error;
1397 }
1398
1399 void
1400 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1401 {
1402 int i;
1403
1404 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1405 if (sc->sc_flags & NFE_40BIT_ADDR) {
1406 ring->desc64[i].length = htole16(ring->bufsz);
1407 ring->desc64[i].flags = htole16(NFE_RX_READY);
1408 } else {
1409 ring->desc32[i].length = htole16(ring->bufsz);
1410 ring->desc32[i].flags = htole16(NFE_RX_READY);
1411 }
1412 }
1413
1414 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1415 BUS_DMASYNC_PREWRITE);
1416
1417 ring->cur = ring->next = 0;
1418 }
1419
1420 void
1421 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1422 {
1423 struct nfe_rx_data *data;
1424 void *desc;
1425 int i, descsize;
1426
1427 if (sc->sc_flags & NFE_40BIT_ADDR) {
1428 desc = ring->desc64;
1429 descsize = sizeof (struct nfe_desc64);
1430 } else {
1431 desc = ring->desc32;
1432 descsize = sizeof (struct nfe_desc32);
1433 }
1434
1435 if (desc != NULL) {
1436 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1437 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1438 bus_dmamap_unload(sc->sc_dmat, ring->map);
1439 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1440 NFE_RX_RING_COUNT * descsize);
1441 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1442 }
1443
1444 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1445 data = &ring->data[i];
1446
1447 if (data->map != NULL) {
1448 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1449 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1450 bus_dmamap_unload(sc->sc_dmat, data->map);
1451 bus_dmamap_destroy(sc->sc_dmat, data->map);
1452 }
1453 if (data->m != NULL)
1454 m_freem(data->m);
1455 }
1456 }
1457
1458 struct nfe_jbuf *
1459 nfe_jalloc(struct nfe_softc *sc)
1460 {
1461 struct nfe_jbuf *jbuf;
1462
1463 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1464 if (jbuf == NULL)
1465 return NULL;
1466 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1467 return jbuf;
1468 }
1469
1470 /*
1471 * This is called automatically by the network stack when the mbuf is freed.
1472 * Caution must be taken that the NIC might be reset by the time the mbuf is
1473 * freed.
1474 */
1475 void
1476 nfe_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
1477 {
1478 struct nfe_softc *sc = arg;
1479 struct nfe_jbuf *jbuf;
1480 int i;
1481
1482 /* find the jbuf from the base pointer */
1483 i = (buf - sc->rxq.jpool) / NFE_JBYTES;
1484 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1485 printf("%s: request to free a buffer (%p) not managed by us\n",
1486 sc->sc_dev.dv_xname, buf);
1487 return;
1488 }
1489 jbuf = &sc->rxq.jbuf[i];
1490
1491 /* ..and put it back in the free list */
1492 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1493
1494 if (m != NULL)
1495 pool_cache_put(&mbpool_cache, m);
1496 }
1497
1498 int
1499 nfe_jpool_alloc(struct nfe_softc *sc)
1500 {
1501 struct nfe_rx_ring *ring = &sc->rxq;
1502 struct nfe_jbuf *jbuf;
1503 bus_addr_t physaddr;
1504 caddr_t buf;
1505 int i, nsegs, error;
1506
1507 /*
1508 * Allocate a big chunk of DMA'able memory.
1509 */
1510 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1511 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1512 if (error != 0) {
1513 printf("%s: could not create jumbo DMA map\n",
1514 sc->sc_dev.dv_xname);
1515 goto fail;
1516 }
1517
1518 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1519 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1520 if (error != 0) {
1521 printf("%s could not allocate jumbo DMA memory\n",
1522 sc->sc_dev.dv_xname);
1523 goto fail;
1524 }
1525
1526 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1527 &ring->jpool, BUS_DMA_NOWAIT);
1528 if (error != 0) {
1529 printf("%s: could not map jumbo DMA memory\n",
1530 sc->sc_dev.dv_xname);
1531 goto fail;
1532 }
1533
1534 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1535 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1536 if (error != 0) {
1537 printf("%s: could not load jumbo DMA map\n",
1538 sc->sc_dev.dv_xname);
1539 goto fail;
1540 }
1541
1542 /* ..and split it into 9KB chunks */
1543 SLIST_INIT(&ring->jfreelist);
1544
1545 buf = ring->jpool;
1546 physaddr = ring->jmap->dm_segs[0].ds_addr;
1547 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1548 jbuf = &ring->jbuf[i];
1549
1550 jbuf->buf = buf;
1551 jbuf->physaddr = physaddr;
1552
1553 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1554
1555 buf += NFE_JBYTES;
1556 physaddr += NFE_JBYTES;
1557 }
1558
1559 return 0;
1560
1561 fail: nfe_jpool_free(sc);
1562 return error;
1563 }
1564
1565 void
1566 nfe_jpool_free(struct nfe_softc *sc)
1567 {
1568 struct nfe_rx_ring *ring = &sc->rxq;
1569
1570 if (ring->jmap != NULL) {
1571 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1572 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1573 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1574 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1575 }
1576 if (ring->jpool != NULL) {
1577 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1578 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1579 }
1580 }
1581
1582 int
1583 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1584 {
1585 int i, nsegs, error;
1586 void **desc;
1587 int descsize;
1588
1589 if (sc->sc_flags & NFE_40BIT_ADDR) {
1590 desc = (void **)&ring->desc64;
1591 descsize = sizeof (struct nfe_desc64);
1592 } else {
1593 desc = (void **)&ring->desc32;
1594 descsize = sizeof (struct nfe_desc32);
1595 }
1596
1597 ring->queued = 0;
1598 ring->cur = ring->next = 0;
1599
1600 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1601 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1602
1603 if (error != 0) {
1604 printf("%s: could not create desc DMA map\n",
1605 sc->sc_dev.dv_xname);
1606 goto fail;
1607 }
1608
1609 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1610 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1611 if (error != 0) {
1612 printf("%s: could not allocate DMA memory\n",
1613 sc->sc_dev.dv_xname);
1614 goto fail;
1615 }
1616
1617 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1618 NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1619 if (error != 0) {
1620 printf("%s: could not map desc DMA memory\n",
1621 sc->sc_dev.dv_xname);
1622 goto fail;
1623 }
1624
1625 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1626 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1627 if (error != 0) {
1628 printf("%s: could not load desc DMA map\n",
1629 sc->sc_dev.dv_xname);
1630 goto fail;
1631 }
1632
1633 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1634 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1635
1636 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1637 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1638 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1639 &ring->data[i].map);
1640 if (error != 0) {
1641 printf("%s: could not create DMA map\n",
1642 sc->sc_dev.dv_xname);
1643 goto fail;
1644 }
1645 }
1646
1647 return 0;
1648
1649 fail: nfe_free_tx_ring(sc, ring);
1650 return error;
1651 }
1652
1653 void
1654 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1655 {
1656 struct nfe_tx_data *data;
1657 int i;
1658
1659 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1660 if (sc->sc_flags & NFE_40BIT_ADDR)
1661 ring->desc64[i].flags = 0;
1662 else
1663 ring->desc32[i].flags = 0;
1664
1665 data = &ring->data[i];
1666
1667 if (data->m != NULL) {
1668 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1669 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1670 bus_dmamap_unload(sc->sc_dmat, data->active);
1671 m_freem(data->m);
1672 data->m = NULL;
1673 }
1674 }
1675
1676 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1677 BUS_DMASYNC_PREWRITE);
1678
1679 ring->queued = 0;
1680 ring->cur = ring->next = 0;
1681 }
1682
1683 void
1684 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1685 {
1686 struct nfe_tx_data *data;
1687 void *desc;
1688 int i, descsize;
1689
1690 if (sc->sc_flags & NFE_40BIT_ADDR) {
1691 desc = ring->desc64;
1692 descsize = sizeof (struct nfe_desc64);
1693 } else {
1694 desc = ring->desc32;
1695 descsize = sizeof (struct nfe_desc32);
1696 }
1697
1698 if (desc != NULL) {
1699 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1700 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1701 bus_dmamap_unload(sc->sc_dmat, ring->map);
1702 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1703 NFE_TX_RING_COUNT * descsize);
1704 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1705 }
1706
1707 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1708 data = &ring->data[i];
1709
1710 if (data->m != NULL) {
1711 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1712 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1713 bus_dmamap_unload(sc->sc_dmat, data->active);
1714 m_freem(data->m);
1715 }
1716 }
1717
1718 /* ..and now actually destroy the DMA mappings */
1719 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1720 data = &ring->data[i];
1721 if (data->map == NULL)
1722 continue;
1723 bus_dmamap_destroy(sc->sc_dmat, data->map);
1724 }
1725 }
1726
1727 int
1728 nfe_ifmedia_upd(struct ifnet *ifp)
1729 {
1730 struct nfe_softc *sc = ifp->if_softc;
1731 struct mii_data *mii = &sc->sc_mii;
1732 struct mii_softc *miisc;
1733
1734 if (mii->mii_instance != 0) {
1735 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1736 mii_phy_reset(miisc);
1737 }
1738 return mii_mediachg(mii);
1739 }
1740
1741 void
1742 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1743 {
1744 struct nfe_softc *sc = ifp->if_softc;
1745 struct mii_data *mii = &sc->sc_mii;
1746
1747 mii_pollstat(mii);
1748 ifmr->ifm_status = mii->mii_media_status;
1749 ifmr->ifm_active = mii->mii_media_active;
1750 }
1751
1752 void
1753 nfe_setmulti(struct nfe_softc *sc)
1754 {
1755 struct ethercom *ec = &sc->sc_ethercom;
1756 struct ifnet *ifp = &ec->ec_if;
1757 struct ether_multi *enm;
1758 struct ether_multistep step;
1759 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1760 uint32_t filter = NFE_RXFILTER_MAGIC;
1761 int i;
1762
1763 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1764 bzero(addr, ETHER_ADDR_LEN);
1765 bzero(mask, ETHER_ADDR_LEN);
1766 goto done;
1767 }
1768
1769 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1770 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1771
1772 ETHER_FIRST_MULTI(step, ec, enm);
1773 while (enm != NULL) {
1774 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1775 ifp->if_flags |= IFF_ALLMULTI;
1776 bzero(addr, ETHER_ADDR_LEN);
1777 bzero(mask, ETHER_ADDR_LEN);
1778 goto done;
1779 }
1780 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1781 addr[i] &= enm->enm_addrlo[i];
1782 mask[i] &= ~enm->enm_addrlo[i];
1783 }
1784 ETHER_NEXT_MULTI(step, enm);
1785 }
1786 for (i = 0; i < ETHER_ADDR_LEN; i++)
1787 mask[i] |= addr[i];
1788
1789 done:
1790 addr[0] |= 0x01; /* make sure multicast bit is set */
1791
1792 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1793 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1794 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1795 addr[5] << 8 | addr[4]);
1796 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1797 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1798 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1799 mask[5] << 8 | mask[4]);
1800
1801 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1802 NFE_WRITE(sc, NFE_RXFILTER, filter);
1803 }
1804
1805 void
1806 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1807 {
1808 uint32_t tmp;
1809
1810 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1811 addr[0] = (tmp >> 8) & 0xff;
1812 addr[1] = (tmp & 0xff);
1813
1814 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1815 addr[2] = (tmp >> 24) & 0xff;
1816 addr[3] = (tmp >> 16) & 0xff;
1817 addr[4] = (tmp >> 8) & 0xff;
1818 addr[5] = (tmp & 0xff);
1819 }
1820
1821 void
1822 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1823 {
1824 NFE_WRITE(sc, NFE_MACADDR_LO,
1825 addr[5] << 8 | addr[4]);
1826 NFE_WRITE(sc, NFE_MACADDR_HI,
1827 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1828 }
1829
1830 void
1831 nfe_tick(void *arg)
1832 {
1833 struct nfe_softc *sc = arg;
1834 int s;
1835
1836 s = splnet();
1837 mii_tick(&sc->sc_mii);
1838 splx(s);
1839
1840 callout_schedule(&sc->sc_tick_ch, hz);
1841 }
1842