if_nfe.c revision 1.13 1 /* $NetBSD: if_nfe.c,v 1.13 2007/01/09 10:29:27 tsutsui Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.13 2007/01/09 10:29:27 tsutsui Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <machine/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, caddr_t);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
98 void nfe_jfree(struct mbuf *, caddr_t, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206 char devinfo[256];
207
208 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
209 aprint_normal(": %s (rev. 0x%02x)\n",
210 devinfo, PCI_REVISION(pa->pa_class));
211
212 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
213 switch (memtype) {
214 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
215 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
216 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
217 &sc->sc_memh, NULL, &memsize) == 0)
218 break;
219 /* FALLTHROUGH */
220 default:
221 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
222 return;
223 }
224
225 if (pci_intr_map(pa, &ih) != 0) {
226 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
227 return;
228 }
229
230 intrstr = pci_intr_string(pc, ih);
231 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
232 if (sc->sc_ih == NULL) {
233 printf("%s: could not establish interrupt",
234 sc->sc_dev.dv_xname);
235 if (intrstr != NULL)
236 printf(" at %s", intrstr);
237 printf("\n");
238 return;
239 }
240 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
241
242 sc->sc_dmat = pa->pa_dmat;
243
244 nfe_get_macaddr(sc, sc->sc_enaddr);
245 printf("%s: Ethernet address %s\n",
246 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
247
248 sc->sc_flags = 0;
249
250 switch (PCI_PRODUCT(pa->pa_id)) {
251 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
252 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
253 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
254 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
255 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
256 break;
257 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
258 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
259 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
260 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
261 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
262 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
263 sc->sc_flags |= NFE_40BIT_ADDR;
264 break;
265 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
266 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
269 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
270 break;
271 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
276 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
277 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
278 NFE_HW_VLAN;
279 break;
280 }
281
282 #ifndef NFE_NO_JUMBO
283 /* enable jumbo frames for adapters that support it */
284 if (sc->sc_flags & NFE_JUMBO_SUP)
285 sc->sc_flags |= NFE_USE_JUMBO;
286 #endif
287
288 /*
289 * Allocate Tx and Rx rings.
290 */
291 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
292 printf("%s: could not allocate Tx ring\n",
293 sc->sc_dev.dv_xname);
294 return;
295 }
296
297 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
298 printf("%s: could not allocate Rx ring\n",
299 sc->sc_dev.dv_xname);
300 nfe_free_tx_ring(sc, &sc->txq);
301 return;
302 }
303
304 ifp = &sc->sc_ethercom.ec_if;
305 ifp->if_softc = sc;
306 ifp->if_mtu = ETHERMTU;
307 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
308 ifp->if_ioctl = nfe_ioctl;
309 ifp->if_start = nfe_start;
310 ifp->if_watchdog = nfe_watchdog;
311 ifp->if_init = nfe_init;
312 ifp->if_baudrate = IF_Gbps(1);
313 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
314 IFQ_SET_READY(&ifp->if_snd);
315 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
316
317 #if NVLAN > 0
318 if (sc->sc_flags & NFE_HW_VLAN)
319 sc->sc_ethercom.ec_capabilities |=
320 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
321 #endif
322 if (sc->sc_flags & NFE_HW_CSUM) {
323 ifp->if_capabilities |=
324 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
325 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
326 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
327 }
328
329 sc->sc_mii.mii_ifp = ifp;
330 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
331 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
332 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
333
334 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
335 nfe_ifmedia_sts);
336 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
337 MII_OFFSET_ANY, 0);
338 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
339 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
340 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
341 0, NULL);
342 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
343 } else
344 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
345
346 if_attach(ifp);
347 ether_ifattach(ifp, sc->sc_enaddr);
348
349 callout_init(&sc->sc_tick_ch);
350 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
351
352 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
353 nfe_power, sc);
354 }
355
356 void
357 nfe_power(int why, void *arg)
358 {
359 struct nfe_softc *sc = arg;
360 struct ifnet *ifp;
361
362 if (why == PWR_RESUME) {
363 ifp = &sc->sc_ethercom.ec_if;
364 if (ifp->if_flags & IFF_UP) {
365 ifp->if_flags &= ~IFF_RUNNING;
366 nfe_init(ifp);
367 if (ifp->if_flags & IFF_RUNNING)
368 nfe_start(ifp);
369 }
370 }
371 }
372
373 void
374 nfe_miibus_statchg(struct device *dev)
375 {
376 struct nfe_softc *sc = (struct nfe_softc *)dev;
377 struct mii_data *mii = &sc->sc_mii;
378 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
379
380 phy = NFE_READ(sc, NFE_PHY_IFACE);
381 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
382
383 seed = NFE_READ(sc, NFE_RNDSEED);
384 seed &= ~NFE_SEED_MASK;
385
386 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
387 phy |= NFE_PHY_HDX; /* half-duplex */
388 misc |= NFE_MISC1_HDX;
389 }
390
391 switch (IFM_SUBTYPE(mii->mii_media_active)) {
392 case IFM_1000_T: /* full-duplex only */
393 link |= NFE_MEDIA_1000T;
394 seed |= NFE_SEED_1000T;
395 phy |= NFE_PHY_1000T;
396 break;
397 case IFM_100_TX:
398 link |= NFE_MEDIA_100TX;
399 seed |= NFE_SEED_100TX;
400 phy |= NFE_PHY_100TX;
401 break;
402 case IFM_10_T:
403 link |= NFE_MEDIA_10T;
404 seed |= NFE_SEED_10T;
405 break;
406 }
407
408 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
409
410 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
411 NFE_WRITE(sc, NFE_MISC1, misc);
412 NFE_WRITE(sc, NFE_LINKSPEED, link);
413 }
414
415 int
416 nfe_miibus_readreg(struct device *dev, int phy, int reg)
417 {
418 struct nfe_softc *sc = (struct nfe_softc *)dev;
419 uint32_t val;
420 int ntries;
421
422 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
423
424 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
425 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
426 DELAY(100);
427 }
428
429 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
430
431 for (ntries = 0; ntries < 1000; ntries++) {
432 DELAY(100);
433 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
434 break;
435 }
436 if (ntries == 1000) {
437 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
438 sc->sc_dev.dv_xname));
439 return 0;
440 }
441
442 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
443 DPRINTFN(2, ("%s: could not read PHY\n",
444 sc->sc_dev.dv_xname));
445 return 0;
446 }
447
448 val = NFE_READ(sc, NFE_PHY_DATA);
449 if (val != 0xffffffff && val != 0)
450 sc->mii_phyaddr = phy;
451
452 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
453 sc->sc_dev.dv_xname, phy, reg, val));
454
455 return val;
456 }
457
458 void
459 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
460 {
461 struct nfe_softc *sc = (struct nfe_softc *)dev;
462 uint32_t ctl;
463 int ntries;
464
465 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
466
467 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
468 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
469 DELAY(100);
470 }
471
472 NFE_WRITE(sc, NFE_PHY_DATA, val);
473 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
474 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
475
476 for (ntries = 0; ntries < 1000; ntries++) {
477 DELAY(100);
478 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
479 break;
480 }
481 #ifdef NFE_DEBUG
482 if (nfedebug >= 2 && ntries == 1000)
483 printf("could not write to PHY\n");
484 #endif
485 }
486
487 int
488 nfe_intr(void *arg)
489 {
490 struct nfe_softc *sc = arg;
491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
492 uint32_t r;
493
494 if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0)
495 return 0; /* not for us */
496 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
497
498 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
499
500 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
501
502 if (r & NFE_IRQ_LINK) {
503 NFE_READ(sc, NFE_PHY_STATUS);
504 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
505 DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname));
506 }
507
508 if (ifp->if_flags & IFF_RUNNING) {
509 /* check Rx ring */
510 nfe_rxeof(sc);
511
512 /* check Tx ring */
513 nfe_txeof(sc);
514 }
515
516 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
517
518 if (ifp->if_flags & IFF_RUNNING &&
519 !IF_IS_EMPTY(&ifp->if_snd))
520 nfe_start(ifp);
521
522 return 1;
523 }
524
525 int
526 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
527 {
528 struct nfe_softc *sc = ifp->if_softc;
529 struct ifreq *ifr = (struct ifreq *)data;
530 struct ifaddr *ifa = (struct ifaddr *)data;
531 int s, error = 0;
532
533 s = splnet();
534
535 switch (cmd) {
536 case SIOCSIFADDR:
537 ifp->if_flags |= IFF_UP;
538 nfe_init(ifp);
539 switch (ifa->ifa_addr->sa_family) {
540 #ifdef INET
541 case AF_INET:
542 arp_ifinit(ifp, ifa);
543 break;
544 #endif
545 default:
546 break;
547 }
548 break;
549 case SIOCSIFMTU:
550 if (ifr->ifr_mtu < ETHERMIN ||
551 ((sc->sc_flags & NFE_USE_JUMBO) &&
552 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
553 (!(sc->sc_flags & NFE_USE_JUMBO) &&
554 ifr->ifr_mtu > ETHERMTU))
555 error = EINVAL;
556 else if (ifp->if_mtu != ifr->ifr_mtu)
557 ifp->if_mtu = ifr->ifr_mtu;
558 break;
559 case SIOCSIFFLAGS:
560 if (ifp->if_flags & IFF_UP) {
561 /*
562 * If only the PROMISC or ALLMULTI flag changes, then
563 * don't do a full re-init of the chip, just update
564 * the Rx filter.
565 */
566 if ((ifp->if_flags & IFF_RUNNING) &&
567 ((ifp->if_flags ^ sc->sc_if_flags) &
568 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
569 nfe_setmulti(sc);
570 else
571 nfe_init(ifp);
572 } else {
573 if (ifp->if_flags & IFF_RUNNING)
574 nfe_stop(ifp, 1);
575 }
576 sc->sc_if_flags = ifp->if_flags;
577 break;
578 case SIOCADDMULTI:
579 case SIOCDELMULTI:
580 error = (cmd == SIOCADDMULTI) ?
581 ether_addmulti(ifr, &sc->sc_ethercom) :
582 ether_delmulti(ifr, &sc->sc_ethercom);
583
584 if (error == ENETRESET) {
585 if (ifp->if_flags & IFF_RUNNING)
586 nfe_setmulti(sc);
587 error = 0;
588 }
589 break;
590 case SIOCSIFMEDIA:
591 case SIOCGIFMEDIA:
592 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
593 break;
594 default:
595 error = ether_ioctl(ifp, cmd, data);
596 if (error == ENETRESET) {
597 if (ifp->if_flags & IFF_RUNNING)
598 nfe_setmulti(sc);
599 error = 0;
600 }
601 break;
602
603 }
604
605 splx(s);
606
607 return error;
608 }
609
610 void
611 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
612 {
613 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
614 (caddr_t)desc32 - (caddr_t)sc->txq.desc32,
615 sizeof (struct nfe_desc32), ops);
616 }
617
618 void
619 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
620 {
621 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
622 (caddr_t)desc64 - (caddr_t)sc->txq.desc64,
623 sizeof (struct nfe_desc64), ops);
624 }
625
626 void
627 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
628 {
629 if (end > start) {
630 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
631 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
632 (caddr_t)&sc->txq.desc32[end] -
633 (caddr_t)&sc->txq.desc32[start], ops);
634 return;
635 }
636 /* sync from 'start' to end of ring */
637 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
638 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
639 (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] -
640 (caddr_t)&sc->txq.desc32[start], ops);
641
642 /* sync from start of ring to 'end' */
643 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
644 (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops);
645 }
646
647 void
648 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
649 {
650 if (end > start) {
651 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
652 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
653 (caddr_t)&sc->txq.desc64[end] -
654 (caddr_t)&sc->txq.desc64[start], ops);
655 return;
656 }
657 /* sync from 'start' to end of ring */
658 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
659 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
660 (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] -
661 (caddr_t)&sc->txq.desc64[start], ops);
662
663 /* sync from start of ring to 'end' */
664 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
665 (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops);
666 }
667
668 void
669 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
670 {
671 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
672 (caddr_t)desc32 - (caddr_t)sc->rxq.desc32,
673 sizeof (struct nfe_desc32), ops);
674 }
675
676 void
677 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
678 {
679 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
680 (caddr_t)desc64 - (caddr_t)sc->rxq.desc64,
681 sizeof (struct nfe_desc64), ops);
682 }
683
684 void
685 nfe_rxeof(struct nfe_softc *sc)
686 {
687 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
688 struct nfe_desc32 *desc32;
689 struct nfe_desc64 *desc64;
690 struct nfe_rx_data *data;
691 struct nfe_jbuf *jbuf;
692 struct mbuf *m, *mnew;
693 bus_addr_t physaddr;
694 uint16_t flags;
695 int error, len;
696
697 desc32 = NULL;
698 desc64 = NULL;
699 for (;;) {
700 data = &sc->rxq.data[sc->rxq.cur];
701
702 if (sc->sc_flags & NFE_40BIT_ADDR) {
703 desc64 = &sc->rxq.desc64[sc->rxq.cur];
704 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
705
706 flags = le16toh(desc64->flags);
707 len = le16toh(desc64->length) & 0x3fff;
708 } else {
709 desc32 = &sc->rxq.desc32[sc->rxq.cur];
710 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
711
712 flags = le16toh(desc32->flags);
713 len = le16toh(desc32->length) & 0x3fff;
714 }
715
716 if (flags & NFE_RX_READY)
717 break;
718
719 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
720 if (!(flags & NFE_RX_VALID_V1))
721 goto skip;
722
723 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
724 flags &= ~NFE_RX_ERROR;
725 len--; /* fix buffer length */
726 }
727 } else {
728 if (!(flags & NFE_RX_VALID_V2))
729 goto skip;
730
731 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
732 flags &= ~NFE_RX_ERROR;
733 len--; /* fix buffer length */
734 }
735 }
736
737 if (flags & NFE_RX_ERROR) {
738 ifp->if_ierrors++;
739 goto skip;
740 }
741
742 /*
743 * Try to allocate a new mbuf for this ring element and load
744 * it before processing the current mbuf. If the ring element
745 * cannot be loaded, drop the received packet and reuse the
746 * old mbuf. In the unlikely case that the old mbuf can't be
747 * reloaded either, explicitly panic.
748 */
749 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
750 if (mnew == NULL) {
751 ifp->if_ierrors++;
752 goto skip;
753 }
754
755 if (sc->sc_flags & NFE_USE_JUMBO) {
756 if ((jbuf = nfe_jalloc(sc)) == NULL) {
757 m_freem(mnew);
758 ifp->if_ierrors++;
759 goto skip;
760 }
761 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
762
763 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
764 mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES,
765 BUS_DMASYNC_POSTREAD);
766
767 physaddr = jbuf->physaddr;
768 } else {
769 MCLGET(mnew, M_DONTWAIT);
770 if (!(mnew->m_flags & M_EXT)) {
771 m_freem(mnew);
772 ifp->if_ierrors++;
773 goto skip;
774 }
775
776 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
777 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
778 bus_dmamap_unload(sc->sc_dmat, data->map);
779
780 error = bus_dmamap_load(sc->sc_dmat, data->map,
781 mtod(mnew, void *), MCLBYTES, NULL,
782 BUS_DMA_READ | BUS_DMA_NOWAIT);
783 if (error != 0) {
784 m_freem(mnew);
785
786 /* try to reload the old mbuf */
787 error = bus_dmamap_load(sc->sc_dmat, data->map,
788 mtod(data->m, void *), MCLBYTES, NULL,
789 BUS_DMA_READ | BUS_DMA_NOWAIT);
790 if (error != 0) {
791 /* very unlikely that it will fail.. */
792 panic("%s: could not load old rx mbuf",
793 sc->sc_dev.dv_xname);
794 }
795 ifp->if_ierrors++;
796 goto skip;
797 }
798 physaddr = data->map->dm_segs[0].ds_addr;
799 }
800
801 /*
802 * New mbuf successfully loaded, update Rx ring and continue
803 * processing.
804 */
805 m = data->m;
806 data->m = mnew;
807
808 /* finalize mbuf */
809 m->m_pkthdr.len = m->m_len = len;
810 m->m_pkthdr.rcvif = ifp;
811
812 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
813 /*
814 * XXX
815 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
816 */
817 if (flags & NFE_RX_IP_CSUMOK) {
818 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
819 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
820 sc->sc_dev.dv_xname));
821 }
822 /*
823 * XXX
824 * no way to check M_CSUM_TCP_UDP_BAD or
825 * other protocols?
826 */
827 if (flags & NFE_RX_UDP_CSUMOK) {
828 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
829 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
830 sc->sc_dev.dv_xname));
831 } else if (flags & NFE_RX_TCP_CSUMOK) {
832 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
833 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
834 sc->sc_dev.dv_xname));
835 }
836 }
837
838 #if NBPFILTER > 0
839 if (ifp->if_bpf)
840 bpf_mtap(ifp->if_bpf, m);
841 #endif
842 ifp->if_ipackets++;
843 (*ifp->if_input)(ifp, m);
844
845 /* update mapping address in h/w descriptor */
846 if (sc->sc_flags & NFE_40BIT_ADDR) {
847 #if defined(__LP64__)
848 desc64->physaddr[0] = htole32(physaddr >> 32);
849 #endif
850 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
851 } else {
852 desc32->physaddr = htole32(physaddr);
853 }
854
855 skip: if (sc->sc_flags & NFE_40BIT_ADDR) {
856 desc64->length = htole16(sc->rxq.bufsz);
857 desc64->flags = htole16(NFE_RX_READY);
858
859 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
860 } else {
861 desc32->length = htole16(sc->rxq.bufsz);
862 desc32->flags = htole16(NFE_RX_READY);
863
864 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
865 }
866
867 sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
868 }
869 }
870
871 void
872 nfe_txeof(struct nfe_softc *sc)
873 {
874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
875 struct nfe_desc32 *desc32;
876 struct nfe_desc64 *desc64;
877 struct nfe_tx_data *data = NULL;
878 uint16_t flags;
879
880 while (sc->txq.next != sc->txq.cur) {
881 if (sc->sc_flags & NFE_40BIT_ADDR) {
882 desc64 = &sc->txq.desc64[sc->txq.next];
883 nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
884
885 flags = le16toh(desc64->flags);
886 } else {
887 desc32 = &sc->txq.desc32[sc->txq.next];
888 nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
889
890 flags = le16toh(desc32->flags);
891 }
892
893 if (flags & NFE_TX_VALID)
894 break;
895
896 data = &sc->txq.data[sc->txq.next];
897
898 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
899 if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
900 goto skip;
901
902 if ((flags & NFE_TX_ERROR_V1) != 0) {
903 printf("%s: tx v1 error 0x%04x\n",
904 sc->sc_dev.dv_xname, flags);
905 ifp->if_oerrors++;
906 } else
907 ifp->if_opackets++;
908 } else {
909 if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
910 goto skip;
911
912 if ((flags & NFE_TX_ERROR_V2) != 0) {
913 printf("%s: tx v2 error 0x%04x\n",
914 sc->sc_dev.dv_xname, flags);
915 ifp->if_oerrors++;
916 } else
917 ifp->if_opackets++;
918 }
919
920 if (data->m == NULL) { /* should not get there */
921 printf("%s: last fragment bit w/o associated mbuf!\n",
922 sc->sc_dev.dv_xname);
923 goto skip;
924 }
925
926 /* last fragment of the mbuf chain transmitted */
927 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
928 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
929 bus_dmamap_unload(sc->sc_dmat, data->active);
930 m_freem(data->m);
931 data->m = NULL;
932
933 ifp->if_timer = 0;
934
935 skip: sc->txq.queued--;
936 sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
937 }
938
939 if (data != NULL) { /* at least one slot freed */
940 ifp->if_flags &= ~IFF_OACTIVE;
941 nfe_start(ifp);
942 }
943 }
944
945 int
946 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
947 {
948 struct nfe_desc32 *desc32;
949 struct nfe_desc64 *desc64;
950 struct nfe_tx_data *data;
951 bus_dmamap_t map;
952 uint16_t flags, csumflags;
953 #if NVLAN > 0
954 struct m_tag *mtag;
955 uint32_t vtag = 0;
956 #endif
957 int error, i, first;
958
959 desc32 = NULL;
960 desc64 = NULL;
961 data = NULL;
962
963 flags = 0;
964 csumflags = 0;
965 first = sc->txq.cur;
966
967 map = sc->txq.data[first].map;
968
969 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
970 if (error != 0) {
971 printf("%s: could not map mbuf (error %d)\n",
972 sc->sc_dev.dv_xname, error);
973 return error;
974 }
975
976 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
977 bus_dmamap_unload(sc->sc_dmat, map);
978 return ENOBUFS;
979 }
980
981 #if NVLAN > 0
982 /* setup h/w VLAN tagging */
983 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
984 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
985 #endif
986 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
987 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
988 csumflags |= NFE_TX_IP_CSUM;
989 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
990 csumflags |= NFE_TX_TCP_CSUM;
991 }
992
993 for (i = 0; i < map->dm_nsegs; i++) {
994 data = &sc->txq.data[sc->txq.cur];
995
996 if (sc->sc_flags & NFE_40BIT_ADDR) {
997 desc64 = &sc->txq.desc64[sc->txq.cur];
998 #if defined(__LP64__)
999 desc64->physaddr[0] =
1000 htole32(map->dm_segs[i].ds_addr >> 32);
1001 #endif
1002 desc64->physaddr[1] =
1003 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1004 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1005 desc64->flags = htole16(flags);
1006 desc64->vtag = 0;
1007 } else {
1008 desc32 = &sc->txq.desc32[sc->txq.cur];
1009
1010 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1011 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1012 desc32->flags = htole16(flags);
1013 }
1014
1015 /*
1016 * Setting of the valid bit in the first descriptor is
1017 * deferred until the whole chain is fully setup.
1018 */
1019 flags |= NFE_TX_VALID;
1020
1021 sc->txq.queued++;
1022 sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
1023 }
1024
1025 /* the whole mbuf chain has been setup */
1026 if (sc->sc_flags & NFE_40BIT_ADDR) {
1027 /* fix last descriptor */
1028 flags |= NFE_TX_LASTFRAG_V2;
1029 desc64->flags = htole16(flags);
1030
1031 /* Checksum flags and vtag belong to the first fragment only. */
1032 #if NVLAN > 0
1033 sc->txq.desc64[first].vtag = htole32(vtag);
1034 #endif
1035 sc->txq.desc64[first].flags |= htole16(csumflags);
1036
1037 /* finally, set the valid bit in the first descriptor */
1038 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1039 } else {
1040 /* fix last descriptor */
1041 if (sc->sc_flags & NFE_JUMBO_SUP)
1042 flags |= NFE_TX_LASTFRAG_V2;
1043 else
1044 flags |= NFE_TX_LASTFRAG_V1;
1045 desc32->flags = htole16(flags);
1046
1047 /* Checksum flags belong to the first fragment only. */
1048 sc->txq.desc32[first].flags |= htole16(csumflags);
1049
1050 /* finally, set the valid bit in the first descriptor */
1051 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1052 }
1053
1054 data->m = m0;
1055 data->active = map;
1056
1057 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1058 BUS_DMASYNC_PREWRITE);
1059
1060 return 0;
1061 }
1062
1063 void
1064 nfe_start(struct ifnet *ifp)
1065 {
1066 struct nfe_softc *sc = ifp->if_softc;
1067 int old = sc->txq.cur;
1068 struct mbuf *m0;
1069
1070 for (;;) {
1071 IFQ_POLL(&ifp->if_snd, m0);
1072 if (m0 == NULL)
1073 break;
1074
1075 if (nfe_encap(sc, m0) != 0) {
1076 ifp->if_flags |= IFF_OACTIVE;
1077 break;
1078 }
1079
1080 /* packet put in h/w queue, remove from s/w queue */
1081 IFQ_DEQUEUE(&ifp->if_snd, m0);
1082
1083 #if NBPFILTER > 0
1084 if (ifp->if_bpf != NULL)
1085 bpf_mtap(ifp->if_bpf, m0);
1086 #endif
1087 }
1088 if (sc->txq.cur == old) /* nothing sent */
1089 return;
1090
1091 if (sc->sc_flags & NFE_40BIT_ADDR)
1092 nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1093 else
1094 nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1095
1096 /* kick Tx */
1097 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1098
1099 /*
1100 * Set a timeout in case the chip goes out to lunch.
1101 */
1102 ifp->if_timer = 5;
1103 }
1104
1105 void
1106 nfe_watchdog(struct ifnet *ifp)
1107 {
1108 struct nfe_softc *sc = ifp->if_softc;
1109
1110 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1111
1112 ifp->if_flags &= ~IFF_RUNNING;
1113 nfe_init(ifp);
1114
1115 ifp->if_oerrors++;
1116 }
1117
1118 int
1119 nfe_init(struct ifnet *ifp)
1120 {
1121 struct nfe_softc *sc = ifp->if_softc;
1122 uint32_t tmp;
1123 int s;
1124
1125 if (ifp->if_flags & IFF_RUNNING)
1126 return 0;
1127
1128 nfe_stop(ifp, 0);
1129
1130 NFE_WRITE(sc, NFE_TX_UNK, 0);
1131 NFE_WRITE(sc, NFE_STATUS, 0);
1132
1133 sc->rxtxctl = NFE_RXTX_BIT2;
1134 if (sc->sc_flags & NFE_40BIT_ADDR)
1135 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1136 else if (sc->sc_flags & NFE_JUMBO_SUP)
1137 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1138 if (sc->sc_flags & NFE_HW_CSUM)
1139 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1140 #if NVLAN > 0
1141 /*
1142 * Although the adapter is capable of stripping VLAN tags from received
1143 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1144 * purpose. This will be done in software by our network stack.
1145 */
1146 if (sc->sc_flags & NFE_HW_VLAN)
1147 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1148 #endif
1149 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1150 DELAY(10);
1151 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1152
1153 #if NVLAN
1154 if (sc->sc_flags & NFE_HW_VLAN)
1155 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1156 #endif
1157
1158 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1159
1160 /* set MAC address */
1161 nfe_set_macaddr(sc, sc->sc_enaddr);
1162
1163 /* tell MAC where rings are in memory */
1164 #ifdef __LP64__
1165 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1166 #endif
1167 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1168 #ifdef __LP64__
1169 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1170 #endif
1171 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1172
1173 NFE_WRITE(sc, NFE_RING_SIZE,
1174 (NFE_RX_RING_COUNT - 1) << 16 |
1175 (NFE_TX_RING_COUNT - 1));
1176
1177 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1178
1179 /* force MAC to wakeup */
1180 tmp = NFE_READ(sc, NFE_PWR_STATE);
1181 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1182 DELAY(10);
1183 tmp = NFE_READ(sc, NFE_PWR_STATE);
1184 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1185
1186 s = splnet();
1187 nfe_intr(sc); /* XXX clear IRQ status registers */
1188 splx(s);
1189
1190 #if 1
1191 /* configure interrupts coalescing/mitigation */
1192 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1193 #else
1194 /* no interrupt mitigation: one interrupt per packet */
1195 NFE_WRITE(sc, NFE_IMTIMER, 970);
1196 #endif
1197
1198 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1199 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1200 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1201
1202 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1203 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1204
1205 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1206 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1207
1208 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1209 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1210 DELAY(10);
1211 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1212
1213 /* set Rx filter */
1214 nfe_setmulti(sc);
1215
1216 nfe_ifmedia_upd(ifp);
1217
1218 nfe_tick(sc);
1219
1220 /* enable Rx */
1221 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1222
1223 /* enable Tx */
1224 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1225
1226 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1227
1228 /* enable interrupts */
1229 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1230
1231 callout_schedule(&sc->sc_tick_ch, hz);
1232
1233 ifp->if_flags |= IFF_RUNNING;
1234 ifp->if_flags &= ~IFF_OACTIVE;
1235
1236 return 0;
1237 }
1238
1239 void
1240 nfe_stop(struct ifnet *ifp, int disable)
1241 {
1242 struct nfe_softc *sc = ifp->if_softc;
1243
1244 callout_stop(&sc->sc_tick_ch);
1245
1246 ifp->if_timer = 0;
1247 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1248
1249 mii_down(&sc->sc_mii);
1250
1251 /* abort Tx */
1252 NFE_WRITE(sc, NFE_TX_CTL, 0);
1253
1254 /* disable Rx */
1255 NFE_WRITE(sc, NFE_RX_CTL, 0);
1256
1257 /* disable interrupts */
1258 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1259
1260 /* reset Tx and Rx rings */
1261 nfe_reset_tx_ring(sc, &sc->txq);
1262 nfe_reset_rx_ring(sc, &sc->rxq);
1263 }
1264
1265 int
1266 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1267 {
1268 struct nfe_desc32 *desc32;
1269 struct nfe_desc64 *desc64;
1270 struct nfe_rx_data *data;
1271 struct nfe_jbuf *jbuf;
1272 void **desc;
1273 bus_addr_t physaddr;
1274 int i, nsegs, error, descsize;
1275
1276 if (sc->sc_flags & NFE_40BIT_ADDR) {
1277 desc = (void **)&ring->desc64;
1278 descsize = sizeof (struct nfe_desc64);
1279 } else {
1280 desc = (void **)&ring->desc32;
1281 descsize = sizeof (struct nfe_desc32);
1282 }
1283
1284 ring->cur = ring->next = 0;
1285 ring->bufsz = MCLBYTES;
1286
1287 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1288 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1289 if (error != 0) {
1290 printf("%s: could not create desc DMA map\n",
1291 sc->sc_dev.dv_xname);
1292 goto fail;
1293 }
1294
1295 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1296 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1297 if (error != 0) {
1298 printf("%s: could not allocate DMA memory\n",
1299 sc->sc_dev.dv_xname);
1300 goto fail;
1301 }
1302
1303 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1304 NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1305 if (error != 0) {
1306 printf("%s: could not map desc DMA memory\n",
1307 sc->sc_dev.dv_xname);
1308 goto fail;
1309 }
1310
1311 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1312 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1313 if (error != 0) {
1314 printf("%s: could not load desc DMA map\n",
1315 sc->sc_dev.dv_xname);
1316 goto fail;
1317 }
1318
1319 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1320 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1321
1322 if (sc->sc_flags & NFE_USE_JUMBO) {
1323 ring->bufsz = NFE_JBYTES;
1324 if ((error = nfe_jpool_alloc(sc)) != 0) {
1325 printf("%s: could not allocate jumbo frames\n",
1326 sc->sc_dev.dv_xname);
1327 goto fail;
1328 }
1329 }
1330
1331 /*
1332 * Pre-allocate Rx buffers and populate Rx ring.
1333 */
1334 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1335 data = &sc->rxq.data[i];
1336
1337 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1338 if (data->m == NULL) {
1339 printf("%s: could not allocate rx mbuf\n",
1340 sc->sc_dev.dv_xname);
1341 error = ENOMEM;
1342 goto fail;
1343 }
1344
1345 if (sc->sc_flags & NFE_USE_JUMBO) {
1346 if ((jbuf = nfe_jalloc(sc)) == NULL) {
1347 printf("%s: could not allocate jumbo buffer\n",
1348 sc->sc_dev.dv_xname);
1349 goto fail;
1350 }
1351 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1352 sc);
1353
1354 physaddr = jbuf->physaddr;
1355 } else {
1356 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1357 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1358 if (error != 0) {
1359 printf("%s: could not create DMA map\n",
1360 sc->sc_dev.dv_xname);
1361 goto fail;
1362 }
1363 MCLGET(data->m, M_DONTWAIT);
1364 if (!(data->m->m_flags & M_EXT)) {
1365 printf("%s: could not allocate mbuf cluster\n",
1366 sc->sc_dev.dv_xname);
1367 error = ENOMEM;
1368 goto fail;
1369 }
1370
1371 error = bus_dmamap_load(sc->sc_dmat, data->map,
1372 mtod(data->m, void *), MCLBYTES, NULL,
1373 BUS_DMA_READ | BUS_DMA_NOWAIT);
1374 if (error != 0) {
1375 printf("%s: could not load rx buf DMA map",
1376 sc->sc_dev.dv_xname);
1377 goto fail;
1378 }
1379 physaddr = data->map->dm_segs[0].ds_addr;
1380 }
1381
1382 if (sc->sc_flags & NFE_40BIT_ADDR) {
1383 desc64 = &sc->rxq.desc64[i];
1384 #if defined(__LP64__)
1385 desc64->physaddr[0] = htole32(physaddr >> 32);
1386 #endif
1387 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1388 desc64->length = htole16(sc->rxq.bufsz);
1389 desc64->flags = htole16(NFE_RX_READY);
1390 } else {
1391 desc32 = &sc->rxq.desc32[i];
1392 desc32->physaddr = htole32(physaddr);
1393 desc32->length = htole16(sc->rxq.bufsz);
1394 desc32->flags = htole16(NFE_RX_READY);
1395 }
1396 }
1397
1398 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1399 BUS_DMASYNC_PREWRITE);
1400
1401 return 0;
1402
1403 fail: nfe_free_rx_ring(sc, ring);
1404 return error;
1405 }
1406
1407 void
1408 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1409 {
1410 int i;
1411
1412 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1413 if (sc->sc_flags & NFE_40BIT_ADDR) {
1414 ring->desc64[i].length = htole16(ring->bufsz);
1415 ring->desc64[i].flags = htole16(NFE_RX_READY);
1416 } else {
1417 ring->desc32[i].length = htole16(ring->bufsz);
1418 ring->desc32[i].flags = htole16(NFE_RX_READY);
1419 }
1420 }
1421
1422 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1423 BUS_DMASYNC_PREWRITE);
1424
1425 ring->cur = ring->next = 0;
1426 }
1427
1428 void
1429 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1430 {
1431 struct nfe_rx_data *data;
1432 void *desc;
1433 int i, descsize;
1434
1435 if (sc->sc_flags & NFE_40BIT_ADDR) {
1436 desc = ring->desc64;
1437 descsize = sizeof (struct nfe_desc64);
1438 } else {
1439 desc = ring->desc32;
1440 descsize = sizeof (struct nfe_desc32);
1441 }
1442
1443 if (desc != NULL) {
1444 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1445 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1446 bus_dmamap_unload(sc->sc_dmat, ring->map);
1447 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1448 NFE_RX_RING_COUNT * descsize);
1449 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1450 }
1451
1452 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1453 data = &ring->data[i];
1454
1455 if (data->map != NULL) {
1456 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1457 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1458 bus_dmamap_unload(sc->sc_dmat, data->map);
1459 bus_dmamap_destroy(sc->sc_dmat, data->map);
1460 }
1461 if (data->m != NULL)
1462 m_freem(data->m);
1463 }
1464 }
1465
1466 struct nfe_jbuf *
1467 nfe_jalloc(struct nfe_softc *sc)
1468 {
1469 struct nfe_jbuf *jbuf;
1470
1471 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1472 if (jbuf == NULL)
1473 return NULL;
1474 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1475 return jbuf;
1476 }
1477
1478 /*
1479 * This is called automatically by the network stack when the mbuf is freed.
1480 * Caution must be taken that the NIC might be reset by the time the mbuf is
1481 * freed.
1482 */
1483 void
1484 nfe_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
1485 {
1486 struct nfe_softc *sc = arg;
1487 struct nfe_jbuf *jbuf;
1488 int i;
1489
1490 /* find the jbuf from the base pointer */
1491 i = (buf - sc->rxq.jpool) / NFE_JBYTES;
1492 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1493 printf("%s: request to free a buffer (%p) not managed by us\n",
1494 sc->sc_dev.dv_xname, buf);
1495 return;
1496 }
1497 jbuf = &sc->rxq.jbuf[i];
1498
1499 /* ..and put it back in the free list */
1500 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1501
1502 if (m != NULL)
1503 pool_cache_put(&mbpool_cache, m);
1504 }
1505
1506 int
1507 nfe_jpool_alloc(struct nfe_softc *sc)
1508 {
1509 struct nfe_rx_ring *ring = &sc->rxq;
1510 struct nfe_jbuf *jbuf;
1511 bus_addr_t physaddr;
1512 caddr_t buf;
1513 int i, nsegs, error;
1514
1515 /*
1516 * Allocate a big chunk of DMA'able memory.
1517 */
1518 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1519 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1520 if (error != 0) {
1521 printf("%s: could not create jumbo DMA map\n",
1522 sc->sc_dev.dv_xname);
1523 goto fail;
1524 }
1525
1526 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1527 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1528 if (error != 0) {
1529 printf("%s could not allocate jumbo DMA memory\n",
1530 sc->sc_dev.dv_xname);
1531 goto fail;
1532 }
1533
1534 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1535 &ring->jpool, BUS_DMA_NOWAIT);
1536 if (error != 0) {
1537 printf("%s: could not map jumbo DMA memory\n",
1538 sc->sc_dev.dv_xname);
1539 goto fail;
1540 }
1541
1542 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1543 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1544 if (error != 0) {
1545 printf("%s: could not load jumbo DMA map\n",
1546 sc->sc_dev.dv_xname);
1547 goto fail;
1548 }
1549
1550 /* ..and split it into 9KB chunks */
1551 SLIST_INIT(&ring->jfreelist);
1552
1553 buf = ring->jpool;
1554 physaddr = ring->jmap->dm_segs[0].ds_addr;
1555 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1556 jbuf = &ring->jbuf[i];
1557
1558 jbuf->buf = buf;
1559 jbuf->physaddr = physaddr;
1560
1561 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1562
1563 buf += NFE_JBYTES;
1564 physaddr += NFE_JBYTES;
1565 }
1566
1567 return 0;
1568
1569 fail: nfe_jpool_free(sc);
1570 return error;
1571 }
1572
1573 void
1574 nfe_jpool_free(struct nfe_softc *sc)
1575 {
1576 struct nfe_rx_ring *ring = &sc->rxq;
1577
1578 if (ring->jmap != NULL) {
1579 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1580 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1581 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1582 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1583 }
1584 if (ring->jpool != NULL) {
1585 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1586 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1587 }
1588 }
1589
1590 int
1591 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1592 {
1593 int i, nsegs, error;
1594 void **desc;
1595 int descsize;
1596
1597 if (sc->sc_flags & NFE_40BIT_ADDR) {
1598 desc = (void **)&ring->desc64;
1599 descsize = sizeof (struct nfe_desc64);
1600 } else {
1601 desc = (void **)&ring->desc32;
1602 descsize = sizeof (struct nfe_desc32);
1603 }
1604
1605 ring->queued = 0;
1606 ring->cur = ring->next = 0;
1607
1608 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1609 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1610
1611 if (error != 0) {
1612 printf("%s: could not create desc DMA map\n",
1613 sc->sc_dev.dv_xname);
1614 goto fail;
1615 }
1616
1617 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1618 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1619 if (error != 0) {
1620 printf("%s: could not allocate DMA memory\n",
1621 sc->sc_dev.dv_xname);
1622 goto fail;
1623 }
1624
1625 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1626 NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1627 if (error != 0) {
1628 printf("%s: could not map desc DMA memory\n",
1629 sc->sc_dev.dv_xname);
1630 goto fail;
1631 }
1632
1633 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1634 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1635 if (error != 0) {
1636 printf("%s: could not load desc DMA map\n",
1637 sc->sc_dev.dv_xname);
1638 goto fail;
1639 }
1640
1641 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1642 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1643
1644 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1645 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1646 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1647 &ring->data[i].map);
1648 if (error != 0) {
1649 printf("%s: could not create DMA map\n",
1650 sc->sc_dev.dv_xname);
1651 goto fail;
1652 }
1653 }
1654
1655 return 0;
1656
1657 fail: nfe_free_tx_ring(sc, ring);
1658 return error;
1659 }
1660
1661 void
1662 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1663 {
1664 struct nfe_tx_data *data;
1665 int i;
1666
1667 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1668 if (sc->sc_flags & NFE_40BIT_ADDR)
1669 ring->desc64[i].flags = 0;
1670 else
1671 ring->desc32[i].flags = 0;
1672
1673 data = &ring->data[i];
1674
1675 if (data->m != NULL) {
1676 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1677 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1678 bus_dmamap_unload(sc->sc_dmat, data->active);
1679 m_freem(data->m);
1680 data->m = NULL;
1681 }
1682 }
1683
1684 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1685 BUS_DMASYNC_PREWRITE);
1686
1687 ring->queued = 0;
1688 ring->cur = ring->next = 0;
1689 }
1690
1691 void
1692 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1693 {
1694 struct nfe_tx_data *data;
1695 void *desc;
1696 int i, descsize;
1697
1698 if (sc->sc_flags & NFE_40BIT_ADDR) {
1699 desc = ring->desc64;
1700 descsize = sizeof (struct nfe_desc64);
1701 } else {
1702 desc = ring->desc32;
1703 descsize = sizeof (struct nfe_desc32);
1704 }
1705
1706 if (desc != NULL) {
1707 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1708 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1709 bus_dmamap_unload(sc->sc_dmat, ring->map);
1710 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1711 NFE_TX_RING_COUNT * descsize);
1712 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1713 }
1714
1715 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1716 data = &ring->data[i];
1717
1718 if (data->m != NULL) {
1719 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1720 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1721 bus_dmamap_unload(sc->sc_dmat, data->active);
1722 m_freem(data->m);
1723 }
1724 }
1725
1726 /* ..and now actually destroy the DMA mappings */
1727 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1728 data = &ring->data[i];
1729 if (data->map == NULL)
1730 continue;
1731 bus_dmamap_destroy(sc->sc_dmat, data->map);
1732 }
1733 }
1734
1735 int
1736 nfe_ifmedia_upd(struct ifnet *ifp)
1737 {
1738 struct nfe_softc *sc = ifp->if_softc;
1739 struct mii_data *mii = &sc->sc_mii;
1740 struct mii_softc *miisc;
1741
1742 if (mii->mii_instance != 0) {
1743 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1744 mii_phy_reset(miisc);
1745 }
1746 return mii_mediachg(mii);
1747 }
1748
1749 void
1750 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1751 {
1752 struct nfe_softc *sc = ifp->if_softc;
1753 struct mii_data *mii = &sc->sc_mii;
1754
1755 mii_pollstat(mii);
1756 ifmr->ifm_status = mii->mii_media_status;
1757 ifmr->ifm_active = mii->mii_media_active;
1758 }
1759
1760 void
1761 nfe_setmulti(struct nfe_softc *sc)
1762 {
1763 struct ethercom *ec = &sc->sc_ethercom;
1764 struct ifnet *ifp = &ec->ec_if;
1765 struct ether_multi *enm;
1766 struct ether_multistep step;
1767 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1768 uint32_t filter = NFE_RXFILTER_MAGIC;
1769 int i;
1770
1771 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1772 bzero(addr, ETHER_ADDR_LEN);
1773 bzero(mask, ETHER_ADDR_LEN);
1774 goto done;
1775 }
1776
1777 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1778 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1779
1780 ETHER_FIRST_MULTI(step, ec, enm);
1781 while (enm != NULL) {
1782 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1783 ifp->if_flags |= IFF_ALLMULTI;
1784 bzero(addr, ETHER_ADDR_LEN);
1785 bzero(mask, ETHER_ADDR_LEN);
1786 goto done;
1787 }
1788 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1789 addr[i] &= enm->enm_addrlo[i];
1790 mask[i] &= ~enm->enm_addrlo[i];
1791 }
1792 ETHER_NEXT_MULTI(step, enm);
1793 }
1794 for (i = 0; i < ETHER_ADDR_LEN; i++)
1795 mask[i] |= addr[i];
1796
1797 done:
1798 addr[0] |= 0x01; /* make sure multicast bit is set */
1799
1800 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1801 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1802 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1803 addr[5] << 8 | addr[4]);
1804 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1805 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1806 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1807 mask[5] << 8 | mask[4]);
1808
1809 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1810 NFE_WRITE(sc, NFE_RXFILTER, filter);
1811 }
1812
1813 void
1814 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1815 {
1816 uint32_t tmp;
1817
1818 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1819 addr[0] = (tmp >> 8) & 0xff;
1820 addr[1] = (tmp & 0xff);
1821
1822 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1823 addr[2] = (tmp >> 24) & 0xff;
1824 addr[3] = (tmp >> 16) & 0xff;
1825 addr[4] = (tmp >> 8) & 0xff;
1826 addr[5] = (tmp & 0xff);
1827 }
1828
1829 void
1830 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1831 {
1832 NFE_WRITE(sc, NFE_MACADDR_LO,
1833 addr[5] << 8 | addr[4]);
1834 NFE_WRITE(sc, NFE_MACADDR_HI,
1835 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1836 }
1837
1838 void
1839 nfe_tick(void *arg)
1840 {
1841 struct nfe_softc *sc = arg;
1842 int s;
1843
1844 s = splnet();
1845 mii_tick(&sc->sc_mii);
1846 splx(s);
1847
1848 callout_schedule(&sc->sc_tick_ch, hz);
1849 }
1850