if_nfe.c revision 1.16 1 /* $NetBSD: if_nfe.c,v 1.16 2007/07/09 21:00:54 ad Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.16 2007/07/09 21:00:54 ad Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <machine/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206 char devinfo[256];
207
208 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
209 aprint_normal(": %s (rev. 0x%02x)\n",
210 devinfo, PCI_REVISION(pa->pa_class));
211
212 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
213 switch (memtype) {
214 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
215 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
216 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
217 &sc->sc_memh, NULL, &memsize) == 0)
218 break;
219 /* FALLTHROUGH */
220 default:
221 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
222 return;
223 }
224
225 if (pci_intr_map(pa, &ih) != 0) {
226 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
227 return;
228 }
229
230 intrstr = pci_intr_string(pc, ih);
231 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
232 if (sc->sc_ih == NULL) {
233 printf("%s: could not establish interrupt",
234 sc->sc_dev.dv_xname);
235 if (intrstr != NULL)
236 printf(" at %s", intrstr);
237 printf("\n");
238 return;
239 }
240 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
241
242 sc->sc_dmat = pa->pa_dmat;
243
244 nfe_get_macaddr(sc, sc->sc_enaddr);
245 printf("%s: Ethernet address %s\n",
246 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
247
248 sc->sc_flags = 0;
249
250 switch (PCI_PRODUCT(pa->pa_id)) {
251 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
252 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
253 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
254 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
255 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
256 break;
257 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
258 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
259 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
260 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
261 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
262 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
263 sc->sc_flags |= NFE_40BIT_ADDR;
264 break;
265 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
266 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
269 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
270 break;
271 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
276 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
277 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
278 NFE_HW_VLAN;
279 break;
280 }
281
282 #ifndef NFE_NO_JUMBO
283 /* enable jumbo frames for adapters that support it */
284 if (sc->sc_flags & NFE_JUMBO_SUP)
285 sc->sc_flags |= NFE_USE_JUMBO;
286 #endif
287
288 /*
289 * Allocate Tx and Rx rings.
290 */
291 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
292 printf("%s: could not allocate Tx ring\n",
293 sc->sc_dev.dv_xname);
294 return;
295 }
296
297 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
298 printf("%s: could not allocate Rx ring\n",
299 sc->sc_dev.dv_xname);
300 nfe_free_tx_ring(sc, &sc->txq);
301 return;
302 }
303
304 ifp = &sc->sc_ethercom.ec_if;
305 ifp->if_softc = sc;
306 ifp->if_mtu = ETHERMTU;
307 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
308 ifp->if_ioctl = nfe_ioctl;
309 ifp->if_start = nfe_start;
310 ifp->if_watchdog = nfe_watchdog;
311 ifp->if_init = nfe_init;
312 ifp->if_baudrate = IF_Gbps(1);
313 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
314 IFQ_SET_READY(&ifp->if_snd);
315 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
316
317 #if NVLAN > 0
318 if (sc->sc_flags & NFE_HW_VLAN)
319 sc->sc_ethercom.ec_capabilities |=
320 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
321 #endif
322 if (sc->sc_flags & NFE_HW_CSUM) {
323 ifp->if_capabilities |=
324 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
325 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
326 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
327 }
328
329 sc->sc_mii.mii_ifp = ifp;
330 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
331 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
332 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
333
334 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
335 nfe_ifmedia_sts);
336 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
337 MII_OFFSET_ANY, 0);
338 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
339 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
340 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
341 0, NULL);
342 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
343 } else
344 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
345
346 if_attach(ifp);
347 ether_ifattach(ifp, sc->sc_enaddr);
348
349 callout_init(&sc->sc_tick_ch, 0);
350 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
351
352 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
353 nfe_power, sc);
354 }
355
356 void
357 nfe_power(int why, void *arg)
358 {
359 struct nfe_softc *sc = arg;
360 struct ifnet *ifp;
361
362 if (why == PWR_RESUME) {
363 ifp = &sc->sc_ethercom.ec_if;
364 if (ifp->if_flags & IFF_UP) {
365 ifp->if_flags &= ~IFF_RUNNING;
366 nfe_init(ifp);
367 if (ifp->if_flags & IFF_RUNNING)
368 nfe_start(ifp);
369 }
370 }
371 }
372
373 void
374 nfe_miibus_statchg(struct device *dev)
375 {
376 struct nfe_softc *sc = (struct nfe_softc *)dev;
377 struct mii_data *mii = &sc->sc_mii;
378 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
379
380 phy = NFE_READ(sc, NFE_PHY_IFACE);
381 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
382
383 seed = NFE_READ(sc, NFE_RNDSEED);
384 seed &= ~NFE_SEED_MASK;
385
386 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
387 phy |= NFE_PHY_HDX; /* half-duplex */
388 misc |= NFE_MISC1_HDX;
389 }
390
391 switch (IFM_SUBTYPE(mii->mii_media_active)) {
392 case IFM_1000_T: /* full-duplex only */
393 link |= NFE_MEDIA_1000T;
394 seed |= NFE_SEED_1000T;
395 phy |= NFE_PHY_1000T;
396 break;
397 case IFM_100_TX:
398 link |= NFE_MEDIA_100TX;
399 seed |= NFE_SEED_100TX;
400 phy |= NFE_PHY_100TX;
401 break;
402 case IFM_10_T:
403 link |= NFE_MEDIA_10T;
404 seed |= NFE_SEED_10T;
405 break;
406 }
407
408 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
409
410 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
411 NFE_WRITE(sc, NFE_MISC1, misc);
412 NFE_WRITE(sc, NFE_LINKSPEED, link);
413 }
414
415 int
416 nfe_miibus_readreg(struct device *dev, int phy, int reg)
417 {
418 struct nfe_softc *sc = (struct nfe_softc *)dev;
419 uint32_t val;
420 int ntries;
421
422 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
423
424 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
425 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
426 DELAY(100);
427 }
428
429 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
430
431 for (ntries = 0; ntries < 1000; ntries++) {
432 DELAY(100);
433 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
434 break;
435 }
436 if (ntries == 1000) {
437 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
438 sc->sc_dev.dv_xname));
439 return 0;
440 }
441
442 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
443 DPRINTFN(2, ("%s: could not read PHY\n",
444 sc->sc_dev.dv_xname));
445 return 0;
446 }
447
448 val = NFE_READ(sc, NFE_PHY_DATA);
449 if (val != 0xffffffff && val != 0)
450 sc->mii_phyaddr = phy;
451
452 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
453 sc->sc_dev.dv_xname, phy, reg, val));
454
455 return val;
456 }
457
458 void
459 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
460 {
461 struct nfe_softc *sc = (struct nfe_softc *)dev;
462 uint32_t ctl;
463 int ntries;
464
465 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
466
467 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
468 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
469 DELAY(100);
470 }
471
472 NFE_WRITE(sc, NFE_PHY_DATA, val);
473 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
474 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
475
476 for (ntries = 0; ntries < 1000; ntries++) {
477 DELAY(100);
478 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
479 break;
480 }
481 #ifdef NFE_DEBUG
482 if (nfedebug >= 2 && ntries == 1000)
483 printf("could not write to PHY\n");
484 #endif
485 }
486
487 int
488 nfe_intr(void *arg)
489 {
490 struct nfe_softc *sc = arg;
491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
492 uint32_t r;
493 int handled;
494
495 if ((ifp->if_flags & IFF_UP) == 0)
496 return 0;
497
498 handled = 0;
499
500 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
501
502 for (;;) {
503 r = NFE_READ(sc, NFE_IRQ_STATUS);
504 if ((r & NFE_IRQ_WANTED) == 0)
505 break;
506
507 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
508 handled = 1;
509 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
510
511 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
512 != 0) {
513 /* check Rx ring */
514 nfe_rxeof(sc);
515 }
516
517 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
518 != 0) {
519 /* check Tx ring */
520 nfe_txeof(sc);
521 }
522
523 if ((r & NFE_IRQ_LINK) != 0) {
524 NFE_READ(sc, NFE_PHY_STATUS);
525 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
526 DPRINTF(("%s: link state changed\n",
527 sc->sc_dev.dv_xname));
528 }
529 }
530
531 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
532
533 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
534 nfe_start(ifp);
535
536 return handled;
537 }
538
539 int
540 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
541 {
542 struct nfe_softc *sc = ifp->if_softc;
543 struct ifreq *ifr = (struct ifreq *)data;
544 struct ifaddr *ifa = (struct ifaddr *)data;
545 int s, error = 0;
546
547 s = splnet();
548
549 switch (cmd) {
550 case SIOCSIFADDR:
551 ifp->if_flags |= IFF_UP;
552 nfe_init(ifp);
553 switch (ifa->ifa_addr->sa_family) {
554 #ifdef INET
555 case AF_INET:
556 arp_ifinit(ifp, ifa);
557 break;
558 #endif
559 default:
560 break;
561 }
562 break;
563 case SIOCSIFMTU:
564 if (ifr->ifr_mtu < ETHERMIN ||
565 ((sc->sc_flags & NFE_USE_JUMBO) &&
566 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
567 (!(sc->sc_flags & NFE_USE_JUMBO) &&
568 ifr->ifr_mtu > ETHERMTU))
569 error = EINVAL;
570 else if (ifp->if_mtu != ifr->ifr_mtu)
571 ifp->if_mtu = ifr->ifr_mtu;
572 break;
573 case SIOCSIFFLAGS:
574 if (ifp->if_flags & IFF_UP) {
575 /*
576 * If only the PROMISC or ALLMULTI flag changes, then
577 * don't do a full re-init of the chip, just update
578 * the Rx filter.
579 */
580 if ((ifp->if_flags & IFF_RUNNING) &&
581 ((ifp->if_flags ^ sc->sc_if_flags) &
582 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
583 nfe_setmulti(sc);
584 else
585 nfe_init(ifp);
586 } else {
587 if (ifp->if_flags & IFF_RUNNING)
588 nfe_stop(ifp, 1);
589 }
590 sc->sc_if_flags = ifp->if_flags;
591 break;
592 case SIOCADDMULTI:
593 case SIOCDELMULTI:
594 error = (cmd == SIOCADDMULTI) ?
595 ether_addmulti(ifr, &sc->sc_ethercom) :
596 ether_delmulti(ifr, &sc->sc_ethercom);
597
598 if (error == ENETRESET) {
599 if (ifp->if_flags & IFF_RUNNING)
600 nfe_setmulti(sc);
601 error = 0;
602 }
603 break;
604 case SIOCSIFMEDIA:
605 case SIOCGIFMEDIA:
606 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
607 break;
608 default:
609 error = ether_ioctl(ifp, cmd, data);
610 if (error == ENETRESET) {
611 if (ifp->if_flags & IFF_RUNNING)
612 nfe_setmulti(sc);
613 error = 0;
614 }
615 break;
616
617 }
618
619 splx(s);
620
621 return error;
622 }
623
624 void
625 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
626 {
627 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
628 (char *)desc32 - (char *)sc->txq.desc32,
629 sizeof (struct nfe_desc32), ops);
630 }
631
632 void
633 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
634 {
635 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
636 (char *)desc64 - (char *)sc->txq.desc64,
637 sizeof (struct nfe_desc64), ops);
638 }
639
640 void
641 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
642 {
643 if (end > start) {
644 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
645 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
646 (char *)&sc->txq.desc32[end] -
647 (char *)&sc->txq.desc32[start], ops);
648 return;
649 }
650 /* sync from 'start' to end of ring */
651 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
652 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
653 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
654 (char *)&sc->txq.desc32[start], ops);
655
656 /* sync from start of ring to 'end' */
657 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
658 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
659 }
660
661 void
662 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
663 {
664 if (end > start) {
665 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
666 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
667 (char *)&sc->txq.desc64[end] -
668 (char *)&sc->txq.desc64[start], ops);
669 return;
670 }
671 /* sync from 'start' to end of ring */
672 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
673 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
674 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
675 (char *)&sc->txq.desc64[start], ops);
676
677 /* sync from start of ring to 'end' */
678 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
679 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
680 }
681
682 void
683 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
684 {
685 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
686 (char *)desc32 - (char *)sc->rxq.desc32,
687 sizeof (struct nfe_desc32), ops);
688 }
689
690 void
691 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
692 {
693 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
694 (char *)desc64 - (char *)sc->rxq.desc64,
695 sizeof (struct nfe_desc64), ops);
696 }
697
698 void
699 nfe_rxeof(struct nfe_softc *sc)
700 {
701 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
702 struct nfe_desc32 *desc32;
703 struct nfe_desc64 *desc64;
704 struct nfe_rx_data *data;
705 struct nfe_jbuf *jbuf;
706 struct mbuf *m, *mnew;
707 bus_addr_t physaddr;
708 uint16_t flags;
709 int error, len, i;
710
711 desc32 = NULL;
712 desc64 = NULL;
713 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
714 data = &sc->rxq.data[i];
715
716 if (sc->sc_flags & NFE_40BIT_ADDR) {
717 desc64 = &sc->rxq.desc64[i];
718 nfe_rxdesc64_sync(sc, desc64,
719 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
720
721 flags = le16toh(desc64->flags);
722 len = le16toh(desc64->length) & 0x3fff;
723 } else {
724 desc32 = &sc->rxq.desc32[i];
725 nfe_rxdesc32_sync(sc, desc32,
726 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
727
728 flags = le16toh(desc32->flags);
729 len = le16toh(desc32->length) & 0x3fff;
730 }
731
732 if ((flags & NFE_RX_READY) != 0)
733 break;
734
735 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
736 if ((flags & NFE_RX_VALID_V1) == 0)
737 goto skip;
738
739 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
740 flags &= ~NFE_RX_ERROR;
741 len--; /* fix buffer length */
742 }
743 } else {
744 if ((flags & NFE_RX_VALID_V2) == 0)
745 goto skip;
746
747 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
748 flags &= ~NFE_RX_ERROR;
749 len--; /* fix buffer length */
750 }
751 }
752
753 if (flags & NFE_RX_ERROR) {
754 ifp->if_ierrors++;
755 goto skip;
756 }
757
758 /*
759 * Try to allocate a new mbuf for this ring element and load
760 * it before processing the current mbuf. If the ring element
761 * cannot be loaded, drop the received packet and reuse the
762 * old mbuf. In the unlikely case that the old mbuf can't be
763 * reloaded either, explicitly panic.
764 */
765 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
766 if (mnew == NULL) {
767 ifp->if_ierrors++;
768 goto skip;
769 }
770
771 if (sc->sc_flags & NFE_USE_JUMBO) {
772 if ((jbuf = nfe_jalloc(sc)) == NULL) {
773 m_freem(mnew);
774 ifp->if_ierrors++;
775 goto skip;
776 }
777 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
778
779 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
780 mtod(data->m, char *) - (char *)sc->rxq.jpool,
781 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
782
783 physaddr = jbuf->physaddr;
784 } else {
785 MCLGET(mnew, M_DONTWAIT);
786 if ((mnew->m_flags & M_EXT) == 0) {
787 m_freem(mnew);
788 ifp->if_ierrors++;
789 goto skip;
790 }
791
792 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
793 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
794 bus_dmamap_unload(sc->sc_dmat, data->map);
795
796 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map,
797 mnew, BUS_DMA_READ | BUS_DMA_NOWAIT);
798 if (error != 0) {
799 m_freem(mnew);
800
801 /* try to reload the old mbuf */
802 error = bus_dmamap_load_mbuf(sc->sc_dmat,
803 data->map, data->m,
804 BUS_DMA_READ | BUS_DMA_NOWAIT);
805 if (error != 0) {
806 /* very unlikely that it will fail.. */
807 panic("%s: could not load old rx mbuf",
808 sc->sc_dev.dv_xname);
809 }
810 ifp->if_ierrors++;
811 goto skip;
812 }
813 physaddr = data->map->dm_segs[0].ds_addr;
814 }
815
816 /*
817 * New mbuf successfully loaded, update Rx ring and continue
818 * processing.
819 */
820 m = data->m;
821 data->m = mnew;
822
823 /* finalize mbuf */
824 m->m_pkthdr.len = m->m_len = len;
825 m->m_pkthdr.rcvif = ifp;
826
827 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
828 /*
829 * XXX
830 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
831 */
832 if (flags & NFE_RX_IP_CSUMOK) {
833 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
834 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
835 sc->sc_dev.dv_xname));
836 }
837 /*
838 * XXX
839 * no way to check M_CSUM_TCP_UDP_BAD or
840 * other protocols?
841 */
842 if (flags & NFE_RX_UDP_CSUMOK) {
843 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
844 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
845 sc->sc_dev.dv_xname));
846 } else if (flags & NFE_RX_TCP_CSUMOK) {
847 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
848 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
849 sc->sc_dev.dv_xname));
850 }
851 }
852
853 #if NBPFILTER > 0
854 if (ifp->if_bpf)
855 bpf_mtap(ifp->if_bpf, m);
856 #endif
857 ifp->if_ipackets++;
858 (*ifp->if_input)(ifp, m);
859
860 /* update mapping address in h/w descriptor */
861 if (sc->sc_flags & NFE_40BIT_ADDR) {
862 #if defined(__LP64__)
863 desc64->physaddr[0] = htole32(physaddr >> 32);
864 #endif
865 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
866 } else {
867 desc32->physaddr = htole32(physaddr);
868 }
869
870 skip:
871 if (sc->sc_flags & NFE_40BIT_ADDR) {
872 desc64->length = htole16(sc->rxq.bufsz);
873 desc64->flags = htole16(NFE_RX_READY);
874
875 nfe_rxdesc64_sync(sc, desc64,
876 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
877 } else {
878 desc32->length = htole16(sc->rxq.bufsz);
879 desc32->flags = htole16(NFE_RX_READY);
880
881 nfe_rxdesc32_sync(sc, desc32,
882 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
883 }
884 }
885 /* update current RX pointer */
886 sc->rxq.cur = i;
887 }
888
889 void
890 nfe_txeof(struct nfe_softc *sc)
891 {
892 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
893 struct nfe_desc32 *desc32;
894 struct nfe_desc64 *desc64;
895 struct nfe_tx_data *data = NULL;
896 int i;
897 uint16_t flags;
898
899 for (i = sc->txq.next;
900 sc->txq.queued > 0;
901 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
902 if (sc->sc_flags & NFE_40BIT_ADDR) {
903 desc64 = &sc->txq.desc64[i];
904 nfe_txdesc64_sync(sc, desc64,
905 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
906
907 flags = le16toh(desc64->flags);
908 } else {
909 desc32 = &sc->txq.desc32[i];
910 nfe_txdesc32_sync(sc, desc32,
911 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
912
913 flags = le16toh(desc32->flags);
914 }
915
916 if ((flags & NFE_TX_VALID) != 0)
917 break;
918
919 data = &sc->txq.data[i];
920
921 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
922 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
923 data->m == NULL)
924 continue;
925
926 if ((flags & NFE_TX_ERROR_V1) != 0) {
927 printf("%s: tx v1 error 0x%04x\n",
928 sc->sc_dev.dv_xname, flags);
929 ifp->if_oerrors++;
930 } else
931 ifp->if_opackets++;
932 } else {
933 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
934 data->m == NULL)
935 continue;
936
937 if ((flags & NFE_TX_ERROR_V2) != 0) {
938 printf("%s: tx v2 error 0x%04x\n",
939 sc->sc_dev.dv_xname, flags);
940 ifp->if_oerrors++;
941 } else
942 ifp->if_opackets++;
943 }
944
945 if (data->m == NULL) { /* should not get there */
946 printf("%s: last fragment bit w/o associated mbuf!\n",
947 sc->sc_dev.dv_xname);
948 continue;
949 }
950
951 /* last fragment of the mbuf chain transmitted */
952 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
953 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
954 bus_dmamap_unload(sc->sc_dmat, data->active);
955 m_freem(data->m);
956 data->m = NULL;
957 }
958
959 sc->txq.next = i;
960
961 if (sc->txq.queued < NFE_TX_RING_COUNT) {
962 /* at least one slot freed */
963 ifp->if_flags &= ~IFF_OACTIVE;
964 }
965
966 if (sc->txq.queued == 0) {
967 /* all queued packets are sent */
968 ifp->if_timer = 0;
969 }
970 }
971
972 int
973 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
974 {
975 struct nfe_desc32 *desc32;
976 struct nfe_desc64 *desc64;
977 struct nfe_tx_data *data;
978 bus_dmamap_t map;
979 uint16_t flags, csumflags;
980 #if NVLAN > 0
981 struct m_tag *mtag;
982 uint32_t vtag = 0;
983 #endif
984 int error, i, first;
985
986 desc32 = NULL;
987 desc64 = NULL;
988 data = NULL;
989
990 flags = 0;
991 csumflags = 0;
992 first = sc->txq.cur;
993
994 map = sc->txq.data[first].map;
995
996 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
997 if (error != 0) {
998 printf("%s: could not map mbuf (error %d)\n",
999 sc->sc_dev.dv_xname, error);
1000 return error;
1001 }
1002
1003 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1004 bus_dmamap_unload(sc->sc_dmat, map);
1005 return ENOBUFS;
1006 }
1007
1008 #if NVLAN > 0
1009 /* setup h/w VLAN tagging */
1010 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1011 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1012 #endif
1013 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1014 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1015 csumflags |= NFE_TX_IP_CSUM;
1016 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1017 csumflags |= NFE_TX_TCP_UDP_CSUM;
1018 }
1019
1020 for (i = 0; i < map->dm_nsegs; i++) {
1021 data = &sc->txq.data[sc->txq.cur];
1022
1023 if (sc->sc_flags & NFE_40BIT_ADDR) {
1024 desc64 = &sc->txq.desc64[sc->txq.cur];
1025 #if defined(__LP64__)
1026 desc64->physaddr[0] =
1027 htole32(map->dm_segs[i].ds_addr >> 32);
1028 #endif
1029 desc64->physaddr[1] =
1030 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1031 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1032 desc64->flags = htole16(flags);
1033 desc64->vtag = 0;
1034 } else {
1035 desc32 = &sc->txq.desc32[sc->txq.cur];
1036
1037 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1038 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1039 desc32->flags = htole16(flags);
1040 }
1041
1042 /*
1043 * Setting of the valid bit in the first descriptor is
1044 * deferred until the whole chain is fully setup.
1045 */
1046 flags |= NFE_TX_VALID;
1047
1048 sc->txq.queued++;
1049 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1050 }
1051
1052 /* the whole mbuf chain has been setup */
1053 if (sc->sc_flags & NFE_40BIT_ADDR) {
1054 /* fix last descriptor */
1055 flags |= NFE_TX_LASTFRAG_V2;
1056 desc64->flags = htole16(flags);
1057
1058 /* Checksum flags and vtag belong to the first fragment only. */
1059 #if NVLAN > 0
1060 sc->txq.desc64[first].vtag = htole32(vtag);
1061 #endif
1062 sc->txq.desc64[first].flags |= htole16(csumflags);
1063
1064 /* finally, set the valid bit in the first descriptor */
1065 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1066 } else {
1067 /* fix last descriptor */
1068 if (sc->sc_flags & NFE_JUMBO_SUP)
1069 flags |= NFE_TX_LASTFRAG_V2;
1070 else
1071 flags |= NFE_TX_LASTFRAG_V1;
1072 desc32->flags = htole16(flags);
1073
1074 /* Checksum flags belong to the first fragment only. */
1075 sc->txq.desc32[first].flags |= htole16(csumflags);
1076
1077 /* finally, set the valid bit in the first descriptor */
1078 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1079 }
1080
1081 data->m = m0;
1082 data->active = map;
1083
1084 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1085 BUS_DMASYNC_PREWRITE);
1086
1087 return 0;
1088 }
1089
1090 void
1091 nfe_start(struct ifnet *ifp)
1092 {
1093 struct nfe_softc *sc = ifp->if_softc;
1094 int old = sc->txq.queued;
1095 struct mbuf *m0;
1096
1097 for (;;) {
1098 IFQ_POLL(&ifp->if_snd, m0);
1099 if (m0 == NULL)
1100 break;
1101
1102 if (nfe_encap(sc, m0) != 0) {
1103 ifp->if_flags |= IFF_OACTIVE;
1104 break;
1105 }
1106
1107 /* packet put in h/w queue, remove from s/w queue */
1108 IFQ_DEQUEUE(&ifp->if_snd, m0);
1109
1110 #if NBPFILTER > 0
1111 if (ifp->if_bpf != NULL)
1112 bpf_mtap(ifp->if_bpf, m0);
1113 #endif
1114 }
1115
1116 if (sc->txq.queued != old) {
1117 /* packets are queued */
1118 if (sc->sc_flags & NFE_40BIT_ADDR)
1119 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1120 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1121 else
1122 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1123 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1124 /* kick Tx */
1125 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1126
1127 /*
1128 * Set a timeout in case the chip goes out to lunch.
1129 */
1130 ifp->if_timer = 5;
1131 }
1132 }
1133
1134 void
1135 nfe_watchdog(struct ifnet *ifp)
1136 {
1137 struct nfe_softc *sc = ifp->if_softc;
1138
1139 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1140
1141 ifp->if_flags &= ~IFF_RUNNING;
1142 nfe_init(ifp);
1143
1144 ifp->if_oerrors++;
1145 }
1146
1147 int
1148 nfe_init(struct ifnet *ifp)
1149 {
1150 struct nfe_softc *sc = ifp->if_softc;
1151 uint32_t tmp;
1152 int s;
1153
1154 if (ifp->if_flags & IFF_RUNNING)
1155 return 0;
1156
1157 nfe_stop(ifp, 0);
1158
1159 NFE_WRITE(sc, NFE_TX_UNK, 0);
1160 NFE_WRITE(sc, NFE_STATUS, 0);
1161
1162 sc->rxtxctl = NFE_RXTX_BIT2;
1163 if (sc->sc_flags & NFE_40BIT_ADDR)
1164 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1165 else if (sc->sc_flags & NFE_JUMBO_SUP)
1166 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1167 if (sc->sc_flags & NFE_HW_CSUM)
1168 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1169 #if NVLAN > 0
1170 /*
1171 * Although the adapter is capable of stripping VLAN tags from received
1172 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1173 * purpose. This will be done in software by our network stack.
1174 */
1175 if (sc->sc_flags & NFE_HW_VLAN)
1176 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1177 #endif
1178 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1179 DELAY(10);
1180 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1181
1182 #if NVLAN
1183 if (sc->sc_flags & NFE_HW_VLAN)
1184 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1185 #endif
1186
1187 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1188
1189 /* set MAC address */
1190 nfe_set_macaddr(sc, sc->sc_enaddr);
1191
1192 /* tell MAC where rings are in memory */
1193 #ifdef __LP64__
1194 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1195 #endif
1196 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1197 #ifdef __LP64__
1198 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1199 #endif
1200 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1201
1202 NFE_WRITE(sc, NFE_RING_SIZE,
1203 (NFE_RX_RING_COUNT - 1) << 16 |
1204 (NFE_TX_RING_COUNT - 1));
1205
1206 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1207
1208 /* force MAC to wakeup */
1209 tmp = NFE_READ(sc, NFE_PWR_STATE);
1210 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1211 DELAY(10);
1212 tmp = NFE_READ(sc, NFE_PWR_STATE);
1213 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1214
1215 s = splnet();
1216 nfe_intr(sc); /* XXX clear IRQ status registers */
1217 splx(s);
1218
1219 #if 1
1220 /* configure interrupts coalescing/mitigation */
1221 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1222 #else
1223 /* no interrupt mitigation: one interrupt per packet */
1224 NFE_WRITE(sc, NFE_IMTIMER, 970);
1225 #endif
1226
1227 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1228 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1229 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1230
1231 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1232 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1233
1234 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1235 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1236
1237 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1238 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1239 DELAY(10);
1240 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1241
1242 /* set Rx filter */
1243 nfe_setmulti(sc);
1244
1245 nfe_ifmedia_upd(ifp);
1246
1247 nfe_tick(sc);
1248
1249 /* enable Rx */
1250 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1251
1252 /* enable Tx */
1253 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1254
1255 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1256
1257 /* enable interrupts */
1258 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1259
1260 callout_schedule(&sc->sc_tick_ch, hz);
1261
1262 ifp->if_flags |= IFF_RUNNING;
1263 ifp->if_flags &= ~IFF_OACTIVE;
1264
1265 return 0;
1266 }
1267
1268 void
1269 nfe_stop(struct ifnet *ifp, int disable)
1270 {
1271 struct nfe_softc *sc = ifp->if_softc;
1272
1273 callout_stop(&sc->sc_tick_ch);
1274
1275 ifp->if_timer = 0;
1276 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1277
1278 mii_down(&sc->sc_mii);
1279
1280 /* abort Tx */
1281 NFE_WRITE(sc, NFE_TX_CTL, 0);
1282
1283 /* disable Rx */
1284 NFE_WRITE(sc, NFE_RX_CTL, 0);
1285
1286 /* disable interrupts */
1287 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1288
1289 /* reset Tx and Rx rings */
1290 nfe_reset_tx_ring(sc, &sc->txq);
1291 nfe_reset_rx_ring(sc, &sc->rxq);
1292 }
1293
1294 int
1295 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1296 {
1297 struct nfe_desc32 *desc32;
1298 struct nfe_desc64 *desc64;
1299 struct nfe_rx_data *data;
1300 struct nfe_jbuf *jbuf;
1301 void **desc;
1302 bus_addr_t physaddr;
1303 int i, nsegs, error, descsize;
1304
1305 if (sc->sc_flags & NFE_40BIT_ADDR) {
1306 desc = (void **)&ring->desc64;
1307 descsize = sizeof (struct nfe_desc64);
1308 } else {
1309 desc = (void **)&ring->desc32;
1310 descsize = sizeof (struct nfe_desc32);
1311 }
1312
1313 ring->cur = ring->next = 0;
1314 ring->bufsz = MCLBYTES;
1315
1316 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1317 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1318 if (error != 0) {
1319 printf("%s: could not create desc DMA map\n",
1320 sc->sc_dev.dv_xname);
1321 goto fail;
1322 }
1323
1324 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1325 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1326 if (error != 0) {
1327 printf("%s: could not allocate DMA memory\n",
1328 sc->sc_dev.dv_xname);
1329 goto fail;
1330 }
1331
1332 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1333 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1334 if (error != 0) {
1335 printf("%s: could not map desc DMA memory\n",
1336 sc->sc_dev.dv_xname);
1337 goto fail;
1338 }
1339
1340 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1341 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1342 if (error != 0) {
1343 printf("%s: could not load desc DMA map\n",
1344 sc->sc_dev.dv_xname);
1345 goto fail;
1346 }
1347
1348 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1349 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1350
1351 if (sc->sc_flags & NFE_USE_JUMBO) {
1352 ring->bufsz = NFE_JBYTES;
1353 if ((error = nfe_jpool_alloc(sc)) != 0) {
1354 printf("%s: could not allocate jumbo frames\n",
1355 sc->sc_dev.dv_xname);
1356 goto fail;
1357 }
1358 }
1359
1360 /*
1361 * Pre-allocate Rx buffers and populate Rx ring.
1362 */
1363 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1364 data = &sc->rxq.data[i];
1365
1366 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1367 if (data->m == NULL) {
1368 printf("%s: could not allocate rx mbuf\n",
1369 sc->sc_dev.dv_xname);
1370 error = ENOMEM;
1371 goto fail;
1372 }
1373
1374 if (sc->sc_flags & NFE_USE_JUMBO) {
1375 if ((jbuf = nfe_jalloc(sc)) == NULL) {
1376 printf("%s: could not allocate jumbo buffer\n",
1377 sc->sc_dev.dv_xname);
1378 goto fail;
1379 }
1380 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1381 sc);
1382
1383 physaddr = jbuf->physaddr;
1384 } else {
1385 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1386 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1387 if (error != 0) {
1388 printf("%s: could not create DMA map\n",
1389 sc->sc_dev.dv_xname);
1390 goto fail;
1391 }
1392 MCLGET(data->m, M_DONTWAIT);
1393 if (!(data->m->m_flags & M_EXT)) {
1394 printf("%s: could not allocate mbuf cluster\n",
1395 sc->sc_dev.dv_xname);
1396 error = ENOMEM;
1397 goto fail;
1398 }
1399
1400 error = bus_dmamap_load(sc->sc_dmat, data->map,
1401 mtod(data->m, void *), MCLBYTES, NULL,
1402 BUS_DMA_READ | BUS_DMA_NOWAIT);
1403 if (error != 0) {
1404 printf("%s: could not load rx buf DMA map",
1405 sc->sc_dev.dv_xname);
1406 goto fail;
1407 }
1408 physaddr = data->map->dm_segs[0].ds_addr;
1409 }
1410
1411 if (sc->sc_flags & NFE_40BIT_ADDR) {
1412 desc64 = &sc->rxq.desc64[i];
1413 #if defined(__LP64__)
1414 desc64->physaddr[0] = htole32(physaddr >> 32);
1415 #endif
1416 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1417 desc64->length = htole16(sc->rxq.bufsz);
1418 desc64->flags = htole16(NFE_RX_READY);
1419 } else {
1420 desc32 = &sc->rxq.desc32[i];
1421 desc32->physaddr = htole32(physaddr);
1422 desc32->length = htole16(sc->rxq.bufsz);
1423 desc32->flags = htole16(NFE_RX_READY);
1424 }
1425 }
1426
1427 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1428 BUS_DMASYNC_PREWRITE);
1429
1430 return 0;
1431
1432 fail: nfe_free_rx_ring(sc, ring);
1433 return error;
1434 }
1435
1436 void
1437 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1438 {
1439 int i;
1440
1441 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1442 if (sc->sc_flags & NFE_40BIT_ADDR) {
1443 ring->desc64[i].length = htole16(ring->bufsz);
1444 ring->desc64[i].flags = htole16(NFE_RX_READY);
1445 } else {
1446 ring->desc32[i].length = htole16(ring->bufsz);
1447 ring->desc32[i].flags = htole16(NFE_RX_READY);
1448 }
1449 }
1450
1451 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1452 BUS_DMASYNC_PREWRITE);
1453
1454 ring->cur = ring->next = 0;
1455 }
1456
1457 void
1458 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1459 {
1460 struct nfe_rx_data *data;
1461 void *desc;
1462 int i, descsize;
1463
1464 if (sc->sc_flags & NFE_40BIT_ADDR) {
1465 desc = ring->desc64;
1466 descsize = sizeof (struct nfe_desc64);
1467 } else {
1468 desc = ring->desc32;
1469 descsize = sizeof (struct nfe_desc32);
1470 }
1471
1472 if (desc != NULL) {
1473 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1474 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1475 bus_dmamap_unload(sc->sc_dmat, ring->map);
1476 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1477 NFE_RX_RING_COUNT * descsize);
1478 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1479 }
1480
1481 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1482 data = &ring->data[i];
1483
1484 if (data->map != NULL) {
1485 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1486 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1487 bus_dmamap_unload(sc->sc_dmat, data->map);
1488 bus_dmamap_destroy(sc->sc_dmat, data->map);
1489 }
1490 if (data->m != NULL)
1491 m_freem(data->m);
1492 }
1493 }
1494
1495 struct nfe_jbuf *
1496 nfe_jalloc(struct nfe_softc *sc)
1497 {
1498 struct nfe_jbuf *jbuf;
1499
1500 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1501 if (jbuf == NULL)
1502 return NULL;
1503 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1504 return jbuf;
1505 }
1506
1507 /*
1508 * This is called automatically by the network stack when the mbuf is freed.
1509 * Caution must be taken that the NIC might be reset by the time the mbuf is
1510 * freed.
1511 */
1512 void
1513 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1514 {
1515 struct nfe_softc *sc = arg;
1516 struct nfe_jbuf *jbuf;
1517 int i;
1518
1519 /* find the jbuf from the base pointer */
1520 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1521 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1522 printf("%s: request to free a buffer (%p) not managed by us\n",
1523 sc->sc_dev.dv_xname, buf);
1524 return;
1525 }
1526 jbuf = &sc->rxq.jbuf[i];
1527
1528 /* ..and put it back in the free list */
1529 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1530
1531 if (m != NULL)
1532 pool_cache_put(&mbpool_cache, m);
1533 }
1534
1535 int
1536 nfe_jpool_alloc(struct nfe_softc *sc)
1537 {
1538 struct nfe_rx_ring *ring = &sc->rxq;
1539 struct nfe_jbuf *jbuf;
1540 bus_addr_t physaddr;
1541 char *buf;
1542 int i, nsegs, error;
1543
1544 /*
1545 * Allocate a big chunk of DMA'able memory.
1546 */
1547 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1548 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1549 if (error != 0) {
1550 printf("%s: could not create jumbo DMA map\n",
1551 sc->sc_dev.dv_xname);
1552 goto fail;
1553 }
1554
1555 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1556 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1557 if (error != 0) {
1558 printf("%s could not allocate jumbo DMA memory\n",
1559 sc->sc_dev.dv_xname);
1560 goto fail;
1561 }
1562
1563 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1564 &ring->jpool, BUS_DMA_NOWAIT);
1565 if (error != 0) {
1566 printf("%s: could not map jumbo DMA memory\n",
1567 sc->sc_dev.dv_xname);
1568 goto fail;
1569 }
1570
1571 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1572 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1573 if (error != 0) {
1574 printf("%s: could not load jumbo DMA map\n",
1575 sc->sc_dev.dv_xname);
1576 goto fail;
1577 }
1578
1579 /* ..and split it into 9KB chunks */
1580 SLIST_INIT(&ring->jfreelist);
1581
1582 buf = ring->jpool;
1583 physaddr = ring->jmap->dm_segs[0].ds_addr;
1584 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1585 jbuf = &ring->jbuf[i];
1586
1587 jbuf->buf = buf;
1588 jbuf->physaddr = physaddr;
1589
1590 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1591
1592 buf += NFE_JBYTES;
1593 physaddr += NFE_JBYTES;
1594 }
1595
1596 return 0;
1597
1598 fail: nfe_jpool_free(sc);
1599 return error;
1600 }
1601
1602 void
1603 nfe_jpool_free(struct nfe_softc *sc)
1604 {
1605 struct nfe_rx_ring *ring = &sc->rxq;
1606
1607 if (ring->jmap != NULL) {
1608 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1609 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1610 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1611 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1612 }
1613 if (ring->jpool != NULL) {
1614 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1615 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1616 }
1617 }
1618
1619 int
1620 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1621 {
1622 int i, nsegs, error;
1623 void **desc;
1624 int descsize;
1625
1626 if (sc->sc_flags & NFE_40BIT_ADDR) {
1627 desc = (void **)&ring->desc64;
1628 descsize = sizeof (struct nfe_desc64);
1629 } else {
1630 desc = (void **)&ring->desc32;
1631 descsize = sizeof (struct nfe_desc32);
1632 }
1633
1634 ring->queued = 0;
1635 ring->cur = ring->next = 0;
1636
1637 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1638 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1639
1640 if (error != 0) {
1641 printf("%s: could not create desc DMA map\n",
1642 sc->sc_dev.dv_xname);
1643 goto fail;
1644 }
1645
1646 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1647 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1648 if (error != 0) {
1649 printf("%s: could not allocate DMA memory\n",
1650 sc->sc_dev.dv_xname);
1651 goto fail;
1652 }
1653
1654 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1655 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1656 if (error != 0) {
1657 printf("%s: could not map desc DMA memory\n",
1658 sc->sc_dev.dv_xname);
1659 goto fail;
1660 }
1661
1662 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1663 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1664 if (error != 0) {
1665 printf("%s: could not load desc DMA map\n",
1666 sc->sc_dev.dv_xname);
1667 goto fail;
1668 }
1669
1670 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1671 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1672
1673 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1674 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1675 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1676 &ring->data[i].map);
1677 if (error != 0) {
1678 printf("%s: could not create DMA map\n",
1679 sc->sc_dev.dv_xname);
1680 goto fail;
1681 }
1682 }
1683
1684 return 0;
1685
1686 fail: nfe_free_tx_ring(sc, ring);
1687 return error;
1688 }
1689
1690 void
1691 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1692 {
1693 struct nfe_tx_data *data;
1694 int i;
1695
1696 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1697 if (sc->sc_flags & NFE_40BIT_ADDR)
1698 ring->desc64[i].flags = 0;
1699 else
1700 ring->desc32[i].flags = 0;
1701
1702 data = &ring->data[i];
1703
1704 if (data->m != NULL) {
1705 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1706 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1707 bus_dmamap_unload(sc->sc_dmat, data->active);
1708 m_freem(data->m);
1709 data->m = NULL;
1710 }
1711 }
1712
1713 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1714 BUS_DMASYNC_PREWRITE);
1715
1716 ring->queued = 0;
1717 ring->cur = ring->next = 0;
1718 }
1719
1720 void
1721 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1722 {
1723 struct nfe_tx_data *data;
1724 void *desc;
1725 int i, descsize;
1726
1727 if (sc->sc_flags & NFE_40BIT_ADDR) {
1728 desc = ring->desc64;
1729 descsize = sizeof (struct nfe_desc64);
1730 } else {
1731 desc = ring->desc32;
1732 descsize = sizeof (struct nfe_desc32);
1733 }
1734
1735 if (desc != NULL) {
1736 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1737 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1738 bus_dmamap_unload(sc->sc_dmat, ring->map);
1739 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1740 NFE_TX_RING_COUNT * descsize);
1741 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1742 }
1743
1744 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1745 data = &ring->data[i];
1746
1747 if (data->m != NULL) {
1748 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1749 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1750 bus_dmamap_unload(sc->sc_dmat, data->active);
1751 m_freem(data->m);
1752 }
1753 }
1754
1755 /* ..and now actually destroy the DMA mappings */
1756 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1757 data = &ring->data[i];
1758 if (data->map == NULL)
1759 continue;
1760 bus_dmamap_destroy(sc->sc_dmat, data->map);
1761 }
1762 }
1763
1764 int
1765 nfe_ifmedia_upd(struct ifnet *ifp)
1766 {
1767 struct nfe_softc *sc = ifp->if_softc;
1768 struct mii_data *mii = &sc->sc_mii;
1769 struct mii_softc *miisc;
1770
1771 if (mii->mii_instance != 0) {
1772 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1773 mii_phy_reset(miisc);
1774 }
1775 return mii_mediachg(mii);
1776 }
1777
1778 void
1779 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1780 {
1781 struct nfe_softc *sc = ifp->if_softc;
1782 struct mii_data *mii = &sc->sc_mii;
1783
1784 mii_pollstat(mii);
1785 ifmr->ifm_status = mii->mii_media_status;
1786 ifmr->ifm_active = mii->mii_media_active;
1787 }
1788
1789 void
1790 nfe_setmulti(struct nfe_softc *sc)
1791 {
1792 struct ethercom *ec = &sc->sc_ethercom;
1793 struct ifnet *ifp = &ec->ec_if;
1794 struct ether_multi *enm;
1795 struct ether_multistep step;
1796 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1797 uint32_t filter = NFE_RXFILTER_MAGIC;
1798 int i;
1799
1800 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1801 bzero(addr, ETHER_ADDR_LEN);
1802 bzero(mask, ETHER_ADDR_LEN);
1803 goto done;
1804 }
1805
1806 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1807 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1808
1809 ETHER_FIRST_MULTI(step, ec, enm);
1810 while (enm != NULL) {
1811 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1812 ifp->if_flags |= IFF_ALLMULTI;
1813 bzero(addr, ETHER_ADDR_LEN);
1814 bzero(mask, ETHER_ADDR_LEN);
1815 goto done;
1816 }
1817 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1818 addr[i] &= enm->enm_addrlo[i];
1819 mask[i] &= ~enm->enm_addrlo[i];
1820 }
1821 ETHER_NEXT_MULTI(step, enm);
1822 }
1823 for (i = 0; i < ETHER_ADDR_LEN; i++)
1824 mask[i] |= addr[i];
1825
1826 done:
1827 addr[0] |= 0x01; /* make sure multicast bit is set */
1828
1829 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1830 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1831 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1832 addr[5] << 8 | addr[4]);
1833 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1834 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1835 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1836 mask[5] << 8 | mask[4]);
1837
1838 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1839 NFE_WRITE(sc, NFE_RXFILTER, filter);
1840 }
1841
1842 void
1843 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1844 {
1845 uint32_t tmp;
1846
1847 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1848 addr[0] = (tmp >> 8) & 0xff;
1849 addr[1] = (tmp & 0xff);
1850
1851 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1852 addr[2] = (tmp >> 24) & 0xff;
1853 addr[3] = (tmp >> 16) & 0xff;
1854 addr[4] = (tmp >> 8) & 0xff;
1855 addr[5] = (tmp & 0xff);
1856 }
1857
1858 void
1859 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1860 {
1861 NFE_WRITE(sc, NFE_MACADDR_LO,
1862 addr[5] << 8 | addr[4]);
1863 NFE_WRITE(sc, NFE_MACADDR_HI,
1864 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1865 }
1866
1867 void
1868 nfe_tick(void *arg)
1869 {
1870 struct nfe_softc *sc = arg;
1871 int s;
1872
1873 s = splnet();
1874 mii_tick(&sc->sc_mii);
1875 splx(s);
1876
1877 callout_schedule(&sc->sc_tick_ch, hz);
1878 }
1879