if_nfe.c revision 1.16.6.3 1 /* $NetBSD: if_nfe.c,v 1.16.6.3 2007/10/05 00:40:12 joerg Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.16.6.3 2007/10/05 00:40:12 joerg Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <machine/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206 char devinfo[256];
207 pnp_status_t pnp_status;
208
209 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
210 aprint_normal(": %s (rev. 0x%02x)\n",
211 devinfo, PCI_REVISION(pa->pa_class));
212
213 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
214 switch (memtype) {
215 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
216 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
217 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
218 &sc->sc_memh, NULL, &memsize) == 0)
219 break;
220 /* FALLTHROUGH */
221 default:
222 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
223 return;
224 }
225
226 if (pci_intr_map(pa, &ih) != 0) {
227 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
228 return;
229 }
230
231 intrstr = pci_intr_string(pc, ih);
232 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
233 if (sc->sc_ih == NULL) {
234 printf("%s: could not establish interrupt",
235 sc->sc_dev.dv_xname);
236 if (intrstr != NULL)
237 printf(" at %s", intrstr);
238 printf("\n");
239 return;
240 }
241 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
242
243 sc->sc_dmat = pa->pa_dmat;
244
245 nfe_get_macaddr(sc, sc->sc_enaddr);
246 printf("%s: Ethernet address %s\n",
247 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
248
249 sc->sc_flags = 0;
250
251 switch (PCI_PRODUCT(pa->pa_id)) {
252 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
253 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
254 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
255 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
256 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
257 break;
258 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
259 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
260 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
261 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
262 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
263 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
264 sc->sc_flags |= NFE_40BIT_ADDR;
265 break;
266 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
267 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
268 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
269 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
270 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
271 break;
272 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
273 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
274 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
275 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
276 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
277 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
278 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
279 NFE_HW_VLAN;
280 break;
281 }
282
283 #ifndef NFE_NO_JUMBO
284 /* enable jumbo frames for adapters that support it */
285 if (sc->sc_flags & NFE_JUMBO_SUP)
286 sc->sc_flags |= NFE_USE_JUMBO;
287 #endif
288
289 /*
290 * Allocate Tx and Rx rings.
291 */
292 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
293 printf("%s: could not allocate Tx ring\n",
294 sc->sc_dev.dv_xname);
295 return;
296 }
297
298 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
299 printf("%s: could not allocate Rx ring\n",
300 sc->sc_dev.dv_xname);
301 nfe_free_tx_ring(sc, &sc->txq);
302 return;
303 }
304
305 ifp = &sc->sc_ethercom.ec_if;
306 ifp->if_softc = sc;
307 ifp->if_mtu = ETHERMTU;
308 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
309 ifp->if_ioctl = nfe_ioctl;
310 ifp->if_start = nfe_start;
311 ifp->if_stop = nfe_stop;
312 ifp->if_watchdog = nfe_watchdog;
313 ifp->if_init = nfe_init;
314 ifp->if_baudrate = IF_Gbps(1);
315 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
316 IFQ_SET_READY(&ifp->if_snd);
317 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
318
319 #if NVLAN > 0
320 if (sc->sc_flags & NFE_HW_VLAN)
321 sc->sc_ethercom.ec_capabilities |=
322 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
323 #endif
324 if (sc->sc_flags & NFE_HW_CSUM) {
325 ifp->if_capabilities |=
326 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
327 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
328 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
329 }
330
331 sc->sc_mii.mii_ifp = ifp;
332 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
333 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
334 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
335
336 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
337 nfe_ifmedia_sts);
338 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
339 MII_OFFSET_ANY, 0);
340 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
341 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
342 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
343 0, NULL);
344 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
345 } else
346 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
347
348 if_attach(ifp);
349 ether_ifattach(ifp, sc->sc_enaddr);
350
351 callout_init(&sc->sc_tick_ch, 0);
352 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
353
354 pnp_status = pci_net_generic_power_register(self,
355 pa->pa_pc, pa->pa_tag, ifp, NULL, NULL);
356 if (pnp_status != PNP_STATUS_SUCCESS) {
357 aprint_error_dev(self, "couldn't establish power handler\n");
358 }
359 }
360
361 void
362 nfe_miibus_statchg(struct device *dev)
363 {
364 struct nfe_softc *sc = (struct nfe_softc *)dev;
365 struct mii_data *mii = &sc->sc_mii;
366 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
367
368 phy = NFE_READ(sc, NFE_PHY_IFACE);
369 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
370
371 seed = NFE_READ(sc, NFE_RNDSEED);
372 seed &= ~NFE_SEED_MASK;
373
374 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
375 phy |= NFE_PHY_HDX; /* half-duplex */
376 misc |= NFE_MISC1_HDX;
377 }
378
379 switch (IFM_SUBTYPE(mii->mii_media_active)) {
380 case IFM_1000_T: /* full-duplex only */
381 link |= NFE_MEDIA_1000T;
382 seed |= NFE_SEED_1000T;
383 phy |= NFE_PHY_1000T;
384 break;
385 case IFM_100_TX:
386 link |= NFE_MEDIA_100TX;
387 seed |= NFE_SEED_100TX;
388 phy |= NFE_PHY_100TX;
389 break;
390 case IFM_10_T:
391 link |= NFE_MEDIA_10T;
392 seed |= NFE_SEED_10T;
393 break;
394 }
395
396 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
397
398 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
399 NFE_WRITE(sc, NFE_MISC1, misc);
400 NFE_WRITE(sc, NFE_LINKSPEED, link);
401 }
402
403 int
404 nfe_miibus_readreg(struct device *dev, int phy, int reg)
405 {
406 struct nfe_softc *sc = (struct nfe_softc *)dev;
407 uint32_t val;
408 int ntries;
409
410 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
411
412 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
413 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
414 DELAY(100);
415 }
416
417 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
418
419 for (ntries = 0; ntries < 1000; ntries++) {
420 DELAY(100);
421 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
422 break;
423 }
424 if (ntries == 1000) {
425 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
426 sc->sc_dev.dv_xname));
427 return 0;
428 }
429
430 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
431 DPRINTFN(2, ("%s: could not read PHY\n",
432 sc->sc_dev.dv_xname));
433 return 0;
434 }
435
436 val = NFE_READ(sc, NFE_PHY_DATA);
437 if (val != 0xffffffff && val != 0)
438 sc->mii_phyaddr = phy;
439
440 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
441 sc->sc_dev.dv_xname, phy, reg, val));
442
443 return val;
444 }
445
446 void
447 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
448 {
449 struct nfe_softc *sc = (struct nfe_softc *)dev;
450 uint32_t ctl;
451 int ntries;
452
453 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
454
455 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
456 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
457 DELAY(100);
458 }
459
460 NFE_WRITE(sc, NFE_PHY_DATA, val);
461 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
462 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
463
464 for (ntries = 0; ntries < 1000; ntries++) {
465 DELAY(100);
466 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
467 break;
468 }
469 #ifdef NFE_DEBUG
470 if (nfedebug >= 2 && ntries == 1000)
471 printf("could not write to PHY\n");
472 #endif
473 }
474
475 int
476 nfe_intr(void *arg)
477 {
478 struct nfe_softc *sc = arg;
479 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
480 uint32_t r;
481 int handled;
482
483 if ((ifp->if_flags & IFF_UP) == 0)
484 return 0;
485
486 handled = 0;
487
488 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
489
490 for (;;) {
491 r = NFE_READ(sc, NFE_IRQ_STATUS);
492 if ((r & NFE_IRQ_WANTED) == 0)
493 break;
494
495 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
496 handled = 1;
497 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
498
499 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
500 != 0) {
501 /* check Rx ring */
502 nfe_rxeof(sc);
503 }
504
505 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
506 != 0) {
507 /* check Tx ring */
508 nfe_txeof(sc);
509 }
510
511 if ((r & NFE_IRQ_LINK) != 0) {
512 NFE_READ(sc, NFE_PHY_STATUS);
513 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
514 DPRINTF(("%s: link state changed\n",
515 sc->sc_dev.dv_xname));
516 }
517 }
518
519 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
520
521 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
522 nfe_start(ifp);
523
524 return handled;
525 }
526
527 int
528 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
529 {
530 struct nfe_softc *sc = ifp->if_softc;
531 struct ifreq *ifr = (struct ifreq *)data;
532 struct ifaddr *ifa = (struct ifaddr *)data;
533 int s, error = 0;
534
535 s = splnet();
536
537 switch (cmd) {
538 case SIOCSIFADDR:
539 ifp->if_flags |= IFF_UP;
540 nfe_init(ifp);
541 switch (ifa->ifa_addr->sa_family) {
542 #ifdef INET
543 case AF_INET:
544 arp_ifinit(ifp, ifa);
545 break;
546 #endif
547 default:
548 break;
549 }
550 break;
551 case SIOCSIFMTU:
552 if (ifr->ifr_mtu < ETHERMIN ||
553 ((sc->sc_flags & NFE_USE_JUMBO) &&
554 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
555 (!(sc->sc_flags & NFE_USE_JUMBO) &&
556 ifr->ifr_mtu > ETHERMTU))
557 error = EINVAL;
558 else if (ifp->if_mtu != ifr->ifr_mtu)
559 ifp->if_mtu = ifr->ifr_mtu;
560 break;
561 case SIOCSIFFLAGS:
562 if (ifp->if_flags & IFF_UP) {
563 /*
564 * If only the PROMISC or ALLMULTI flag changes, then
565 * don't do a full re-init of the chip, just update
566 * the Rx filter.
567 */
568 if ((ifp->if_flags & IFF_RUNNING) &&
569 ((ifp->if_flags ^ sc->sc_if_flags) &
570 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
571 nfe_setmulti(sc);
572 else
573 nfe_init(ifp);
574 } else {
575 if (ifp->if_flags & IFF_RUNNING)
576 nfe_stop(ifp, 1);
577 }
578 sc->sc_if_flags = ifp->if_flags;
579 break;
580 case SIOCADDMULTI:
581 case SIOCDELMULTI:
582 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
583 if (ifp->if_flags & IFF_RUNNING)
584 nfe_setmulti(sc);
585 error = 0;
586 }
587 break;
588 case SIOCSIFMEDIA:
589 case SIOCGIFMEDIA:
590 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
591 break;
592 default:
593 error = ether_ioctl(ifp, cmd, data);
594 if (error == ENETRESET) {
595 if (ifp->if_flags & IFF_RUNNING)
596 nfe_setmulti(sc);
597 error = 0;
598 }
599 break;
600
601 }
602
603 splx(s);
604
605 return error;
606 }
607
608 void
609 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
610 {
611 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
612 (char *)desc32 - (char *)sc->txq.desc32,
613 sizeof (struct nfe_desc32), ops);
614 }
615
616 void
617 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
618 {
619 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
620 (char *)desc64 - (char *)sc->txq.desc64,
621 sizeof (struct nfe_desc64), ops);
622 }
623
624 void
625 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
626 {
627 if (end > start) {
628 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
629 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
630 (char *)&sc->txq.desc32[end] -
631 (char *)&sc->txq.desc32[start], ops);
632 return;
633 }
634 /* sync from 'start' to end of ring */
635 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
636 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
637 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
638 (char *)&sc->txq.desc32[start], ops);
639
640 /* sync from start of ring to 'end' */
641 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
642 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
643 }
644
645 void
646 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
647 {
648 if (end > start) {
649 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
650 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
651 (char *)&sc->txq.desc64[end] -
652 (char *)&sc->txq.desc64[start], ops);
653 return;
654 }
655 /* sync from 'start' to end of ring */
656 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
657 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
658 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
659 (char *)&sc->txq.desc64[start], ops);
660
661 /* sync from start of ring to 'end' */
662 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
663 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
664 }
665
666 void
667 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
668 {
669 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
670 (char *)desc32 - (char *)sc->rxq.desc32,
671 sizeof (struct nfe_desc32), ops);
672 }
673
674 void
675 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
676 {
677 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
678 (char *)desc64 - (char *)sc->rxq.desc64,
679 sizeof (struct nfe_desc64), ops);
680 }
681
682 void
683 nfe_rxeof(struct nfe_softc *sc)
684 {
685 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
686 struct nfe_desc32 *desc32;
687 struct nfe_desc64 *desc64;
688 struct nfe_rx_data *data;
689 struct nfe_jbuf *jbuf;
690 struct mbuf *m, *mnew;
691 bus_addr_t physaddr;
692 uint16_t flags;
693 int error, len, i;
694
695 desc32 = NULL;
696 desc64 = NULL;
697 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
698 data = &sc->rxq.data[i];
699
700 if (sc->sc_flags & NFE_40BIT_ADDR) {
701 desc64 = &sc->rxq.desc64[i];
702 nfe_rxdesc64_sync(sc, desc64,
703 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
704
705 flags = le16toh(desc64->flags);
706 len = le16toh(desc64->length) & 0x3fff;
707 } else {
708 desc32 = &sc->rxq.desc32[i];
709 nfe_rxdesc32_sync(sc, desc32,
710 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
711
712 flags = le16toh(desc32->flags);
713 len = le16toh(desc32->length) & 0x3fff;
714 }
715
716 if ((flags & NFE_RX_READY) != 0)
717 break;
718
719 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
720 if ((flags & NFE_RX_VALID_V1) == 0)
721 goto skip;
722
723 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
724 flags &= ~NFE_RX_ERROR;
725 len--; /* fix buffer length */
726 }
727 } else {
728 if ((flags & NFE_RX_VALID_V2) == 0)
729 goto skip;
730
731 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
732 flags &= ~NFE_RX_ERROR;
733 len--; /* fix buffer length */
734 }
735 }
736
737 if (flags & NFE_RX_ERROR) {
738 ifp->if_ierrors++;
739 goto skip;
740 }
741
742 /*
743 * Try to allocate a new mbuf for this ring element and load
744 * it before processing the current mbuf. If the ring element
745 * cannot be loaded, drop the received packet and reuse the
746 * old mbuf. In the unlikely case that the old mbuf can't be
747 * reloaded either, explicitly panic.
748 */
749 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
750 if (mnew == NULL) {
751 ifp->if_ierrors++;
752 goto skip;
753 }
754
755 if (sc->sc_flags & NFE_USE_JUMBO) {
756 physaddr =
757 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
758 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
759 if (len > MCLBYTES) {
760 m_freem(mnew);
761 ifp->if_ierrors++;
762 goto skip1;
763 }
764 MCLGET(mnew, M_DONTWAIT);
765 if ((mnew->m_flags & M_EXT) == 0) {
766 m_freem(mnew);
767 ifp->if_ierrors++;
768 goto skip1;
769 }
770
771 memcpy(mtod(mnew, void *),
772 mtod(data->m, const void *), len);
773 m = mnew;
774 goto mbufcopied;
775 } else {
776 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
777
778 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
779 mtod(data->m, char *) - (char *)sc->rxq.jpool,
780 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
781
782 physaddr = jbuf->physaddr;
783 }
784 } else {
785 MCLGET(mnew, M_DONTWAIT);
786 if ((mnew->m_flags & M_EXT) == 0) {
787 m_freem(mnew);
788 ifp->if_ierrors++;
789 goto skip;
790 }
791
792 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
793 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
794 bus_dmamap_unload(sc->sc_dmat, data->map);
795
796 error = bus_dmamap_load(sc->sc_dmat, data->map,
797 mtod(mnew, void *), MCLBYTES, NULL,
798 BUS_DMA_READ | BUS_DMA_NOWAIT);
799 if (error != 0) {
800 m_freem(mnew);
801
802 /* try to reload the old mbuf */
803 error = bus_dmamap_load(sc->sc_dmat, data->map,
804 mtod(data->m, void *), MCLBYTES, NULL,
805 BUS_DMA_READ | BUS_DMA_NOWAIT);
806 if (error != 0) {
807 /* very unlikely that it will fail.. */
808 panic("%s: could not load old rx mbuf",
809 sc->sc_dev.dv_xname);
810 }
811 ifp->if_ierrors++;
812 goto skip;
813 }
814 physaddr = data->map->dm_segs[0].ds_addr;
815 }
816
817 /*
818 * New mbuf successfully loaded, update Rx ring and continue
819 * processing.
820 */
821 m = data->m;
822 data->m = mnew;
823
824 mbufcopied:
825 /* finalize mbuf */
826 m->m_pkthdr.len = m->m_len = len;
827 m->m_pkthdr.rcvif = ifp;
828
829 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
830 /*
831 * XXX
832 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
833 */
834 if (flags & NFE_RX_IP_CSUMOK) {
835 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
836 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
837 sc->sc_dev.dv_xname));
838 }
839 /*
840 * XXX
841 * no way to check M_CSUM_TCP_UDP_BAD or
842 * other protocols?
843 */
844 if (flags & NFE_RX_UDP_CSUMOK) {
845 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
846 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
847 sc->sc_dev.dv_xname));
848 } else if (flags & NFE_RX_TCP_CSUMOK) {
849 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
850 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
851 sc->sc_dev.dv_xname));
852 }
853 }
854
855 #if NBPFILTER > 0
856 if (ifp->if_bpf)
857 bpf_mtap(ifp->if_bpf, m);
858 #endif
859 ifp->if_ipackets++;
860 (*ifp->if_input)(ifp, m);
861
862 skip1:
863 /* update mapping address in h/w descriptor */
864 if (sc->sc_flags & NFE_40BIT_ADDR) {
865 #if defined(__LP64__)
866 desc64->physaddr[0] = htole32(physaddr >> 32);
867 #endif
868 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
869 } else {
870 desc32->physaddr = htole32(physaddr);
871 }
872
873 skip:
874 if (sc->sc_flags & NFE_40BIT_ADDR) {
875 desc64->length = htole16(sc->rxq.bufsz);
876 desc64->flags = htole16(NFE_RX_READY);
877
878 nfe_rxdesc64_sync(sc, desc64,
879 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
880 } else {
881 desc32->length = htole16(sc->rxq.bufsz);
882 desc32->flags = htole16(NFE_RX_READY);
883
884 nfe_rxdesc32_sync(sc, desc32,
885 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
886 }
887 }
888 /* update current RX pointer */
889 sc->rxq.cur = i;
890 }
891
892 void
893 nfe_txeof(struct nfe_softc *sc)
894 {
895 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
896 struct nfe_desc32 *desc32;
897 struct nfe_desc64 *desc64;
898 struct nfe_tx_data *data = NULL;
899 int i;
900 uint16_t flags;
901
902 for (i = sc->txq.next;
903 sc->txq.queued > 0;
904 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
905 if (sc->sc_flags & NFE_40BIT_ADDR) {
906 desc64 = &sc->txq.desc64[i];
907 nfe_txdesc64_sync(sc, desc64,
908 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
909
910 flags = le16toh(desc64->flags);
911 } else {
912 desc32 = &sc->txq.desc32[i];
913 nfe_txdesc32_sync(sc, desc32,
914 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
915
916 flags = le16toh(desc32->flags);
917 }
918
919 if ((flags & NFE_TX_VALID) != 0)
920 break;
921
922 data = &sc->txq.data[i];
923
924 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
925 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
926 data->m == NULL)
927 continue;
928
929 if ((flags & NFE_TX_ERROR_V1) != 0) {
930 printf("%s: tx v1 error 0x%04x\n",
931 sc->sc_dev.dv_xname, flags);
932 ifp->if_oerrors++;
933 } else
934 ifp->if_opackets++;
935 } else {
936 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
937 data->m == NULL)
938 continue;
939
940 if ((flags & NFE_TX_ERROR_V2) != 0) {
941 printf("%s: tx v2 error 0x%04x\n",
942 sc->sc_dev.dv_xname, flags);
943 ifp->if_oerrors++;
944 } else
945 ifp->if_opackets++;
946 }
947
948 if (data->m == NULL) { /* should not get there */
949 printf("%s: last fragment bit w/o associated mbuf!\n",
950 sc->sc_dev.dv_xname);
951 continue;
952 }
953
954 /* last fragment of the mbuf chain transmitted */
955 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
956 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
957 bus_dmamap_unload(sc->sc_dmat, data->active);
958 m_freem(data->m);
959 data->m = NULL;
960 }
961
962 sc->txq.next = i;
963
964 if (sc->txq.queued < NFE_TX_RING_COUNT) {
965 /* at least one slot freed */
966 ifp->if_flags &= ~IFF_OACTIVE;
967 }
968
969 if (sc->txq.queued == 0) {
970 /* all queued packets are sent */
971 ifp->if_timer = 0;
972 }
973 }
974
975 int
976 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
977 {
978 struct nfe_desc32 *desc32;
979 struct nfe_desc64 *desc64;
980 struct nfe_tx_data *data;
981 bus_dmamap_t map;
982 uint16_t flags, csumflags;
983 #if NVLAN > 0
984 struct m_tag *mtag;
985 uint32_t vtag = 0;
986 #endif
987 int error, i, first;
988
989 desc32 = NULL;
990 desc64 = NULL;
991 data = NULL;
992
993 flags = 0;
994 csumflags = 0;
995 first = sc->txq.cur;
996
997 map = sc->txq.data[first].map;
998
999 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1000 if (error != 0) {
1001 printf("%s: could not map mbuf (error %d)\n",
1002 sc->sc_dev.dv_xname, error);
1003 return error;
1004 }
1005
1006 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1007 bus_dmamap_unload(sc->sc_dmat, map);
1008 return ENOBUFS;
1009 }
1010
1011 #if NVLAN > 0
1012 /* setup h/w VLAN tagging */
1013 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1014 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1015 #endif
1016 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1017 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1018 csumflags |= NFE_TX_IP_CSUM;
1019 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1020 csumflags |= NFE_TX_TCP_UDP_CSUM;
1021 }
1022
1023 for (i = 0; i < map->dm_nsegs; i++) {
1024 data = &sc->txq.data[sc->txq.cur];
1025
1026 if (sc->sc_flags & NFE_40BIT_ADDR) {
1027 desc64 = &sc->txq.desc64[sc->txq.cur];
1028 #if defined(__LP64__)
1029 desc64->physaddr[0] =
1030 htole32(map->dm_segs[i].ds_addr >> 32);
1031 #endif
1032 desc64->physaddr[1] =
1033 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1034 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1035 desc64->flags = htole16(flags);
1036 desc64->vtag = 0;
1037 } else {
1038 desc32 = &sc->txq.desc32[sc->txq.cur];
1039
1040 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1041 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1042 desc32->flags = htole16(flags);
1043 }
1044
1045 /*
1046 * Setting of the valid bit in the first descriptor is
1047 * deferred until the whole chain is fully setup.
1048 */
1049 flags |= NFE_TX_VALID;
1050
1051 sc->txq.queued++;
1052 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1053 }
1054
1055 /* the whole mbuf chain has been setup */
1056 if (sc->sc_flags & NFE_40BIT_ADDR) {
1057 /* fix last descriptor */
1058 flags |= NFE_TX_LASTFRAG_V2;
1059 desc64->flags = htole16(flags);
1060
1061 /* Checksum flags and vtag belong to the first fragment only. */
1062 #if NVLAN > 0
1063 sc->txq.desc64[first].vtag = htole32(vtag);
1064 #endif
1065 sc->txq.desc64[first].flags |= htole16(csumflags);
1066
1067 /* finally, set the valid bit in the first descriptor */
1068 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1069 } else {
1070 /* fix last descriptor */
1071 if (sc->sc_flags & NFE_JUMBO_SUP)
1072 flags |= NFE_TX_LASTFRAG_V2;
1073 else
1074 flags |= NFE_TX_LASTFRAG_V1;
1075 desc32->flags = htole16(flags);
1076
1077 /* Checksum flags belong to the first fragment only. */
1078 sc->txq.desc32[first].flags |= htole16(csumflags);
1079
1080 /* finally, set the valid bit in the first descriptor */
1081 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1082 }
1083
1084 data->m = m0;
1085 data->active = map;
1086
1087 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1088 BUS_DMASYNC_PREWRITE);
1089
1090 return 0;
1091 }
1092
1093 void
1094 nfe_start(struct ifnet *ifp)
1095 {
1096 struct nfe_softc *sc = ifp->if_softc;
1097 int old = sc->txq.queued;
1098 struct mbuf *m0;
1099
1100 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1101 return;
1102
1103 for (;;) {
1104 IFQ_POLL(&ifp->if_snd, m0);
1105 if (m0 == NULL)
1106 break;
1107
1108 if (nfe_encap(sc, m0) != 0) {
1109 ifp->if_flags |= IFF_OACTIVE;
1110 break;
1111 }
1112
1113 /* packet put in h/w queue, remove from s/w queue */
1114 IFQ_DEQUEUE(&ifp->if_snd, m0);
1115
1116 #if NBPFILTER > 0
1117 if (ifp->if_bpf != NULL)
1118 bpf_mtap(ifp->if_bpf, m0);
1119 #endif
1120 }
1121
1122 if (sc->txq.queued != old) {
1123 /* packets are queued */
1124 if (sc->sc_flags & NFE_40BIT_ADDR)
1125 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1126 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1127 else
1128 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130 /* kick Tx */
1131 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1132
1133 /*
1134 * Set a timeout in case the chip goes out to lunch.
1135 */
1136 ifp->if_timer = 5;
1137 }
1138 }
1139
1140 void
1141 nfe_watchdog(struct ifnet *ifp)
1142 {
1143 struct nfe_softc *sc = ifp->if_softc;
1144
1145 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1146
1147 ifp->if_flags &= ~IFF_RUNNING;
1148 nfe_init(ifp);
1149
1150 ifp->if_oerrors++;
1151 }
1152
1153 int
1154 nfe_init(struct ifnet *ifp)
1155 {
1156 struct nfe_softc *sc = ifp->if_softc;
1157 uint32_t tmp;
1158 int s;
1159
1160 if (ifp->if_flags & IFF_RUNNING)
1161 return 0;
1162
1163 nfe_stop(ifp, 0);
1164
1165 NFE_WRITE(sc, NFE_TX_UNK, 0);
1166 NFE_WRITE(sc, NFE_STATUS, 0);
1167
1168 sc->rxtxctl = NFE_RXTX_BIT2;
1169 if (sc->sc_flags & NFE_40BIT_ADDR)
1170 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1171 else if (sc->sc_flags & NFE_JUMBO_SUP)
1172 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1173 if (sc->sc_flags & NFE_HW_CSUM)
1174 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1175 #if NVLAN > 0
1176 /*
1177 * Although the adapter is capable of stripping VLAN tags from received
1178 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1179 * purpose. This will be done in software by our network stack.
1180 */
1181 if (sc->sc_flags & NFE_HW_VLAN)
1182 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1183 #endif
1184 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1185 DELAY(10);
1186 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1187
1188 #if NVLAN
1189 if (sc->sc_flags & NFE_HW_VLAN)
1190 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1191 #endif
1192
1193 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1194
1195 /* set MAC address */
1196 nfe_set_macaddr(sc, sc->sc_enaddr);
1197
1198 /* tell MAC where rings are in memory */
1199 #ifdef __LP64__
1200 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1201 #endif
1202 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1203 #ifdef __LP64__
1204 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1205 #endif
1206 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1207
1208 NFE_WRITE(sc, NFE_RING_SIZE,
1209 (NFE_RX_RING_COUNT - 1) << 16 |
1210 (NFE_TX_RING_COUNT - 1));
1211
1212 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1213
1214 /* force MAC to wakeup */
1215 tmp = NFE_READ(sc, NFE_PWR_STATE);
1216 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1217 DELAY(10);
1218 tmp = NFE_READ(sc, NFE_PWR_STATE);
1219 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1220
1221 s = splnet();
1222 nfe_intr(sc); /* XXX clear IRQ status registers */
1223 splx(s);
1224
1225 #if 1
1226 /* configure interrupts coalescing/mitigation */
1227 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1228 #else
1229 /* no interrupt mitigation: one interrupt per packet */
1230 NFE_WRITE(sc, NFE_IMTIMER, 970);
1231 #endif
1232
1233 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1234 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1235 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1236
1237 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1238 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1239
1240 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1241 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1242
1243 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1244 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1245 DELAY(10);
1246 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1247
1248 /* set Rx filter */
1249 nfe_setmulti(sc);
1250
1251 nfe_ifmedia_upd(ifp);
1252
1253 nfe_tick(sc);
1254
1255 /* enable Rx */
1256 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1257
1258 /* enable Tx */
1259 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1260
1261 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1262
1263 /* enable interrupts */
1264 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1265
1266 callout_schedule(&sc->sc_tick_ch, hz);
1267
1268 ifp->if_flags |= IFF_RUNNING;
1269 ifp->if_flags &= ~IFF_OACTIVE;
1270
1271 return 0;
1272 }
1273
1274 void
1275 nfe_stop(struct ifnet *ifp, int disable)
1276 {
1277 struct nfe_softc *sc = ifp->if_softc;
1278
1279 callout_stop(&sc->sc_tick_ch);
1280
1281 ifp->if_timer = 0;
1282 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1283
1284 mii_down(&sc->sc_mii);
1285
1286 /* abort Tx */
1287 NFE_WRITE(sc, NFE_TX_CTL, 0);
1288
1289 /* disable Rx */
1290 NFE_WRITE(sc, NFE_RX_CTL, 0);
1291
1292 /* disable interrupts */
1293 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1294
1295 /* reset Tx and Rx rings */
1296 nfe_reset_tx_ring(sc, &sc->txq);
1297 nfe_reset_rx_ring(sc, &sc->rxq);
1298 }
1299
1300 int
1301 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1302 {
1303 struct nfe_desc32 *desc32;
1304 struct nfe_desc64 *desc64;
1305 struct nfe_rx_data *data;
1306 struct nfe_jbuf *jbuf;
1307 void **desc;
1308 bus_addr_t physaddr;
1309 int i, nsegs, error, descsize;
1310
1311 if (sc->sc_flags & NFE_40BIT_ADDR) {
1312 desc = (void **)&ring->desc64;
1313 descsize = sizeof (struct nfe_desc64);
1314 } else {
1315 desc = (void **)&ring->desc32;
1316 descsize = sizeof (struct nfe_desc32);
1317 }
1318
1319 ring->cur = ring->next = 0;
1320 ring->bufsz = MCLBYTES;
1321
1322 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1323 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1324 if (error != 0) {
1325 printf("%s: could not create desc DMA map\n",
1326 sc->sc_dev.dv_xname);
1327 goto fail;
1328 }
1329
1330 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1331 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1332 if (error != 0) {
1333 printf("%s: could not allocate DMA memory\n",
1334 sc->sc_dev.dv_xname);
1335 goto fail;
1336 }
1337
1338 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1339 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1340 if (error != 0) {
1341 printf("%s: could not map desc DMA memory\n",
1342 sc->sc_dev.dv_xname);
1343 goto fail;
1344 }
1345
1346 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1347 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1348 if (error != 0) {
1349 printf("%s: could not load desc DMA map\n",
1350 sc->sc_dev.dv_xname);
1351 goto fail;
1352 }
1353
1354 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1355 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1356
1357 if (sc->sc_flags & NFE_USE_JUMBO) {
1358 ring->bufsz = NFE_JBYTES;
1359 if ((error = nfe_jpool_alloc(sc)) != 0) {
1360 printf("%s: could not allocate jumbo frames\n",
1361 sc->sc_dev.dv_xname);
1362 goto fail;
1363 }
1364 }
1365
1366 /*
1367 * Pre-allocate Rx buffers and populate Rx ring.
1368 */
1369 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1370 data = &sc->rxq.data[i];
1371
1372 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1373 if (data->m == NULL) {
1374 printf("%s: could not allocate rx mbuf\n",
1375 sc->sc_dev.dv_xname);
1376 error = ENOMEM;
1377 goto fail;
1378 }
1379
1380 if (sc->sc_flags & NFE_USE_JUMBO) {
1381 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1382 printf("%s: could not allocate jumbo buffer\n",
1383 sc->sc_dev.dv_xname);
1384 goto fail;
1385 }
1386 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1387 sc);
1388
1389 physaddr = jbuf->physaddr;
1390 } else {
1391 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1392 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1393 if (error != 0) {
1394 printf("%s: could not create DMA map\n",
1395 sc->sc_dev.dv_xname);
1396 goto fail;
1397 }
1398 MCLGET(data->m, M_DONTWAIT);
1399 if (!(data->m->m_flags & M_EXT)) {
1400 printf("%s: could not allocate mbuf cluster\n",
1401 sc->sc_dev.dv_xname);
1402 error = ENOMEM;
1403 goto fail;
1404 }
1405
1406 error = bus_dmamap_load(sc->sc_dmat, data->map,
1407 mtod(data->m, void *), MCLBYTES, NULL,
1408 BUS_DMA_READ | BUS_DMA_NOWAIT);
1409 if (error != 0) {
1410 printf("%s: could not load rx buf DMA map",
1411 sc->sc_dev.dv_xname);
1412 goto fail;
1413 }
1414 physaddr = data->map->dm_segs[0].ds_addr;
1415 }
1416
1417 if (sc->sc_flags & NFE_40BIT_ADDR) {
1418 desc64 = &sc->rxq.desc64[i];
1419 #if defined(__LP64__)
1420 desc64->physaddr[0] = htole32(physaddr >> 32);
1421 #endif
1422 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1423 desc64->length = htole16(sc->rxq.bufsz);
1424 desc64->flags = htole16(NFE_RX_READY);
1425 } else {
1426 desc32 = &sc->rxq.desc32[i];
1427 desc32->physaddr = htole32(physaddr);
1428 desc32->length = htole16(sc->rxq.bufsz);
1429 desc32->flags = htole16(NFE_RX_READY);
1430 }
1431 }
1432
1433 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1434 BUS_DMASYNC_PREWRITE);
1435
1436 return 0;
1437
1438 fail: nfe_free_rx_ring(sc, ring);
1439 return error;
1440 }
1441
1442 void
1443 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1444 {
1445 int i;
1446
1447 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1448 if (sc->sc_flags & NFE_40BIT_ADDR) {
1449 ring->desc64[i].length = htole16(ring->bufsz);
1450 ring->desc64[i].flags = htole16(NFE_RX_READY);
1451 } else {
1452 ring->desc32[i].length = htole16(ring->bufsz);
1453 ring->desc32[i].flags = htole16(NFE_RX_READY);
1454 }
1455 }
1456
1457 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1458 BUS_DMASYNC_PREWRITE);
1459
1460 ring->cur = ring->next = 0;
1461 }
1462
1463 void
1464 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1465 {
1466 struct nfe_rx_data *data;
1467 void *desc;
1468 int i, descsize;
1469
1470 if (sc->sc_flags & NFE_40BIT_ADDR) {
1471 desc = ring->desc64;
1472 descsize = sizeof (struct nfe_desc64);
1473 } else {
1474 desc = ring->desc32;
1475 descsize = sizeof (struct nfe_desc32);
1476 }
1477
1478 if (desc != NULL) {
1479 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1480 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1481 bus_dmamap_unload(sc->sc_dmat, ring->map);
1482 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1483 NFE_RX_RING_COUNT * descsize);
1484 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1485 }
1486
1487 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1488 data = &ring->data[i];
1489
1490 if (data->map != NULL) {
1491 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1492 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1493 bus_dmamap_unload(sc->sc_dmat, data->map);
1494 bus_dmamap_destroy(sc->sc_dmat, data->map);
1495 }
1496 if (data->m != NULL)
1497 m_freem(data->m);
1498 }
1499 }
1500
1501 struct nfe_jbuf *
1502 nfe_jalloc(struct nfe_softc *sc, int i)
1503 {
1504 struct nfe_jbuf *jbuf;
1505
1506 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1507 if (jbuf == NULL)
1508 return NULL;
1509 sc->rxq.jbufmap[i] =
1510 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1511 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1512 return jbuf;
1513 }
1514
1515 /*
1516 * This is called automatically by the network stack when the mbuf is freed.
1517 * Caution must be taken that the NIC might be reset by the time the mbuf is
1518 * freed.
1519 */
1520 void
1521 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1522 {
1523 struct nfe_softc *sc = arg;
1524 struct nfe_jbuf *jbuf;
1525 int i;
1526
1527 /* find the jbuf from the base pointer */
1528 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1529 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1530 printf("%s: request to free a buffer (%p) not managed by us\n",
1531 sc->sc_dev.dv_xname, buf);
1532 return;
1533 }
1534 jbuf = &sc->rxq.jbuf[i];
1535
1536 /* ..and put it back in the free list */
1537 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1538
1539 if (m != NULL)
1540 pool_cache_put(&mbpool_cache, m);
1541 }
1542
1543 int
1544 nfe_jpool_alloc(struct nfe_softc *sc)
1545 {
1546 struct nfe_rx_ring *ring = &sc->rxq;
1547 struct nfe_jbuf *jbuf;
1548 bus_addr_t physaddr;
1549 char *buf;
1550 int i, nsegs, error;
1551
1552 /*
1553 * Allocate a big chunk of DMA'able memory.
1554 */
1555 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1556 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1557 if (error != 0) {
1558 printf("%s: could not create jumbo DMA map\n",
1559 sc->sc_dev.dv_xname);
1560 goto fail;
1561 }
1562
1563 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1564 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1565 if (error != 0) {
1566 printf("%s could not allocate jumbo DMA memory\n",
1567 sc->sc_dev.dv_xname);
1568 goto fail;
1569 }
1570
1571 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1572 &ring->jpool, BUS_DMA_NOWAIT);
1573 if (error != 0) {
1574 printf("%s: could not map jumbo DMA memory\n",
1575 sc->sc_dev.dv_xname);
1576 goto fail;
1577 }
1578
1579 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1580 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1581 if (error != 0) {
1582 printf("%s: could not load jumbo DMA map\n",
1583 sc->sc_dev.dv_xname);
1584 goto fail;
1585 }
1586
1587 /* ..and split it into 9KB chunks */
1588 SLIST_INIT(&ring->jfreelist);
1589
1590 buf = ring->jpool;
1591 physaddr = ring->jmap->dm_segs[0].ds_addr;
1592 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1593 jbuf = &ring->jbuf[i];
1594
1595 jbuf->buf = buf;
1596 jbuf->physaddr = physaddr;
1597
1598 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1599
1600 buf += NFE_JBYTES;
1601 physaddr += NFE_JBYTES;
1602 }
1603
1604 return 0;
1605
1606 fail: nfe_jpool_free(sc);
1607 return error;
1608 }
1609
1610 void
1611 nfe_jpool_free(struct nfe_softc *sc)
1612 {
1613 struct nfe_rx_ring *ring = &sc->rxq;
1614
1615 if (ring->jmap != NULL) {
1616 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1617 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1618 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1619 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1620 }
1621 if (ring->jpool != NULL) {
1622 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1623 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1624 }
1625 }
1626
1627 int
1628 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1629 {
1630 int i, nsegs, error;
1631 void **desc;
1632 int descsize;
1633
1634 if (sc->sc_flags & NFE_40BIT_ADDR) {
1635 desc = (void **)&ring->desc64;
1636 descsize = sizeof (struct nfe_desc64);
1637 } else {
1638 desc = (void **)&ring->desc32;
1639 descsize = sizeof (struct nfe_desc32);
1640 }
1641
1642 ring->queued = 0;
1643 ring->cur = ring->next = 0;
1644
1645 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1646 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1647
1648 if (error != 0) {
1649 printf("%s: could not create desc DMA map\n",
1650 sc->sc_dev.dv_xname);
1651 goto fail;
1652 }
1653
1654 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1655 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1656 if (error != 0) {
1657 printf("%s: could not allocate DMA memory\n",
1658 sc->sc_dev.dv_xname);
1659 goto fail;
1660 }
1661
1662 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1663 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1664 if (error != 0) {
1665 printf("%s: could not map desc DMA memory\n",
1666 sc->sc_dev.dv_xname);
1667 goto fail;
1668 }
1669
1670 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1671 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1672 if (error != 0) {
1673 printf("%s: could not load desc DMA map\n",
1674 sc->sc_dev.dv_xname);
1675 goto fail;
1676 }
1677
1678 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1679 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1680
1681 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1682 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1683 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1684 &ring->data[i].map);
1685 if (error != 0) {
1686 printf("%s: could not create DMA map\n",
1687 sc->sc_dev.dv_xname);
1688 goto fail;
1689 }
1690 }
1691
1692 return 0;
1693
1694 fail: nfe_free_tx_ring(sc, ring);
1695 return error;
1696 }
1697
1698 void
1699 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1700 {
1701 struct nfe_tx_data *data;
1702 int i;
1703
1704 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1705 if (sc->sc_flags & NFE_40BIT_ADDR)
1706 ring->desc64[i].flags = 0;
1707 else
1708 ring->desc32[i].flags = 0;
1709
1710 data = &ring->data[i];
1711
1712 if (data->m != NULL) {
1713 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1714 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1715 bus_dmamap_unload(sc->sc_dmat, data->active);
1716 m_freem(data->m);
1717 data->m = NULL;
1718 }
1719 }
1720
1721 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1722 BUS_DMASYNC_PREWRITE);
1723
1724 ring->queued = 0;
1725 ring->cur = ring->next = 0;
1726 }
1727
1728 void
1729 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1730 {
1731 struct nfe_tx_data *data;
1732 void *desc;
1733 int i, descsize;
1734
1735 if (sc->sc_flags & NFE_40BIT_ADDR) {
1736 desc = ring->desc64;
1737 descsize = sizeof (struct nfe_desc64);
1738 } else {
1739 desc = ring->desc32;
1740 descsize = sizeof (struct nfe_desc32);
1741 }
1742
1743 if (desc != NULL) {
1744 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1745 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1746 bus_dmamap_unload(sc->sc_dmat, ring->map);
1747 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1748 NFE_TX_RING_COUNT * descsize);
1749 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1750 }
1751
1752 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1753 data = &ring->data[i];
1754
1755 if (data->m != NULL) {
1756 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1757 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1758 bus_dmamap_unload(sc->sc_dmat, data->active);
1759 m_freem(data->m);
1760 }
1761 }
1762
1763 /* ..and now actually destroy the DMA mappings */
1764 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1765 data = &ring->data[i];
1766 if (data->map == NULL)
1767 continue;
1768 bus_dmamap_destroy(sc->sc_dmat, data->map);
1769 }
1770 }
1771
1772 int
1773 nfe_ifmedia_upd(struct ifnet *ifp)
1774 {
1775 struct nfe_softc *sc = ifp->if_softc;
1776 struct mii_data *mii = &sc->sc_mii;
1777 struct mii_softc *miisc;
1778
1779 if (mii->mii_instance != 0) {
1780 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1781 mii_phy_reset(miisc);
1782 }
1783 return mii_mediachg(mii);
1784 }
1785
1786 void
1787 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1788 {
1789 struct nfe_softc *sc = ifp->if_softc;
1790 struct mii_data *mii = &sc->sc_mii;
1791
1792 mii_pollstat(mii);
1793 ifmr->ifm_status = mii->mii_media_status;
1794 ifmr->ifm_active = mii->mii_media_active;
1795 }
1796
1797 void
1798 nfe_setmulti(struct nfe_softc *sc)
1799 {
1800 struct ethercom *ec = &sc->sc_ethercom;
1801 struct ifnet *ifp = &ec->ec_if;
1802 struct ether_multi *enm;
1803 struct ether_multistep step;
1804 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1805 uint32_t filter = NFE_RXFILTER_MAGIC;
1806 int i;
1807
1808 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1809 bzero(addr, ETHER_ADDR_LEN);
1810 bzero(mask, ETHER_ADDR_LEN);
1811 goto done;
1812 }
1813
1814 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1815 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1816
1817 ETHER_FIRST_MULTI(step, ec, enm);
1818 while (enm != NULL) {
1819 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1820 ifp->if_flags |= IFF_ALLMULTI;
1821 bzero(addr, ETHER_ADDR_LEN);
1822 bzero(mask, ETHER_ADDR_LEN);
1823 goto done;
1824 }
1825 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1826 addr[i] &= enm->enm_addrlo[i];
1827 mask[i] &= ~enm->enm_addrlo[i];
1828 }
1829 ETHER_NEXT_MULTI(step, enm);
1830 }
1831 for (i = 0; i < ETHER_ADDR_LEN; i++)
1832 mask[i] |= addr[i];
1833
1834 done:
1835 addr[0] |= 0x01; /* make sure multicast bit is set */
1836
1837 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1838 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1839 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1840 addr[5] << 8 | addr[4]);
1841 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1842 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1843 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1844 mask[5] << 8 | mask[4]);
1845
1846 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1847 NFE_WRITE(sc, NFE_RXFILTER, filter);
1848 }
1849
1850 void
1851 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1852 {
1853 uint32_t tmp;
1854
1855 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1856 addr[0] = (tmp >> 8) & 0xff;
1857 addr[1] = (tmp & 0xff);
1858
1859 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1860 addr[2] = (tmp >> 24) & 0xff;
1861 addr[3] = (tmp >> 16) & 0xff;
1862 addr[4] = (tmp >> 8) & 0xff;
1863 addr[5] = (tmp & 0xff);
1864 }
1865
1866 void
1867 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1868 {
1869 NFE_WRITE(sc, NFE_MACADDR_LO,
1870 addr[5] << 8 | addr[4]);
1871 NFE_WRITE(sc, NFE_MACADDR_HI,
1872 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1873 }
1874
1875 void
1876 nfe_tick(void *arg)
1877 {
1878 struct nfe_softc *sc = arg;
1879 int s;
1880
1881 s = splnet();
1882 mii_tick(&sc->sc_mii);
1883 splx(s);
1884
1885 callout_schedule(&sc->sc_tick_ch, hz);
1886 }
1887