if_nfe.c revision 1.16.6.6 1 /* $NetBSD: if_nfe.c,v 1.16.6.6 2007/11/11 16:47:41 joerg Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.16.6.6 2007/11/11 16:47:41 joerg Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206 char devinfo[256];
207
208 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
209 aprint_normal(": %s (rev. 0x%02x)\n",
210 devinfo, PCI_REVISION(pa->pa_class));
211
212 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
213 switch (memtype) {
214 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
215 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
216 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
217 &sc->sc_memh, NULL, &memsize) == 0)
218 break;
219 /* FALLTHROUGH */
220 default:
221 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
222 return;
223 }
224
225 if (pci_intr_map(pa, &ih) != 0) {
226 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
227 return;
228 }
229
230 intrstr = pci_intr_string(pc, ih);
231 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
232 if (sc->sc_ih == NULL) {
233 printf("%s: could not establish interrupt",
234 sc->sc_dev.dv_xname);
235 if (intrstr != NULL)
236 printf(" at %s", intrstr);
237 printf("\n");
238 return;
239 }
240 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
241
242 sc->sc_dmat = pa->pa_dmat;
243
244 nfe_get_macaddr(sc, sc->sc_enaddr);
245 printf("%s: Ethernet address %s\n",
246 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
247
248 sc->sc_flags = 0;
249
250 switch (PCI_PRODUCT(pa->pa_id)) {
251 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
252 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
253 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
254 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
255 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
256 break;
257 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
258 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
259 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
260 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
261 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
262 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
263 sc->sc_flags |= NFE_40BIT_ADDR;
264 break;
265 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
266 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
269 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
270 break;
271 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
276 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
277 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
278 NFE_HW_VLAN;
279 break;
280 }
281
282 #ifndef NFE_NO_JUMBO
283 /* enable jumbo frames for adapters that support it */
284 if (sc->sc_flags & NFE_JUMBO_SUP)
285 sc->sc_flags |= NFE_USE_JUMBO;
286 #endif
287
288 /*
289 * Allocate Tx and Rx rings.
290 */
291 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
292 printf("%s: could not allocate Tx ring\n",
293 sc->sc_dev.dv_xname);
294 return;
295 }
296
297 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
298 printf("%s: could not allocate Rx ring\n",
299 sc->sc_dev.dv_xname);
300 nfe_free_tx_ring(sc, &sc->txq);
301 return;
302 }
303
304 ifp = &sc->sc_ethercom.ec_if;
305 ifp->if_softc = sc;
306 ifp->if_mtu = ETHERMTU;
307 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
308 ifp->if_ioctl = nfe_ioctl;
309 ifp->if_start = nfe_start;
310 ifp->if_stop = nfe_stop;
311 ifp->if_watchdog = nfe_watchdog;
312 ifp->if_init = nfe_init;
313 ifp->if_baudrate = IF_Gbps(1);
314 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
315 IFQ_SET_READY(&ifp->if_snd);
316 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
317
318 #if NVLAN > 0
319 if (sc->sc_flags & NFE_HW_VLAN)
320 sc->sc_ethercom.ec_capabilities |=
321 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
322 #endif
323 if (sc->sc_flags & NFE_HW_CSUM) {
324 ifp->if_capabilities |=
325 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
326 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
327 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
328 }
329
330 sc->sc_mii.mii_ifp = ifp;
331 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
332 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
333 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
334
335 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
336 nfe_ifmedia_sts);
337 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
338 MII_OFFSET_ANY, 0);
339 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
340 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
341 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
342 0, NULL);
343 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
344 } else
345 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
346
347 if_attach(ifp);
348 ether_ifattach(ifp, sc->sc_enaddr);
349
350 callout_init(&sc->sc_tick_ch, 0);
351 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
352
353 if (!pnp_device_register(self, NULL, NULL))
354 aprint_error_dev(self, "couldn't establish power handler\n");
355 else
356 pnp_class_network_register(self, ifp);
357 }
358
359 void
360 nfe_miibus_statchg(struct device *dev)
361 {
362 struct nfe_softc *sc = (struct nfe_softc *)dev;
363 struct mii_data *mii = &sc->sc_mii;
364 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
365
366 phy = NFE_READ(sc, NFE_PHY_IFACE);
367 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
368
369 seed = NFE_READ(sc, NFE_RNDSEED);
370 seed &= ~NFE_SEED_MASK;
371
372 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
373 phy |= NFE_PHY_HDX; /* half-duplex */
374 misc |= NFE_MISC1_HDX;
375 }
376
377 switch (IFM_SUBTYPE(mii->mii_media_active)) {
378 case IFM_1000_T: /* full-duplex only */
379 link |= NFE_MEDIA_1000T;
380 seed |= NFE_SEED_1000T;
381 phy |= NFE_PHY_1000T;
382 break;
383 case IFM_100_TX:
384 link |= NFE_MEDIA_100TX;
385 seed |= NFE_SEED_100TX;
386 phy |= NFE_PHY_100TX;
387 break;
388 case IFM_10_T:
389 link |= NFE_MEDIA_10T;
390 seed |= NFE_SEED_10T;
391 break;
392 }
393
394 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
395
396 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
397 NFE_WRITE(sc, NFE_MISC1, misc);
398 NFE_WRITE(sc, NFE_LINKSPEED, link);
399 }
400
401 int
402 nfe_miibus_readreg(struct device *dev, int phy, int reg)
403 {
404 struct nfe_softc *sc = (struct nfe_softc *)dev;
405 uint32_t val;
406 int ntries;
407
408 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
409
410 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
411 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
412 DELAY(100);
413 }
414
415 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
416
417 for (ntries = 0; ntries < 1000; ntries++) {
418 DELAY(100);
419 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
420 break;
421 }
422 if (ntries == 1000) {
423 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
424 sc->sc_dev.dv_xname));
425 return 0;
426 }
427
428 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
429 DPRINTFN(2, ("%s: could not read PHY\n",
430 sc->sc_dev.dv_xname));
431 return 0;
432 }
433
434 val = NFE_READ(sc, NFE_PHY_DATA);
435 if (val != 0xffffffff && val != 0)
436 sc->mii_phyaddr = phy;
437
438 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
439 sc->sc_dev.dv_xname, phy, reg, val));
440
441 return val;
442 }
443
444 void
445 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
446 {
447 struct nfe_softc *sc = (struct nfe_softc *)dev;
448 uint32_t ctl;
449 int ntries;
450
451 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
452
453 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
454 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
455 DELAY(100);
456 }
457
458 NFE_WRITE(sc, NFE_PHY_DATA, val);
459 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
460 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
461
462 for (ntries = 0; ntries < 1000; ntries++) {
463 DELAY(100);
464 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
465 break;
466 }
467 #ifdef NFE_DEBUG
468 if (nfedebug >= 2 && ntries == 1000)
469 printf("could not write to PHY\n");
470 #endif
471 }
472
473 int
474 nfe_intr(void *arg)
475 {
476 struct nfe_softc *sc = arg;
477 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
478 uint32_t r;
479 int handled;
480
481 if ((ifp->if_flags & IFF_UP) == 0)
482 return 0;
483
484 handled = 0;
485
486 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
487
488 for (;;) {
489 r = NFE_READ(sc, NFE_IRQ_STATUS);
490 if ((r & NFE_IRQ_WANTED) == 0)
491 break;
492
493 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
494 handled = 1;
495 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
496
497 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
498 != 0) {
499 /* check Rx ring */
500 nfe_rxeof(sc);
501 }
502
503 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
504 != 0) {
505 /* check Tx ring */
506 nfe_txeof(sc);
507 }
508
509 if ((r & NFE_IRQ_LINK) != 0) {
510 NFE_READ(sc, NFE_PHY_STATUS);
511 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
512 DPRINTF(("%s: link state changed\n",
513 sc->sc_dev.dv_xname));
514 }
515 }
516
517 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
518
519 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
520 nfe_start(ifp);
521
522 return handled;
523 }
524
525 int
526 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
527 {
528 struct nfe_softc *sc = ifp->if_softc;
529 struct ifreq *ifr = (struct ifreq *)data;
530 struct ifaddr *ifa = (struct ifaddr *)data;
531 int s, error = 0;
532
533 s = splnet();
534
535 switch (cmd) {
536 case SIOCSIFADDR:
537 ifp->if_flags |= IFF_UP;
538 nfe_init(ifp);
539 switch (ifa->ifa_addr->sa_family) {
540 #ifdef INET
541 case AF_INET:
542 arp_ifinit(ifp, ifa);
543 break;
544 #endif
545 default:
546 break;
547 }
548 break;
549 case SIOCSIFMTU:
550 if (ifr->ifr_mtu < ETHERMIN ||
551 ((sc->sc_flags & NFE_USE_JUMBO) &&
552 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
553 (!(sc->sc_flags & NFE_USE_JUMBO) &&
554 ifr->ifr_mtu > ETHERMTU))
555 error = EINVAL;
556 else if (ifp->if_mtu != ifr->ifr_mtu)
557 ifp->if_mtu = ifr->ifr_mtu;
558 break;
559 case SIOCSIFFLAGS:
560 if (ifp->if_flags & IFF_UP) {
561 /*
562 * If only the PROMISC or ALLMULTI flag changes, then
563 * don't do a full re-init of the chip, just update
564 * the Rx filter.
565 */
566 if ((ifp->if_flags & IFF_RUNNING) &&
567 ((ifp->if_flags ^ sc->sc_if_flags) &
568 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
569 nfe_setmulti(sc);
570 else
571 nfe_init(ifp);
572 } else {
573 if (ifp->if_flags & IFF_RUNNING)
574 nfe_stop(ifp, 1);
575 }
576 sc->sc_if_flags = ifp->if_flags;
577 break;
578 case SIOCADDMULTI:
579 case SIOCDELMULTI:
580 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
581 if (ifp->if_flags & IFF_RUNNING)
582 nfe_setmulti(sc);
583 error = 0;
584 }
585 break;
586 case SIOCSIFMEDIA:
587 case SIOCGIFMEDIA:
588 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
589 break;
590 default:
591 error = ether_ioctl(ifp, cmd, data);
592 if (error == ENETRESET) {
593 if (ifp->if_flags & IFF_RUNNING)
594 nfe_setmulti(sc);
595 error = 0;
596 }
597 break;
598
599 }
600
601 splx(s);
602
603 return error;
604 }
605
606 void
607 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
608 {
609 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
610 (char *)desc32 - (char *)sc->txq.desc32,
611 sizeof (struct nfe_desc32), ops);
612 }
613
614 void
615 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
616 {
617 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
618 (char *)desc64 - (char *)sc->txq.desc64,
619 sizeof (struct nfe_desc64), ops);
620 }
621
622 void
623 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
624 {
625 if (end > start) {
626 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
627 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
628 (char *)&sc->txq.desc32[end] -
629 (char *)&sc->txq.desc32[start], ops);
630 return;
631 }
632 /* sync from 'start' to end of ring */
633 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
634 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
635 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
636 (char *)&sc->txq.desc32[start], ops);
637
638 /* sync from start of ring to 'end' */
639 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
640 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
641 }
642
643 void
644 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
645 {
646 if (end > start) {
647 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
648 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
649 (char *)&sc->txq.desc64[end] -
650 (char *)&sc->txq.desc64[start], ops);
651 return;
652 }
653 /* sync from 'start' to end of ring */
654 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
655 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
656 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
657 (char *)&sc->txq.desc64[start], ops);
658
659 /* sync from start of ring to 'end' */
660 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
661 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
662 }
663
664 void
665 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
666 {
667 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
668 (char *)desc32 - (char *)sc->rxq.desc32,
669 sizeof (struct nfe_desc32), ops);
670 }
671
672 void
673 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
674 {
675 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
676 (char *)desc64 - (char *)sc->rxq.desc64,
677 sizeof (struct nfe_desc64), ops);
678 }
679
680 void
681 nfe_rxeof(struct nfe_softc *sc)
682 {
683 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
684 struct nfe_desc32 *desc32;
685 struct nfe_desc64 *desc64;
686 struct nfe_rx_data *data;
687 struct nfe_jbuf *jbuf;
688 struct mbuf *m, *mnew;
689 bus_addr_t physaddr;
690 uint16_t flags;
691 int error, len, i;
692
693 desc32 = NULL;
694 desc64 = NULL;
695 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
696 data = &sc->rxq.data[i];
697
698 if (sc->sc_flags & NFE_40BIT_ADDR) {
699 desc64 = &sc->rxq.desc64[i];
700 nfe_rxdesc64_sync(sc, desc64,
701 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
702
703 flags = le16toh(desc64->flags);
704 len = le16toh(desc64->length) & 0x3fff;
705 } else {
706 desc32 = &sc->rxq.desc32[i];
707 nfe_rxdesc32_sync(sc, desc32,
708 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
709
710 flags = le16toh(desc32->flags);
711 len = le16toh(desc32->length) & 0x3fff;
712 }
713
714 if ((flags & NFE_RX_READY) != 0)
715 break;
716
717 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
718 if ((flags & NFE_RX_VALID_V1) == 0)
719 goto skip;
720
721 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
722 flags &= ~NFE_RX_ERROR;
723 len--; /* fix buffer length */
724 }
725 } else {
726 if ((flags & NFE_RX_VALID_V2) == 0)
727 goto skip;
728
729 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
730 flags &= ~NFE_RX_ERROR;
731 len--; /* fix buffer length */
732 }
733 }
734
735 if (flags & NFE_RX_ERROR) {
736 ifp->if_ierrors++;
737 goto skip;
738 }
739
740 /*
741 * Try to allocate a new mbuf for this ring element and load
742 * it before processing the current mbuf. If the ring element
743 * cannot be loaded, drop the received packet and reuse the
744 * old mbuf. In the unlikely case that the old mbuf can't be
745 * reloaded either, explicitly panic.
746 */
747 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
748 if (mnew == NULL) {
749 ifp->if_ierrors++;
750 goto skip;
751 }
752
753 if (sc->sc_flags & NFE_USE_JUMBO) {
754 physaddr =
755 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
756 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
757 if (len > MCLBYTES) {
758 m_freem(mnew);
759 ifp->if_ierrors++;
760 goto skip1;
761 }
762 MCLGET(mnew, M_DONTWAIT);
763 if ((mnew->m_flags & M_EXT) == 0) {
764 m_freem(mnew);
765 ifp->if_ierrors++;
766 goto skip1;
767 }
768
769 memcpy(mtod(mnew, void *),
770 mtod(data->m, const void *), len);
771 m = mnew;
772 goto mbufcopied;
773 } else {
774 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
775
776 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
777 mtod(data->m, char *) - (char *)sc->rxq.jpool,
778 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
779
780 physaddr = jbuf->physaddr;
781 }
782 } else {
783 MCLGET(mnew, M_DONTWAIT);
784 if ((mnew->m_flags & M_EXT) == 0) {
785 m_freem(mnew);
786 ifp->if_ierrors++;
787 goto skip;
788 }
789
790 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
791 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
792 bus_dmamap_unload(sc->sc_dmat, data->map);
793
794 error = bus_dmamap_load(sc->sc_dmat, data->map,
795 mtod(mnew, void *), MCLBYTES, NULL,
796 BUS_DMA_READ | BUS_DMA_NOWAIT);
797 if (error != 0) {
798 m_freem(mnew);
799
800 /* try to reload the old mbuf */
801 error = bus_dmamap_load(sc->sc_dmat, data->map,
802 mtod(data->m, void *), MCLBYTES, NULL,
803 BUS_DMA_READ | BUS_DMA_NOWAIT);
804 if (error != 0) {
805 /* very unlikely that it will fail.. */
806 panic("%s: could not load old rx mbuf",
807 sc->sc_dev.dv_xname);
808 }
809 ifp->if_ierrors++;
810 goto skip;
811 }
812 physaddr = data->map->dm_segs[0].ds_addr;
813 }
814
815 /*
816 * New mbuf successfully loaded, update Rx ring and continue
817 * processing.
818 */
819 m = data->m;
820 data->m = mnew;
821
822 mbufcopied:
823 /* finalize mbuf */
824 m->m_pkthdr.len = m->m_len = len;
825 m->m_pkthdr.rcvif = ifp;
826
827 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
828 /*
829 * XXX
830 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
831 */
832 if (flags & NFE_RX_IP_CSUMOK) {
833 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
834 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
835 sc->sc_dev.dv_xname));
836 }
837 /*
838 * XXX
839 * no way to check M_CSUM_TCP_UDP_BAD or
840 * other protocols?
841 */
842 if (flags & NFE_RX_UDP_CSUMOK) {
843 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
844 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
845 sc->sc_dev.dv_xname));
846 } else if (flags & NFE_RX_TCP_CSUMOK) {
847 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
848 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
849 sc->sc_dev.dv_xname));
850 }
851 }
852
853 #if NBPFILTER > 0
854 if (ifp->if_bpf)
855 bpf_mtap(ifp->if_bpf, m);
856 #endif
857 ifp->if_ipackets++;
858 (*ifp->if_input)(ifp, m);
859
860 skip1:
861 /* update mapping address in h/w descriptor */
862 if (sc->sc_flags & NFE_40BIT_ADDR) {
863 #if defined(__LP64__)
864 desc64->physaddr[0] = htole32(physaddr >> 32);
865 #endif
866 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
867 } else {
868 desc32->physaddr = htole32(physaddr);
869 }
870
871 skip:
872 if (sc->sc_flags & NFE_40BIT_ADDR) {
873 desc64->length = htole16(sc->rxq.bufsz);
874 desc64->flags = htole16(NFE_RX_READY);
875
876 nfe_rxdesc64_sync(sc, desc64,
877 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
878 } else {
879 desc32->length = htole16(sc->rxq.bufsz);
880 desc32->flags = htole16(NFE_RX_READY);
881
882 nfe_rxdesc32_sync(sc, desc32,
883 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
884 }
885 }
886 /* update current RX pointer */
887 sc->rxq.cur = i;
888 }
889
890 void
891 nfe_txeof(struct nfe_softc *sc)
892 {
893 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
894 struct nfe_desc32 *desc32;
895 struct nfe_desc64 *desc64;
896 struct nfe_tx_data *data = NULL;
897 int i;
898 uint16_t flags;
899
900 for (i = sc->txq.next;
901 sc->txq.queued > 0;
902 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
903 if (sc->sc_flags & NFE_40BIT_ADDR) {
904 desc64 = &sc->txq.desc64[i];
905 nfe_txdesc64_sync(sc, desc64,
906 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
907
908 flags = le16toh(desc64->flags);
909 } else {
910 desc32 = &sc->txq.desc32[i];
911 nfe_txdesc32_sync(sc, desc32,
912 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
913
914 flags = le16toh(desc32->flags);
915 }
916
917 if ((flags & NFE_TX_VALID) != 0)
918 break;
919
920 data = &sc->txq.data[i];
921
922 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
923 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
924 data->m == NULL)
925 continue;
926
927 if ((flags & NFE_TX_ERROR_V1) != 0) {
928 printf("%s: tx v1 error 0x%04x\n",
929 sc->sc_dev.dv_xname, flags);
930 ifp->if_oerrors++;
931 } else
932 ifp->if_opackets++;
933 } else {
934 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
935 data->m == NULL)
936 continue;
937
938 if ((flags & NFE_TX_ERROR_V2) != 0) {
939 printf("%s: tx v2 error 0x%04x\n",
940 sc->sc_dev.dv_xname, flags);
941 ifp->if_oerrors++;
942 } else
943 ifp->if_opackets++;
944 }
945
946 if (data->m == NULL) { /* should not get there */
947 printf("%s: last fragment bit w/o associated mbuf!\n",
948 sc->sc_dev.dv_xname);
949 continue;
950 }
951
952 /* last fragment of the mbuf chain transmitted */
953 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
954 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
955 bus_dmamap_unload(sc->sc_dmat, data->active);
956 m_freem(data->m);
957 data->m = NULL;
958 }
959
960 sc->txq.next = i;
961
962 if (sc->txq.queued < NFE_TX_RING_COUNT) {
963 /* at least one slot freed */
964 ifp->if_flags &= ~IFF_OACTIVE;
965 }
966
967 if (sc->txq.queued == 0) {
968 /* all queued packets are sent */
969 ifp->if_timer = 0;
970 }
971 }
972
973 int
974 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
975 {
976 struct nfe_desc32 *desc32;
977 struct nfe_desc64 *desc64;
978 struct nfe_tx_data *data;
979 bus_dmamap_t map;
980 uint16_t flags, csumflags;
981 #if NVLAN > 0
982 struct m_tag *mtag;
983 uint32_t vtag = 0;
984 #endif
985 int error, i, first;
986
987 desc32 = NULL;
988 desc64 = NULL;
989 data = NULL;
990
991 flags = 0;
992 csumflags = 0;
993 first = sc->txq.cur;
994
995 map = sc->txq.data[first].map;
996
997 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
998 if (error != 0) {
999 printf("%s: could not map mbuf (error %d)\n",
1000 sc->sc_dev.dv_xname, error);
1001 return error;
1002 }
1003
1004 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1005 bus_dmamap_unload(sc->sc_dmat, map);
1006 return ENOBUFS;
1007 }
1008
1009 #if NVLAN > 0
1010 /* setup h/w VLAN tagging */
1011 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1012 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1013 #endif
1014 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1015 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1016 csumflags |= NFE_TX_IP_CSUM;
1017 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1018 csumflags |= NFE_TX_TCP_UDP_CSUM;
1019 }
1020
1021 for (i = 0; i < map->dm_nsegs; i++) {
1022 data = &sc->txq.data[sc->txq.cur];
1023
1024 if (sc->sc_flags & NFE_40BIT_ADDR) {
1025 desc64 = &sc->txq.desc64[sc->txq.cur];
1026 #if defined(__LP64__)
1027 desc64->physaddr[0] =
1028 htole32(map->dm_segs[i].ds_addr >> 32);
1029 #endif
1030 desc64->physaddr[1] =
1031 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1032 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1033 desc64->flags = htole16(flags);
1034 desc64->vtag = 0;
1035 } else {
1036 desc32 = &sc->txq.desc32[sc->txq.cur];
1037
1038 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1039 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1040 desc32->flags = htole16(flags);
1041 }
1042
1043 /*
1044 * Setting of the valid bit in the first descriptor is
1045 * deferred until the whole chain is fully setup.
1046 */
1047 flags |= NFE_TX_VALID;
1048
1049 sc->txq.queued++;
1050 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1051 }
1052
1053 /* the whole mbuf chain has been setup */
1054 if (sc->sc_flags & NFE_40BIT_ADDR) {
1055 /* fix last descriptor */
1056 flags |= NFE_TX_LASTFRAG_V2;
1057 desc64->flags = htole16(flags);
1058
1059 /* Checksum flags and vtag belong to the first fragment only. */
1060 #if NVLAN > 0
1061 sc->txq.desc64[first].vtag = htole32(vtag);
1062 #endif
1063 sc->txq.desc64[first].flags |= htole16(csumflags);
1064
1065 /* finally, set the valid bit in the first descriptor */
1066 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1067 } else {
1068 /* fix last descriptor */
1069 if (sc->sc_flags & NFE_JUMBO_SUP)
1070 flags |= NFE_TX_LASTFRAG_V2;
1071 else
1072 flags |= NFE_TX_LASTFRAG_V1;
1073 desc32->flags = htole16(flags);
1074
1075 /* Checksum flags belong to the first fragment only. */
1076 sc->txq.desc32[first].flags |= htole16(csumflags);
1077
1078 /* finally, set the valid bit in the first descriptor */
1079 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1080 }
1081
1082 data->m = m0;
1083 data->active = map;
1084
1085 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1086 BUS_DMASYNC_PREWRITE);
1087
1088 return 0;
1089 }
1090
1091 void
1092 nfe_start(struct ifnet *ifp)
1093 {
1094 struct nfe_softc *sc = ifp->if_softc;
1095 int old = sc->txq.queued;
1096 struct mbuf *m0;
1097
1098 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1099 return;
1100
1101 for (;;) {
1102 IFQ_POLL(&ifp->if_snd, m0);
1103 if (m0 == NULL)
1104 break;
1105
1106 if (nfe_encap(sc, m0) != 0) {
1107 ifp->if_flags |= IFF_OACTIVE;
1108 break;
1109 }
1110
1111 /* packet put in h/w queue, remove from s/w queue */
1112 IFQ_DEQUEUE(&ifp->if_snd, m0);
1113
1114 #if NBPFILTER > 0
1115 if (ifp->if_bpf != NULL)
1116 bpf_mtap(ifp->if_bpf, m0);
1117 #endif
1118 }
1119
1120 if (sc->txq.queued != old) {
1121 /* packets are queued */
1122 if (sc->sc_flags & NFE_40BIT_ADDR)
1123 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1124 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1125 else
1126 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1127 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1128 /* kick Tx */
1129 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1130
1131 /*
1132 * Set a timeout in case the chip goes out to lunch.
1133 */
1134 ifp->if_timer = 5;
1135 }
1136 }
1137
1138 void
1139 nfe_watchdog(struct ifnet *ifp)
1140 {
1141 struct nfe_softc *sc = ifp->if_softc;
1142
1143 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1144
1145 ifp->if_flags &= ~IFF_RUNNING;
1146 nfe_init(ifp);
1147
1148 ifp->if_oerrors++;
1149 }
1150
1151 int
1152 nfe_init(struct ifnet *ifp)
1153 {
1154 struct nfe_softc *sc = ifp->if_softc;
1155 uint32_t tmp;
1156 int s;
1157
1158 if (ifp->if_flags & IFF_RUNNING)
1159 return 0;
1160
1161 nfe_stop(ifp, 0);
1162
1163 NFE_WRITE(sc, NFE_TX_UNK, 0);
1164 NFE_WRITE(sc, NFE_STATUS, 0);
1165
1166 sc->rxtxctl = NFE_RXTX_BIT2;
1167 if (sc->sc_flags & NFE_40BIT_ADDR)
1168 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1169 else if (sc->sc_flags & NFE_JUMBO_SUP)
1170 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1171 if (sc->sc_flags & NFE_HW_CSUM)
1172 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1173 #if NVLAN > 0
1174 /*
1175 * Although the adapter is capable of stripping VLAN tags from received
1176 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1177 * purpose. This will be done in software by our network stack.
1178 */
1179 if (sc->sc_flags & NFE_HW_VLAN)
1180 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1181 #endif
1182 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1183 DELAY(10);
1184 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1185
1186 #if NVLAN
1187 if (sc->sc_flags & NFE_HW_VLAN)
1188 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1189 #endif
1190
1191 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1192
1193 /* set MAC address */
1194 nfe_set_macaddr(sc, sc->sc_enaddr);
1195
1196 /* tell MAC where rings are in memory */
1197 #ifdef __LP64__
1198 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1199 #endif
1200 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1201 #ifdef __LP64__
1202 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1203 #endif
1204 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1205
1206 NFE_WRITE(sc, NFE_RING_SIZE,
1207 (NFE_RX_RING_COUNT - 1) << 16 |
1208 (NFE_TX_RING_COUNT - 1));
1209
1210 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1211
1212 /* force MAC to wakeup */
1213 tmp = NFE_READ(sc, NFE_PWR_STATE);
1214 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1215 DELAY(10);
1216 tmp = NFE_READ(sc, NFE_PWR_STATE);
1217 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1218
1219 s = splnet();
1220 nfe_intr(sc); /* XXX clear IRQ status registers */
1221 splx(s);
1222
1223 #if 1
1224 /* configure interrupts coalescing/mitigation */
1225 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1226 #else
1227 /* no interrupt mitigation: one interrupt per packet */
1228 NFE_WRITE(sc, NFE_IMTIMER, 970);
1229 #endif
1230
1231 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1232 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1233 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1234
1235 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1236 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1237
1238 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1239 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1240
1241 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1242 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1243 DELAY(10);
1244 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1245
1246 /* set Rx filter */
1247 nfe_setmulti(sc);
1248
1249 nfe_ifmedia_upd(ifp);
1250
1251 nfe_tick(sc);
1252
1253 /* enable Rx */
1254 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1255
1256 /* enable Tx */
1257 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1258
1259 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1260
1261 /* enable interrupts */
1262 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1263
1264 callout_schedule(&sc->sc_tick_ch, hz);
1265
1266 ifp->if_flags |= IFF_RUNNING;
1267 ifp->if_flags &= ~IFF_OACTIVE;
1268
1269 return 0;
1270 }
1271
1272 void
1273 nfe_stop(struct ifnet *ifp, int disable)
1274 {
1275 struct nfe_softc *sc = ifp->if_softc;
1276
1277 callout_stop(&sc->sc_tick_ch);
1278
1279 ifp->if_timer = 0;
1280 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1281
1282 mii_down(&sc->sc_mii);
1283
1284 /* abort Tx */
1285 NFE_WRITE(sc, NFE_TX_CTL, 0);
1286
1287 /* disable Rx */
1288 NFE_WRITE(sc, NFE_RX_CTL, 0);
1289
1290 /* disable interrupts */
1291 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1292
1293 /* reset Tx and Rx rings */
1294 nfe_reset_tx_ring(sc, &sc->txq);
1295 nfe_reset_rx_ring(sc, &sc->rxq);
1296 }
1297
1298 int
1299 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1300 {
1301 struct nfe_desc32 *desc32;
1302 struct nfe_desc64 *desc64;
1303 struct nfe_rx_data *data;
1304 struct nfe_jbuf *jbuf;
1305 void **desc;
1306 bus_addr_t physaddr;
1307 int i, nsegs, error, descsize;
1308
1309 if (sc->sc_flags & NFE_40BIT_ADDR) {
1310 desc = (void **)&ring->desc64;
1311 descsize = sizeof (struct nfe_desc64);
1312 } else {
1313 desc = (void **)&ring->desc32;
1314 descsize = sizeof (struct nfe_desc32);
1315 }
1316
1317 ring->cur = ring->next = 0;
1318 ring->bufsz = MCLBYTES;
1319
1320 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1321 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1322 if (error != 0) {
1323 printf("%s: could not create desc DMA map\n",
1324 sc->sc_dev.dv_xname);
1325 goto fail;
1326 }
1327
1328 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1329 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1330 if (error != 0) {
1331 printf("%s: could not allocate DMA memory\n",
1332 sc->sc_dev.dv_xname);
1333 goto fail;
1334 }
1335
1336 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1337 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1338 if (error != 0) {
1339 printf("%s: could not map desc DMA memory\n",
1340 sc->sc_dev.dv_xname);
1341 goto fail;
1342 }
1343
1344 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1345 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1346 if (error != 0) {
1347 printf("%s: could not load desc DMA map\n",
1348 sc->sc_dev.dv_xname);
1349 goto fail;
1350 }
1351
1352 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1353 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1354
1355 if (sc->sc_flags & NFE_USE_JUMBO) {
1356 ring->bufsz = NFE_JBYTES;
1357 if ((error = nfe_jpool_alloc(sc)) != 0) {
1358 printf("%s: could not allocate jumbo frames\n",
1359 sc->sc_dev.dv_xname);
1360 goto fail;
1361 }
1362 }
1363
1364 /*
1365 * Pre-allocate Rx buffers and populate Rx ring.
1366 */
1367 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1368 data = &sc->rxq.data[i];
1369
1370 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1371 if (data->m == NULL) {
1372 printf("%s: could not allocate rx mbuf\n",
1373 sc->sc_dev.dv_xname);
1374 error = ENOMEM;
1375 goto fail;
1376 }
1377
1378 if (sc->sc_flags & NFE_USE_JUMBO) {
1379 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1380 printf("%s: could not allocate jumbo buffer\n",
1381 sc->sc_dev.dv_xname);
1382 goto fail;
1383 }
1384 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1385 sc);
1386
1387 physaddr = jbuf->physaddr;
1388 } else {
1389 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1390 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1391 if (error != 0) {
1392 printf("%s: could not create DMA map\n",
1393 sc->sc_dev.dv_xname);
1394 goto fail;
1395 }
1396 MCLGET(data->m, M_DONTWAIT);
1397 if (!(data->m->m_flags & M_EXT)) {
1398 printf("%s: could not allocate mbuf cluster\n",
1399 sc->sc_dev.dv_xname);
1400 error = ENOMEM;
1401 goto fail;
1402 }
1403
1404 error = bus_dmamap_load(sc->sc_dmat, data->map,
1405 mtod(data->m, void *), MCLBYTES, NULL,
1406 BUS_DMA_READ | BUS_DMA_NOWAIT);
1407 if (error != 0) {
1408 printf("%s: could not load rx buf DMA map",
1409 sc->sc_dev.dv_xname);
1410 goto fail;
1411 }
1412 physaddr = data->map->dm_segs[0].ds_addr;
1413 }
1414
1415 if (sc->sc_flags & NFE_40BIT_ADDR) {
1416 desc64 = &sc->rxq.desc64[i];
1417 #if defined(__LP64__)
1418 desc64->physaddr[0] = htole32(physaddr >> 32);
1419 #endif
1420 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1421 desc64->length = htole16(sc->rxq.bufsz);
1422 desc64->flags = htole16(NFE_RX_READY);
1423 } else {
1424 desc32 = &sc->rxq.desc32[i];
1425 desc32->physaddr = htole32(physaddr);
1426 desc32->length = htole16(sc->rxq.bufsz);
1427 desc32->flags = htole16(NFE_RX_READY);
1428 }
1429 }
1430
1431 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1432 BUS_DMASYNC_PREWRITE);
1433
1434 return 0;
1435
1436 fail: nfe_free_rx_ring(sc, ring);
1437 return error;
1438 }
1439
1440 void
1441 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1442 {
1443 int i;
1444
1445 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1446 if (sc->sc_flags & NFE_40BIT_ADDR) {
1447 ring->desc64[i].length = htole16(ring->bufsz);
1448 ring->desc64[i].flags = htole16(NFE_RX_READY);
1449 } else {
1450 ring->desc32[i].length = htole16(ring->bufsz);
1451 ring->desc32[i].flags = htole16(NFE_RX_READY);
1452 }
1453 }
1454
1455 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1456 BUS_DMASYNC_PREWRITE);
1457
1458 ring->cur = ring->next = 0;
1459 }
1460
1461 void
1462 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1463 {
1464 struct nfe_rx_data *data;
1465 void *desc;
1466 int i, descsize;
1467
1468 if (sc->sc_flags & NFE_40BIT_ADDR) {
1469 desc = ring->desc64;
1470 descsize = sizeof (struct nfe_desc64);
1471 } else {
1472 desc = ring->desc32;
1473 descsize = sizeof (struct nfe_desc32);
1474 }
1475
1476 if (desc != NULL) {
1477 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1478 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1479 bus_dmamap_unload(sc->sc_dmat, ring->map);
1480 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1481 NFE_RX_RING_COUNT * descsize);
1482 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1483 }
1484
1485 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1486 data = &ring->data[i];
1487
1488 if (data->map != NULL) {
1489 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1490 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1491 bus_dmamap_unload(sc->sc_dmat, data->map);
1492 bus_dmamap_destroy(sc->sc_dmat, data->map);
1493 }
1494 if (data->m != NULL)
1495 m_freem(data->m);
1496 }
1497 }
1498
1499 struct nfe_jbuf *
1500 nfe_jalloc(struct nfe_softc *sc, int i)
1501 {
1502 struct nfe_jbuf *jbuf;
1503
1504 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1505 if (jbuf == NULL)
1506 return NULL;
1507 sc->rxq.jbufmap[i] =
1508 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1509 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1510 return jbuf;
1511 }
1512
1513 /*
1514 * This is called automatically by the network stack when the mbuf is freed.
1515 * Caution must be taken that the NIC might be reset by the time the mbuf is
1516 * freed.
1517 */
1518 void
1519 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1520 {
1521 struct nfe_softc *sc = arg;
1522 struct nfe_jbuf *jbuf;
1523 int i;
1524
1525 /* find the jbuf from the base pointer */
1526 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1527 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1528 printf("%s: request to free a buffer (%p) not managed by us\n",
1529 sc->sc_dev.dv_xname, buf);
1530 return;
1531 }
1532 jbuf = &sc->rxq.jbuf[i];
1533
1534 /* ..and put it back in the free list */
1535 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1536
1537 if (m != NULL)
1538 pool_cache_put(mb_cache, m);
1539 }
1540
1541 int
1542 nfe_jpool_alloc(struct nfe_softc *sc)
1543 {
1544 struct nfe_rx_ring *ring = &sc->rxq;
1545 struct nfe_jbuf *jbuf;
1546 bus_addr_t physaddr;
1547 char *buf;
1548 int i, nsegs, error;
1549
1550 /*
1551 * Allocate a big chunk of DMA'able memory.
1552 */
1553 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1554 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1555 if (error != 0) {
1556 printf("%s: could not create jumbo DMA map\n",
1557 sc->sc_dev.dv_xname);
1558 goto fail;
1559 }
1560
1561 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1562 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1563 if (error != 0) {
1564 printf("%s could not allocate jumbo DMA memory\n",
1565 sc->sc_dev.dv_xname);
1566 goto fail;
1567 }
1568
1569 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1570 &ring->jpool, BUS_DMA_NOWAIT);
1571 if (error != 0) {
1572 printf("%s: could not map jumbo DMA memory\n",
1573 sc->sc_dev.dv_xname);
1574 goto fail;
1575 }
1576
1577 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1578 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1579 if (error != 0) {
1580 printf("%s: could not load jumbo DMA map\n",
1581 sc->sc_dev.dv_xname);
1582 goto fail;
1583 }
1584
1585 /* ..and split it into 9KB chunks */
1586 SLIST_INIT(&ring->jfreelist);
1587
1588 buf = ring->jpool;
1589 physaddr = ring->jmap->dm_segs[0].ds_addr;
1590 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1591 jbuf = &ring->jbuf[i];
1592
1593 jbuf->buf = buf;
1594 jbuf->physaddr = physaddr;
1595
1596 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1597
1598 buf += NFE_JBYTES;
1599 physaddr += NFE_JBYTES;
1600 }
1601
1602 return 0;
1603
1604 fail: nfe_jpool_free(sc);
1605 return error;
1606 }
1607
1608 void
1609 nfe_jpool_free(struct nfe_softc *sc)
1610 {
1611 struct nfe_rx_ring *ring = &sc->rxq;
1612
1613 if (ring->jmap != NULL) {
1614 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1615 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1616 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1617 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1618 }
1619 if (ring->jpool != NULL) {
1620 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1621 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1622 }
1623 }
1624
1625 int
1626 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1627 {
1628 int i, nsegs, error;
1629 void **desc;
1630 int descsize;
1631
1632 if (sc->sc_flags & NFE_40BIT_ADDR) {
1633 desc = (void **)&ring->desc64;
1634 descsize = sizeof (struct nfe_desc64);
1635 } else {
1636 desc = (void **)&ring->desc32;
1637 descsize = sizeof (struct nfe_desc32);
1638 }
1639
1640 ring->queued = 0;
1641 ring->cur = ring->next = 0;
1642
1643 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1644 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1645
1646 if (error != 0) {
1647 printf("%s: could not create desc DMA map\n",
1648 sc->sc_dev.dv_xname);
1649 goto fail;
1650 }
1651
1652 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1653 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1654 if (error != 0) {
1655 printf("%s: could not allocate DMA memory\n",
1656 sc->sc_dev.dv_xname);
1657 goto fail;
1658 }
1659
1660 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1661 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1662 if (error != 0) {
1663 printf("%s: could not map desc DMA memory\n",
1664 sc->sc_dev.dv_xname);
1665 goto fail;
1666 }
1667
1668 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1669 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1670 if (error != 0) {
1671 printf("%s: could not load desc DMA map\n",
1672 sc->sc_dev.dv_xname);
1673 goto fail;
1674 }
1675
1676 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1677 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1678
1679 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1680 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1681 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1682 &ring->data[i].map);
1683 if (error != 0) {
1684 printf("%s: could not create DMA map\n",
1685 sc->sc_dev.dv_xname);
1686 goto fail;
1687 }
1688 }
1689
1690 return 0;
1691
1692 fail: nfe_free_tx_ring(sc, ring);
1693 return error;
1694 }
1695
1696 void
1697 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1698 {
1699 struct nfe_tx_data *data;
1700 int i;
1701
1702 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1703 if (sc->sc_flags & NFE_40BIT_ADDR)
1704 ring->desc64[i].flags = 0;
1705 else
1706 ring->desc32[i].flags = 0;
1707
1708 data = &ring->data[i];
1709
1710 if (data->m != NULL) {
1711 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1712 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1713 bus_dmamap_unload(sc->sc_dmat, data->active);
1714 m_freem(data->m);
1715 data->m = NULL;
1716 }
1717 }
1718
1719 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1720 BUS_DMASYNC_PREWRITE);
1721
1722 ring->queued = 0;
1723 ring->cur = ring->next = 0;
1724 }
1725
1726 void
1727 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1728 {
1729 struct nfe_tx_data *data;
1730 void *desc;
1731 int i, descsize;
1732
1733 if (sc->sc_flags & NFE_40BIT_ADDR) {
1734 desc = ring->desc64;
1735 descsize = sizeof (struct nfe_desc64);
1736 } else {
1737 desc = ring->desc32;
1738 descsize = sizeof (struct nfe_desc32);
1739 }
1740
1741 if (desc != NULL) {
1742 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1743 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1744 bus_dmamap_unload(sc->sc_dmat, ring->map);
1745 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1746 NFE_TX_RING_COUNT * descsize);
1747 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1748 }
1749
1750 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1751 data = &ring->data[i];
1752
1753 if (data->m != NULL) {
1754 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1755 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1756 bus_dmamap_unload(sc->sc_dmat, data->active);
1757 m_freem(data->m);
1758 }
1759 }
1760
1761 /* ..and now actually destroy the DMA mappings */
1762 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1763 data = &ring->data[i];
1764 if (data->map == NULL)
1765 continue;
1766 bus_dmamap_destroy(sc->sc_dmat, data->map);
1767 }
1768 }
1769
1770 int
1771 nfe_ifmedia_upd(struct ifnet *ifp)
1772 {
1773 struct nfe_softc *sc = ifp->if_softc;
1774 struct mii_data *mii = &sc->sc_mii;
1775 struct mii_softc *miisc;
1776
1777 if (mii->mii_instance != 0) {
1778 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1779 mii_phy_reset(miisc);
1780 }
1781 return mii_mediachg(mii);
1782 }
1783
1784 void
1785 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1786 {
1787 struct nfe_softc *sc = ifp->if_softc;
1788 struct mii_data *mii = &sc->sc_mii;
1789
1790 mii_pollstat(mii);
1791 ifmr->ifm_status = mii->mii_media_status;
1792 ifmr->ifm_active = mii->mii_media_active;
1793 }
1794
1795 void
1796 nfe_setmulti(struct nfe_softc *sc)
1797 {
1798 struct ethercom *ec = &sc->sc_ethercom;
1799 struct ifnet *ifp = &ec->ec_if;
1800 struct ether_multi *enm;
1801 struct ether_multistep step;
1802 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1803 uint32_t filter = NFE_RXFILTER_MAGIC;
1804 int i;
1805
1806 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1807 bzero(addr, ETHER_ADDR_LEN);
1808 bzero(mask, ETHER_ADDR_LEN);
1809 goto done;
1810 }
1811
1812 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1813 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1814
1815 ETHER_FIRST_MULTI(step, ec, enm);
1816 while (enm != NULL) {
1817 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1818 ifp->if_flags |= IFF_ALLMULTI;
1819 bzero(addr, ETHER_ADDR_LEN);
1820 bzero(mask, ETHER_ADDR_LEN);
1821 goto done;
1822 }
1823 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1824 addr[i] &= enm->enm_addrlo[i];
1825 mask[i] &= ~enm->enm_addrlo[i];
1826 }
1827 ETHER_NEXT_MULTI(step, enm);
1828 }
1829 for (i = 0; i < ETHER_ADDR_LEN; i++)
1830 mask[i] |= addr[i];
1831
1832 done:
1833 addr[0] |= 0x01; /* make sure multicast bit is set */
1834
1835 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1836 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1837 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1838 addr[5] << 8 | addr[4]);
1839 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1840 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1841 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1842 mask[5] << 8 | mask[4]);
1843
1844 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1845 NFE_WRITE(sc, NFE_RXFILTER, filter);
1846 }
1847
1848 void
1849 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1850 {
1851 uint32_t tmp;
1852
1853 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1854 addr[0] = (tmp >> 8) & 0xff;
1855 addr[1] = (tmp & 0xff);
1856
1857 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1858 addr[2] = (tmp >> 24) & 0xff;
1859 addr[3] = (tmp >> 16) & 0xff;
1860 addr[4] = (tmp >> 8) & 0xff;
1861 addr[5] = (tmp & 0xff);
1862 }
1863
1864 void
1865 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1866 {
1867 NFE_WRITE(sc, NFE_MACADDR_LO,
1868 addr[5] << 8 | addr[4]);
1869 NFE_WRITE(sc, NFE_MACADDR_HI,
1870 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1871 }
1872
1873 void
1874 nfe_tick(void *arg)
1875 {
1876 struct nfe_softc *sc = arg;
1877 int s;
1878
1879 s = splnet();
1880 mii_tick(&sc->sc_mii);
1881 splx(s);
1882
1883 callout_schedule(&sc->sc_tick_ch, hz);
1884 }
1885