if_nfe.c revision 1.17 1 /* $NetBSD: if_nfe.c,v 1.17 2007/09/01 07:32:30 dyoung Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.17 2007/09/01 07:32:30 dyoung Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <machine/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206 char devinfo[256];
207
208 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
209 aprint_normal(": %s (rev. 0x%02x)\n",
210 devinfo, PCI_REVISION(pa->pa_class));
211
212 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
213 switch (memtype) {
214 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
215 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
216 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
217 &sc->sc_memh, NULL, &memsize) == 0)
218 break;
219 /* FALLTHROUGH */
220 default:
221 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
222 return;
223 }
224
225 if (pci_intr_map(pa, &ih) != 0) {
226 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
227 return;
228 }
229
230 intrstr = pci_intr_string(pc, ih);
231 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
232 if (sc->sc_ih == NULL) {
233 printf("%s: could not establish interrupt",
234 sc->sc_dev.dv_xname);
235 if (intrstr != NULL)
236 printf(" at %s", intrstr);
237 printf("\n");
238 return;
239 }
240 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
241
242 sc->sc_dmat = pa->pa_dmat;
243
244 nfe_get_macaddr(sc, sc->sc_enaddr);
245 printf("%s: Ethernet address %s\n",
246 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
247
248 sc->sc_flags = 0;
249
250 switch (PCI_PRODUCT(pa->pa_id)) {
251 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
252 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
253 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
254 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
255 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
256 break;
257 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
258 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
259 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
260 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
261 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
262 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
263 sc->sc_flags |= NFE_40BIT_ADDR;
264 break;
265 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
266 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
269 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
270 break;
271 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
276 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
277 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
278 NFE_HW_VLAN;
279 break;
280 }
281
282 #ifndef NFE_NO_JUMBO
283 /* enable jumbo frames for adapters that support it */
284 if (sc->sc_flags & NFE_JUMBO_SUP)
285 sc->sc_flags |= NFE_USE_JUMBO;
286 #endif
287
288 /*
289 * Allocate Tx and Rx rings.
290 */
291 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
292 printf("%s: could not allocate Tx ring\n",
293 sc->sc_dev.dv_xname);
294 return;
295 }
296
297 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
298 printf("%s: could not allocate Rx ring\n",
299 sc->sc_dev.dv_xname);
300 nfe_free_tx_ring(sc, &sc->txq);
301 return;
302 }
303
304 ifp = &sc->sc_ethercom.ec_if;
305 ifp->if_softc = sc;
306 ifp->if_mtu = ETHERMTU;
307 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
308 ifp->if_ioctl = nfe_ioctl;
309 ifp->if_start = nfe_start;
310 ifp->if_watchdog = nfe_watchdog;
311 ifp->if_init = nfe_init;
312 ifp->if_baudrate = IF_Gbps(1);
313 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
314 IFQ_SET_READY(&ifp->if_snd);
315 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
316
317 #if NVLAN > 0
318 if (sc->sc_flags & NFE_HW_VLAN)
319 sc->sc_ethercom.ec_capabilities |=
320 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
321 #endif
322 if (sc->sc_flags & NFE_HW_CSUM) {
323 ifp->if_capabilities |=
324 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
325 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
326 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
327 }
328
329 sc->sc_mii.mii_ifp = ifp;
330 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
331 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
332 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
333
334 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
335 nfe_ifmedia_sts);
336 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
337 MII_OFFSET_ANY, 0);
338 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
339 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
340 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
341 0, NULL);
342 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
343 } else
344 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
345
346 if_attach(ifp);
347 ether_ifattach(ifp, sc->sc_enaddr);
348
349 callout_init(&sc->sc_tick_ch, 0);
350 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
351
352 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
353 nfe_power, sc);
354 }
355
356 void
357 nfe_power(int why, void *arg)
358 {
359 struct nfe_softc *sc = arg;
360 struct ifnet *ifp;
361
362 if (why == PWR_RESUME) {
363 ifp = &sc->sc_ethercom.ec_if;
364 if (ifp->if_flags & IFF_UP) {
365 ifp->if_flags &= ~IFF_RUNNING;
366 nfe_init(ifp);
367 if (ifp->if_flags & IFF_RUNNING)
368 nfe_start(ifp);
369 }
370 }
371 }
372
373 void
374 nfe_miibus_statchg(struct device *dev)
375 {
376 struct nfe_softc *sc = (struct nfe_softc *)dev;
377 struct mii_data *mii = &sc->sc_mii;
378 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
379
380 phy = NFE_READ(sc, NFE_PHY_IFACE);
381 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
382
383 seed = NFE_READ(sc, NFE_RNDSEED);
384 seed &= ~NFE_SEED_MASK;
385
386 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
387 phy |= NFE_PHY_HDX; /* half-duplex */
388 misc |= NFE_MISC1_HDX;
389 }
390
391 switch (IFM_SUBTYPE(mii->mii_media_active)) {
392 case IFM_1000_T: /* full-duplex only */
393 link |= NFE_MEDIA_1000T;
394 seed |= NFE_SEED_1000T;
395 phy |= NFE_PHY_1000T;
396 break;
397 case IFM_100_TX:
398 link |= NFE_MEDIA_100TX;
399 seed |= NFE_SEED_100TX;
400 phy |= NFE_PHY_100TX;
401 break;
402 case IFM_10_T:
403 link |= NFE_MEDIA_10T;
404 seed |= NFE_SEED_10T;
405 break;
406 }
407
408 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
409
410 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
411 NFE_WRITE(sc, NFE_MISC1, misc);
412 NFE_WRITE(sc, NFE_LINKSPEED, link);
413 }
414
415 int
416 nfe_miibus_readreg(struct device *dev, int phy, int reg)
417 {
418 struct nfe_softc *sc = (struct nfe_softc *)dev;
419 uint32_t val;
420 int ntries;
421
422 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
423
424 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
425 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
426 DELAY(100);
427 }
428
429 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
430
431 for (ntries = 0; ntries < 1000; ntries++) {
432 DELAY(100);
433 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
434 break;
435 }
436 if (ntries == 1000) {
437 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
438 sc->sc_dev.dv_xname));
439 return 0;
440 }
441
442 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
443 DPRINTFN(2, ("%s: could not read PHY\n",
444 sc->sc_dev.dv_xname));
445 return 0;
446 }
447
448 val = NFE_READ(sc, NFE_PHY_DATA);
449 if (val != 0xffffffff && val != 0)
450 sc->mii_phyaddr = phy;
451
452 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
453 sc->sc_dev.dv_xname, phy, reg, val));
454
455 return val;
456 }
457
458 void
459 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
460 {
461 struct nfe_softc *sc = (struct nfe_softc *)dev;
462 uint32_t ctl;
463 int ntries;
464
465 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
466
467 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
468 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
469 DELAY(100);
470 }
471
472 NFE_WRITE(sc, NFE_PHY_DATA, val);
473 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
474 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
475
476 for (ntries = 0; ntries < 1000; ntries++) {
477 DELAY(100);
478 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
479 break;
480 }
481 #ifdef NFE_DEBUG
482 if (nfedebug >= 2 && ntries == 1000)
483 printf("could not write to PHY\n");
484 #endif
485 }
486
487 int
488 nfe_intr(void *arg)
489 {
490 struct nfe_softc *sc = arg;
491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
492 uint32_t r;
493 int handled;
494
495 if ((ifp->if_flags & IFF_UP) == 0)
496 return 0;
497
498 handled = 0;
499
500 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
501
502 for (;;) {
503 r = NFE_READ(sc, NFE_IRQ_STATUS);
504 if ((r & NFE_IRQ_WANTED) == 0)
505 break;
506
507 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
508 handled = 1;
509 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
510
511 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
512 != 0) {
513 /* check Rx ring */
514 nfe_rxeof(sc);
515 }
516
517 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
518 != 0) {
519 /* check Tx ring */
520 nfe_txeof(sc);
521 }
522
523 if ((r & NFE_IRQ_LINK) != 0) {
524 NFE_READ(sc, NFE_PHY_STATUS);
525 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
526 DPRINTF(("%s: link state changed\n",
527 sc->sc_dev.dv_xname));
528 }
529 }
530
531 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
532
533 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
534 nfe_start(ifp);
535
536 return handled;
537 }
538
539 int
540 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
541 {
542 struct nfe_softc *sc = ifp->if_softc;
543 struct ifreq *ifr = (struct ifreq *)data;
544 struct ifaddr *ifa = (struct ifaddr *)data;
545 int s, error = 0;
546
547 s = splnet();
548
549 switch (cmd) {
550 case SIOCSIFADDR:
551 ifp->if_flags |= IFF_UP;
552 nfe_init(ifp);
553 switch (ifa->ifa_addr->sa_family) {
554 #ifdef INET
555 case AF_INET:
556 arp_ifinit(ifp, ifa);
557 break;
558 #endif
559 default:
560 break;
561 }
562 break;
563 case SIOCSIFMTU:
564 if (ifr->ifr_mtu < ETHERMIN ||
565 ((sc->sc_flags & NFE_USE_JUMBO) &&
566 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
567 (!(sc->sc_flags & NFE_USE_JUMBO) &&
568 ifr->ifr_mtu > ETHERMTU))
569 error = EINVAL;
570 else if (ifp->if_mtu != ifr->ifr_mtu)
571 ifp->if_mtu = ifr->ifr_mtu;
572 break;
573 case SIOCSIFFLAGS:
574 if (ifp->if_flags & IFF_UP) {
575 /*
576 * If only the PROMISC or ALLMULTI flag changes, then
577 * don't do a full re-init of the chip, just update
578 * the Rx filter.
579 */
580 if ((ifp->if_flags & IFF_RUNNING) &&
581 ((ifp->if_flags ^ sc->sc_if_flags) &
582 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
583 nfe_setmulti(sc);
584 else
585 nfe_init(ifp);
586 } else {
587 if (ifp->if_flags & IFF_RUNNING)
588 nfe_stop(ifp, 1);
589 }
590 sc->sc_if_flags = ifp->if_flags;
591 break;
592 case SIOCADDMULTI:
593 case SIOCDELMULTI:
594 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
595 if (ifp->if_flags & IFF_RUNNING)
596 nfe_setmulti(sc);
597 error = 0;
598 }
599 break;
600 case SIOCSIFMEDIA:
601 case SIOCGIFMEDIA:
602 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
603 break;
604 default:
605 error = ether_ioctl(ifp, cmd, data);
606 if (error == ENETRESET) {
607 if (ifp->if_flags & IFF_RUNNING)
608 nfe_setmulti(sc);
609 error = 0;
610 }
611 break;
612
613 }
614
615 splx(s);
616
617 return error;
618 }
619
620 void
621 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
622 {
623 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
624 (char *)desc32 - (char *)sc->txq.desc32,
625 sizeof (struct nfe_desc32), ops);
626 }
627
628 void
629 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
630 {
631 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
632 (char *)desc64 - (char *)sc->txq.desc64,
633 sizeof (struct nfe_desc64), ops);
634 }
635
636 void
637 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
638 {
639 if (end > start) {
640 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
641 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
642 (char *)&sc->txq.desc32[end] -
643 (char *)&sc->txq.desc32[start], ops);
644 return;
645 }
646 /* sync from 'start' to end of ring */
647 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
648 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
649 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
650 (char *)&sc->txq.desc32[start], ops);
651
652 /* sync from start of ring to 'end' */
653 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
654 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
655 }
656
657 void
658 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
659 {
660 if (end > start) {
661 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
662 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
663 (char *)&sc->txq.desc64[end] -
664 (char *)&sc->txq.desc64[start], ops);
665 return;
666 }
667 /* sync from 'start' to end of ring */
668 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
669 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
670 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
671 (char *)&sc->txq.desc64[start], ops);
672
673 /* sync from start of ring to 'end' */
674 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
675 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
676 }
677
678 void
679 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
680 {
681 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
682 (char *)desc32 - (char *)sc->rxq.desc32,
683 sizeof (struct nfe_desc32), ops);
684 }
685
686 void
687 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
688 {
689 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
690 (char *)desc64 - (char *)sc->rxq.desc64,
691 sizeof (struct nfe_desc64), ops);
692 }
693
694 void
695 nfe_rxeof(struct nfe_softc *sc)
696 {
697 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
698 struct nfe_desc32 *desc32;
699 struct nfe_desc64 *desc64;
700 struct nfe_rx_data *data;
701 struct nfe_jbuf *jbuf;
702 struct mbuf *m, *mnew;
703 bus_addr_t physaddr;
704 uint16_t flags;
705 int error, len, i;
706
707 desc32 = NULL;
708 desc64 = NULL;
709 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
710 data = &sc->rxq.data[i];
711
712 if (sc->sc_flags & NFE_40BIT_ADDR) {
713 desc64 = &sc->rxq.desc64[i];
714 nfe_rxdesc64_sync(sc, desc64,
715 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
716
717 flags = le16toh(desc64->flags);
718 len = le16toh(desc64->length) & 0x3fff;
719 } else {
720 desc32 = &sc->rxq.desc32[i];
721 nfe_rxdesc32_sync(sc, desc32,
722 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
723
724 flags = le16toh(desc32->flags);
725 len = le16toh(desc32->length) & 0x3fff;
726 }
727
728 if ((flags & NFE_RX_READY) != 0)
729 break;
730
731 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
732 if ((flags & NFE_RX_VALID_V1) == 0)
733 goto skip;
734
735 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
736 flags &= ~NFE_RX_ERROR;
737 len--; /* fix buffer length */
738 }
739 } else {
740 if ((flags & NFE_RX_VALID_V2) == 0)
741 goto skip;
742
743 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
744 flags &= ~NFE_RX_ERROR;
745 len--; /* fix buffer length */
746 }
747 }
748
749 if (flags & NFE_RX_ERROR) {
750 ifp->if_ierrors++;
751 goto skip;
752 }
753
754 /*
755 * Try to allocate a new mbuf for this ring element and load
756 * it before processing the current mbuf. If the ring element
757 * cannot be loaded, drop the received packet and reuse the
758 * old mbuf. In the unlikely case that the old mbuf can't be
759 * reloaded either, explicitly panic.
760 */
761 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
762 if (mnew == NULL) {
763 ifp->if_ierrors++;
764 goto skip;
765 }
766
767 if (sc->sc_flags & NFE_USE_JUMBO) {
768 if ((jbuf = nfe_jalloc(sc)) == NULL) {
769 m_freem(mnew);
770 ifp->if_ierrors++;
771 goto skip;
772 }
773 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
774
775 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
776 mtod(data->m, char *) - (char *)sc->rxq.jpool,
777 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
778
779 physaddr = jbuf->physaddr;
780 } else {
781 MCLGET(mnew, M_DONTWAIT);
782 if ((mnew->m_flags & M_EXT) == 0) {
783 m_freem(mnew);
784 ifp->if_ierrors++;
785 goto skip;
786 }
787
788 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
789 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
790 bus_dmamap_unload(sc->sc_dmat, data->map);
791
792 error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map,
793 mnew, BUS_DMA_READ | BUS_DMA_NOWAIT);
794 if (error != 0) {
795 m_freem(mnew);
796
797 /* try to reload the old mbuf */
798 error = bus_dmamap_load_mbuf(sc->sc_dmat,
799 data->map, data->m,
800 BUS_DMA_READ | BUS_DMA_NOWAIT);
801 if (error != 0) {
802 /* very unlikely that it will fail.. */
803 panic("%s: could not load old rx mbuf",
804 sc->sc_dev.dv_xname);
805 }
806 ifp->if_ierrors++;
807 goto skip;
808 }
809 physaddr = data->map->dm_segs[0].ds_addr;
810 }
811
812 /*
813 * New mbuf successfully loaded, update Rx ring and continue
814 * processing.
815 */
816 m = data->m;
817 data->m = mnew;
818
819 /* finalize mbuf */
820 m->m_pkthdr.len = m->m_len = len;
821 m->m_pkthdr.rcvif = ifp;
822
823 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
824 /*
825 * XXX
826 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
827 */
828 if (flags & NFE_RX_IP_CSUMOK) {
829 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
830 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
831 sc->sc_dev.dv_xname));
832 }
833 /*
834 * XXX
835 * no way to check M_CSUM_TCP_UDP_BAD or
836 * other protocols?
837 */
838 if (flags & NFE_RX_UDP_CSUMOK) {
839 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
840 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
841 sc->sc_dev.dv_xname));
842 } else if (flags & NFE_RX_TCP_CSUMOK) {
843 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
844 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
845 sc->sc_dev.dv_xname));
846 }
847 }
848
849 #if NBPFILTER > 0
850 if (ifp->if_bpf)
851 bpf_mtap(ifp->if_bpf, m);
852 #endif
853 ifp->if_ipackets++;
854 (*ifp->if_input)(ifp, m);
855
856 /* update mapping address in h/w descriptor */
857 if (sc->sc_flags & NFE_40BIT_ADDR) {
858 #if defined(__LP64__)
859 desc64->physaddr[0] = htole32(physaddr >> 32);
860 #endif
861 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
862 } else {
863 desc32->physaddr = htole32(physaddr);
864 }
865
866 skip:
867 if (sc->sc_flags & NFE_40BIT_ADDR) {
868 desc64->length = htole16(sc->rxq.bufsz);
869 desc64->flags = htole16(NFE_RX_READY);
870
871 nfe_rxdesc64_sync(sc, desc64,
872 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
873 } else {
874 desc32->length = htole16(sc->rxq.bufsz);
875 desc32->flags = htole16(NFE_RX_READY);
876
877 nfe_rxdesc32_sync(sc, desc32,
878 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
879 }
880 }
881 /* update current RX pointer */
882 sc->rxq.cur = i;
883 }
884
885 void
886 nfe_txeof(struct nfe_softc *sc)
887 {
888 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
889 struct nfe_desc32 *desc32;
890 struct nfe_desc64 *desc64;
891 struct nfe_tx_data *data = NULL;
892 int i;
893 uint16_t flags;
894
895 for (i = sc->txq.next;
896 sc->txq.queued > 0;
897 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
898 if (sc->sc_flags & NFE_40BIT_ADDR) {
899 desc64 = &sc->txq.desc64[i];
900 nfe_txdesc64_sync(sc, desc64,
901 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
902
903 flags = le16toh(desc64->flags);
904 } else {
905 desc32 = &sc->txq.desc32[i];
906 nfe_txdesc32_sync(sc, desc32,
907 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
908
909 flags = le16toh(desc32->flags);
910 }
911
912 if ((flags & NFE_TX_VALID) != 0)
913 break;
914
915 data = &sc->txq.data[i];
916
917 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
918 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
919 data->m == NULL)
920 continue;
921
922 if ((flags & NFE_TX_ERROR_V1) != 0) {
923 printf("%s: tx v1 error 0x%04x\n",
924 sc->sc_dev.dv_xname, flags);
925 ifp->if_oerrors++;
926 } else
927 ifp->if_opackets++;
928 } else {
929 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
930 data->m == NULL)
931 continue;
932
933 if ((flags & NFE_TX_ERROR_V2) != 0) {
934 printf("%s: tx v2 error 0x%04x\n",
935 sc->sc_dev.dv_xname, flags);
936 ifp->if_oerrors++;
937 } else
938 ifp->if_opackets++;
939 }
940
941 if (data->m == NULL) { /* should not get there */
942 printf("%s: last fragment bit w/o associated mbuf!\n",
943 sc->sc_dev.dv_xname);
944 continue;
945 }
946
947 /* last fragment of the mbuf chain transmitted */
948 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
949 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
950 bus_dmamap_unload(sc->sc_dmat, data->active);
951 m_freem(data->m);
952 data->m = NULL;
953 }
954
955 sc->txq.next = i;
956
957 if (sc->txq.queued < NFE_TX_RING_COUNT) {
958 /* at least one slot freed */
959 ifp->if_flags &= ~IFF_OACTIVE;
960 }
961
962 if (sc->txq.queued == 0) {
963 /* all queued packets are sent */
964 ifp->if_timer = 0;
965 }
966 }
967
968 int
969 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
970 {
971 struct nfe_desc32 *desc32;
972 struct nfe_desc64 *desc64;
973 struct nfe_tx_data *data;
974 bus_dmamap_t map;
975 uint16_t flags, csumflags;
976 #if NVLAN > 0
977 struct m_tag *mtag;
978 uint32_t vtag = 0;
979 #endif
980 int error, i, first;
981
982 desc32 = NULL;
983 desc64 = NULL;
984 data = NULL;
985
986 flags = 0;
987 csumflags = 0;
988 first = sc->txq.cur;
989
990 map = sc->txq.data[first].map;
991
992 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
993 if (error != 0) {
994 printf("%s: could not map mbuf (error %d)\n",
995 sc->sc_dev.dv_xname, error);
996 return error;
997 }
998
999 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1000 bus_dmamap_unload(sc->sc_dmat, map);
1001 return ENOBUFS;
1002 }
1003
1004 #if NVLAN > 0
1005 /* setup h/w VLAN tagging */
1006 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1007 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1008 #endif
1009 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1010 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1011 csumflags |= NFE_TX_IP_CSUM;
1012 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1013 csumflags |= NFE_TX_TCP_UDP_CSUM;
1014 }
1015
1016 for (i = 0; i < map->dm_nsegs; i++) {
1017 data = &sc->txq.data[sc->txq.cur];
1018
1019 if (sc->sc_flags & NFE_40BIT_ADDR) {
1020 desc64 = &sc->txq.desc64[sc->txq.cur];
1021 #if defined(__LP64__)
1022 desc64->physaddr[0] =
1023 htole32(map->dm_segs[i].ds_addr >> 32);
1024 #endif
1025 desc64->physaddr[1] =
1026 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1027 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1028 desc64->flags = htole16(flags);
1029 desc64->vtag = 0;
1030 } else {
1031 desc32 = &sc->txq.desc32[sc->txq.cur];
1032
1033 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1034 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1035 desc32->flags = htole16(flags);
1036 }
1037
1038 /*
1039 * Setting of the valid bit in the first descriptor is
1040 * deferred until the whole chain is fully setup.
1041 */
1042 flags |= NFE_TX_VALID;
1043
1044 sc->txq.queued++;
1045 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1046 }
1047
1048 /* the whole mbuf chain has been setup */
1049 if (sc->sc_flags & NFE_40BIT_ADDR) {
1050 /* fix last descriptor */
1051 flags |= NFE_TX_LASTFRAG_V2;
1052 desc64->flags = htole16(flags);
1053
1054 /* Checksum flags and vtag belong to the first fragment only. */
1055 #if NVLAN > 0
1056 sc->txq.desc64[first].vtag = htole32(vtag);
1057 #endif
1058 sc->txq.desc64[first].flags |= htole16(csumflags);
1059
1060 /* finally, set the valid bit in the first descriptor */
1061 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1062 } else {
1063 /* fix last descriptor */
1064 if (sc->sc_flags & NFE_JUMBO_SUP)
1065 flags |= NFE_TX_LASTFRAG_V2;
1066 else
1067 flags |= NFE_TX_LASTFRAG_V1;
1068 desc32->flags = htole16(flags);
1069
1070 /* Checksum flags belong to the first fragment only. */
1071 sc->txq.desc32[first].flags |= htole16(csumflags);
1072
1073 /* finally, set the valid bit in the first descriptor */
1074 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1075 }
1076
1077 data->m = m0;
1078 data->active = map;
1079
1080 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1081 BUS_DMASYNC_PREWRITE);
1082
1083 return 0;
1084 }
1085
1086 void
1087 nfe_start(struct ifnet *ifp)
1088 {
1089 struct nfe_softc *sc = ifp->if_softc;
1090 int old = sc->txq.queued;
1091 struct mbuf *m0;
1092
1093 for (;;) {
1094 IFQ_POLL(&ifp->if_snd, m0);
1095 if (m0 == NULL)
1096 break;
1097
1098 if (nfe_encap(sc, m0) != 0) {
1099 ifp->if_flags |= IFF_OACTIVE;
1100 break;
1101 }
1102
1103 /* packet put in h/w queue, remove from s/w queue */
1104 IFQ_DEQUEUE(&ifp->if_snd, m0);
1105
1106 #if NBPFILTER > 0
1107 if (ifp->if_bpf != NULL)
1108 bpf_mtap(ifp->if_bpf, m0);
1109 #endif
1110 }
1111
1112 if (sc->txq.queued != old) {
1113 /* packets are queued */
1114 if (sc->sc_flags & NFE_40BIT_ADDR)
1115 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1116 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1117 else
1118 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1119 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1120 /* kick Tx */
1121 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1122
1123 /*
1124 * Set a timeout in case the chip goes out to lunch.
1125 */
1126 ifp->if_timer = 5;
1127 }
1128 }
1129
1130 void
1131 nfe_watchdog(struct ifnet *ifp)
1132 {
1133 struct nfe_softc *sc = ifp->if_softc;
1134
1135 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1136
1137 ifp->if_flags &= ~IFF_RUNNING;
1138 nfe_init(ifp);
1139
1140 ifp->if_oerrors++;
1141 }
1142
1143 int
1144 nfe_init(struct ifnet *ifp)
1145 {
1146 struct nfe_softc *sc = ifp->if_softc;
1147 uint32_t tmp;
1148 int s;
1149
1150 if (ifp->if_flags & IFF_RUNNING)
1151 return 0;
1152
1153 nfe_stop(ifp, 0);
1154
1155 NFE_WRITE(sc, NFE_TX_UNK, 0);
1156 NFE_WRITE(sc, NFE_STATUS, 0);
1157
1158 sc->rxtxctl = NFE_RXTX_BIT2;
1159 if (sc->sc_flags & NFE_40BIT_ADDR)
1160 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1161 else if (sc->sc_flags & NFE_JUMBO_SUP)
1162 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1163 if (sc->sc_flags & NFE_HW_CSUM)
1164 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1165 #if NVLAN > 0
1166 /*
1167 * Although the adapter is capable of stripping VLAN tags from received
1168 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1169 * purpose. This will be done in software by our network stack.
1170 */
1171 if (sc->sc_flags & NFE_HW_VLAN)
1172 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1173 #endif
1174 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1175 DELAY(10);
1176 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1177
1178 #if NVLAN
1179 if (sc->sc_flags & NFE_HW_VLAN)
1180 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1181 #endif
1182
1183 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1184
1185 /* set MAC address */
1186 nfe_set_macaddr(sc, sc->sc_enaddr);
1187
1188 /* tell MAC where rings are in memory */
1189 #ifdef __LP64__
1190 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1191 #endif
1192 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1193 #ifdef __LP64__
1194 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1195 #endif
1196 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1197
1198 NFE_WRITE(sc, NFE_RING_SIZE,
1199 (NFE_RX_RING_COUNT - 1) << 16 |
1200 (NFE_TX_RING_COUNT - 1));
1201
1202 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1203
1204 /* force MAC to wakeup */
1205 tmp = NFE_READ(sc, NFE_PWR_STATE);
1206 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1207 DELAY(10);
1208 tmp = NFE_READ(sc, NFE_PWR_STATE);
1209 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1210
1211 s = splnet();
1212 nfe_intr(sc); /* XXX clear IRQ status registers */
1213 splx(s);
1214
1215 #if 1
1216 /* configure interrupts coalescing/mitigation */
1217 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1218 #else
1219 /* no interrupt mitigation: one interrupt per packet */
1220 NFE_WRITE(sc, NFE_IMTIMER, 970);
1221 #endif
1222
1223 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1224 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1225 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1226
1227 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1228 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1229
1230 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1231 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1232
1233 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1234 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1235 DELAY(10);
1236 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1237
1238 /* set Rx filter */
1239 nfe_setmulti(sc);
1240
1241 nfe_ifmedia_upd(ifp);
1242
1243 nfe_tick(sc);
1244
1245 /* enable Rx */
1246 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1247
1248 /* enable Tx */
1249 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1250
1251 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1252
1253 /* enable interrupts */
1254 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1255
1256 callout_schedule(&sc->sc_tick_ch, hz);
1257
1258 ifp->if_flags |= IFF_RUNNING;
1259 ifp->if_flags &= ~IFF_OACTIVE;
1260
1261 return 0;
1262 }
1263
1264 void
1265 nfe_stop(struct ifnet *ifp, int disable)
1266 {
1267 struct nfe_softc *sc = ifp->if_softc;
1268
1269 callout_stop(&sc->sc_tick_ch);
1270
1271 ifp->if_timer = 0;
1272 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1273
1274 mii_down(&sc->sc_mii);
1275
1276 /* abort Tx */
1277 NFE_WRITE(sc, NFE_TX_CTL, 0);
1278
1279 /* disable Rx */
1280 NFE_WRITE(sc, NFE_RX_CTL, 0);
1281
1282 /* disable interrupts */
1283 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1284
1285 /* reset Tx and Rx rings */
1286 nfe_reset_tx_ring(sc, &sc->txq);
1287 nfe_reset_rx_ring(sc, &sc->rxq);
1288 }
1289
1290 int
1291 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1292 {
1293 struct nfe_desc32 *desc32;
1294 struct nfe_desc64 *desc64;
1295 struct nfe_rx_data *data;
1296 struct nfe_jbuf *jbuf;
1297 void **desc;
1298 bus_addr_t physaddr;
1299 int i, nsegs, error, descsize;
1300
1301 if (sc->sc_flags & NFE_40BIT_ADDR) {
1302 desc = (void **)&ring->desc64;
1303 descsize = sizeof (struct nfe_desc64);
1304 } else {
1305 desc = (void **)&ring->desc32;
1306 descsize = sizeof (struct nfe_desc32);
1307 }
1308
1309 ring->cur = ring->next = 0;
1310 ring->bufsz = MCLBYTES;
1311
1312 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1313 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1314 if (error != 0) {
1315 printf("%s: could not create desc DMA map\n",
1316 sc->sc_dev.dv_xname);
1317 goto fail;
1318 }
1319
1320 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1321 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1322 if (error != 0) {
1323 printf("%s: could not allocate DMA memory\n",
1324 sc->sc_dev.dv_xname);
1325 goto fail;
1326 }
1327
1328 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1329 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1330 if (error != 0) {
1331 printf("%s: could not map desc DMA memory\n",
1332 sc->sc_dev.dv_xname);
1333 goto fail;
1334 }
1335
1336 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1337 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1338 if (error != 0) {
1339 printf("%s: could not load desc DMA map\n",
1340 sc->sc_dev.dv_xname);
1341 goto fail;
1342 }
1343
1344 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1345 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1346
1347 if (sc->sc_flags & NFE_USE_JUMBO) {
1348 ring->bufsz = NFE_JBYTES;
1349 if ((error = nfe_jpool_alloc(sc)) != 0) {
1350 printf("%s: could not allocate jumbo frames\n",
1351 sc->sc_dev.dv_xname);
1352 goto fail;
1353 }
1354 }
1355
1356 /*
1357 * Pre-allocate Rx buffers and populate Rx ring.
1358 */
1359 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1360 data = &sc->rxq.data[i];
1361
1362 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1363 if (data->m == NULL) {
1364 printf("%s: could not allocate rx mbuf\n",
1365 sc->sc_dev.dv_xname);
1366 error = ENOMEM;
1367 goto fail;
1368 }
1369
1370 if (sc->sc_flags & NFE_USE_JUMBO) {
1371 if ((jbuf = nfe_jalloc(sc)) == NULL) {
1372 printf("%s: could not allocate jumbo buffer\n",
1373 sc->sc_dev.dv_xname);
1374 goto fail;
1375 }
1376 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1377 sc);
1378
1379 physaddr = jbuf->physaddr;
1380 } else {
1381 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1382 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1383 if (error != 0) {
1384 printf("%s: could not create DMA map\n",
1385 sc->sc_dev.dv_xname);
1386 goto fail;
1387 }
1388 MCLGET(data->m, M_DONTWAIT);
1389 if (!(data->m->m_flags & M_EXT)) {
1390 printf("%s: could not allocate mbuf cluster\n",
1391 sc->sc_dev.dv_xname);
1392 error = ENOMEM;
1393 goto fail;
1394 }
1395
1396 error = bus_dmamap_load(sc->sc_dmat, data->map,
1397 mtod(data->m, void *), MCLBYTES, NULL,
1398 BUS_DMA_READ | BUS_DMA_NOWAIT);
1399 if (error != 0) {
1400 printf("%s: could not load rx buf DMA map",
1401 sc->sc_dev.dv_xname);
1402 goto fail;
1403 }
1404 physaddr = data->map->dm_segs[0].ds_addr;
1405 }
1406
1407 if (sc->sc_flags & NFE_40BIT_ADDR) {
1408 desc64 = &sc->rxq.desc64[i];
1409 #if defined(__LP64__)
1410 desc64->physaddr[0] = htole32(physaddr >> 32);
1411 #endif
1412 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1413 desc64->length = htole16(sc->rxq.bufsz);
1414 desc64->flags = htole16(NFE_RX_READY);
1415 } else {
1416 desc32 = &sc->rxq.desc32[i];
1417 desc32->physaddr = htole32(physaddr);
1418 desc32->length = htole16(sc->rxq.bufsz);
1419 desc32->flags = htole16(NFE_RX_READY);
1420 }
1421 }
1422
1423 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1424 BUS_DMASYNC_PREWRITE);
1425
1426 return 0;
1427
1428 fail: nfe_free_rx_ring(sc, ring);
1429 return error;
1430 }
1431
1432 void
1433 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1434 {
1435 int i;
1436
1437 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1438 if (sc->sc_flags & NFE_40BIT_ADDR) {
1439 ring->desc64[i].length = htole16(ring->bufsz);
1440 ring->desc64[i].flags = htole16(NFE_RX_READY);
1441 } else {
1442 ring->desc32[i].length = htole16(ring->bufsz);
1443 ring->desc32[i].flags = htole16(NFE_RX_READY);
1444 }
1445 }
1446
1447 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1448 BUS_DMASYNC_PREWRITE);
1449
1450 ring->cur = ring->next = 0;
1451 }
1452
1453 void
1454 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1455 {
1456 struct nfe_rx_data *data;
1457 void *desc;
1458 int i, descsize;
1459
1460 if (sc->sc_flags & NFE_40BIT_ADDR) {
1461 desc = ring->desc64;
1462 descsize = sizeof (struct nfe_desc64);
1463 } else {
1464 desc = ring->desc32;
1465 descsize = sizeof (struct nfe_desc32);
1466 }
1467
1468 if (desc != NULL) {
1469 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1470 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1471 bus_dmamap_unload(sc->sc_dmat, ring->map);
1472 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1473 NFE_RX_RING_COUNT * descsize);
1474 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1475 }
1476
1477 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1478 data = &ring->data[i];
1479
1480 if (data->map != NULL) {
1481 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1482 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1483 bus_dmamap_unload(sc->sc_dmat, data->map);
1484 bus_dmamap_destroy(sc->sc_dmat, data->map);
1485 }
1486 if (data->m != NULL)
1487 m_freem(data->m);
1488 }
1489 }
1490
1491 struct nfe_jbuf *
1492 nfe_jalloc(struct nfe_softc *sc)
1493 {
1494 struct nfe_jbuf *jbuf;
1495
1496 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1497 if (jbuf == NULL)
1498 return NULL;
1499 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1500 return jbuf;
1501 }
1502
1503 /*
1504 * This is called automatically by the network stack when the mbuf is freed.
1505 * Caution must be taken that the NIC might be reset by the time the mbuf is
1506 * freed.
1507 */
1508 void
1509 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1510 {
1511 struct nfe_softc *sc = arg;
1512 struct nfe_jbuf *jbuf;
1513 int i;
1514
1515 /* find the jbuf from the base pointer */
1516 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1517 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1518 printf("%s: request to free a buffer (%p) not managed by us\n",
1519 sc->sc_dev.dv_xname, buf);
1520 return;
1521 }
1522 jbuf = &sc->rxq.jbuf[i];
1523
1524 /* ..and put it back in the free list */
1525 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1526
1527 if (m != NULL)
1528 pool_cache_put(&mbpool_cache, m);
1529 }
1530
1531 int
1532 nfe_jpool_alloc(struct nfe_softc *sc)
1533 {
1534 struct nfe_rx_ring *ring = &sc->rxq;
1535 struct nfe_jbuf *jbuf;
1536 bus_addr_t physaddr;
1537 char *buf;
1538 int i, nsegs, error;
1539
1540 /*
1541 * Allocate a big chunk of DMA'able memory.
1542 */
1543 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1544 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1545 if (error != 0) {
1546 printf("%s: could not create jumbo DMA map\n",
1547 sc->sc_dev.dv_xname);
1548 goto fail;
1549 }
1550
1551 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1552 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1553 if (error != 0) {
1554 printf("%s could not allocate jumbo DMA memory\n",
1555 sc->sc_dev.dv_xname);
1556 goto fail;
1557 }
1558
1559 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1560 &ring->jpool, BUS_DMA_NOWAIT);
1561 if (error != 0) {
1562 printf("%s: could not map jumbo DMA memory\n",
1563 sc->sc_dev.dv_xname);
1564 goto fail;
1565 }
1566
1567 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1568 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1569 if (error != 0) {
1570 printf("%s: could not load jumbo DMA map\n",
1571 sc->sc_dev.dv_xname);
1572 goto fail;
1573 }
1574
1575 /* ..and split it into 9KB chunks */
1576 SLIST_INIT(&ring->jfreelist);
1577
1578 buf = ring->jpool;
1579 physaddr = ring->jmap->dm_segs[0].ds_addr;
1580 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1581 jbuf = &ring->jbuf[i];
1582
1583 jbuf->buf = buf;
1584 jbuf->physaddr = physaddr;
1585
1586 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1587
1588 buf += NFE_JBYTES;
1589 physaddr += NFE_JBYTES;
1590 }
1591
1592 return 0;
1593
1594 fail: nfe_jpool_free(sc);
1595 return error;
1596 }
1597
1598 void
1599 nfe_jpool_free(struct nfe_softc *sc)
1600 {
1601 struct nfe_rx_ring *ring = &sc->rxq;
1602
1603 if (ring->jmap != NULL) {
1604 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1605 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1606 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1607 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1608 }
1609 if (ring->jpool != NULL) {
1610 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1611 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1612 }
1613 }
1614
1615 int
1616 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1617 {
1618 int i, nsegs, error;
1619 void **desc;
1620 int descsize;
1621
1622 if (sc->sc_flags & NFE_40BIT_ADDR) {
1623 desc = (void **)&ring->desc64;
1624 descsize = sizeof (struct nfe_desc64);
1625 } else {
1626 desc = (void **)&ring->desc32;
1627 descsize = sizeof (struct nfe_desc32);
1628 }
1629
1630 ring->queued = 0;
1631 ring->cur = ring->next = 0;
1632
1633 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1634 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1635
1636 if (error != 0) {
1637 printf("%s: could not create desc DMA map\n",
1638 sc->sc_dev.dv_xname);
1639 goto fail;
1640 }
1641
1642 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1643 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1644 if (error != 0) {
1645 printf("%s: could not allocate DMA memory\n",
1646 sc->sc_dev.dv_xname);
1647 goto fail;
1648 }
1649
1650 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1651 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1652 if (error != 0) {
1653 printf("%s: could not map desc DMA memory\n",
1654 sc->sc_dev.dv_xname);
1655 goto fail;
1656 }
1657
1658 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1659 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1660 if (error != 0) {
1661 printf("%s: could not load desc DMA map\n",
1662 sc->sc_dev.dv_xname);
1663 goto fail;
1664 }
1665
1666 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1667 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1668
1669 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1670 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1671 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1672 &ring->data[i].map);
1673 if (error != 0) {
1674 printf("%s: could not create DMA map\n",
1675 sc->sc_dev.dv_xname);
1676 goto fail;
1677 }
1678 }
1679
1680 return 0;
1681
1682 fail: nfe_free_tx_ring(sc, ring);
1683 return error;
1684 }
1685
1686 void
1687 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1688 {
1689 struct nfe_tx_data *data;
1690 int i;
1691
1692 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1693 if (sc->sc_flags & NFE_40BIT_ADDR)
1694 ring->desc64[i].flags = 0;
1695 else
1696 ring->desc32[i].flags = 0;
1697
1698 data = &ring->data[i];
1699
1700 if (data->m != NULL) {
1701 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1702 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1703 bus_dmamap_unload(sc->sc_dmat, data->active);
1704 m_freem(data->m);
1705 data->m = NULL;
1706 }
1707 }
1708
1709 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1710 BUS_DMASYNC_PREWRITE);
1711
1712 ring->queued = 0;
1713 ring->cur = ring->next = 0;
1714 }
1715
1716 void
1717 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1718 {
1719 struct nfe_tx_data *data;
1720 void *desc;
1721 int i, descsize;
1722
1723 if (sc->sc_flags & NFE_40BIT_ADDR) {
1724 desc = ring->desc64;
1725 descsize = sizeof (struct nfe_desc64);
1726 } else {
1727 desc = ring->desc32;
1728 descsize = sizeof (struct nfe_desc32);
1729 }
1730
1731 if (desc != NULL) {
1732 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1733 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1734 bus_dmamap_unload(sc->sc_dmat, ring->map);
1735 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1736 NFE_TX_RING_COUNT * descsize);
1737 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1738 }
1739
1740 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1741 data = &ring->data[i];
1742
1743 if (data->m != NULL) {
1744 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1745 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1746 bus_dmamap_unload(sc->sc_dmat, data->active);
1747 m_freem(data->m);
1748 }
1749 }
1750
1751 /* ..and now actually destroy the DMA mappings */
1752 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1753 data = &ring->data[i];
1754 if (data->map == NULL)
1755 continue;
1756 bus_dmamap_destroy(sc->sc_dmat, data->map);
1757 }
1758 }
1759
1760 int
1761 nfe_ifmedia_upd(struct ifnet *ifp)
1762 {
1763 struct nfe_softc *sc = ifp->if_softc;
1764 struct mii_data *mii = &sc->sc_mii;
1765 struct mii_softc *miisc;
1766
1767 if (mii->mii_instance != 0) {
1768 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1769 mii_phy_reset(miisc);
1770 }
1771 return mii_mediachg(mii);
1772 }
1773
1774 void
1775 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1776 {
1777 struct nfe_softc *sc = ifp->if_softc;
1778 struct mii_data *mii = &sc->sc_mii;
1779
1780 mii_pollstat(mii);
1781 ifmr->ifm_status = mii->mii_media_status;
1782 ifmr->ifm_active = mii->mii_media_active;
1783 }
1784
1785 void
1786 nfe_setmulti(struct nfe_softc *sc)
1787 {
1788 struct ethercom *ec = &sc->sc_ethercom;
1789 struct ifnet *ifp = &ec->ec_if;
1790 struct ether_multi *enm;
1791 struct ether_multistep step;
1792 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1793 uint32_t filter = NFE_RXFILTER_MAGIC;
1794 int i;
1795
1796 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1797 bzero(addr, ETHER_ADDR_LEN);
1798 bzero(mask, ETHER_ADDR_LEN);
1799 goto done;
1800 }
1801
1802 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1803 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1804
1805 ETHER_FIRST_MULTI(step, ec, enm);
1806 while (enm != NULL) {
1807 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1808 ifp->if_flags |= IFF_ALLMULTI;
1809 bzero(addr, ETHER_ADDR_LEN);
1810 bzero(mask, ETHER_ADDR_LEN);
1811 goto done;
1812 }
1813 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1814 addr[i] &= enm->enm_addrlo[i];
1815 mask[i] &= ~enm->enm_addrlo[i];
1816 }
1817 ETHER_NEXT_MULTI(step, enm);
1818 }
1819 for (i = 0; i < ETHER_ADDR_LEN; i++)
1820 mask[i] |= addr[i];
1821
1822 done:
1823 addr[0] |= 0x01; /* make sure multicast bit is set */
1824
1825 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1826 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1827 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1828 addr[5] << 8 | addr[4]);
1829 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1830 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1831 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1832 mask[5] << 8 | mask[4]);
1833
1834 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1835 NFE_WRITE(sc, NFE_RXFILTER, filter);
1836 }
1837
1838 void
1839 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1840 {
1841 uint32_t tmp;
1842
1843 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1844 addr[0] = (tmp >> 8) & 0xff;
1845 addr[1] = (tmp & 0xff);
1846
1847 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1848 addr[2] = (tmp >> 24) & 0xff;
1849 addr[3] = (tmp >> 16) & 0xff;
1850 addr[4] = (tmp >> 8) & 0xff;
1851 addr[5] = (tmp & 0xff);
1852 }
1853
1854 void
1855 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1856 {
1857 NFE_WRITE(sc, NFE_MACADDR_LO,
1858 addr[5] << 8 | addr[4]);
1859 NFE_WRITE(sc, NFE_MACADDR_HI,
1860 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1861 }
1862
1863 void
1864 nfe_tick(void *arg)
1865 {
1866 struct nfe_softc *sc = arg;
1867 int s;
1868
1869 s = splnet();
1870 mii_tick(&sc->sc_mii);
1871 splx(s);
1872
1873 callout_schedule(&sc->sc_tick_ch, hz);
1874 }
1875