if_nfe.c revision 1.20 1 /* $NetBSD: if_nfe.c,v 1.20 2007/10/19 12:00:47 ad Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.20 2007/10/19 12:00:47 ad Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206 char devinfo[256];
207
208 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
209 aprint_normal(": %s (rev. 0x%02x)\n",
210 devinfo, PCI_REVISION(pa->pa_class));
211
212 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
213 switch (memtype) {
214 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
215 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
216 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
217 &sc->sc_memh, NULL, &memsize) == 0)
218 break;
219 /* FALLTHROUGH */
220 default:
221 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
222 return;
223 }
224
225 if (pci_intr_map(pa, &ih) != 0) {
226 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
227 return;
228 }
229
230 intrstr = pci_intr_string(pc, ih);
231 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
232 if (sc->sc_ih == NULL) {
233 printf("%s: could not establish interrupt",
234 sc->sc_dev.dv_xname);
235 if (intrstr != NULL)
236 printf(" at %s", intrstr);
237 printf("\n");
238 return;
239 }
240 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
241
242 sc->sc_dmat = pa->pa_dmat;
243
244 nfe_get_macaddr(sc, sc->sc_enaddr);
245 printf("%s: Ethernet address %s\n",
246 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
247
248 sc->sc_flags = 0;
249
250 switch (PCI_PRODUCT(pa->pa_id)) {
251 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
252 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
253 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
254 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
255 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
256 break;
257 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
258 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
259 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
260 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
261 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
262 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
263 sc->sc_flags |= NFE_40BIT_ADDR;
264 break;
265 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
266 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
269 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
270 break;
271 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
276 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
277 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
278 NFE_HW_VLAN;
279 break;
280 }
281
282 #ifndef NFE_NO_JUMBO
283 /* enable jumbo frames for adapters that support it */
284 if (sc->sc_flags & NFE_JUMBO_SUP)
285 sc->sc_flags |= NFE_USE_JUMBO;
286 #endif
287
288 /*
289 * Allocate Tx and Rx rings.
290 */
291 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
292 printf("%s: could not allocate Tx ring\n",
293 sc->sc_dev.dv_xname);
294 return;
295 }
296
297 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
298 printf("%s: could not allocate Rx ring\n",
299 sc->sc_dev.dv_xname);
300 nfe_free_tx_ring(sc, &sc->txq);
301 return;
302 }
303
304 ifp = &sc->sc_ethercom.ec_if;
305 ifp->if_softc = sc;
306 ifp->if_mtu = ETHERMTU;
307 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
308 ifp->if_ioctl = nfe_ioctl;
309 ifp->if_start = nfe_start;
310 ifp->if_watchdog = nfe_watchdog;
311 ifp->if_init = nfe_init;
312 ifp->if_baudrate = IF_Gbps(1);
313 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
314 IFQ_SET_READY(&ifp->if_snd);
315 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
316
317 #if NVLAN > 0
318 if (sc->sc_flags & NFE_HW_VLAN)
319 sc->sc_ethercom.ec_capabilities |=
320 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
321 #endif
322 if (sc->sc_flags & NFE_HW_CSUM) {
323 ifp->if_capabilities |=
324 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
325 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
326 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
327 }
328
329 sc->sc_mii.mii_ifp = ifp;
330 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
331 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
332 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
333
334 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
335 nfe_ifmedia_sts);
336 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
337 MII_OFFSET_ANY, 0);
338 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
339 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
340 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
341 0, NULL);
342 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
343 } else
344 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
345
346 if_attach(ifp);
347 ether_ifattach(ifp, sc->sc_enaddr);
348
349 callout_init(&sc->sc_tick_ch, 0);
350 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
351
352 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
353 nfe_power, sc);
354 }
355
356 void
357 nfe_power(int why, void *arg)
358 {
359 struct nfe_softc *sc = arg;
360 struct ifnet *ifp;
361
362 if (why == PWR_RESUME) {
363 ifp = &sc->sc_ethercom.ec_if;
364 if (ifp->if_flags & IFF_UP) {
365 ifp->if_flags &= ~IFF_RUNNING;
366 nfe_init(ifp);
367 if (ifp->if_flags & IFF_RUNNING)
368 nfe_start(ifp);
369 }
370 }
371 }
372
373 void
374 nfe_miibus_statchg(struct device *dev)
375 {
376 struct nfe_softc *sc = (struct nfe_softc *)dev;
377 struct mii_data *mii = &sc->sc_mii;
378 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
379
380 phy = NFE_READ(sc, NFE_PHY_IFACE);
381 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
382
383 seed = NFE_READ(sc, NFE_RNDSEED);
384 seed &= ~NFE_SEED_MASK;
385
386 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
387 phy |= NFE_PHY_HDX; /* half-duplex */
388 misc |= NFE_MISC1_HDX;
389 }
390
391 switch (IFM_SUBTYPE(mii->mii_media_active)) {
392 case IFM_1000_T: /* full-duplex only */
393 link |= NFE_MEDIA_1000T;
394 seed |= NFE_SEED_1000T;
395 phy |= NFE_PHY_1000T;
396 break;
397 case IFM_100_TX:
398 link |= NFE_MEDIA_100TX;
399 seed |= NFE_SEED_100TX;
400 phy |= NFE_PHY_100TX;
401 break;
402 case IFM_10_T:
403 link |= NFE_MEDIA_10T;
404 seed |= NFE_SEED_10T;
405 break;
406 }
407
408 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
409
410 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
411 NFE_WRITE(sc, NFE_MISC1, misc);
412 NFE_WRITE(sc, NFE_LINKSPEED, link);
413 }
414
415 int
416 nfe_miibus_readreg(struct device *dev, int phy, int reg)
417 {
418 struct nfe_softc *sc = (struct nfe_softc *)dev;
419 uint32_t val;
420 int ntries;
421
422 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
423
424 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
425 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
426 DELAY(100);
427 }
428
429 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
430
431 for (ntries = 0; ntries < 1000; ntries++) {
432 DELAY(100);
433 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
434 break;
435 }
436 if (ntries == 1000) {
437 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
438 sc->sc_dev.dv_xname));
439 return 0;
440 }
441
442 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
443 DPRINTFN(2, ("%s: could not read PHY\n",
444 sc->sc_dev.dv_xname));
445 return 0;
446 }
447
448 val = NFE_READ(sc, NFE_PHY_DATA);
449 if (val != 0xffffffff && val != 0)
450 sc->mii_phyaddr = phy;
451
452 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
453 sc->sc_dev.dv_xname, phy, reg, val));
454
455 return val;
456 }
457
458 void
459 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
460 {
461 struct nfe_softc *sc = (struct nfe_softc *)dev;
462 uint32_t ctl;
463 int ntries;
464
465 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
466
467 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
468 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
469 DELAY(100);
470 }
471
472 NFE_WRITE(sc, NFE_PHY_DATA, val);
473 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
474 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
475
476 for (ntries = 0; ntries < 1000; ntries++) {
477 DELAY(100);
478 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
479 break;
480 }
481 #ifdef NFE_DEBUG
482 if (nfedebug >= 2 && ntries == 1000)
483 printf("could not write to PHY\n");
484 #endif
485 }
486
487 int
488 nfe_intr(void *arg)
489 {
490 struct nfe_softc *sc = arg;
491 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
492 uint32_t r;
493 int handled;
494
495 if ((ifp->if_flags & IFF_UP) == 0)
496 return 0;
497
498 handled = 0;
499
500 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
501
502 for (;;) {
503 r = NFE_READ(sc, NFE_IRQ_STATUS);
504 if ((r & NFE_IRQ_WANTED) == 0)
505 break;
506
507 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
508 handled = 1;
509 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
510
511 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
512 != 0) {
513 /* check Rx ring */
514 nfe_rxeof(sc);
515 }
516
517 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
518 != 0) {
519 /* check Tx ring */
520 nfe_txeof(sc);
521 }
522
523 if ((r & NFE_IRQ_LINK) != 0) {
524 NFE_READ(sc, NFE_PHY_STATUS);
525 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
526 DPRINTF(("%s: link state changed\n",
527 sc->sc_dev.dv_xname));
528 }
529 }
530
531 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
532
533 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
534 nfe_start(ifp);
535
536 return handled;
537 }
538
539 int
540 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
541 {
542 struct nfe_softc *sc = ifp->if_softc;
543 struct ifreq *ifr = (struct ifreq *)data;
544 struct ifaddr *ifa = (struct ifaddr *)data;
545 int s, error = 0;
546
547 s = splnet();
548
549 switch (cmd) {
550 case SIOCSIFADDR:
551 ifp->if_flags |= IFF_UP;
552 nfe_init(ifp);
553 switch (ifa->ifa_addr->sa_family) {
554 #ifdef INET
555 case AF_INET:
556 arp_ifinit(ifp, ifa);
557 break;
558 #endif
559 default:
560 break;
561 }
562 break;
563 case SIOCSIFMTU:
564 if (ifr->ifr_mtu < ETHERMIN ||
565 ((sc->sc_flags & NFE_USE_JUMBO) &&
566 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
567 (!(sc->sc_flags & NFE_USE_JUMBO) &&
568 ifr->ifr_mtu > ETHERMTU))
569 error = EINVAL;
570 else if (ifp->if_mtu != ifr->ifr_mtu)
571 ifp->if_mtu = ifr->ifr_mtu;
572 break;
573 case SIOCSIFFLAGS:
574 if (ifp->if_flags & IFF_UP) {
575 /*
576 * If only the PROMISC or ALLMULTI flag changes, then
577 * don't do a full re-init of the chip, just update
578 * the Rx filter.
579 */
580 if ((ifp->if_flags & IFF_RUNNING) &&
581 ((ifp->if_flags ^ sc->sc_if_flags) &
582 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
583 nfe_setmulti(sc);
584 else
585 nfe_init(ifp);
586 } else {
587 if (ifp->if_flags & IFF_RUNNING)
588 nfe_stop(ifp, 1);
589 }
590 sc->sc_if_flags = ifp->if_flags;
591 break;
592 case SIOCADDMULTI:
593 case SIOCDELMULTI:
594 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
595 if (ifp->if_flags & IFF_RUNNING)
596 nfe_setmulti(sc);
597 error = 0;
598 }
599 break;
600 case SIOCSIFMEDIA:
601 case SIOCGIFMEDIA:
602 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
603 break;
604 default:
605 error = ether_ioctl(ifp, cmd, data);
606 if (error == ENETRESET) {
607 if (ifp->if_flags & IFF_RUNNING)
608 nfe_setmulti(sc);
609 error = 0;
610 }
611 break;
612
613 }
614
615 splx(s);
616
617 return error;
618 }
619
620 void
621 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
622 {
623 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
624 (char *)desc32 - (char *)sc->txq.desc32,
625 sizeof (struct nfe_desc32), ops);
626 }
627
628 void
629 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
630 {
631 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
632 (char *)desc64 - (char *)sc->txq.desc64,
633 sizeof (struct nfe_desc64), ops);
634 }
635
636 void
637 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
638 {
639 if (end > start) {
640 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
641 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
642 (char *)&sc->txq.desc32[end] -
643 (char *)&sc->txq.desc32[start], ops);
644 return;
645 }
646 /* sync from 'start' to end of ring */
647 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
648 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
649 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
650 (char *)&sc->txq.desc32[start], ops);
651
652 /* sync from start of ring to 'end' */
653 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
654 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
655 }
656
657 void
658 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
659 {
660 if (end > start) {
661 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
662 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
663 (char *)&sc->txq.desc64[end] -
664 (char *)&sc->txq.desc64[start], ops);
665 return;
666 }
667 /* sync from 'start' to end of ring */
668 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
669 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
670 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
671 (char *)&sc->txq.desc64[start], ops);
672
673 /* sync from start of ring to 'end' */
674 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
675 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
676 }
677
678 void
679 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
680 {
681 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
682 (char *)desc32 - (char *)sc->rxq.desc32,
683 sizeof (struct nfe_desc32), ops);
684 }
685
686 void
687 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
688 {
689 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
690 (char *)desc64 - (char *)sc->rxq.desc64,
691 sizeof (struct nfe_desc64), ops);
692 }
693
694 void
695 nfe_rxeof(struct nfe_softc *sc)
696 {
697 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
698 struct nfe_desc32 *desc32;
699 struct nfe_desc64 *desc64;
700 struct nfe_rx_data *data;
701 struct nfe_jbuf *jbuf;
702 struct mbuf *m, *mnew;
703 bus_addr_t physaddr;
704 uint16_t flags;
705 int error, len, i;
706
707 desc32 = NULL;
708 desc64 = NULL;
709 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
710 data = &sc->rxq.data[i];
711
712 if (sc->sc_flags & NFE_40BIT_ADDR) {
713 desc64 = &sc->rxq.desc64[i];
714 nfe_rxdesc64_sync(sc, desc64,
715 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
716
717 flags = le16toh(desc64->flags);
718 len = le16toh(desc64->length) & 0x3fff;
719 } else {
720 desc32 = &sc->rxq.desc32[i];
721 nfe_rxdesc32_sync(sc, desc32,
722 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
723
724 flags = le16toh(desc32->flags);
725 len = le16toh(desc32->length) & 0x3fff;
726 }
727
728 if ((flags & NFE_RX_READY) != 0)
729 break;
730
731 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
732 if ((flags & NFE_RX_VALID_V1) == 0)
733 goto skip;
734
735 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
736 flags &= ~NFE_RX_ERROR;
737 len--; /* fix buffer length */
738 }
739 } else {
740 if ((flags & NFE_RX_VALID_V2) == 0)
741 goto skip;
742
743 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
744 flags &= ~NFE_RX_ERROR;
745 len--; /* fix buffer length */
746 }
747 }
748
749 if (flags & NFE_RX_ERROR) {
750 ifp->if_ierrors++;
751 goto skip;
752 }
753
754 /*
755 * Try to allocate a new mbuf for this ring element and load
756 * it before processing the current mbuf. If the ring element
757 * cannot be loaded, drop the received packet and reuse the
758 * old mbuf. In the unlikely case that the old mbuf can't be
759 * reloaded either, explicitly panic.
760 */
761 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
762 if (mnew == NULL) {
763 ifp->if_ierrors++;
764 goto skip;
765 }
766
767 if (sc->sc_flags & NFE_USE_JUMBO) {
768 physaddr =
769 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
770 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
771 if (len > MCLBYTES) {
772 m_freem(mnew);
773 ifp->if_ierrors++;
774 goto skip1;
775 }
776 MCLGET(mnew, M_DONTWAIT);
777 if ((mnew->m_flags & M_EXT) == 0) {
778 m_freem(mnew);
779 ifp->if_ierrors++;
780 goto skip1;
781 }
782
783 memcpy(mtod(mnew, void *),
784 mtod(data->m, const void *), len);
785 m = mnew;
786 goto mbufcopied;
787 } else {
788 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
789
790 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
791 mtod(data->m, char *) - (char *)sc->rxq.jpool,
792 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
793
794 physaddr = jbuf->physaddr;
795 }
796 } else {
797 MCLGET(mnew, M_DONTWAIT);
798 if ((mnew->m_flags & M_EXT) == 0) {
799 m_freem(mnew);
800 ifp->if_ierrors++;
801 goto skip;
802 }
803
804 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
805 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
806 bus_dmamap_unload(sc->sc_dmat, data->map);
807
808 error = bus_dmamap_load(sc->sc_dmat, data->map,
809 mtod(mnew, void *), MCLBYTES, NULL,
810 BUS_DMA_READ | BUS_DMA_NOWAIT);
811 if (error != 0) {
812 m_freem(mnew);
813
814 /* try to reload the old mbuf */
815 error = bus_dmamap_load(sc->sc_dmat, data->map,
816 mtod(data->m, void *), MCLBYTES, NULL,
817 BUS_DMA_READ | BUS_DMA_NOWAIT);
818 if (error != 0) {
819 /* very unlikely that it will fail.. */
820 panic("%s: could not load old rx mbuf",
821 sc->sc_dev.dv_xname);
822 }
823 ifp->if_ierrors++;
824 goto skip;
825 }
826 physaddr = data->map->dm_segs[0].ds_addr;
827 }
828
829 /*
830 * New mbuf successfully loaded, update Rx ring and continue
831 * processing.
832 */
833 m = data->m;
834 data->m = mnew;
835
836 mbufcopied:
837 /* finalize mbuf */
838 m->m_pkthdr.len = m->m_len = len;
839 m->m_pkthdr.rcvif = ifp;
840
841 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
842 /*
843 * XXX
844 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
845 */
846 if (flags & NFE_RX_IP_CSUMOK) {
847 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
848 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
849 sc->sc_dev.dv_xname));
850 }
851 /*
852 * XXX
853 * no way to check M_CSUM_TCP_UDP_BAD or
854 * other protocols?
855 */
856 if (flags & NFE_RX_UDP_CSUMOK) {
857 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
858 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
859 sc->sc_dev.dv_xname));
860 } else if (flags & NFE_RX_TCP_CSUMOK) {
861 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
862 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
863 sc->sc_dev.dv_xname));
864 }
865 }
866
867 #if NBPFILTER > 0
868 if (ifp->if_bpf)
869 bpf_mtap(ifp->if_bpf, m);
870 #endif
871 ifp->if_ipackets++;
872 (*ifp->if_input)(ifp, m);
873
874 skip1:
875 /* update mapping address in h/w descriptor */
876 if (sc->sc_flags & NFE_40BIT_ADDR) {
877 #if defined(__LP64__)
878 desc64->physaddr[0] = htole32(physaddr >> 32);
879 #endif
880 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
881 } else {
882 desc32->physaddr = htole32(physaddr);
883 }
884
885 skip:
886 if (sc->sc_flags & NFE_40BIT_ADDR) {
887 desc64->length = htole16(sc->rxq.bufsz);
888 desc64->flags = htole16(NFE_RX_READY);
889
890 nfe_rxdesc64_sync(sc, desc64,
891 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
892 } else {
893 desc32->length = htole16(sc->rxq.bufsz);
894 desc32->flags = htole16(NFE_RX_READY);
895
896 nfe_rxdesc32_sync(sc, desc32,
897 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
898 }
899 }
900 /* update current RX pointer */
901 sc->rxq.cur = i;
902 }
903
904 void
905 nfe_txeof(struct nfe_softc *sc)
906 {
907 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
908 struct nfe_desc32 *desc32;
909 struct nfe_desc64 *desc64;
910 struct nfe_tx_data *data = NULL;
911 int i;
912 uint16_t flags;
913
914 for (i = sc->txq.next;
915 sc->txq.queued > 0;
916 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
917 if (sc->sc_flags & NFE_40BIT_ADDR) {
918 desc64 = &sc->txq.desc64[i];
919 nfe_txdesc64_sync(sc, desc64,
920 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
921
922 flags = le16toh(desc64->flags);
923 } else {
924 desc32 = &sc->txq.desc32[i];
925 nfe_txdesc32_sync(sc, desc32,
926 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
927
928 flags = le16toh(desc32->flags);
929 }
930
931 if ((flags & NFE_TX_VALID) != 0)
932 break;
933
934 data = &sc->txq.data[i];
935
936 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
937 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
938 data->m == NULL)
939 continue;
940
941 if ((flags & NFE_TX_ERROR_V1) != 0) {
942 printf("%s: tx v1 error 0x%04x\n",
943 sc->sc_dev.dv_xname, flags);
944 ifp->if_oerrors++;
945 } else
946 ifp->if_opackets++;
947 } else {
948 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
949 data->m == NULL)
950 continue;
951
952 if ((flags & NFE_TX_ERROR_V2) != 0) {
953 printf("%s: tx v2 error 0x%04x\n",
954 sc->sc_dev.dv_xname, flags);
955 ifp->if_oerrors++;
956 } else
957 ifp->if_opackets++;
958 }
959
960 if (data->m == NULL) { /* should not get there */
961 printf("%s: last fragment bit w/o associated mbuf!\n",
962 sc->sc_dev.dv_xname);
963 continue;
964 }
965
966 /* last fragment of the mbuf chain transmitted */
967 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
968 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
969 bus_dmamap_unload(sc->sc_dmat, data->active);
970 m_freem(data->m);
971 data->m = NULL;
972 }
973
974 sc->txq.next = i;
975
976 if (sc->txq.queued < NFE_TX_RING_COUNT) {
977 /* at least one slot freed */
978 ifp->if_flags &= ~IFF_OACTIVE;
979 }
980
981 if (sc->txq.queued == 0) {
982 /* all queued packets are sent */
983 ifp->if_timer = 0;
984 }
985 }
986
987 int
988 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
989 {
990 struct nfe_desc32 *desc32;
991 struct nfe_desc64 *desc64;
992 struct nfe_tx_data *data;
993 bus_dmamap_t map;
994 uint16_t flags, csumflags;
995 #if NVLAN > 0
996 struct m_tag *mtag;
997 uint32_t vtag = 0;
998 #endif
999 int error, i, first;
1000
1001 desc32 = NULL;
1002 desc64 = NULL;
1003 data = NULL;
1004
1005 flags = 0;
1006 csumflags = 0;
1007 first = sc->txq.cur;
1008
1009 map = sc->txq.data[first].map;
1010
1011 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1012 if (error != 0) {
1013 printf("%s: could not map mbuf (error %d)\n",
1014 sc->sc_dev.dv_xname, error);
1015 return error;
1016 }
1017
1018 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1019 bus_dmamap_unload(sc->sc_dmat, map);
1020 return ENOBUFS;
1021 }
1022
1023 #if NVLAN > 0
1024 /* setup h/w VLAN tagging */
1025 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1026 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1027 #endif
1028 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1029 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1030 csumflags |= NFE_TX_IP_CSUM;
1031 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1032 csumflags |= NFE_TX_TCP_UDP_CSUM;
1033 }
1034
1035 for (i = 0; i < map->dm_nsegs; i++) {
1036 data = &sc->txq.data[sc->txq.cur];
1037
1038 if (sc->sc_flags & NFE_40BIT_ADDR) {
1039 desc64 = &sc->txq.desc64[sc->txq.cur];
1040 #if defined(__LP64__)
1041 desc64->physaddr[0] =
1042 htole32(map->dm_segs[i].ds_addr >> 32);
1043 #endif
1044 desc64->physaddr[1] =
1045 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1046 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1047 desc64->flags = htole16(flags);
1048 desc64->vtag = 0;
1049 } else {
1050 desc32 = &sc->txq.desc32[sc->txq.cur];
1051
1052 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1053 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1054 desc32->flags = htole16(flags);
1055 }
1056
1057 /*
1058 * Setting of the valid bit in the first descriptor is
1059 * deferred until the whole chain is fully setup.
1060 */
1061 flags |= NFE_TX_VALID;
1062
1063 sc->txq.queued++;
1064 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1065 }
1066
1067 /* the whole mbuf chain has been setup */
1068 if (sc->sc_flags & NFE_40BIT_ADDR) {
1069 /* fix last descriptor */
1070 flags |= NFE_TX_LASTFRAG_V2;
1071 desc64->flags = htole16(flags);
1072
1073 /* Checksum flags and vtag belong to the first fragment only. */
1074 #if NVLAN > 0
1075 sc->txq.desc64[first].vtag = htole32(vtag);
1076 #endif
1077 sc->txq.desc64[first].flags |= htole16(csumflags);
1078
1079 /* finally, set the valid bit in the first descriptor */
1080 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1081 } else {
1082 /* fix last descriptor */
1083 if (sc->sc_flags & NFE_JUMBO_SUP)
1084 flags |= NFE_TX_LASTFRAG_V2;
1085 else
1086 flags |= NFE_TX_LASTFRAG_V1;
1087 desc32->flags = htole16(flags);
1088
1089 /* Checksum flags belong to the first fragment only. */
1090 sc->txq.desc32[first].flags |= htole16(csumflags);
1091
1092 /* finally, set the valid bit in the first descriptor */
1093 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1094 }
1095
1096 data->m = m0;
1097 data->active = map;
1098
1099 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1100 BUS_DMASYNC_PREWRITE);
1101
1102 return 0;
1103 }
1104
1105 void
1106 nfe_start(struct ifnet *ifp)
1107 {
1108 struct nfe_softc *sc = ifp->if_softc;
1109 int old = sc->txq.queued;
1110 struct mbuf *m0;
1111
1112 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1113 return;
1114
1115 for (;;) {
1116 IFQ_POLL(&ifp->if_snd, m0);
1117 if (m0 == NULL)
1118 break;
1119
1120 if (nfe_encap(sc, m0) != 0) {
1121 ifp->if_flags |= IFF_OACTIVE;
1122 break;
1123 }
1124
1125 /* packet put in h/w queue, remove from s/w queue */
1126 IFQ_DEQUEUE(&ifp->if_snd, m0);
1127
1128 #if NBPFILTER > 0
1129 if (ifp->if_bpf != NULL)
1130 bpf_mtap(ifp->if_bpf, m0);
1131 #endif
1132 }
1133
1134 if (sc->txq.queued != old) {
1135 /* packets are queued */
1136 if (sc->sc_flags & NFE_40BIT_ADDR)
1137 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1138 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1139 else
1140 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1141 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1142 /* kick Tx */
1143 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1144
1145 /*
1146 * Set a timeout in case the chip goes out to lunch.
1147 */
1148 ifp->if_timer = 5;
1149 }
1150 }
1151
1152 void
1153 nfe_watchdog(struct ifnet *ifp)
1154 {
1155 struct nfe_softc *sc = ifp->if_softc;
1156
1157 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1158
1159 ifp->if_flags &= ~IFF_RUNNING;
1160 nfe_init(ifp);
1161
1162 ifp->if_oerrors++;
1163 }
1164
1165 int
1166 nfe_init(struct ifnet *ifp)
1167 {
1168 struct nfe_softc *sc = ifp->if_softc;
1169 uint32_t tmp;
1170 int s;
1171
1172 if (ifp->if_flags & IFF_RUNNING)
1173 return 0;
1174
1175 nfe_stop(ifp, 0);
1176
1177 NFE_WRITE(sc, NFE_TX_UNK, 0);
1178 NFE_WRITE(sc, NFE_STATUS, 0);
1179
1180 sc->rxtxctl = NFE_RXTX_BIT2;
1181 if (sc->sc_flags & NFE_40BIT_ADDR)
1182 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1183 else if (sc->sc_flags & NFE_JUMBO_SUP)
1184 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1185 if (sc->sc_flags & NFE_HW_CSUM)
1186 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1187 #if NVLAN > 0
1188 /*
1189 * Although the adapter is capable of stripping VLAN tags from received
1190 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1191 * purpose. This will be done in software by our network stack.
1192 */
1193 if (sc->sc_flags & NFE_HW_VLAN)
1194 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1195 #endif
1196 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1197 DELAY(10);
1198 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1199
1200 #if NVLAN
1201 if (sc->sc_flags & NFE_HW_VLAN)
1202 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1203 #endif
1204
1205 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1206
1207 /* set MAC address */
1208 nfe_set_macaddr(sc, sc->sc_enaddr);
1209
1210 /* tell MAC where rings are in memory */
1211 #ifdef __LP64__
1212 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1213 #endif
1214 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1215 #ifdef __LP64__
1216 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1217 #endif
1218 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1219
1220 NFE_WRITE(sc, NFE_RING_SIZE,
1221 (NFE_RX_RING_COUNT - 1) << 16 |
1222 (NFE_TX_RING_COUNT - 1));
1223
1224 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1225
1226 /* force MAC to wakeup */
1227 tmp = NFE_READ(sc, NFE_PWR_STATE);
1228 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1229 DELAY(10);
1230 tmp = NFE_READ(sc, NFE_PWR_STATE);
1231 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1232
1233 s = splnet();
1234 nfe_intr(sc); /* XXX clear IRQ status registers */
1235 splx(s);
1236
1237 #if 1
1238 /* configure interrupts coalescing/mitigation */
1239 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1240 #else
1241 /* no interrupt mitigation: one interrupt per packet */
1242 NFE_WRITE(sc, NFE_IMTIMER, 970);
1243 #endif
1244
1245 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1246 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1247 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1248
1249 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1250 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1251
1252 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1253 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1254
1255 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1256 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1257 DELAY(10);
1258 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1259
1260 /* set Rx filter */
1261 nfe_setmulti(sc);
1262
1263 nfe_ifmedia_upd(ifp);
1264
1265 nfe_tick(sc);
1266
1267 /* enable Rx */
1268 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1269
1270 /* enable Tx */
1271 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1272
1273 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1274
1275 /* enable interrupts */
1276 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1277
1278 callout_schedule(&sc->sc_tick_ch, hz);
1279
1280 ifp->if_flags |= IFF_RUNNING;
1281 ifp->if_flags &= ~IFF_OACTIVE;
1282
1283 return 0;
1284 }
1285
1286 void
1287 nfe_stop(struct ifnet *ifp, int disable)
1288 {
1289 struct nfe_softc *sc = ifp->if_softc;
1290
1291 callout_stop(&sc->sc_tick_ch);
1292
1293 ifp->if_timer = 0;
1294 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1295
1296 mii_down(&sc->sc_mii);
1297
1298 /* abort Tx */
1299 NFE_WRITE(sc, NFE_TX_CTL, 0);
1300
1301 /* disable Rx */
1302 NFE_WRITE(sc, NFE_RX_CTL, 0);
1303
1304 /* disable interrupts */
1305 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1306
1307 /* reset Tx and Rx rings */
1308 nfe_reset_tx_ring(sc, &sc->txq);
1309 nfe_reset_rx_ring(sc, &sc->rxq);
1310 }
1311
1312 int
1313 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1314 {
1315 struct nfe_desc32 *desc32;
1316 struct nfe_desc64 *desc64;
1317 struct nfe_rx_data *data;
1318 struct nfe_jbuf *jbuf;
1319 void **desc;
1320 bus_addr_t physaddr;
1321 int i, nsegs, error, descsize;
1322
1323 if (sc->sc_flags & NFE_40BIT_ADDR) {
1324 desc = (void **)&ring->desc64;
1325 descsize = sizeof (struct nfe_desc64);
1326 } else {
1327 desc = (void **)&ring->desc32;
1328 descsize = sizeof (struct nfe_desc32);
1329 }
1330
1331 ring->cur = ring->next = 0;
1332 ring->bufsz = MCLBYTES;
1333
1334 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1335 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1336 if (error != 0) {
1337 printf("%s: could not create desc DMA map\n",
1338 sc->sc_dev.dv_xname);
1339 goto fail;
1340 }
1341
1342 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1343 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1344 if (error != 0) {
1345 printf("%s: could not allocate DMA memory\n",
1346 sc->sc_dev.dv_xname);
1347 goto fail;
1348 }
1349
1350 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1351 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1352 if (error != 0) {
1353 printf("%s: could not map desc DMA memory\n",
1354 sc->sc_dev.dv_xname);
1355 goto fail;
1356 }
1357
1358 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1359 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1360 if (error != 0) {
1361 printf("%s: could not load desc DMA map\n",
1362 sc->sc_dev.dv_xname);
1363 goto fail;
1364 }
1365
1366 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1367 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1368
1369 if (sc->sc_flags & NFE_USE_JUMBO) {
1370 ring->bufsz = NFE_JBYTES;
1371 if ((error = nfe_jpool_alloc(sc)) != 0) {
1372 printf("%s: could not allocate jumbo frames\n",
1373 sc->sc_dev.dv_xname);
1374 goto fail;
1375 }
1376 }
1377
1378 /*
1379 * Pre-allocate Rx buffers and populate Rx ring.
1380 */
1381 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1382 data = &sc->rxq.data[i];
1383
1384 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1385 if (data->m == NULL) {
1386 printf("%s: could not allocate rx mbuf\n",
1387 sc->sc_dev.dv_xname);
1388 error = ENOMEM;
1389 goto fail;
1390 }
1391
1392 if (sc->sc_flags & NFE_USE_JUMBO) {
1393 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1394 printf("%s: could not allocate jumbo buffer\n",
1395 sc->sc_dev.dv_xname);
1396 goto fail;
1397 }
1398 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1399 sc);
1400
1401 physaddr = jbuf->physaddr;
1402 } else {
1403 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1404 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1405 if (error != 0) {
1406 printf("%s: could not create DMA map\n",
1407 sc->sc_dev.dv_xname);
1408 goto fail;
1409 }
1410 MCLGET(data->m, M_DONTWAIT);
1411 if (!(data->m->m_flags & M_EXT)) {
1412 printf("%s: could not allocate mbuf cluster\n",
1413 sc->sc_dev.dv_xname);
1414 error = ENOMEM;
1415 goto fail;
1416 }
1417
1418 error = bus_dmamap_load(sc->sc_dmat, data->map,
1419 mtod(data->m, void *), MCLBYTES, NULL,
1420 BUS_DMA_READ | BUS_DMA_NOWAIT);
1421 if (error != 0) {
1422 printf("%s: could not load rx buf DMA map",
1423 sc->sc_dev.dv_xname);
1424 goto fail;
1425 }
1426 physaddr = data->map->dm_segs[0].ds_addr;
1427 }
1428
1429 if (sc->sc_flags & NFE_40BIT_ADDR) {
1430 desc64 = &sc->rxq.desc64[i];
1431 #if defined(__LP64__)
1432 desc64->physaddr[0] = htole32(physaddr >> 32);
1433 #endif
1434 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1435 desc64->length = htole16(sc->rxq.bufsz);
1436 desc64->flags = htole16(NFE_RX_READY);
1437 } else {
1438 desc32 = &sc->rxq.desc32[i];
1439 desc32->physaddr = htole32(physaddr);
1440 desc32->length = htole16(sc->rxq.bufsz);
1441 desc32->flags = htole16(NFE_RX_READY);
1442 }
1443 }
1444
1445 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1446 BUS_DMASYNC_PREWRITE);
1447
1448 return 0;
1449
1450 fail: nfe_free_rx_ring(sc, ring);
1451 return error;
1452 }
1453
1454 void
1455 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1456 {
1457 int i;
1458
1459 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1460 if (sc->sc_flags & NFE_40BIT_ADDR) {
1461 ring->desc64[i].length = htole16(ring->bufsz);
1462 ring->desc64[i].flags = htole16(NFE_RX_READY);
1463 } else {
1464 ring->desc32[i].length = htole16(ring->bufsz);
1465 ring->desc32[i].flags = htole16(NFE_RX_READY);
1466 }
1467 }
1468
1469 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1470 BUS_DMASYNC_PREWRITE);
1471
1472 ring->cur = ring->next = 0;
1473 }
1474
1475 void
1476 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1477 {
1478 struct nfe_rx_data *data;
1479 void *desc;
1480 int i, descsize;
1481
1482 if (sc->sc_flags & NFE_40BIT_ADDR) {
1483 desc = ring->desc64;
1484 descsize = sizeof (struct nfe_desc64);
1485 } else {
1486 desc = ring->desc32;
1487 descsize = sizeof (struct nfe_desc32);
1488 }
1489
1490 if (desc != NULL) {
1491 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1492 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1493 bus_dmamap_unload(sc->sc_dmat, ring->map);
1494 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1495 NFE_RX_RING_COUNT * descsize);
1496 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1497 }
1498
1499 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1500 data = &ring->data[i];
1501
1502 if (data->map != NULL) {
1503 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1504 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1505 bus_dmamap_unload(sc->sc_dmat, data->map);
1506 bus_dmamap_destroy(sc->sc_dmat, data->map);
1507 }
1508 if (data->m != NULL)
1509 m_freem(data->m);
1510 }
1511 }
1512
1513 struct nfe_jbuf *
1514 nfe_jalloc(struct nfe_softc *sc, int i)
1515 {
1516 struct nfe_jbuf *jbuf;
1517
1518 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1519 if (jbuf == NULL)
1520 return NULL;
1521 sc->rxq.jbufmap[i] =
1522 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1523 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1524 return jbuf;
1525 }
1526
1527 /*
1528 * This is called automatically by the network stack when the mbuf is freed.
1529 * Caution must be taken that the NIC might be reset by the time the mbuf is
1530 * freed.
1531 */
1532 void
1533 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1534 {
1535 struct nfe_softc *sc = arg;
1536 struct nfe_jbuf *jbuf;
1537 int i;
1538
1539 /* find the jbuf from the base pointer */
1540 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1541 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1542 printf("%s: request to free a buffer (%p) not managed by us\n",
1543 sc->sc_dev.dv_xname, buf);
1544 return;
1545 }
1546 jbuf = &sc->rxq.jbuf[i];
1547
1548 /* ..and put it back in the free list */
1549 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1550
1551 if (m != NULL)
1552 pool_cache_put(&mbpool_cache, m);
1553 }
1554
1555 int
1556 nfe_jpool_alloc(struct nfe_softc *sc)
1557 {
1558 struct nfe_rx_ring *ring = &sc->rxq;
1559 struct nfe_jbuf *jbuf;
1560 bus_addr_t physaddr;
1561 char *buf;
1562 int i, nsegs, error;
1563
1564 /*
1565 * Allocate a big chunk of DMA'able memory.
1566 */
1567 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1568 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1569 if (error != 0) {
1570 printf("%s: could not create jumbo DMA map\n",
1571 sc->sc_dev.dv_xname);
1572 goto fail;
1573 }
1574
1575 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1576 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1577 if (error != 0) {
1578 printf("%s could not allocate jumbo DMA memory\n",
1579 sc->sc_dev.dv_xname);
1580 goto fail;
1581 }
1582
1583 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1584 &ring->jpool, BUS_DMA_NOWAIT);
1585 if (error != 0) {
1586 printf("%s: could not map jumbo DMA memory\n",
1587 sc->sc_dev.dv_xname);
1588 goto fail;
1589 }
1590
1591 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1592 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1593 if (error != 0) {
1594 printf("%s: could not load jumbo DMA map\n",
1595 sc->sc_dev.dv_xname);
1596 goto fail;
1597 }
1598
1599 /* ..and split it into 9KB chunks */
1600 SLIST_INIT(&ring->jfreelist);
1601
1602 buf = ring->jpool;
1603 physaddr = ring->jmap->dm_segs[0].ds_addr;
1604 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1605 jbuf = &ring->jbuf[i];
1606
1607 jbuf->buf = buf;
1608 jbuf->physaddr = physaddr;
1609
1610 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1611
1612 buf += NFE_JBYTES;
1613 physaddr += NFE_JBYTES;
1614 }
1615
1616 return 0;
1617
1618 fail: nfe_jpool_free(sc);
1619 return error;
1620 }
1621
1622 void
1623 nfe_jpool_free(struct nfe_softc *sc)
1624 {
1625 struct nfe_rx_ring *ring = &sc->rxq;
1626
1627 if (ring->jmap != NULL) {
1628 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1629 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1630 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1631 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1632 }
1633 if (ring->jpool != NULL) {
1634 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1635 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1636 }
1637 }
1638
1639 int
1640 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1641 {
1642 int i, nsegs, error;
1643 void **desc;
1644 int descsize;
1645
1646 if (sc->sc_flags & NFE_40BIT_ADDR) {
1647 desc = (void **)&ring->desc64;
1648 descsize = sizeof (struct nfe_desc64);
1649 } else {
1650 desc = (void **)&ring->desc32;
1651 descsize = sizeof (struct nfe_desc32);
1652 }
1653
1654 ring->queued = 0;
1655 ring->cur = ring->next = 0;
1656
1657 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1658 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1659
1660 if (error != 0) {
1661 printf("%s: could not create desc DMA map\n",
1662 sc->sc_dev.dv_xname);
1663 goto fail;
1664 }
1665
1666 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1667 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1668 if (error != 0) {
1669 printf("%s: could not allocate DMA memory\n",
1670 sc->sc_dev.dv_xname);
1671 goto fail;
1672 }
1673
1674 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1675 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1676 if (error != 0) {
1677 printf("%s: could not map desc DMA memory\n",
1678 sc->sc_dev.dv_xname);
1679 goto fail;
1680 }
1681
1682 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1683 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1684 if (error != 0) {
1685 printf("%s: could not load desc DMA map\n",
1686 sc->sc_dev.dv_xname);
1687 goto fail;
1688 }
1689
1690 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1691 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1692
1693 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1694 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1695 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1696 &ring->data[i].map);
1697 if (error != 0) {
1698 printf("%s: could not create DMA map\n",
1699 sc->sc_dev.dv_xname);
1700 goto fail;
1701 }
1702 }
1703
1704 return 0;
1705
1706 fail: nfe_free_tx_ring(sc, ring);
1707 return error;
1708 }
1709
1710 void
1711 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1712 {
1713 struct nfe_tx_data *data;
1714 int i;
1715
1716 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1717 if (sc->sc_flags & NFE_40BIT_ADDR)
1718 ring->desc64[i].flags = 0;
1719 else
1720 ring->desc32[i].flags = 0;
1721
1722 data = &ring->data[i];
1723
1724 if (data->m != NULL) {
1725 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1726 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1727 bus_dmamap_unload(sc->sc_dmat, data->active);
1728 m_freem(data->m);
1729 data->m = NULL;
1730 }
1731 }
1732
1733 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1734 BUS_DMASYNC_PREWRITE);
1735
1736 ring->queued = 0;
1737 ring->cur = ring->next = 0;
1738 }
1739
1740 void
1741 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1742 {
1743 struct nfe_tx_data *data;
1744 void *desc;
1745 int i, descsize;
1746
1747 if (sc->sc_flags & NFE_40BIT_ADDR) {
1748 desc = ring->desc64;
1749 descsize = sizeof (struct nfe_desc64);
1750 } else {
1751 desc = ring->desc32;
1752 descsize = sizeof (struct nfe_desc32);
1753 }
1754
1755 if (desc != NULL) {
1756 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1757 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1758 bus_dmamap_unload(sc->sc_dmat, ring->map);
1759 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1760 NFE_TX_RING_COUNT * descsize);
1761 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1762 }
1763
1764 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1765 data = &ring->data[i];
1766
1767 if (data->m != NULL) {
1768 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1769 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1770 bus_dmamap_unload(sc->sc_dmat, data->active);
1771 m_freem(data->m);
1772 }
1773 }
1774
1775 /* ..and now actually destroy the DMA mappings */
1776 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1777 data = &ring->data[i];
1778 if (data->map == NULL)
1779 continue;
1780 bus_dmamap_destroy(sc->sc_dmat, data->map);
1781 }
1782 }
1783
1784 int
1785 nfe_ifmedia_upd(struct ifnet *ifp)
1786 {
1787 struct nfe_softc *sc = ifp->if_softc;
1788 struct mii_data *mii = &sc->sc_mii;
1789 struct mii_softc *miisc;
1790
1791 if (mii->mii_instance != 0) {
1792 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1793 mii_phy_reset(miisc);
1794 }
1795 return mii_mediachg(mii);
1796 }
1797
1798 void
1799 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1800 {
1801 struct nfe_softc *sc = ifp->if_softc;
1802 struct mii_data *mii = &sc->sc_mii;
1803
1804 mii_pollstat(mii);
1805 ifmr->ifm_status = mii->mii_media_status;
1806 ifmr->ifm_active = mii->mii_media_active;
1807 }
1808
1809 void
1810 nfe_setmulti(struct nfe_softc *sc)
1811 {
1812 struct ethercom *ec = &sc->sc_ethercom;
1813 struct ifnet *ifp = &ec->ec_if;
1814 struct ether_multi *enm;
1815 struct ether_multistep step;
1816 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1817 uint32_t filter = NFE_RXFILTER_MAGIC;
1818 int i;
1819
1820 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1821 bzero(addr, ETHER_ADDR_LEN);
1822 bzero(mask, ETHER_ADDR_LEN);
1823 goto done;
1824 }
1825
1826 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1827 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1828
1829 ETHER_FIRST_MULTI(step, ec, enm);
1830 while (enm != NULL) {
1831 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1832 ifp->if_flags |= IFF_ALLMULTI;
1833 bzero(addr, ETHER_ADDR_LEN);
1834 bzero(mask, ETHER_ADDR_LEN);
1835 goto done;
1836 }
1837 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1838 addr[i] &= enm->enm_addrlo[i];
1839 mask[i] &= ~enm->enm_addrlo[i];
1840 }
1841 ETHER_NEXT_MULTI(step, enm);
1842 }
1843 for (i = 0; i < ETHER_ADDR_LEN; i++)
1844 mask[i] |= addr[i];
1845
1846 done:
1847 addr[0] |= 0x01; /* make sure multicast bit is set */
1848
1849 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1850 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1851 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1852 addr[5] << 8 | addr[4]);
1853 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1854 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1855 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1856 mask[5] << 8 | mask[4]);
1857
1858 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1859 NFE_WRITE(sc, NFE_RXFILTER, filter);
1860 }
1861
1862 void
1863 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1864 {
1865 uint32_t tmp;
1866
1867 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1868 addr[0] = (tmp >> 8) & 0xff;
1869 addr[1] = (tmp & 0xff);
1870
1871 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1872 addr[2] = (tmp >> 24) & 0xff;
1873 addr[3] = (tmp >> 16) & 0xff;
1874 addr[4] = (tmp >> 8) & 0xff;
1875 addr[5] = (tmp & 0xff);
1876 }
1877
1878 void
1879 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1880 {
1881 NFE_WRITE(sc, NFE_MACADDR_LO,
1882 addr[5] << 8 | addr[4]);
1883 NFE_WRITE(sc, NFE_MACADDR_HI,
1884 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1885 }
1886
1887 void
1888 nfe_tick(void *arg)
1889 {
1890 struct nfe_softc *sc = arg;
1891 int s;
1892
1893 s = splnet();
1894 mii_tick(&sc->sc_mii);
1895 splx(s);
1896
1897 callout_schedule(&sc->sc_tick_ch, hz);
1898 }
1899