if_nfe.c revision 1.22 1 /* $NetBSD: if_nfe.c,v 1.22 2007/11/14 12:40:54 xtraeme Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.22 2007/11/14 12:40:54 xtraeme Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }
185 };
186
187 int
188 nfe_match(struct device *dev, struct cfdata *match, void *aux)
189 {
190 struct pci_attach_args *pa = aux;
191 const struct nfe_product *np;
192 int i;
193
194 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
195 np = &nfe_devices[i];
196 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
197 PCI_PRODUCT(pa->pa_id) == np->product)
198 return 1;
199 }
200 return 0;
201 }
202
203 void
204 nfe_attach(struct device *parent, struct device *self, void *aux)
205 {
206 struct nfe_softc *sc = (struct nfe_softc *)self;
207 struct pci_attach_args *pa = aux;
208 pci_chipset_tag_t pc = pa->pa_pc;
209 pci_intr_handle_t ih;
210 const char *intrstr;
211 struct ifnet *ifp;
212 bus_size_t memsize;
213 pcireg_t memtype;
214 char devinfo[256];
215
216 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
217 aprint_normal(": %s (rev. 0x%02x)\n",
218 devinfo, PCI_REVISION(pa->pa_class));
219
220 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
221 switch (memtype) {
222 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
223 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
224 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
225 &sc->sc_memh, NULL, &memsize) == 0)
226 break;
227 /* FALLTHROUGH */
228 default:
229 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
230 return;
231 }
232
233 if (pci_intr_map(pa, &ih) != 0) {
234 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
235 return;
236 }
237
238 intrstr = pci_intr_string(pc, ih);
239 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
240 if (sc->sc_ih == NULL) {
241 printf("%s: could not establish interrupt",
242 sc->sc_dev.dv_xname);
243 if (intrstr != NULL)
244 printf(" at %s", intrstr);
245 printf("\n");
246 return;
247 }
248 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
249
250 sc->sc_dmat = pa->pa_dmat;
251
252 nfe_get_macaddr(sc, sc->sc_enaddr);
253 printf("%s: Ethernet address %s\n",
254 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
255
256 sc->sc_flags = 0;
257
258 switch (PCI_PRODUCT(pa->pa_id)) {
259 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
260 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
261 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
262 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
263 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
264 break;
265 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
266 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
269 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
270 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
271 sc->sc_flags |= NFE_40BIT_ADDR;
272 break;
273 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
274 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
276 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
277 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
278 break;
279 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
280 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
281 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
282 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
283 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
284 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
285 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
286 NFE_HW_VLAN;
287 break;
288 }
289
290 #ifndef NFE_NO_JUMBO
291 /* enable jumbo frames for adapters that support it */
292 if (sc->sc_flags & NFE_JUMBO_SUP)
293 sc->sc_flags |= NFE_USE_JUMBO;
294 #endif
295
296 /*
297 * Allocate Tx and Rx rings.
298 */
299 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
300 printf("%s: could not allocate Tx ring\n",
301 sc->sc_dev.dv_xname);
302 return;
303 }
304
305 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
306 printf("%s: could not allocate Rx ring\n",
307 sc->sc_dev.dv_xname);
308 nfe_free_tx_ring(sc, &sc->txq);
309 return;
310 }
311
312 ifp = &sc->sc_ethercom.ec_if;
313 ifp->if_softc = sc;
314 ifp->if_mtu = ETHERMTU;
315 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
316 ifp->if_ioctl = nfe_ioctl;
317 ifp->if_start = nfe_start;
318 ifp->if_watchdog = nfe_watchdog;
319 ifp->if_init = nfe_init;
320 ifp->if_baudrate = IF_Gbps(1);
321 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
322 IFQ_SET_READY(&ifp->if_snd);
323 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
324
325 #if NVLAN > 0
326 if (sc->sc_flags & NFE_HW_VLAN)
327 sc->sc_ethercom.ec_capabilities |=
328 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
329 #endif
330 if (sc->sc_flags & NFE_HW_CSUM) {
331 ifp->if_capabilities |=
332 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
333 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
334 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
335 }
336
337 sc->sc_mii.mii_ifp = ifp;
338 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
339 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
340 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
341
342 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
343 nfe_ifmedia_sts);
344 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
345 MII_OFFSET_ANY, 0);
346 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
347 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
348 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
349 0, NULL);
350 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
351 } else
352 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
353
354 if_attach(ifp);
355 ether_ifattach(ifp, sc->sc_enaddr);
356
357 callout_init(&sc->sc_tick_ch, 0);
358 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
359
360 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
361 nfe_power, sc);
362 }
363
364 void
365 nfe_power(int why, void *arg)
366 {
367 struct nfe_softc *sc = arg;
368 struct ifnet *ifp;
369
370 if (why == PWR_RESUME) {
371 ifp = &sc->sc_ethercom.ec_if;
372 if (ifp->if_flags & IFF_UP) {
373 ifp->if_flags &= ~IFF_RUNNING;
374 nfe_init(ifp);
375 if (ifp->if_flags & IFF_RUNNING)
376 nfe_start(ifp);
377 }
378 }
379 }
380
381 void
382 nfe_miibus_statchg(struct device *dev)
383 {
384 struct nfe_softc *sc = (struct nfe_softc *)dev;
385 struct mii_data *mii = &sc->sc_mii;
386 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
387
388 phy = NFE_READ(sc, NFE_PHY_IFACE);
389 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
390
391 seed = NFE_READ(sc, NFE_RNDSEED);
392 seed &= ~NFE_SEED_MASK;
393
394 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
395 phy |= NFE_PHY_HDX; /* half-duplex */
396 misc |= NFE_MISC1_HDX;
397 }
398
399 switch (IFM_SUBTYPE(mii->mii_media_active)) {
400 case IFM_1000_T: /* full-duplex only */
401 link |= NFE_MEDIA_1000T;
402 seed |= NFE_SEED_1000T;
403 phy |= NFE_PHY_1000T;
404 break;
405 case IFM_100_TX:
406 link |= NFE_MEDIA_100TX;
407 seed |= NFE_SEED_100TX;
408 phy |= NFE_PHY_100TX;
409 break;
410 case IFM_10_T:
411 link |= NFE_MEDIA_10T;
412 seed |= NFE_SEED_10T;
413 break;
414 }
415
416 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
417
418 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
419 NFE_WRITE(sc, NFE_MISC1, misc);
420 NFE_WRITE(sc, NFE_LINKSPEED, link);
421 }
422
423 int
424 nfe_miibus_readreg(struct device *dev, int phy, int reg)
425 {
426 struct nfe_softc *sc = (struct nfe_softc *)dev;
427 uint32_t val;
428 int ntries;
429
430 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
431
432 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
433 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
434 DELAY(100);
435 }
436
437 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
438
439 for (ntries = 0; ntries < 1000; ntries++) {
440 DELAY(100);
441 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
442 break;
443 }
444 if (ntries == 1000) {
445 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
446 sc->sc_dev.dv_xname));
447 return 0;
448 }
449
450 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
451 DPRINTFN(2, ("%s: could not read PHY\n",
452 sc->sc_dev.dv_xname));
453 return 0;
454 }
455
456 val = NFE_READ(sc, NFE_PHY_DATA);
457 if (val != 0xffffffff && val != 0)
458 sc->mii_phyaddr = phy;
459
460 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
461 sc->sc_dev.dv_xname, phy, reg, val));
462
463 return val;
464 }
465
466 void
467 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
468 {
469 struct nfe_softc *sc = (struct nfe_softc *)dev;
470 uint32_t ctl;
471 int ntries;
472
473 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
474
475 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
476 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
477 DELAY(100);
478 }
479
480 NFE_WRITE(sc, NFE_PHY_DATA, val);
481 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
482 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
483
484 for (ntries = 0; ntries < 1000; ntries++) {
485 DELAY(100);
486 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
487 break;
488 }
489 #ifdef NFE_DEBUG
490 if (nfedebug >= 2 && ntries == 1000)
491 printf("could not write to PHY\n");
492 #endif
493 }
494
495 int
496 nfe_intr(void *arg)
497 {
498 struct nfe_softc *sc = arg;
499 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
500 uint32_t r;
501 int handled;
502
503 if ((ifp->if_flags & IFF_UP) == 0)
504 return 0;
505
506 handled = 0;
507
508 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
509
510 for (;;) {
511 r = NFE_READ(sc, NFE_IRQ_STATUS);
512 if ((r & NFE_IRQ_WANTED) == 0)
513 break;
514
515 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
516 handled = 1;
517 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
518
519 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
520 != 0) {
521 /* check Rx ring */
522 nfe_rxeof(sc);
523 }
524
525 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
526 != 0) {
527 /* check Tx ring */
528 nfe_txeof(sc);
529 }
530
531 if ((r & NFE_IRQ_LINK) != 0) {
532 NFE_READ(sc, NFE_PHY_STATUS);
533 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
534 DPRINTF(("%s: link state changed\n",
535 sc->sc_dev.dv_xname));
536 }
537 }
538
539 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
540
541 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
542 nfe_start(ifp);
543
544 return handled;
545 }
546
547 int
548 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
549 {
550 struct nfe_softc *sc = ifp->if_softc;
551 struct ifreq *ifr = (struct ifreq *)data;
552 struct ifaddr *ifa = (struct ifaddr *)data;
553 int s, error = 0;
554
555 s = splnet();
556
557 switch (cmd) {
558 case SIOCSIFADDR:
559 ifp->if_flags |= IFF_UP;
560 nfe_init(ifp);
561 switch (ifa->ifa_addr->sa_family) {
562 #ifdef INET
563 case AF_INET:
564 arp_ifinit(ifp, ifa);
565 break;
566 #endif
567 default:
568 break;
569 }
570 break;
571 case SIOCSIFMTU:
572 if (ifr->ifr_mtu < ETHERMIN ||
573 ((sc->sc_flags & NFE_USE_JUMBO) &&
574 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
575 (!(sc->sc_flags & NFE_USE_JUMBO) &&
576 ifr->ifr_mtu > ETHERMTU))
577 error = EINVAL;
578 else if (ifp->if_mtu != ifr->ifr_mtu)
579 ifp->if_mtu = ifr->ifr_mtu;
580 break;
581 case SIOCSIFFLAGS:
582 if (ifp->if_flags & IFF_UP) {
583 /*
584 * If only the PROMISC or ALLMULTI flag changes, then
585 * don't do a full re-init of the chip, just update
586 * the Rx filter.
587 */
588 if ((ifp->if_flags & IFF_RUNNING) &&
589 ((ifp->if_flags ^ sc->sc_if_flags) &
590 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
591 nfe_setmulti(sc);
592 else
593 nfe_init(ifp);
594 } else {
595 if (ifp->if_flags & IFF_RUNNING)
596 nfe_stop(ifp, 1);
597 }
598 sc->sc_if_flags = ifp->if_flags;
599 break;
600 case SIOCADDMULTI:
601 case SIOCDELMULTI:
602 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
603 if (ifp->if_flags & IFF_RUNNING)
604 nfe_setmulti(sc);
605 error = 0;
606 }
607 break;
608 case SIOCSIFMEDIA:
609 case SIOCGIFMEDIA:
610 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
611 break;
612 default:
613 error = ether_ioctl(ifp, cmd, data);
614 if (error == ENETRESET) {
615 if (ifp->if_flags & IFF_RUNNING)
616 nfe_setmulti(sc);
617 error = 0;
618 }
619 break;
620
621 }
622
623 splx(s);
624
625 return error;
626 }
627
628 void
629 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
630 {
631 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
632 (char *)desc32 - (char *)sc->txq.desc32,
633 sizeof (struct nfe_desc32), ops);
634 }
635
636 void
637 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
638 {
639 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
640 (char *)desc64 - (char *)sc->txq.desc64,
641 sizeof (struct nfe_desc64), ops);
642 }
643
644 void
645 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
646 {
647 if (end > start) {
648 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
649 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
650 (char *)&sc->txq.desc32[end] -
651 (char *)&sc->txq.desc32[start], ops);
652 return;
653 }
654 /* sync from 'start' to end of ring */
655 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
656 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
657 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
658 (char *)&sc->txq.desc32[start], ops);
659
660 /* sync from start of ring to 'end' */
661 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
662 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
663 }
664
665 void
666 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
667 {
668 if (end > start) {
669 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
670 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
671 (char *)&sc->txq.desc64[end] -
672 (char *)&sc->txq.desc64[start], ops);
673 return;
674 }
675 /* sync from 'start' to end of ring */
676 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
677 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
678 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
679 (char *)&sc->txq.desc64[start], ops);
680
681 /* sync from start of ring to 'end' */
682 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
683 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
684 }
685
686 void
687 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
688 {
689 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
690 (char *)desc32 - (char *)sc->rxq.desc32,
691 sizeof (struct nfe_desc32), ops);
692 }
693
694 void
695 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
696 {
697 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
698 (char *)desc64 - (char *)sc->rxq.desc64,
699 sizeof (struct nfe_desc64), ops);
700 }
701
702 void
703 nfe_rxeof(struct nfe_softc *sc)
704 {
705 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
706 struct nfe_desc32 *desc32;
707 struct nfe_desc64 *desc64;
708 struct nfe_rx_data *data;
709 struct nfe_jbuf *jbuf;
710 struct mbuf *m, *mnew;
711 bus_addr_t physaddr;
712 uint16_t flags;
713 int error, len, i;
714
715 desc32 = NULL;
716 desc64 = NULL;
717 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
718 data = &sc->rxq.data[i];
719
720 if (sc->sc_flags & NFE_40BIT_ADDR) {
721 desc64 = &sc->rxq.desc64[i];
722 nfe_rxdesc64_sync(sc, desc64,
723 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
724
725 flags = le16toh(desc64->flags);
726 len = le16toh(desc64->length) & 0x3fff;
727 } else {
728 desc32 = &sc->rxq.desc32[i];
729 nfe_rxdesc32_sync(sc, desc32,
730 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
731
732 flags = le16toh(desc32->flags);
733 len = le16toh(desc32->length) & 0x3fff;
734 }
735
736 if ((flags & NFE_RX_READY) != 0)
737 break;
738
739 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
740 if ((flags & NFE_RX_VALID_V1) == 0)
741 goto skip;
742
743 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
744 flags &= ~NFE_RX_ERROR;
745 len--; /* fix buffer length */
746 }
747 } else {
748 if ((flags & NFE_RX_VALID_V2) == 0)
749 goto skip;
750
751 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
752 flags &= ~NFE_RX_ERROR;
753 len--; /* fix buffer length */
754 }
755 }
756
757 if (flags & NFE_RX_ERROR) {
758 ifp->if_ierrors++;
759 goto skip;
760 }
761
762 /*
763 * Try to allocate a new mbuf for this ring element and load
764 * it before processing the current mbuf. If the ring element
765 * cannot be loaded, drop the received packet and reuse the
766 * old mbuf. In the unlikely case that the old mbuf can't be
767 * reloaded either, explicitly panic.
768 */
769 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
770 if (mnew == NULL) {
771 ifp->if_ierrors++;
772 goto skip;
773 }
774
775 if (sc->sc_flags & NFE_USE_JUMBO) {
776 physaddr =
777 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
778 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
779 if (len > MCLBYTES) {
780 m_freem(mnew);
781 ifp->if_ierrors++;
782 goto skip1;
783 }
784 MCLGET(mnew, M_DONTWAIT);
785 if ((mnew->m_flags & M_EXT) == 0) {
786 m_freem(mnew);
787 ifp->if_ierrors++;
788 goto skip1;
789 }
790
791 memcpy(mtod(mnew, void *),
792 mtod(data->m, const void *), len);
793 m = mnew;
794 goto mbufcopied;
795 } else {
796 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
797
798 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
799 mtod(data->m, char *) - (char *)sc->rxq.jpool,
800 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
801
802 physaddr = jbuf->physaddr;
803 }
804 } else {
805 MCLGET(mnew, M_DONTWAIT);
806 if ((mnew->m_flags & M_EXT) == 0) {
807 m_freem(mnew);
808 ifp->if_ierrors++;
809 goto skip;
810 }
811
812 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
813 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
814 bus_dmamap_unload(sc->sc_dmat, data->map);
815
816 error = bus_dmamap_load(sc->sc_dmat, data->map,
817 mtod(mnew, void *), MCLBYTES, NULL,
818 BUS_DMA_READ | BUS_DMA_NOWAIT);
819 if (error != 0) {
820 m_freem(mnew);
821
822 /* try to reload the old mbuf */
823 error = bus_dmamap_load(sc->sc_dmat, data->map,
824 mtod(data->m, void *), MCLBYTES, NULL,
825 BUS_DMA_READ | BUS_DMA_NOWAIT);
826 if (error != 0) {
827 /* very unlikely that it will fail.. */
828 panic("%s: could not load old rx mbuf",
829 sc->sc_dev.dv_xname);
830 }
831 ifp->if_ierrors++;
832 goto skip;
833 }
834 physaddr = data->map->dm_segs[0].ds_addr;
835 }
836
837 /*
838 * New mbuf successfully loaded, update Rx ring and continue
839 * processing.
840 */
841 m = data->m;
842 data->m = mnew;
843
844 mbufcopied:
845 /* finalize mbuf */
846 m->m_pkthdr.len = m->m_len = len;
847 m->m_pkthdr.rcvif = ifp;
848
849 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
850 /*
851 * XXX
852 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
853 */
854 if (flags & NFE_RX_IP_CSUMOK) {
855 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
856 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
857 sc->sc_dev.dv_xname));
858 }
859 /*
860 * XXX
861 * no way to check M_CSUM_TCP_UDP_BAD or
862 * other protocols?
863 */
864 if (flags & NFE_RX_UDP_CSUMOK) {
865 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
866 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
867 sc->sc_dev.dv_xname));
868 } else if (flags & NFE_RX_TCP_CSUMOK) {
869 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
870 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
871 sc->sc_dev.dv_xname));
872 }
873 }
874
875 #if NBPFILTER > 0
876 if (ifp->if_bpf)
877 bpf_mtap(ifp->if_bpf, m);
878 #endif
879 ifp->if_ipackets++;
880 (*ifp->if_input)(ifp, m);
881
882 skip1:
883 /* update mapping address in h/w descriptor */
884 if (sc->sc_flags & NFE_40BIT_ADDR) {
885 #if defined(__LP64__)
886 desc64->physaddr[0] = htole32(physaddr >> 32);
887 #endif
888 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
889 } else {
890 desc32->physaddr = htole32(physaddr);
891 }
892
893 skip:
894 if (sc->sc_flags & NFE_40BIT_ADDR) {
895 desc64->length = htole16(sc->rxq.bufsz);
896 desc64->flags = htole16(NFE_RX_READY);
897
898 nfe_rxdesc64_sync(sc, desc64,
899 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
900 } else {
901 desc32->length = htole16(sc->rxq.bufsz);
902 desc32->flags = htole16(NFE_RX_READY);
903
904 nfe_rxdesc32_sync(sc, desc32,
905 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
906 }
907 }
908 /* update current RX pointer */
909 sc->rxq.cur = i;
910 }
911
912 void
913 nfe_txeof(struct nfe_softc *sc)
914 {
915 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
916 struct nfe_desc32 *desc32;
917 struct nfe_desc64 *desc64;
918 struct nfe_tx_data *data = NULL;
919 int i;
920 uint16_t flags;
921
922 for (i = sc->txq.next;
923 sc->txq.queued > 0;
924 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
925 if (sc->sc_flags & NFE_40BIT_ADDR) {
926 desc64 = &sc->txq.desc64[i];
927 nfe_txdesc64_sync(sc, desc64,
928 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
929
930 flags = le16toh(desc64->flags);
931 } else {
932 desc32 = &sc->txq.desc32[i];
933 nfe_txdesc32_sync(sc, desc32,
934 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
935
936 flags = le16toh(desc32->flags);
937 }
938
939 if ((flags & NFE_TX_VALID) != 0)
940 break;
941
942 data = &sc->txq.data[i];
943
944 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
945 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
946 data->m == NULL)
947 continue;
948
949 if ((flags & NFE_TX_ERROR_V1) != 0) {
950 printf("%s: tx v1 error 0x%04x\n",
951 sc->sc_dev.dv_xname, flags);
952 ifp->if_oerrors++;
953 } else
954 ifp->if_opackets++;
955 } else {
956 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
957 data->m == NULL)
958 continue;
959
960 if ((flags & NFE_TX_ERROR_V2) != 0) {
961 printf("%s: tx v2 error 0x%04x\n",
962 sc->sc_dev.dv_xname, flags);
963 ifp->if_oerrors++;
964 } else
965 ifp->if_opackets++;
966 }
967
968 if (data->m == NULL) { /* should not get there */
969 printf("%s: last fragment bit w/o associated mbuf!\n",
970 sc->sc_dev.dv_xname);
971 continue;
972 }
973
974 /* last fragment of the mbuf chain transmitted */
975 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
976 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
977 bus_dmamap_unload(sc->sc_dmat, data->active);
978 m_freem(data->m);
979 data->m = NULL;
980 }
981
982 sc->txq.next = i;
983
984 if (sc->txq.queued < NFE_TX_RING_COUNT) {
985 /* at least one slot freed */
986 ifp->if_flags &= ~IFF_OACTIVE;
987 }
988
989 if (sc->txq.queued == 0) {
990 /* all queued packets are sent */
991 ifp->if_timer = 0;
992 }
993 }
994
995 int
996 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
997 {
998 struct nfe_desc32 *desc32;
999 struct nfe_desc64 *desc64;
1000 struct nfe_tx_data *data;
1001 bus_dmamap_t map;
1002 uint16_t flags, csumflags;
1003 #if NVLAN > 0
1004 struct m_tag *mtag;
1005 uint32_t vtag = 0;
1006 #endif
1007 int error, i, first;
1008
1009 desc32 = NULL;
1010 desc64 = NULL;
1011 data = NULL;
1012
1013 flags = 0;
1014 csumflags = 0;
1015 first = sc->txq.cur;
1016
1017 map = sc->txq.data[first].map;
1018
1019 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1020 if (error != 0) {
1021 printf("%s: could not map mbuf (error %d)\n",
1022 sc->sc_dev.dv_xname, error);
1023 return error;
1024 }
1025
1026 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1027 bus_dmamap_unload(sc->sc_dmat, map);
1028 return ENOBUFS;
1029 }
1030
1031 #if NVLAN > 0
1032 /* setup h/w VLAN tagging */
1033 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1034 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1035 #endif
1036 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1037 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1038 csumflags |= NFE_TX_IP_CSUM;
1039 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1040 csumflags |= NFE_TX_TCP_UDP_CSUM;
1041 }
1042
1043 for (i = 0; i < map->dm_nsegs; i++) {
1044 data = &sc->txq.data[sc->txq.cur];
1045
1046 if (sc->sc_flags & NFE_40BIT_ADDR) {
1047 desc64 = &sc->txq.desc64[sc->txq.cur];
1048 #if defined(__LP64__)
1049 desc64->physaddr[0] =
1050 htole32(map->dm_segs[i].ds_addr >> 32);
1051 #endif
1052 desc64->physaddr[1] =
1053 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1054 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1055 desc64->flags = htole16(flags);
1056 desc64->vtag = 0;
1057 } else {
1058 desc32 = &sc->txq.desc32[sc->txq.cur];
1059
1060 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1061 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1062 desc32->flags = htole16(flags);
1063 }
1064
1065 /*
1066 * Setting of the valid bit in the first descriptor is
1067 * deferred until the whole chain is fully setup.
1068 */
1069 flags |= NFE_TX_VALID;
1070
1071 sc->txq.queued++;
1072 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1073 }
1074
1075 /* the whole mbuf chain has been setup */
1076 if (sc->sc_flags & NFE_40BIT_ADDR) {
1077 /* fix last descriptor */
1078 flags |= NFE_TX_LASTFRAG_V2;
1079 desc64->flags = htole16(flags);
1080
1081 /* Checksum flags and vtag belong to the first fragment only. */
1082 #if NVLAN > 0
1083 sc->txq.desc64[first].vtag = htole32(vtag);
1084 #endif
1085 sc->txq.desc64[first].flags |= htole16(csumflags);
1086
1087 /* finally, set the valid bit in the first descriptor */
1088 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1089 } else {
1090 /* fix last descriptor */
1091 if (sc->sc_flags & NFE_JUMBO_SUP)
1092 flags |= NFE_TX_LASTFRAG_V2;
1093 else
1094 flags |= NFE_TX_LASTFRAG_V1;
1095 desc32->flags = htole16(flags);
1096
1097 /* Checksum flags belong to the first fragment only. */
1098 sc->txq.desc32[first].flags |= htole16(csumflags);
1099
1100 /* finally, set the valid bit in the first descriptor */
1101 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1102 }
1103
1104 data->m = m0;
1105 data->active = map;
1106
1107 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1108 BUS_DMASYNC_PREWRITE);
1109
1110 return 0;
1111 }
1112
1113 void
1114 nfe_start(struct ifnet *ifp)
1115 {
1116 struct nfe_softc *sc = ifp->if_softc;
1117 int old = sc->txq.queued;
1118 struct mbuf *m0;
1119
1120 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1121 return;
1122
1123 for (;;) {
1124 IFQ_POLL(&ifp->if_snd, m0);
1125 if (m0 == NULL)
1126 break;
1127
1128 if (nfe_encap(sc, m0) != 0) {
1129 ifp->if_flags |= IFF_OACTIVE;
1130 break;
1131 }
1132
1133 /* packet put in h/w queue, remove from s/w queue */
1134 IFQ_DEQUEUE(&ifp->if_snd, m0);
1135
1136 #if NBPFILTER > 0
1137 if (ifp->if_bpf != NULL)
1138 bpf_mtap(ifp->if_bpf, m0);
1139 #endif
1140 }
1141
1142 if (sc->txq.queued != old) {
1143 /* packets are queued */
1144 if (sc->sc_flags & NFE_40BIT_ADDR)
1145 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1146 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1147 else
1148 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1149 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1150 /* kick Tx */
1151 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1152
1153 /*
1154 * Set a timeout in case the chip goes out to lunch.
1155 */
1156 ifp->if_timer = 5;
1157 }
1158 }
1159
1160 void
1161 nfe_watchdog(struct ifnet *ifp)
1162 {
1163 struct nfe_softc *sc = ifp->if_softc;
1164
1165 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1166
1167 ifp->if_flags &= ~IFF_RUNNING;
1168 nfe_init(ifp);
1169
1170 ifp->if_oerrors++;
1171 }
1172
1173 int
1174 nfe_init(struct ifnet *ifp)
1175 {
1176 struct nfe_softc *sc = ifp->if_softc;
1177 uint32_t tmp;
1178 int s;
1179
1180 if (ifp->if_flags & IFF_RUNNING)
1181 return 0;
1182
1183 nfe_stop(ifp, 0);
1184
1185 NFE_WRITE(sc, NFE_TX_UNK, 0);
1186 NFE_WRITE(sc, NFE_STATUS, 0);
1187
1188 sc->rxtxctl = NFE_RXTX_BIT2;
1189 if (sc->sc_flags & NFE_40BIT_ADDR)
1190 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1191 else if (sc->sc_flags & NFE_JUMBO_SUP)
1192 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1193 if (sc->sc_flags & NFE_HW_CSUM)
1194 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1195 #if NVLAN > 0
1196 /*
1197 * Although the adapter is capable of stripping VLAN tags from received
1198 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1199 * purpose. This will be done in software by our network stack.
1200 */
1201 if (sc->sc_flags & NFE_HW_VLAN)
1202 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1203 #endif
1204 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1205 DELAY(10);
1206 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1207
1208 #if NVLAN
1209 if (sc->sc_flags & NFE_HW_VLAN)
1210 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1211 #endif
1212
1213 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1214
1215 /* set MAC address */
1216 nfe_set_macaddr(sc, sc->sc_enaddr);
1217
1218 /* tell MAC where rings are in memory */
1219 #ifdef __LP64__
1220 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1221 #endif
1222 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1223 #ifdef __LP64__
1224 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1225 #endif
1226 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1227
1228 NFE_WRITE(sc, NFE_RING_SIZE,
1229 (NFE_RX_RING_COUNT - 1) << 16 |
1230 (NFE_TX_RING_COUNT - 1));
1231
1232 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1233
1234 /* force MAC to wakeup */
1235 tmp = NFE_READ(sc, NFE_PWR_STATE);
1236 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1237 DELAY(10);
1238 tmp = NFE_READ(sc, NFE_PWR_STATE);
1239 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1240
1241 s = splnet();
1242 nfe_intr(sc); /* XXX clear IRQ status registers */
1243 splx(s);
1244
1245 #if 1
1246 /* configure interrupts coalescing/mitigation */
1247 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1248 #else
1249 /* no interrupt mitigation: one interrupt per packet */
1250 NFE_WRITE(sc, NFE_IMTIMER, 970);
1251 #endif
1252
1253 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1254 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1255 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1256
1257 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1258 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1259
1260 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1261 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1262
1263 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1264 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1265 DELAY(10);
1266 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1267
1268 /* set Rx filter */
1269 nfe_setmulti(sc);
1270
1271 nfe_ifmedia_upd(ifp);
1272
1273 nfe_tick(sc);
1274
1275 /* enable Rx */
1276 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1277
1278 /* enable Tx */
1279 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1280
1281 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1282
1283 /* enable interrupts */
1284 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1285
1286 callout_schedule(&sc->sc_tick_ch, hz);
1287
1288 ifp->if_flags |= IFF_RUNNING;
1289 ifp->if_flags &= ~IFF_OACTIVE;
1290
1291 return 0;
1292 }
1293
1294 void
1295 nfe_stop(struct ifnet *ifp, int disable)
1296 {
1297 struct nfe_softc *sc = ifp->if_softc;
1298
1299 callout_stop(&sc->sc_tick_ch);
1300
1301 ifp->if_timer = 0;
1302 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1303
1304 mii_down(&sc->sc_mii);
1305
1306 /* abort Tx */
1307 NFE_WRITE(sc, NFE_TX_CTL, 0);
1308
1309 /* disable Rx */
1310 NFE_WRITE(sc, NFE_RX_CTL, 0);
1311
1312 /* disable interrupts */
1313 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1314
1315 /* reset Tx and Rx rings */
1316 nfe_reset_tx_ring(sc, &sc->txq);
1317 nfe_reset_rx_ring(sc, &sc->rxq);
1318 }
1319
1320 int
1321 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1322 {
1323 struct nfe_desc32 *desc32;
1324 struct nfe_desc64 *desc64;
1325 struct nfe_rx_data *data;
1326 struct nfe_jbuf *jbuf;
1327 void **desc;
1328 bus_addr_t physaddr;
1329 int i, nsegs, error, descsize;
1330
1331 if (sc->sc_flags & NFE_40BIT_ADDR) {
1332 desc = (void **)&ring->desc64;
1333 descsize = sizeof (struct nfe_desc64);
1334 } else {
1335 desc = (void **)&ring->desc32;
1336 descsize = sizeof (struct nfe_desc32);
1337 }
1338
1339 ring->cur = ring->next = 0;
1340 ring->bufsz = MCLBYTES;
1341
1342 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1343 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1344 if (error != 0) {
1345 printf("%s: could not create desc DMA map\n",
1346 sc->sc_dev.dv_xname);
1347 goto fail;
1348 }
1349
1350 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1351 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1352 if (error != 0) {
1353 printf("%s: could not allocate DMA memory\n",
1354 sc->sc_dev.dv_xname);
1355 goto fail;
1356 }
1357
1358 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1359 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1360 if (error != 0) {
1361 printf("%s: could not map desc DMA memory\n",
1362 sc->sc_dev.dv_xname);
1363 goto fail;
1364 }
1365
1366 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1367 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1368 if (error != 0) {
1369 printf("%s: could not load desc DMA map\n",
1370 sc->sc_dev.dv_xname);
1371 goto fail;
1372 }
1373
1374 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1375 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1376
1377 if (sc->sc_flags & NFE_USE_JUMBO) {
1378 ring->bufsz = NFE_JBYTES;
1379 if ((error = nfe_jpool_alloc(sc)) != 0) {
1380 printf("%s: could not allocate jumbo frames\n",
1381 sc->sc_dev.dv_xname);
1382 goto fail;
1383 }
1384 }
1385
1386 /*
1387 * Pre-allocate Rx buffers and populate Rx ring.
1388 */
1389 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1390 data = &sc->rxq.data[i];
1391
1392 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1393 if (data->m == NULL) {
1394 printf("%s: could not allocate rx mbuf\n",
1395 sc->sc_dev.dv_xname);
1396 error = ENOMEM;
1397 goto fail;
1398 }
1399
1400 if (sc->sc_flags & NFE_USE_JUMBO) {
1401 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1402 printf("%s: could not allocate jumbo buffer\n",
1403 sc->sc_dev.dv_xname);
1404 goto fail;
1405 }
1406 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1407 sc);
1408
1409 physaddr = jbuf->physaddr;
1410 } else {
1411 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1412 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1413 if (error != 0) {
1414 printf("%s: could not create DMA map\n",
1415 sc->sc_dev.dv_xname);
1416 goto fail;
1417 }
1418 MCLGET(data->m, M_DONTWAIT);
1419 if (!(data->m->m_flags & M_EXT)) {
1420 printf("%s: could not allocate mbuf cluster\n",
1421 sc->sc_dev.dv_xname);
1422 error = ENOMEM;
1423 goto fail;
1424 }
1425
1426 error = bus_dmamap_load(sc->sc_dmat, data->map,
1427 mtod(data->m, void *), MCLBYTES, NULL,
1428 BUS_DMA_READ | BUS_DMA_NOWAIT);
1429 if (error != 0) {
1430 printf("%s: could not load rx buf DMA map",
1431 sc->sc_dev.dv_xname);
1432 goto fail;
1433 }
1434 physaddr = data->map->dm_segs[0].ds_addr;
1435 }
1436
1437 if (sc->sc_flags & NFE_40BIT_ADDR) {
1438 desc64 = &sc->rxq.desc64[i];
1439 #if defined(__LP64__)
1440 desc64->physaddr[0] = htole32(physaddr >> 32);
1441 #endif
1442 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1443 desc64->length = htole16(sc->rxq.bufsz);
1444 desc64->flags = htole16(NFE_RX_READY);
1445 } else {
1446 desc32 = &sc->rxq.desc32[i];
1447 desc32->physaddr = htole32(physaddr);
1448 desc32->length = htole16(sc->rxq.bufsz);
1449 desc32->flags = htole16(NFE_RX_READY);
1450 }
1451 }
1452
1453 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1454 BUS_DMASYNC_PREWRITE);
1455
1456 return 0;
1457
1458 fail: nfe_free_rx_ring(sc, ring);
1459 return error;
1460 }
1461
1462 void
1463 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1464 {
1465 int i;
1466
1467 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1468 if (sc->sc_flags & NFE_40BIT_ADDR) {
1469 ring->desc64[i].length = htole16(ring->bufsz);
1470 ring->desc64[i].flags = htole16(NFE_RX_READY);
1471 } else {
1472 ring->desc32[i].length = htole16(ring->bufsz);
1473 ring->desc32[i].flags = htole16(NFE_RX_READY);
1474 }
1475 }
1476
1477 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1478 BUS_DMASYNC_PREWRITE);
1479
1480 ring->cur = ring->next = 0;
1481 }
1482
1483 void
1484 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1485 {
1486 struct nfe_rx_data *data;
1487 void *desc;
1488 int i, descsize;
1489
1490 if (sc->sc_flags & NFE_40BIT_ADDR) {
1491 desc = ring->desc64;
1492 descsize = sizeof (struct nfe_desc64);
1493 } else {
1494 desc = ring->desc32;
1495 descsize = sizeof (struct nfe_desc32);
1496 }
1497
1498 if (desc != NULL) {
1499 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1500 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1501 bus_dmamap_unload(sc->sc_dmat, ring->map);
1502 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1503 NFE_RX_RING_COUNT * descsize);
1504 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1505 }
1506
1507 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1508 data = &ring->data[i];
1509
1510 if (data->map != NULL) {
1511 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1512 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1513 bus_dmamap_unload(sc->sc_dmat, data->map);
1514 bus_dmamap_destroy(sc->sc_dmat, data->map);
1515 }
1516 if (data->m != NULL)
1517 m_freem(data->m);
1518 }
1519 }
1520
1521 struct nfe_jbuf *
1522 nfe_jalloc(struct nfe_softc *sc, int i)
1523 {
1524 struct nfe_jbuf *jbuf;
1525
1526 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1527 if (jbuf == NULL)
1528 return NULL;
1529 sc->rxq.jbufmap[i] =
1530 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1531 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1532 return jbuf;
1533 }
1534
1535 /*
1536 * This is called automatically by the network stack when the mbuf is freed.
1537 * Caution must be taken that the NIC might be reset by the time the mbuf is
1538 * freed.
1539 */
1540 void
1541 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1542 {
1543 struct nfe_softc *sc = arg;
1544 struct nfe_jbuf *jbuf;
1545 int i;
1546
1547 /* find the jbuf from the base pointer */
1548 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1549 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1550 printf("%s: request to free a buffer (%p) not managed by us\n",
1551 sc->sc_dev.dv_xname, buf);
1552 return;
1553 }
1554 jbuf = &sc->rxq.jbuf[i];
1555
1556 /* ..and put it back in the free list */
1557 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1558
1559 if (m != NULL)
1560 pool_cache_put(mb_cache, m);
1561 }
1562
1563 int
1564 nfe_jpool_alloc(struct nfe_softc *sc)
1565 {
1566 struct nfe_rx_ring *ring = &sc->rxq;
1567 struct nfe_jbuf *jbuf;
1568 bus_addr_t physaddr;
1569 char *buf;
1570 int i, nsegs, error;
1571
1572 /*
1573 * Allocate a big chunk of DMA'able memory.
1574 */
1575 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1576 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1577 if (error != 0) {
1578 printf("%s: could not create jumbo DMA map\n",
1579 sc->sc_dev.dv_xname);
1580 goto fail;
1581 }
1582
1583 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1584 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1585 if (error != 0) {
1586 printf("%s could not allocate jumbo DMA memory\n",
1587 sc->sc_dev.dv_xname);
1588 goto fail;
1589 }
1590
1591 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1592 &ring->jpool, BUS_DMA_NOWAIT);
1593 if (error != 0) {
1594 printf("%s: could not map jumbo DMA memory\n",
1595 sc->sc_dev.dv_xname);
1596 goto fail;
1597 }
1598
1599 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1600 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1601 if (error != 0) {
1602 printf("%s: could not load jumbo DMA map\n",
1603 sc->sc_dev.dv_xname);
1604 goto fail;
1605 }
1606
1607 /* ..and split it into 9KB chunks */
1608 SLIST_INIT(&ring->jfreelist);
1609
1610 buf = ring->jpool;
1611 physaddr = ring->jmap->dm_segs[0].ds_addr;
1612 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1613 jbuf = &ring->jbuf[i];
1614
1615 jbuf->buf = buf;
1616 jbuf->physaddr = physaddr;
1617
1618 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1619
1620 buf += NFE_JBYTES;
1621 physaddr += NFE_JBYTES;
1622 }
1623
1624 return 0;
1625
1626 fail: nfe_jpool_free(sc);
1627 return error;
1628 }
1629
1630 void
1631 nfe_jpool_free(struct nfe_softc *sc)
1632 {
1633 struct nfe_rx_ring *ring = &sc->rxq;
1634
1635 if (ring->jmap != NULL) {
1636 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1637 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1638 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1639 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1640 }
1641 if (ring->jpool != NULL) {
1642 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1643 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1644 }
1645 }
1646
1647 int
1648 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1649 {
1650 int i, nsegs, error;
1651 void **desc;
1652 int descsize;
1653
1654 if (sc->sc_flags & NFE_40BIT_ADDR) {
1655 desc = (void **)&ring->desc64;
1656 descsize = sizeof (struct nfe_desc64);
1657 } else {
1658 desc = (void **)&ring->desc32;
1659 descsize = sizeof (struct nfe_desc32);
1660 }
1661
1662 ring->queued = 0;
1663 ring->cur = ring->next = 0;
1664
1665 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1666 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1667
1668 if (error != 0) {
1669 printf("%s: could not create desc DMA map\n",
1670 sc->sc_dev.dv_xname);
1671 goto fail;
1672 }
1673
1674 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1675 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1676 if (error != 0) {
1677 printf("%s: could not allocate DMA memory\n",
1678 sc->sc_dev.dv_xname);
1679 goto fail;
1680 }
1681
1682 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1683 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1684 if (error != 0) {
1685 printf("%s: could not map desc DMA memory\n",
1686 sc->sc_dev.dv_xname);
1687 goto fail;
1688 }
1689
1690 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1691 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1692 if (error != 0) {
1693 printf("%s: could not load desc DMA map\n",
1694 sc->sc_dev.dv_xname);
1695 goto fail;
1696 }
1697
1698 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1699 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1700
1701 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1702 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1703 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1704 &ring->data[i].map);
1705 if (error != 0) {
1706 printf("%s: could not create DMA map\n",
1707 sc->sc_dev.dv_xname);
1708 goto fail;
1709 }
1710 }
1711
1712 return 0;
1713
1714 fail: nfe_free_tx_ring(sc, ring);
1715 return error;
1716 }
1717
1718 void
1719 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1720 {
1721 struct nfe_tx_data *data;
1722 int i;
1723
1724 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1725 if (sc->sc_flags & NFE_40BIT_ADDR)
1726 ring->desc64[i].flags = 0;
1727 else
1728 ring->desc32[i].flags = 0;
1729
1730 data = &ring->data[i];
1731
1732 if (data->m != NULL) {
1733 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1734 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1735 bus_dmamap_unload(sc->sc_dmat, data->active);
1736 m_freem(data->m);
1737 data->m = NULL;
1738 }
1739 }
1740
1741 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1742 BUS_DMASYNC_PREWRITE);
1743
1744 ring->queued = 0;
1745 ring->cur = ring->next = 0;
1746 }
1747
1748 void
1749 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1750 {
1751 struct nfe_tx_data *data;
1752 void *desc;
1753 int i, descsize;
1754
1755 if (sc->sc_flags & NFE_40BIT_ADDR) {
1756 desc = ring->desc64;
1757 descsize = sizeof (struct nfe_desc64);
1758 } else {
1759 desc = ring->desc32;
1760 descsize = sizeof (struct nfe_desc32);
1761 }
1762
1763 if (desc != NULL) {
1764 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1765 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1766 bus_dmamap_unload(sc->sc_dmat, ring->map);
1767 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1768 NFE_TX_RING_COUNT * descsize);
1769 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1770 }
1771
1772 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1773 data = &ring->data[i];
1774
1775 if (data->m != NULL) {
1776 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1777 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1778 bus_dmamap_unload(sc->sc_dmat, data->active);
1779 m_freem(data->m);
1780 }
1781 }
1782
1783 /* ..and now actually destroy the DMA mappings */
1784 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1785 data = &ring->data[i];
1786 if (data->map == NULL)
1787 continue;
1788 bus_dmamap_destroy(sc->sc_dmat, data->map);
1789 }
1790 }
1791
1792 int
1793 nfe_ifmedia_upd(struct ifnet *ifp)
1794 {
1795 struct nfe_softc *sc = ifp->if_softc;
1796 struct mii_data *mii = &sc->sc_mii;
1797 struct mii_softc *miisc;
1798
1799 if (mii->mii_instance != 0) {
1800 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1801 mii_phy_reset(miisc);
1802 }
1803 return mii_mediachg(mii);
1804 }
1805
1806 void
1807 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1808 {
1809 struct nfe_softc *sc = ifp->if_softc;
1810 struct mii_data *mii = &sc->sc_mii;
1811
1812 mii_pollstat(mii);
1813 ifmr->ifm_status = mii->mii_media_status;
1814 ifmr->ifm_active = mii->mii_media_active;
1815 }
1816
1817 void
1818 nfe_setmulti(struct nfe_softc *sc)
1819 {
1820 struct ethercom *ec = &sc->sc_ethercom;
1821 struct ifnet *ifp = &ec->ec_if;
1822 struct ether_multi *enm;
1823 struct ether_multistep step;
1824 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1825 uint32_t filter = NFE_RXFILTER_MAGIC;
1826 int i;
1827
1828 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1829 bzero(addr, ETHER_ADDR_LEN);
1830 bzero(mask, ETHER_ADDR_LEN);
1831 goto done;
1832 }
1833
1834 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1835 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1836
1837 ETHER_FIRST_MULTI(step, ec, enm);
1838 while (enm != NULL) {
1839 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1840 ifp->if_flags |= IFF_ALLMULTI;
1841 bzero(addr, ETHER_ADDR_LEN);
1842 bzero(mask, ETHER_ADDR_LEN);
1843 goto done;
1844 }
1845 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1846 addr[i] &= enm->enm_addrlo[i];
1847 mask[i] &= ~enm->enm_addrlo[i];
1848 }
1849 ETHER_NEXT_MULTI(step, enm);
1850 }
1851 for (i = 0; i < ETHER_ADDR_LEN; i++)
1852 mask[i] |= addr[i];
1853
1854 done:
1855 addr[0] |= 0x01; /* make sure multicast bit is set */
1856
1857 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1858 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1859 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1860 addr[5] << 8 | addr[4]);
1861 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1862 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1863 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1864 mask[5] << 8 | mask[4]);
1865
1866 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1867 NFE_WRITE(sc, NFE_RXFILTER, filter);
1868 }
1869
1870 void
1871 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1872 {
1873 uint32_t tmp;
1874
1875 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1876 addr[0] = (tmp >> 8) & 0xff;
1877 addr[1] = (tmp & 0xff);
1878
1879 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1880 addr[2] = (tmp >> 24) & 0xff;
1881 addr[3] = (tmp >> 16) & 0xff;
1882 addr[4] = (tmp >> 8) & 0xff;
1883 addr[5] = (tmp & 0xff);
1884 }
1885
1886 void
1887 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1888 {
1889 NFE_WRITE(sc, NFE_MACADDR_LO,
1890 addr[5] << 8 | addr[4]);
1891 NFE_WRITE(sc, NFE_MACADDR_HI,
1892 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1893 }
1894
1895 void
1896 nfe_tick(void *arg)
1897 {
1898 struct nfe_softc *sc = arg;
1899 int s;
1900
1901 s = splnet();
1902 mii_tick(&sc->sc_mii);
1903 splx(s);
1904
1905 callout_schedule(&sc->sc_tick_ch, hz);
1906 }
1907