if_nfe.c revision 1.23 1 /* $NetBSD: if_nfe.c,v 1.23 2007/11/14 14:59:50 xtraeme Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.23 2007/11/14 14:59:50 xtraeme Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }
185 };
186
187 int
188 nfe_match(struct device *dev, struct cfdata *match, void *aux)
189 {
190 struct pci_attach_args *pa = aux;
191 const struct nfe_product *np;
192 int i;
193
194 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
195 np = &nfe_devices[i];
196 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
197 PCI_PRODUCT(pa->pa_id) == np->product)
198 return 1;
199 }
200 return 0;
201 }
202
203 void
204 nfe_attach(struct device *parent, struct device *self, void *aux)
205 {
206 struct nfe_softc *sc = (struct nfe_softc *)self;
207 struct pci_attach_args *pa = aux;
208 pci_chipset_tag_t pc = pa->pa_pc;
209 pci_intr_handle_t ih;
210 const char *intrstr;
211 struct ifnet *ifp;
212 bus_size_t memsize;
213 pcireg_t memtype;
214 char devinfo[256];
215
216 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
217 aprint_normal(": %s (rev. 0x%02x)\n",
218 devinfo, PCI_REVISION(pa->pa_class));
219
220 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
221 switch (memtype) {
222 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
223 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
224 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
225 &sc->sc_memh, NULL, &memsize) == 0)
226 break;
227 /* FALLTHROUGH */
228 default:
229 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
230 return;
231 }
232
233 if (pci_intr_map(pa, &ih) != 0) {
234 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
235 return;
236 }
237
238 intrstr = pci_intr_string(pc, ih);
239 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
240 if (sc->sc_ih == NULL) {
241 printf("%s: could not establish interrupt",
242 sc->sc_dev.dv_xname);
243 if (intrstr != NULL)
244 printf(" at %s", intrstr);
245 printf("\n");
246 return;
247 }
248 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
249
250 sc->sc_dmat = pa->pa_dmat;
251
252 nfe_get_macaddr(sc, sc->sc_enaddr);
253 printf("%s: Ethernet address %s\n",
254 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
255
256 sc->sc_flags = 0;
257
258 switch (PCI_PRODUCT(pa->pa_id)) {
259 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
260 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
261 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
262 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
263 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
264 break;
265 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
266 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
269 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
270 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
271 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
274 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
275 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
276 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
277 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
278 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
279 sc->sc_flags |= NFE_40BIT_ADDR;
280 break;
281 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
282 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
283 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
284 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
285 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
286 break;
287 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
288 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
289 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
290 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
291 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
292 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
293 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
294 NFE_HW_VLAN;
295 break;
296 }
297
298 #ifndef NFE_NO_JUMBO
299 /* enable jumbo frames for adapters that support it */
300 if (sc->sc_flags & NFE_JUMBO_SUP)
301 sc->sc_flags |= NFE_USE_JUMBO;
302 #endif
303
304 /*
305 * Allocate Tx and Rx rings.
306 */
307 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
308 printf("%s: could not allocate Tx ring\n",
309 sc->sc_dev.dv_xname);
310 return;
311 }
312
313 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
314 printf("%s: could not allocate Rx ring\n",
315 sc->sc_dev.dv_xname);
316 nfe_free_tx_ring(sc, &sc->txq);
317 return;
318 }
319
320 ifp = &sc->sc_ethercom.ec_if;
321 ifp->if_softc = sc;
322 ifp->if_mtu = ETHERMTU;
323 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
324 ifp->if_ioctl = nfe_ioctl;
325 ifp->if_start = nfe_start;
326 ifp->if_watchdog = nfe_watchdog;
327 ifp->if_init = nfe_init;
328 ifp->if_baudrate = IF_Gbps(1);
329 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
330 IFQ_SET_READY(&ifp->if_snd);
331 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
332
333 #if NVLAN > 0
334 if (sc->sc_flags & NFE_HW_VLAN)
335 sc->sc_ethercom.ec_capabilities |=
336 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
337 #endif
338 if (sc->sc_flags & NFE_HW_CSUM) {
339 ifp->if_capabilities |=
340 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
341 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
342 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
343 }
344
345 sc->sc_mii.mii_ifp = ifp;
346 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
347 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
348 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
349
350 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
351 nfe_ifmedia_sts);
352 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
353 MII_OFFSET_ANY, 0);
354 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
355 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
356 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
357 0, NULL);
358 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
359 } else
360 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
361
362 if_attach(ifp);
363 ether_ifattach(ifp, sc->sc_enaddr);
364
365 callout_init(&sc->sc_tick_ch, 0);
366 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
367
368 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
369 nfe_power, sc);
370 }
371
372 void
373 nfe_power(int why, void *arg)
374 {
375 struct nfe_softc *sc = arg;
376 struct ifnet *ifp;
377
378 if (why == PWR_RESUME) {
379 ifp = &sc->sc_ethercom.ec_if;
380 if (ifp->if_flags & IFF_UP) {
381 ifp->if_flags &= ~IFF_RUNNING;
382 nfe_init(ifp);
383 if (ifp->if_flags & IFF_RUNNING)
384 nfe_start(ifp);
385 }
386 }
387 }
388
389 void
390 nfe_miibus_statchg(struct device *dev)
391 {
392 struct nfe_softc *sc = (struct nfe_softc *)dev;
393 struct mii_data *mii = &sc->sc_mii;
394 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
395
396 phy = NFE_READ(sc, NFE_PHY_IFACE);
397 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
398
399 seed = NFE_READ(sc, NFE_RNDSEED);
400 seed &= ~NFE_SEED_MASK;
401
402 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
403 phy |= NFE_PHY_HDX; /* half-duplex */
404 misc |= NFE_MISC1_HDX;
405 }
406
407 switch (IFM_SUBTYPE(mii->mii_media_active)) {
408 case IFM_1000_T: /* full-duplex only */
409 link |= NFE_MEDIA_1000T;
410 seed |= NFE_SEED_1000T;
411 phy |= NFE_PHY_1000T;
412 break;
413 case IFM_100_TX:
414 link |= NFE_MEDIA_100TX;
415 seed |= NFE_SEED_100TX;
416 phy |= NFE_PHY_100TX;
417 break;
418 case IFM_10_T:
419 link |= NFE_MEDIA_10T;
420 seed |= NFE_SEED_10T;
421 break;
422 }
423
424 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
425
426 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
427 NFE_WRITE(sc, NFE_MISC1, misc);
428 NFE_WRITE(sc, NFE_LINKSPEED, link);
429 }
430
431 int
432 nfe_miibus_readreg(struct device *dev, int phy, int reg)
433 {
434 struct nfe_softc *sc = (struct nfe_softc *)dev;
435 uint32_t val;
436 int ntries;
437
438 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
439
440 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
441 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
442 DELAY(100);
443 }
444
445 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
446
447 for (ntries = 0; ntries < 1000; ntries++) {
448 DELAY(100);
449 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
450 break;
451 }
452 if (ntries == 1000) {
453 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
454 sc->sc_dev.dv_xname));
455 return 0;
456 }
457
458 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
459 DPRINTFN(2, ("%s: could not read PHY\n",
460 sc->sc_dev.dv_xname));
461 return 0;
462 }
463
464 val = NFE_READ(sc, NFE_PHY_DATA);
465 if (val != 0xffffffff && val != 0)
466 sc->mii_phyaddr = phy;
467
468 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
469 sc->sc_dev.dv_xname, phy, reg, val));
470
471 return val;
472 }
473
474 void
475 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
476 {
477 struct nfe_softc *sc = (struct nfe_softc *)dev;
478 uint32_t ctl;
479 int ntries;
480
481 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
482
483 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
484 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
485 DELAY(100);
486 }
487
488 NFE_WRITE(sc, NFE_PHY_DATA, val);
489 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
490 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
491
492 for (ntries = 0; ntries < 1000; ntries++) {
493 DELAY(100);
494 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
495 break;
496 }
497 #ifdef NFE_DEBUG
498 if (nfedebug >= 2 && ntries == 1000)
499 printf("could not write to PHY\n");
500 #endif
501 }
502
503 int
504 nfe_intr(void *arg)
505 {
506 struct nfe_softc *sc = arg;
507 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
508 uint32_t r;
509 int handled;
510
511 if ((ifp->if_flags & IFF_UP) == 0)
512 return 0;
513
514 handled = 0;
515
516 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
517
518 for (;;) {
519 r = NFE_READ(sc, NFE_IRQ_STATUS);
520 if ((r & NFE_IRQ_WANTED) == 0)
521 break;
522
523 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
524 handled = 1;
525 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
526
527 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
528 != 0) {
529 /* check Rx ring */
530 nfe_rxeof(sc);
531 }
532
533 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
534 != 0) {
535 /* check Tx ring */
536 nfe_txeof(sc);
537 }
538
539 if ((r & NFE_IRQ_LINK) != 0) {
540 NFE_READ(sc, NFE_PHY_STATUS);
541 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
542 DPRINTF(("%s: link state changed\n",
543 sc->sc_dev.dv_xname));
544 }
545 }
546
547 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
548
549 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
550 nfe_start(ifp);
551
552 return handled;
553 }
554
555 int
556 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
557 {
558 struct nfe_softc *sc = ifp->if_softc;
559 struct ifreq *ifr = (struct ifreq *)data;
560 struct ifaddr *ifa = (struct ifaddr *)data;
561 int s, error = 0;
562
563 s = splnet();
564
565 switch (cmd) {
566 case SIOCSIFADDR:
567 ifp->if_flags |= IFF_UP;
568 nfe_init(ifp);
569 switch (ifa->ifa_addr->sa_family) {
570 #ifdef INET
571 case AF_INET:
572 arp_ifinit(ifp, ifa);
573 break;
574 #endif
575 default:
576 break;
577 }
578 break;
579 case SIOCSIFMTU:
580 if (ifr->ifr_mtu < ETHERMIN ||
581 ((sc->sc_flags & NFE_USE_JUMBO) &&
582 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
583 (!(sc->sc_flags & NFE_USE_JUMBO) &&
584 ifr->ifr_mtu > ETHERMTU))
585 error = EINVAL;
586 else if (ifp->if_mtu != ifr->ifr_mtu)
587 ifp->if_mtu = ifr->ifr_mtu;
588 break;
589 case SIOCSIFFLAGS:
590 if (ifp->if_flags & IFF_UP) {
591 /*
592 * If only the PROMISC or ALLMULTI flag changes, then
593 * don't do a full re-init of the chip, just update
594 * the Rx filter.
595 */
596 if ((ifp->if_flags & IFF_RUNNING) &&
597 ((ifp->if_flags ^ sc->sc_if_flags) &
598 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
599 nfe_setmulti(sc);
600 else
601 nfe_init(ifp);
602 } else {
603 if (ifp->if_flags & IFF_RUNNING)
604 nfe_stop(ifp, 1);
605 }
606 sc->sc_if_flags = ifp->if_flags;
607 break;
608 case SIOCADDMULTI:
609 case SIOCDELMULTI:
610 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
611 if (ifp->if_flags & IFF_RUNNING)
612 nfe_setmulti(sc);
613 error = 0;
614 }
615 break;
616 case SIOCSIFMEDIA:
617 case SIOCGIFMEDIA:
618 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
619 break;
620 default:
621 error = ether_ioctl(ifp, cmd, data);
622 if (error == ENETRESET) {
623 if (ifp->if_flags & IFF_RUNNING)
624 nfe_setmulti(sc);
625 error = 0;
626 }
627 break;
628
629 }
630
631 splx(s);
632
633 return error;
634 }
635
636 void
637 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
638 {
639 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
640 (char *)desc32 - (char *)sc->txq.desc32,
641 sizeof (struct nfe_desc32), ops);
642 }
643
644 void
645 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
646 {
647 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
648 (char *)desc64 - (char *)sc->txq.desc64,
649 sizeof (struct nfe_desc64), ops);
650 }
651
652 void
653 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
654 {
655 if (end > start) {
656 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
657 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
658 (char *)&sc->txq.desc32[end] -
659 (char *)&sc->txq.desc32[start], ops);
660 return;
661 }
662 /* sync from 'start' to end of ring */
663 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
664 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
665 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
666 (char *)&sc->txq.desc32[start], ops);
667
668 /* sync from start of ring to 'end' */
669 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
670 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
671 }
672
673 void
674 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
675 {
676 if (end > start) {
677 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
678 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
679 (char *)&sc->txq.desc64[end] -
680 (char *)&sc->txq.desc64[start], ops);
681 return;
682 }
683 /* sync from 'start' to end of ring */
684 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
685 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
686 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
687 (char *)&sc->txq.desc64[start], ops);
688
689 /* sync from start of ring to 'end' */
690 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
691 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
692 }
693
694 void
695 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
696 {
697 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
698 (char *)desc32 - (char *)sc->rxq.desc32,
699 sizeof (struct nfe_desc32), ops);
700 }
701
702 void
703 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
704 {
705 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
706 (char *)desc64 - (char *)sc->rxq.desc64,
707 sizeof (struct nfe_desc64), ops);
708 }
709
710 void
711 nfe_rxeof(struct nfe_softc *sc)
712 {
713 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
714 struct nfe_desc32 *desc32;
715 struct nfe_desc64 *desc64;
716 struct nfe_rx_data *data;
717 struct nfe_jbuf *jbuf;
718 struct mbuf *m, *mnew;
719 bus_addr_t physaddr;
720 uint16_t flags;
721 int error, len, i;
722
723 desc32 = NULL;
724 desc64 = NULL;
725 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
726 data = &sc->rxq.data[i];
727
728 if (sc->sc_flags & NFE_40BIT_ADDR) {
729 desc64 = &sc->rxq.desc64[i];
730 nfe_rxdesc64_sync(sc, desc64,
731 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
732
733 flags = le16toh(desc64->flags);
734 len = le16toh(desc64->length) & 0x3fff;
735 } else {
736 desc32 = &sc->rxq.desc32[i];
737 nfe_rxdesc32_sync(sc, desc32,
738 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
739
740 flags = le16toh(desc32->flags);
741 len = le16toh(desc32->length) & 0x3fff;
742 }
743
744 if ((flags & NFE_RX_READY) != 0)
745 break;
746
747 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
748 if ((flags & NFE_RX_VALID_V1) == 0)
749 goto skip;
750
751 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
752 flags &= ~NFE_RX_ERROR;
753 len--; /* fix buffer length */
754 }
755 } else {
756 if ((flags & NFE_RX_VALID_V2) == 0)
757 goto skip;
758
759 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
760 flags &= ~NFE_RX_ERROR;
761 len--; /* fix buffer length */
762 }
763 }
764
765 if (flags & NFE_RX_ERROR) {
766 ifp->if_ierrors++;
767 goto skip;
768 }
769
770 /*
771 * Try to allocate a new mbuf for this ring element and load
772 * it before processing the current mbuf. If the ring element
773 * cannot be loaded, drop the received packet and reuse the
774 * old mbuf. In the unlikely case that the old mbuf can't be
775 * reloaded either, explicitly panic.
776 */
777 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
778 if (mnew == NULL) {
779 ifp->if_ierrors++;
780 goto skip;
781 }
782
783 if (sc->sc_flags & NFE_USE_JUMBO) {
784 physaddr =
785 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
786 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
787 if (len > MCLBYTES) {
788 m_freem(mnew);
789 ifp->if_ierrors++;
790 goto skip1;
791 }
792 MCLGET(mnew, M_DONTWAIT);
793 if ((mnew->m_flags & M_EXT) == 0) {
794 m_freem(mnew);
795 ifp->if_ierrors++;
796 goto skip1;
797 }
798
799 memcpy(mtod(mnew, void *),
800 mtod(data->m, const void *), len);
801 m = mnew;
802 goto mbufcopied;
803 } else {
804 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
805
806 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
807 mtod(data->m, char *) - (char *)sc->rxq.jpool,
808 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
809
810 physaddr = jbuf->physaddr;
811 }
812 } else {
813 MCLGET(mnew, M_DONTWAIT);
814 if ((mnew->m_flags & M_EXT) == 0) {
815 m_freem(mnew);
816 ifp->if_ierrors++;
817 goto skip;
818 }
819
820 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
821 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
822 bus_dmamap_unload(sc->sc_dmat, data->map);
823
824 error = bus_dmamap_load(sc->sc_dmat, data->map,
825 mtod(mnew, void *), MCLBYTES, NULL,
826 BUS_DMA_READ | BUS_DMA_NOWAIT);
827 if (error != 0) {
828 m_freem(mnew);
829
830 /* try to reload the old mbuf */
831 error = bus_dmamap_load(sc->sc_dmat, data->map,
832 mtod(data->m, void *), MCLBYTES, NULL,
833 BUS_DMA_READ | BUS_DMA_NOWAIT);
834 if (error != 0) {
835 /* very unlikely that it will fail.. */
836 panic("%s: could not load old rx mbuf",
837 sc->sc_dev.dv_xname);
838 }
839 ifp->if_ierrors++;
840 goto skip;
841 }
842 physaddr = data->map->dm_segs[0].ds_addr;
843 }
844
845 /*
846 * New mbuf successfully loaded, update Rx ring and continue
847 * processing.
848 */
849 m = data->m;
850 data->m = mnew;
851
852 mbufcopied:
853 /* finalize mbuf */
854 m->m_pkthdr.len = m->m_len = len;
855 m->m_pkthdr.rcvif = ifp;
856
857 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
858 /*
859 * XXX
860 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
861 */
862 if (flags & NFE_RX_IP_CSUMOK) {
863 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
864 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
865 sc->sc_dev.dv_xname));
866 }
867 /*
868 * XXX
869 * no way to check M_CSUM_TCP_UDP_BAD or
870 * other protocols?
871 */
872 if (flags & NFE_RX_UDP_CSUMOK) {
873 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
874 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
875 sc->sc_dev.dv_xname));
876 } else if (flags & NFE_RX_TCP_CSUMOK) {
877 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
878 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
879 sc->sc_dev.dv_xname));
880 }
881 }
882
883 #if NBPFILTER > 0
884 if (ifp->if_bpf)
885 bpf_mtap(ifp->if_bpf, m);
886 #endif
887 ifp->if_ipackets++;
888 (*ifp->if_input)(ifp, m);
889
890 skip1:
891 /* update mapping address in h/w descriptor */
892 if (sc->sc_flags & NFE_40BIT_ADDR) {
893 #if defined(__LP64__)
894 desc64->physaddr[0] = htole32(physaddr >> 32);
895 #endif
896 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
897 } else {
898 desc32->physaddr = htole32(physaddr);
899 }
900
901 skip:
902 if (sc->sc_flags & NFE_40BIT_ADDR) {
903 desc64->length = htole16(sc->rxq.bufsz);
904 desc64->flags = htole16(NFE_RX_READY);
905
906 nfe_rxdesc64_sync(sc, desc64,
907 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
908 } else {
909 desc32->length = htole16(sc->rxq.bufsz);
910 desc32->flags = htole16(NFE_RX_READY);
911
912 nfe_rxdesc32_sync(sc, desc32,
913 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
914 }
915 }
916 /* update current RX pointer */
917 sc->rxq.cur = i;
918 }
919
920 void
921 nfe_txeof(struct nfe_softc *sc)
922 {
923 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
924 struct nfe_desc32 *desc32;
925 struct nfe_desc64 *desc64;
926 struct nfe_tx_data *data = NULL;
927 int i;
928 uint16_t flags;
929
930 for (i = sc->txq.next;
931 sc->txq.queued > 0;
932 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
933 if (sc->sc_flags & NFE_40BIT_ADDR) {
934 desc64 = &sc->txq.desc64[i];
935 nfe_txdesc64_sync(sc, desc64,
936 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
937
938 flags = le16toh(desc64->flags);
939 } else {
940 desc32 = &sc->txq.desc32[i];
941 nfe_txdesc32_sync(sc, desc32,
942 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
943
944 flags = le16toh(desc32->flags);
945 }
946
947 if ((flags & NFE_TX_VALID) != 0)
948 break;
949
950 data = &sc->txq.data[i];
951
952 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
953 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
954 data->m == NULL)
955 continue;
956
957 if ((flags & NFE_TX_ERROR_V1) != 0) {
958 printf("%s: tx v1 error 0x%04x\n",
959 sc->sc_dev.dv_xname, flags);
960 ifp->if_oerrors++;
961 } else
962 ifp->if_opackets++;
963 } else {
964 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
965 data->m == NULL)
966 continue;
967
968 if ((flags & NFE_TX_ERROR_V2) != 0) {
969 printf("%s: tx v2 error 0x%04x\n",
970 sc->sc_dev.dv_xname, flags);
971 ifp->if_oerrors++;
972 } else
973 ifp->if_opackets++;
974 }
975
976 if (data->m == NULL) { /* should not get there */
977 printf("%s: last fragment bit w/o associated mbuf!\n",
978 sc->sc_dev.dv_xname);
979 continue;
980 }
981
982 /* last fragment of the mbuf chain transmitted */
983 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
984 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
985 bus_dmamap_unload(sc->sc_dmat, data->active);
986 m_freem(data->m);
987 data->m = NULL;
988 }
989
990 sc->txq.next = i;
991
992 if (sc->txq.queued < NFE_TX_RING_COUNT) {
993 /* at least one slot freed */
994 ifp->if_flags &= ~IFF_OACTIVE;
995 }
996
997 if (sc->txq.queued == 0) {
998 /* all queued packets are sent */
999 ifp->if_timer = 0;
1000 }
1001 }
1002
1003 int
1004 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1005 {
1006 struct nfe_desc32 *desc32;
1007 struct nfe_desc64 *desc64;
1008 struct nfe_tx_data *data;
1009 bus_dmamap_t map;
1010 uint16_t flags, csumflags;
1011 #if NVLAN > 0
1012 struct m_tag *mtag;
1013 uint32_t vtag = 0;
1014 #endif
1015 int error, i, first;
1016
1017 desc32 = NULL;
1018 desc64 = NULL;
1019 data = NULL;
1020
1021 flags = 0;
1022 csumflags = 0;
1023 first = sc->txq.cur;
1024
1025 map = sc->txq.data[first].map;
1026
1027 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1028 if (error != 0) {
1029 printf("%s: could not map mbuf (error %d)\n",
1030 sc->sc_dev.dv_xname, error);
1031 return error;
1032 }
1033
1034 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1035 bus_dmamap_unload(sc->sc_dmat, map);
1036 return ENOBUFS;
1037 }
1038
1039 #if NVLAN > 0
1040 /* setup h/w VLAN tagging */
1041 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1042 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1043 #endif
1044 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1045 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1046 csumflags |= NFE_TX_IP_CSUM;
1047 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1048 csumflags |= NFE_TX_TCP_UDP_CSUM;
1049 }
1050
1051 for (i = 0; i < map->dm_nsegs; i++) {
1052 data = &sc->txq.data[sc->txq.cur];
1053
1054 if (sc->sc_flags & NFE_40BIT_ADDR) {
1055 desc64 = &sc->txq.desc64[sc->txq.cur];
1056 #if defined(__LP64__)
1057 desc64->physaddr[0] =
1058 htole32(map->dm_segs[i].ds_addr >> 32);
1059 #endif
1060 desc64->physaddr[1] =
1061 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1062 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1063 desc64->flags = htole16(flags);
1064 desc64->vtag = 0;
1065 } else {
1066 desc32 = &sc->txq.desc32[sc->txq.cur];
1067
1068 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1069 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1070 desc32->flags = htole16(flags);
1071 }
1072
1073 /*
1074 * Setting of the valid bit in the first descriptor is
1075 * deferred until the whole chain is fully setup.
1076 */
1077 flags |= NFE_TX_VALID;
1078
1079 sc->txq.queued++;
1080 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1081 }
1082
1083 /* the whole mbuf chain has been setup */
1084 if (sc->sc_flags & NFE_40BIT_ADDR) {
1085 /* fix last descriptor */
1086 flags |= NFE_TX_LASTFRAG_V2;
1087 desc64->flags = htole16(flags);
1088
1089 /* Checksum flags and vtag belong to the first fragment only. */
1090 #if NVLAN > 0
1091 sc->txq.desc64[first].vtag = htole32(vtag);
1092 #endif
1093 sc->txq.desc64[first].flags |= htole16(csumflags);
1094
1095 /* finally, set the valid bit in the first descriptor */
1096 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1097 } else {
1098 /* fix last descriptor */
1099 if (sc->sc_flags & NFE_JUMBO_SUP)
1100 flags |= NFE_TX_LASTFRAG_V2;
1101 else
1102 flags |= NFE_TX_LASTFRAG_V1;
1103 desc32->flags = htole16(flags);
1104
1105 /* Checksum flags belong to the first fragment only. */
1106 sc->txq.desc32[first].flags |= htole16(csumflags);
1107
1108 /* finally, set the valid bit in the first descriptor */
1109 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1110 }
1111
1112 data->m = m0;
1113 data->active = map;
1114
1115 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1116 BUS_DMASYNC_PREWRITE);
1117
1118 return 0;
1119 }
1120
1121 void
1122 nfe_start(struct ifnet *ifp)
1123 {
1124 struct nfe_softc *sc = ifp->if_softc;
1125 int old = sc->txq.queued;
1126 struct mbuf *m0;
1127
1128 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1129 return;
1130
1131 for (;;) {
1132 IFQ_POLL(&ifp->if_snd, m0);
1133 if (m0 == NULL)
1134 break;
1135
1136 if (nfe_encap(sc, m0) != 0) {
1137 ifp->if_flags |= IFF_OACTIVE;
1138 break;
1139 }
1140
1141 /* packet put in h/w queue, remove from s/w queue */
1142 IFQ_DEQUEUE(&ifp->if_snd, m0);
1143
1144 #if NBPFILTER > 0
1145 if (ifp->if_bpf != NULL)
1146 bpf_mtap(ifp->if_bpf, m0);
1147 #endif
1148 }
1149
1150 if (sc->txq.queued != old) {
1151 /* packets are queued */
1152 if (sc->sc_flags & NFE_40BIT_ADDR)
1153 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1154 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1155 else
1156 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1157 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1158 /* kick Tx */
1159 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1160
1161 /*
1162 * Set a timeout in case the chip goes out to lunch.
1163 */
1164 ifp->if_timer = 5;
1165 }
1166 }
1167
1168 void
1169 nfe_watchdog(struct ifnet *ifp)
1170 {
1171 struct nfe_softc *sc = ifp->if_softc;
1172
1173 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1174
1175 ifp->if_flags &= ~IFF_RUNNING;
1176 nfe_init(ifp);
1177
1178 ifp->if_oerrors++;
1179 }
1180
1181 int
1182 nfe_init(struct ifnet *ifp)
1183 {
1184 struct nfe_softc *sc = ifp->if_softc;
1185 uint32_t tmp;
1186 int s;
1187
1188 if (ifp->if_flags & IFF_RUNNING)
1189 return 0;
1190
1191 nfe_stop(ifp, 0);
1192
1193 NFE_WRITE(sc, NFE_TX_UNK, 0);
1194 NFE_WRITE(sc, NFE_STATUS, 0);
1195
1196 sc->rxtxctl = NFE_RXTX_BIT2;
1197 if (sc->sc_flags & NFE_40BIT_ADDR)
1198 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1199 else if (sc->sc_flags & NFE_JUMBO_SUP)
1200 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1201 if (sc->sc_flags & NFE_HW_CSUM)
1202 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1203 #if NVLAN > 0
1204 /*
1205 * Although the adapter is capable of stripping VLAN tags from received
1206 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1207 * purpose. This will be done in software by our network stack.
1208 */
1209 if (sc->sc_flags & NFE_HW_VLAN)
1210 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1211 #endif
1212 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1213 DELAY(10);
1214 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1215
1216 #if NVLAN
1217 if (sc->sc_flags & NFE_HW_VLAN)
1218 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1219 #endif
1220
1221 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1222
1223 /* set MAC address */
1224 nfe_set_macaddr(sc, sc->sc_enaddr);
1225
1226 /* tell MAC where rings are in memory */
1227 #ifdef __LP64__
1228 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1229 #endif
1230 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1231 #ifdef __LP64__
1232 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1233 #endif
1234 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1235
1236 NFE_WRITE(sc, NFE_RING_SIZE,
1237 (NFE_RX_RING_COUNT - 1) << 16 |
1238 (NFE_TX_RING_COUNT - 1));
1239
1240 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1241
1242 /* force MAC to wakeup */
1243 tmp = NFE_READ(sc, NFE_PWR_STATE);
1244 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1245 DELAY(10);
1246 tmp = NFE_READ(sc, NFE_PWR_STATE);
1247 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1248
1249 s = splnet();
1250 nfe_intr(sc); /* XXX clear IRQ status registers */
1251 splx(s);
1252
1253 #if 1
1254 /* configure interrupts coalescing/mitigation */
1255 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1256 #else
1257 /* no interrupt mitigation: one interrupt per packet */
1258 NFE_WRITE(sc, NFE_IMTIMER, 970);
1259 #endif
1260
1261 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1262 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1263 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1264
1265 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1266 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1267
1268 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1269 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1270
1271 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1272 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1273 DELAY(10);
1274 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1275
1276 /* set Rx filter */
1277 nfe_setmulti(sc);
1278
1279 nfe_ifmedia_upd(ifp);
1280
1281 nfe_tick(sc);
1282
1283 /* enable Rx */
1284 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1285
1286 /* enable Tx */
1287 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1288
1289 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1290
1291 /* enable interrupts */
1292 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1293
1294 callout_schedule(&sc->sc_tick_ch, hz);
1295
1296 ifp->if_flags |= IFF_RUNNING;
1297 ifp->if_flags &= ~IFF_OACTIVE;
1298
1299 return 0;
1300 }
1301
1302 void
1303 nfe_stop(struct ifnet *ifp, int disable)
1304 {
1305 struct nfe_softc *sc = ifp->if_softc;
1306
1307 callout_stop(&sc->sc_tick_ch);
1308
1309 ifp->if_timer = 0;
1310 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1311
1312 mii_down(&sc->sc_mii);
1313
1314 /* abort Tx */
1315 NFE_WRITE(sc, NFE_TX_CTL, 0);
1316
1317 /* disable Rx */
1318 NFE_WRITE(sc, NFE_RX_CTL, 0);
1319
1320 /* disable interrupts */
1321 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1322
1323 /* reset Tx and Rx rings */
1324 nfe_reset_tx_ring(sc, &sc->txq);
1325 nfe_reset_rx_ring(sc, &sc->rxq);
1326 }
1327
1328 int
1329 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1330 {
1331 struct nfe_desc32 *desc32;
1332 struct nfe_desc64 *desc64;
1333 struct nfe_rx_data *data;
1334 struct nfe_jbuf *jbuf;
1335 void **desc;
1336 bus_addr_t physaddr;
1337 int i, nsegs, error, descsize;
1338
1339 if (sc->sc_flags & NFE_40BIT_ADDR) {
1340 desc = (void **)&ring->desc64;
1341 descsize = sizeof (struct nfe_desc64);
1342 } else {
1343 desc = (void **)&ring->desc32;
1344 descsize = sizeof (struct nfe_desc32);
1345 }
1346
1347 ring->cur = ring->next = 0;
1348 ring->bufsz = MCLBYTES;
1349
1350 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1351 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1352 if (error != 0) {
1353 printf("%s: could not create desc DMA map\n",
1354 sc->sc_dev.dv_xname);
1355 goto fail;
1356 }
1357
1358 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1359 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1360 if (error != 0) {
1361 printf("%s: could not allocate DMA memory\n",
1362 sc->sc_dev.dv_xname);
1363 goto fail;
1364 }
1365
1366 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1367 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1368 if (error != 0) {
1369 printf("%s: could not map desc DMA memory\n",
1370 sc->sc_dev.dv_xname);
1371 goto fail;
1372 }
1373
1374 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1375 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1376 if (error != 0) {
1377 printf("%s: could not load desc DMA map\n",
1378 sc->sc_dev.dv_xname);
1379 goto fail;
1380 }
1381
1382 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1383 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1384
1385 if (sc->sc_flags & NFE_USE_JUMBO) {
1386 ring->bufsz = NFE_JBYTES;
1387 if ((error = nfe_jpool_alloc(sc)) != 0) {
1388 printf("%s: could not allocate jumbo frames\n",
1389 sc->sc_dev.dv_xname);
1390 goto fail;
1391 }
1392 }
1393
1394 /*
1395 * Pre-allocate Rx buffers and populate Rx ring.
1396 */
1397 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1398 data = &sc->rxq.data[i];
1399
1400 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1401 if (data->m == NULL) {
1402 printf("%s: could not allocate rx mbuf\n",
1403 sc->sc_dev.dv_xname);
1404 error = ENOMEM;
1405 goto fail;
1406 }
1407
1408 if (sc->sc_flags & NFE_USE_JUMBO) {
1409 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1410 printf("%s: could not allocate jumbo buffer\n",
1411 sc->sc_dev.dv_xname);
1412 goto fail;
1413 }
1414 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1415 sc);
1416
1417 physaddr = jbuf->physaddr;
1418 } else {
1419 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1420 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1421 if (error != 0) {
1422 printf("%s: could not create DMA map\n",
1423 sc->sc_dev.dv_xname);
1424 goto fail;
1425 }
1426 MCLGET(data->m, M_DONTWAIT);
1427 if (!(data->m->m_flags & M_EXT)) {
1428 printf("%s: could not allocate mbuf cluster\n",
1429 sc->sc_dev.dv_xname);
1430 error = ENOMEM;
1431 goto fail;
1432 }
1433
1434 error = bus_dmamap_load(sc->sc_dmat, data->map,
1435 mtod(data->m, void *), MCLBYTES, NULL,
1436 BUS_DMA_READ | BUS_DMA_NOWAIT);
1437 if (error != 0) {
1438 printf("%s: could not load rx buf DMA map",
1439 sc->sc_dev.dv_xname);
1440 goto fail;
1441 }
1442 physaddr = data->map->dm_segs[0].ds_addr;
1443 }
1444
1445 if (sc->sc_flags & NFE_40BIT_ADDR) {
1446 desc64 = &sc->rxq.desc64[i];
1447 #if defined(__LP64__)
1448 desc64->physaddr[0] = htole32(physaddr >> 32);
1449 #endif
1450 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1451 desc64->length = htole16(sc->rxq.bufsz);
1452 desc64->flags = htole16(NFE_RX_READY);
1453 } else {
1454 desc32 = &sc->rxq.desc32[i];
1455 desc32->physaddr = htole32(physaddr);
1456 desc32->length = htole16(sc->rxq.bufsz);
1457 desc32->flags = htole16(NFE_RX_READY);
1458 }
1459 }
1460
1461 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1462 BUS_DMASYNC_PREWRITE);
1463
1464 return 0;
1465
1466 fail: nfe_free_rx_ring(sc, ring);
1467 return error;
1468 }
1469
1470 void
1471 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1472 {
1473 int i;
1474
1475 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1476 if (sc->sc_flags & NFE_40BIT_ADDR) {
1477 ring->desc64[i].length = htole16(ring->bufsz);
1478 ring->desc64[i].flags = htole16(NFE_RX_READY);
1479 } else {
1480 ring->desc32[i].length = htole16(ring->bufsz);
1481 ring->desc32[i].flags = htole16(NFE_RX_READY);
1482 }
1483 }
1484
1485 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1486 BUS_DMASYNC_PREWRITE);
1487
1488 ring->cur = ring->next = 0;
1489 }
1490
1491 void
1492 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1493 {
1494 struct nfe_rx_data *data;
1495 void *desc;
1496 int i, descsize;
1497
1498 if (sc->sc_flags & NFE_40BIT_ADDR) {
1499 desc = ring->desc64;
1500 descsize = sizeof (struct nfe_desc64);
1501 } else {
1502 desc = ring->desc32;
1503 descsize = sizeof (struct nfe_desc32);
1504 }
1505
1506 if (desc != NULL) {
1507 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1508 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1509 bus_dmamap_unload(sc->sc_dmat, ring->map);
1510 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1511 NFE_RX_RING_COUNT * descsize);
1512 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1513 }
1514
1515 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1516 data = &ring->data[i];
1517
1518 if (data->map != NULL) {
1519 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1520 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1521 bus_dmamap_unload(sc->sc_dmat, data->map);
1522 bus_dmamap_destroy(sc->sc_dmat, data->map);
1523 }
1524 if (data->m != NULL)
1525 m_freem(data->m);
1526 }
1527 }
1528
1529 struct nfe_jbuf *
1530 nfe_jalloc(struct nfe_softc *sc, int i)
1531 {
1532 struct nfe_jbuf *jbuf;
1533
1534 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1535 if (jbuf == NULL)
1536 return NULL;
1537 sc->rxq.jbufmap[i] =
1538 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1539 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1540 return jbuf;
1541 }
1542
1543 /*
1544 * This is called automatically by the network stack when the mbuf is freed.
1545 * Caution must be taken that the NIC might be reset by the time the mbuf is
1546 * freed.
1547 */
1548 void
1549 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1550 {
1551 struct nfe_softc *sc = arg;
1552 struct nfe_jbuf *jbuf;
1553 int i;
1554
1555 /* find the jbuf from the base pointer */
1556 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1557 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1558 printf("%s: request to free a buffer (%p) not managed by us\n",
1559 sc->sc_dev.dv_xname, buf);
1560 return;
1561 }
1562 jbuf = &sc->rxq.jbuf[i];
1563
1564 /* ..and put it back in the free list */
1565 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1566
1567 if (m != NULL)
1568 pool_cache_put(mb_cache, m);
1569 }
1570
1571 int
1572 nfe_jpool_alloc(struct nfe_softc *sc)
1573 {
1574 struct nfe_rx_ring *ring = &sc->rxq;
1575 struct nfe_jbuf *jbuf;
1576 bus_addr_t physaddr;
1577 char *buf;
1578 int i, nsegs, error;
1579
1580 /*
1581 * Allocate a big chunk of DMA'able memory.
1582 */
1583 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1584 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1585 if (error != 0) {
1586 printf("%s: could not create jumbo DMA map\n",
1587 sc->sc_dev.dv_xname);
1588 goto fail;
1589 }
1590
1591 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1592 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1593 if (error != 0) {
1594 printf("%s could not allocate jumbo DMA memory\n",
1595 sc->sc_dev.dv_xname);
1596 goto fail;
1597 }
1598
1599 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1600 &ring->jpool, BUS_DMA_NOWAIT);
1601 if (error != 0) {
1602 printf("%s: could not map jumbo DMA memory\n",
1603 sc->sc_dev.dv_xname);
1604 goto fail;
1605 }
1606
1607 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1608 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1609 if (error != 0) {
1610 printf("%s: could not load jumbo DMA map\n",
1611 sc->sc_dev.dv_xname);
1612 goto fail;
1613 }
1614
1615 /* ..and split it into 9KB chunks */
1616 SLIST_INIT(&ring->jfreelist);
1617
1618 buf = ring->jpool;
1619 physaddr = ring->jmap->dm_segs[0].ds_addr;
1620 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1621 jbuf = &ring->jbuf[i];
1622
1623 jbuf->buf = buf;
1624 jbuf->physaddr = physaddr;
1625
1626 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1627
1628 buf += NFE_JBYTES;
1629 physaddr += NFE_JBYTES;
1630 }
1631
1632 return 0;
1633
1634 fail: nfe_jpool_free(sc);
1635 return error;
1636 }
1637
1638 void
1639 nfe_jpool_free(struct nfe_softc *sc)
1640 {
1641 struct nfe_rx_ring *ring = &sc->rxq;
1642
1643 if (ring->jmap != NULL) {
1644 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1645 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1646 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1647 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1648 }
1649 if (ring->jpool != NULL) {
1650 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1651 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1652 }
1653 }
1654
1655 int
1656 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1657 {
1658 int i, nsegs, error;
1659 void **desc;
1660 int descsize;
1661
1662 if (sc->sc_flags & NFE_40BIT_ADDR) {
1663 desc = (void **)&ring->desc64;
1664 descsize = sizeof (struct nfe_desc64);
1665 } else {
1666 desc = (void **)&ring->desc32;
1667 descsize = sizeof (struct nfe_desc32);
1668 }
1669
1670 ring->queued = 0;
1671 ring->cur = ring->next = 0;
1672
1673 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1674 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1675
1676 if (error != 0) {
1677 printf("%s: could not create desc DMA map\n",
1678 sc->sc_dev.dv_xname);
1679 goto fail;
1680 }
1681
1682 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1683 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1684 if (error != 0) {
1685 printf("%s: could not allocate DMA memory\n",
1686 sc->sc_dev.dv_xname);
1687 goto fail;
1688 }
1689
1690 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1691 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1692 if (error != 0) {
1693 printf("%s: could not map desc DMA memory\n",
1694 sc->sc_dev.dv_xname);
1695 goto fail;
1696 }
1697
1698 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1699 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1700 if (error != 0) {
1701 printf("%s: could not load desc DMA map\n",
1702 sc->sc_dev.dv_xname);
1703 goto fail;
1704 }
1705
1706 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1707 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1708
1709 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1710 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1711 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1712 &ring->data[i].map);
1713 if (error != 0) {
1714 printf("%s: could not create DMA map\n",
1715 sc->sc_dev.dv_xname);
1716 goto fail;
1717 }
1718 }
1719
1720 return 0;
1721
1722 fail: nfe_free_tx_ring(sc, ring);
1723 return error;
1724 }
1725
1726 void
1727 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1728 {
1729 struct nfe_tx_data *data;
1730 int i;
1731
1732 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1733 if (sc->sc_flags & NFE_40BIT_ADDR)
1734 ring->desc64[i].flags = 0;
1735 else
1736 ring->desc32[i].flags = 0;
1737
1738 data = &ring->data[i];
1739
1740 if (data->m != NULL) {
1741 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1742 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1743 bus_dmamap_unload(sc->sc_dmat, data->active);
1744 m_freem(data->m);
1745 data->m = NULL;
1746 }
1747 }
1748
1749 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1750 BUS_DMASYNC_PREWRITE);
1751
1752 ring->queued = 0;
1753 ring->cur = ring->next = 0;
1754 }
1755
1756 void
1757 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1758 {
1759 struct nfe_tx_data *data;
1760 void *desc;
1761 int i, descsize;
1762
1763 if (sc->sc_flags & NFE_40BIT_ADDR) {
1764 desc = ring->desc64;
1765 descsize = sizeof (struct nfe_desc64);
1766 } else {
1767 desc = ring->desc32;
1768 descsize = sizeof (struct nfe_desc32);
1769 }
1770
1771 if (desc != NULL) {
1772 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1773 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1774 bus_dmamap_unload(sc->sc_dmat, ring->map);
1775 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1776 NFE_TX_RING_COUNT * descsize);
1777 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1778 }
1779
1780 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1781 data = &ring->data[i];
1782
1783 if (data->m != NULL) {
1784 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1785 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1786 bus_dmamap_unload(sc->sc_dmat, data->active);
1787 m_freem(data->m);
1788 }
1789 }
1790
1791 /* ..and now actually destroy the DMA mappings */
1792 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1793 data = &ring->data[i];
1794 if (data->map == NULL)
1795 continue;
1796 bus_dmamap_destroy(sc->sc_dmat, data->map);
1797 }
1798 }
1799
1800 int
1801 nfe_ifmedia_upd(struct ifnet *ifp)
1802 {
1803 struct nfe_softc *sc = ifp->if_softc;
1804 struct mii_data *mii = &sc->sc_mii;
1805 struct mii_softc *miisc;
1806
1807 if (mii->mii_instance != 0) {
1808 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1809 mii_phy_reset(miisc);
1810 }
1811 return mii_mediachg(mii);
1812 }
1813
1814 void
1815 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1816 {
1817 struct nfe_softc *sc = ifp->if_softc;
1818 struct mii_data *mii = &sc->sc_mii;
1819
1820 mii_pollstat(mii);
1821 ifmr->ifm_status = mii->mii_media_status;
1822 ifmr->ifm_active = mii->mii_media_active;
1823 }
1824
1825 void
1826 nfe_setmulti(struct nfe_softc *sc)
1827 {
1828 struct ethercom *ec = &sc->sc_ethercom;
1829 struct ifnet *ifp = &ec->ec_if;
1830 struct ether_multi *enm;
1831 struct ether_multistep step;
1832 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1833 uint32_t filter = NFE_RXFILTER_MAGIC;
1834 int i;
1835
1836 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1837 bzero(addr, ETHER_ADDR_LEN);
1838 bzero(mask, ETHER_ADDR_LEN);
1839 goto done;
1840 }
1841
1842 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1843 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1844
1845 ETHER_FIRST_MULTI(step, ec, enm);
1846 while (enm != NULL) {
1847 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1848 ifp->if_flags |= IFF_ALLMULTI;
1849 bzero(addr, ETHER_ADDR_LEN);
1850 bzero(mask, ETHER_ADDR_LEN);
1851 goto done;
1852 }
1853 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1854 addr[i] &= enm->enm_addrlo[i];
1855 mask[i] &= ~enm->enm_addrlo[i];
1856 }
1857 ETHER_NEXT_MULTI(step, enm);
1858 }
1859 for (i = 0; i < ETHER_ADDR_LEN; i++)
1860 mask[i] |= addr[i];
1861
1862 done:
1863 addr[0] |= 0x01; /* make sure multicast bit is set */
1864
1865 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1866 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1867 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1868 addr[5] << 8 | addr[4]);
1869 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1870 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1871 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1872 mask[5] << 8 | mask[4]);
1873
1874 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1875 NFE_WRITE(sc, NFE_RXFILTER, filter);
1876 }
1877
1878 void
1879 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1880 {
1881 uint32_t tmp;
1882
1883 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1884 addr[0] = (tmp >> 8) & 0xff;
1885 addr[1] = (tmp & 0xff);
1886
1887 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1888 addr[2] = (tmp >> 24) & 0xff;
1889 addr[3] = (tmp >> 16) & 0xff;
1890 addr[4] = (tmp >> 8) & 0xff;
1891 addr[5] = (tmp & 0xff);
1892 }
1893
1894 void
1895 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1896 {
1897 NFE_WRITE(sc, NFE_MACADDR_LO,
1898 addr[5] << 8 | addr[4]);
1899 NFE_WRITE(sc, NFE_MACADDR_HI,
1900 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1901 }
1902
1903 void
1904 nfe_tick(void *arg)
1905 {
1906 struct nfe_softc *sc = arg;
1907 int s;
1908
1909 s = splnet();
1910 mii_tick(&sc->sc_mii);
1911 splx(s);
1912
1913 callout_schedule(&sc->sc_tick_ch, hz);
1914 }
1915