if_nfe.c revision 1.24 1 /* $NetBSD: if_nfe.c,v 1.24 2007/12/09 20:28:09 jmcneill Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.24 2007/12/09 20:28:09 jmcneill Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }
185 };
186
187 int
188 nfe_match(struct device *dev, struct cfdata *match, void *aux)
189 {
190 struct pci_attach_args *pa = aux;
191 const struct nfe_product *np;
192 int i;
193
194 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
195 np = &nfe_devices[i];
196 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
197 PCI_PRODUCT(pa->pa_id) == np->product)
198 return 1;
199 }
200 return 0;
201 }
202
203 void
204 nfe_attach(struct device *parent, struct device *self, void *aux)
205 {
206 struct nfe_softc *sc = (struct nfe_softc *)self;
207 struct pci_attach_args *pa = aux;
208 pci_chipset_tag_t pc = pa->pa_pc;
209 pci_intr_handle_t ih;
210 const char *intrstr;
211 struct ifnet *ifp;
212 bus_size_t memsize;
213 pcireg_t memtype;
214 char devinfo[256];
215
216 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
217 aprint_normal(": %s (rev. 0x%02x)\n",
218 devinfo, PCI_REVISION(pa->pa_class));
219
220 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
221 switch (memtype) {
222 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
223 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
224 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
225 &sc->sc_memh, NULL, &memsize) == 0)
226 break;
227 /* FALLTHROUGH */
228 default:
229 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
230 return;
231 }
232
233 if (pci_intr_map(pa, &ih) != 0) {
234 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
235 return;
236 }
237
238 intrstr = pci_intr_string(pc, ih);
239 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
240 if (sc->sc_ih == NULL) {
241 printf("%s: could not establish interrupt",
242 sc->sc_dev.dv_xname);
243 if (intrstr != NULL)
244 printf(" at %s", intrstr);
245 printf("\n");
246 return;
247 }
248 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
249
250 sc->sc_dmat = pa->pa_dmat;
251
252 nfe_get_macaddr(sc, sc->sc_enaddr);
253 printf("%s: Ethernet address %s\n",
254 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
255
256 sc->sc_flags = 0;
257
258 switch (PCI_PRODUCT(pa->pa_id)) {
259 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
260 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
261 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
262 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
263 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
264 break;
265 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
266 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
267 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
269 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
270 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
271 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
274 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
275 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
276 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
277 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
278 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
279 sc->sc_flags |= NFE_40BIT_ADDR;
280 break;
281 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
282 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
283 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
284 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
285 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
286 break;
287 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
288 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
289 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
290 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
291 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
292 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
293 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
294 NFE_HW_VLAN;
295 break;
296 }
297
298 #ifndef NFE_NO_JUMBO
299 /* enable jumbo frames for adapters that support it */
300 if (sc->sc_flags & NFE_JUMBO_SUP)
301 sc->sc_flags |= NFE_USE_JUMBO;
302 #endif
303
304 /*
305 * Allocate Tx and Rx rings.
306 */
307 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
308 printf("%s: could not allocate Tx ring\n",
309 sc->sc_dev.dv_xname);
310 return;
311 }
312
313 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
314 printf("%s: could not allocate Rx ring\n",
315 sc->sc_dev.dv_xname);
316 nfe_free_tx_ring(sc, &sc->txq);
317 return;
318 }
319
320 ifp = &sc->sc_ethercom.ec_if;
321 ifp->if_softc = sc;
322 ifp->if_mtu = ETHERMTU;
323 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
324 ifp->if_ioctl = nfe_ioctl;
325 ifp->if_start = nfe_start;
326 ifp->if_stop = nfe_stop;
327 ifp->if_watchdog = nfe_watchdog;
328 ifp->if_init = nfe_init;
329 ifp->if_baudrate = IF_Gbps(1);
330 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
331 IFQ_SET_READY(&ifp->if_snd);
332 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
333
334 #if NVLAN > 0
335 if (sc->sc_flags & NFE_HW_VLAN)
336 sc->sc_ethercom.ec_capabilities |=
337 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
338 #endif
339 if (sc->sc_flags & NFE_HW_CSUM) {
340 ifp->if_capabilities |=
341 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
342 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
343 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
344 }
345
346 sc->sc_mii.mii_ifp = ifp;
347 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
348 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
349 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
350
351 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
352 nfe_ifmedia_sts);
353 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
354 MII_OFFSET_ANY, 0);
355 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
356 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
357 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
358 0, NULL);
359 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
360 } else
361 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
362
363 if_attach(ifp);
364 ether_ifattach(ifp, sc->sc_enaddr);
365
366 callout_init(&sc->sc_tick_ch, 0);
367 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
368
369 if (!pmf_device_register(self, NULL, NULL))
370 aprint_error_dev(self, "couldn't establish power handler\n");
371 else
372 pmf_class_network_register(self, ifp);
373 }
374
375 void
376 nfe_miibus_statchg(struct device *dev)
377 {
378 struct nfe_softc *sc = (struct nfe_softc *)dev;
379 struct mii_data *mii = &sc->sc_mii;
380 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
381
382 phy = NFE_READ(sc, NFE_PHY_IFACE);
383 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
384
385 seed = NFE_READ(sc, NFE_RNDSEED);
386 seed &= ~NFE_SEED_MASK;
387
388 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
389 phy |= NFE_PHY_HDX; /* half-duplex */
390 misc |= NFE_MISC1_HDX;
391 }
392
393 switch (IFM_SUBTYPE(mii->mii_media_active)) {
394 case IFM_1000_T: /* full-duplex only */
395 link |= NFE_MEDIA_1000T;
396 seed |= NFE_SEED_1000T;
397 phy |= NFE_PHY_1000T;
398 break;
399 case IFM_100_TX:
400 link |= NFE_MEDIA_100TX;
401 seed |= NFE_SEED_100TX;
402 phy |= NFE_PHY_100TX;
403 break;
404 case IFM_10_T:
405 link |= NFE_MEDIA_10T;
406 seed |= NFE_SEED_10T;
407 break;
408 }
409
410 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
411
412 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
413 NFE_WRITE(sc, NFE_MISC1, misc);
414 NFE_WRITE(sc, NFE_LINKSPEED, link);
415 }
416
417 int
418 nfe_miibus_readreg(struct device *dev, int phy, int reg)
419 {
420 struct nfe_softc *sc = (struct nfe_softc *)dev;
421 uint32_t val;
422 int ntries;
423
424 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
425
426 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
427 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
428 DELAY(100);
429 }
430
431 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
432
433 for (ntries = 0; ntries < 1000; ntries++) {
434 DELAY(100);
435 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
436 break;
437 }
438 if (ntries == 1000) {
439 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
440 sc->sc_dev.dv_xname));
441 return 0;
442 }
443
444 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
445 DPRINTFN(2, ("%s: could not read PHY\n",
446 sc->sc_dev.dv_xname));
447 return 0;
448 }
449
450 val = NFE_READ(sc, NFE_PHY_DATA);
451 if (val != 0xffffffff && val != 0)
452 sc->mii_phyaddr = phy;
453
454 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
455 sc->sc_dev.dv_xname, phy, reg, val));
456
457 return val;
458 }
459
460 void
461 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
462 {
463 struct nfe_softc *sc = (struct nfe_softc *)dev;
464 uint32_t ctl;
465 int ntries;
466
467 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
468
469 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
470 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
471 DELAY(100);
472 }
473
474 NFE_WRITE(sc, NFE_PHY_DATA, val);
475 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
476 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
477
478 for (ntries = 0; ntries < 1000; ntries++) {
479 DELAY(100);
480 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
481 break;
482 }
483 #ifdef NFE_DEBUG
484 if (nfedebug >= 2 && ntries == 1000)
485 printf("could not write to PHY\n");
486 #endif
487 }
488
489 int
490 nfe_intr(void *arg)
491 {
492 struct nfe_softc *sc = arg;
493 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
494 uint32_t r;
495 int handled;
496
497 if ((ifp->if_flags & IFF_UP) == 0)
498 return 0;
499
500 handled = 0;
501
502 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
503
504 for (;;) {
505 r = NFE_READ(sc, NFE_IRQ_STATUS);
506 if ((r & NFE_IRQ_WANTED) == 0)
507 break;
508
509 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
510 handled = 1;
511 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
512
513 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
514 != 0) {
515 /* check Rx ring */
516 nfe_rxeof(sc);
517 }
518
519 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
520 != 0) {
521 /* check Tx ring */
522 nfe_txeof(sc);
523 }
524
525 if ((r & NFE_IRQ_LINK) != 0) {
526 NFE_READ(sc, NFE_PHY_STATUS);
527 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
528 DPRINTF(("%s: link state changed\n",
529 sc->sc_dev.dv_xname));
530 }
531 }
532
533 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
534
535 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
536 nfe_start(ifp);
537
538 return handled;
539 }
540
541 int
542 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
543 {
544 struct nfe_softc *sc = ifp->if_softc;
545 struct ifreq *ifr = (struct ifreq *)data;
546 struct ifaddr *ifa = (struct ifaddr *)data;
547 int s, error = 0;
548
549 s = splnet();
550
551 switch (cmd) {
552 case SIOCSIFADDR:
553 ifp->if_flags |= IFF_UP;
554 nfe_init(ifp);
555 switch (ifa->ifa_addr->sa_family) {
556 #ifdef INET
557 case AF_INET:
558 arp_ifinit(ifp, ifa);
559 break;
560 #endif
561 default:
562 break;
563 }
564 break;
565 case SIOCSIFMTU:
566 if (ifr->ifr_mtu < ETHERMIN ||
567 ((sc->sc_flags & NFE_USE_JUMBO) &&
568 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
569 (!(sc->sc_flags & NFE_USE_JUMBO) &&
570 ifr->ifr_mtu > ETHERMTU))
571 error = EINVAL;
572 else if (ifp->if_mtu != ifr->ifr_mtu)
573 ifp->if_mtu = ifr->ifr_mtu;
574 break;
575 case SIOCSIFFLAGS:
576 if (ifp->if_flags & IFF_UP) {
577 /*
578 * If only the PROMISC or ALLMULTI flag changes, then
579 * don't do a full re-init of the chip, just update
580 * the Rx filter.
581 */
582 if ((ifp->if_flags & IFF_RUNNING) &&
583 ((ifp->if_flags ^ sc->sc_if_flags) &
584 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
585 nfe_setmulti(sc);
586 else
587 nfe_init(ifp);
588 } else {
589 if (ifp->if_flags & IFF_RUNNING)
590 nfe_stop(ifp, 1);
591 }
592 sc->sc_if_flags = ifp->if_flags;
593 break;
594 case SIOCADDMULTI:
595 case SIOCDELMULTI:
596 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
597 if (ifp->if_flags & IFF_RUNNING)
598 nfe_setmulti(sc);
599 error = 0;
600 }
601 break;
602 case SIOCSIFMEDIA:
603 case SIOCGIFMEDIA:
604 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
605 break;
606 default:
607 error = ether_ioctl(ifp, cmd, data);
608 if (error == ENETRESET) {
609 if (ifp->if_flags & IFF_RUNNING)
610 nfe_setmulti(sc);
611 error = 0;
612 }
613 break;
614
615 }
616
617 splx(s);
618
619 return error;
620 }
621
622 void
623 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
624 {
625 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
626 (char *)desc32 - (char *)sc->txq.desc32,
627 sizeof (struct nfe_desc32), ops);
628 }
629
630 void
631 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
632 {
633 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
634 (char *)desc64 - (char *)sc->txq.desc64,
635 sizeof (struct nfe_desc64), ops);
636 }
637
638 void
639 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
640 {
641 if (end > start) {
642 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
643 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
644 (char *)&sc->txq.desc32[end] -
645 (char *)&sc->txq.desc32[start], ops);
646 return;
647 }
648 /* sync from 'start' to end of ring */
649 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
650 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
651 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
652 (char *)&sc->txq.desc32[start], ops);
653
654 /* sync from start of ring to 'end' */
655 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
656 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
657 }
658
659 void
660 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
661 {
662 if (end > start) {
663 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
664 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
665 (char *)&sc->txq.desc64[end] -
666 (char *)&sc->txq.desc64[start], ops);
667 return;
668 }
669 /* sync from 'start' to end of ring */
670 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
671 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
672 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
673 (char *)&sc->txq.desc64[start], ops);
674
675 /* sync from start of ring to 'end' */
676 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
677 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
678 }
679
680 void
681 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
682 {
683 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
684 (char *)desc32 - (char *)sc->rxq.desc32,
685 sizeof (struct nfe_desc32), ops);
686 }
687
688 void
689 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
690 {
691 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
692 (char *)desc64 - (char *)sc->rxq.desc64,
693 sizeof (struct nfe_desc64), ops);
694 }
695
696 void
697 nfe_rxeof(struct nfe_softc *sc)
698 {
699 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
700 struct nfe_desc32 *desc32;
701 struct nfe_desc64 *desc64;
702 struct nfe_rx_data *data;
703 struct nfe_jbuf *jbuf;
704 struct mbuf *m, *mnew;
705 bus_addr_t physaddr;
706 uint16_t flags;
707 int error, len, i;
708
709 desc32 = NULL;
710 desc64 = NULL;
711 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
712 data = &sc->rxq.data[i];
713
714 if (sc->sc_flags & NFE_40BIT_ADDR) {
715 desc64 = &sc->rxq.desc64[i];
716 nfe_rxdesc64_sync(sc, desc64,
717 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
718
719 flags = le16toh(desc64->flags);
720 len = le16toh(desc64->length) & 0x3fff;
721 } else {
722 desc32 = &sc->rxq.desc32[i];
723 nfe_rxdesc32_sync(sc, desc32,
724 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
725
726 flags = le16toh(desc32->flags);
727 len = le16toh(desc32->length) & 0x3fff;
728 }
729
730 if ((flags & NFE_RX_READY) != 0)
731 break;
732
733 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
734 if ((flags & NFE_RX_VALID_V1) == 0)
735 goto skip;
736
737 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
738 flags &= ~NFE_RX_ERROR;
739 len--; /* fix buffer length */
740 }
741 } else {
742 if ((flags & NFE_RX_VALID_V2) == 0)
743 goto skip;
744
745 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
746 flags &= ~NFE_RX_ERROR;
747 len--; /* fix buffer length */
748 }
749 }
750
751 if (flags & NFE_RX_ERROR) {
752 ifp->if_ierrors++;
753 goto skip;
754 }
755
756 /*
757 * Try to allocate a new mbuf for this ring element and load
758 * it before processing the current mbuf. If the ring element
759 * cannot be loaded, drop the received packet and reuse the
760 * old mbuf. In the unlikely case that the old mbuf can't be
761 * reloaded either, explicitly panic.
762 */
763 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
764 if (mnew == NULL) {
765 ifp->if_ierrors++;
766 goto skip;
767 }
768
769 if (sc->sc_flags & NFE_USE_JUMBO) {
770 physaddr =
771 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
772 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
773 if (len > MCLBYTES) {
774 m_freem(mnew);
775 ifp->if_ierrors++;
776 goto skip1;
777 }
778 MCLGET(mnew, M_DONTWAIT);
779 if ((mnew->m_flags & M_EXT) == 0) {
780 m_freem(mnew);
781 ifp->if_ierrors++;
782 goto skip1;
783 }
784
785 memcpy(mtod(mnew, void *),
786 mtod(data->m, const void *), len);
787 m = mnew;
788 goto mbufcopied;
789 } else {
790 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
791
792 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
793 mtod(data->m, char *) - (char *)sc->rxq.jpool,
794 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
795
796 physaddr = jbuf->physaddr;
797 }
798 } else {
799 MCLGET(mnew, M_DONTWAIT);
800 if ((mnew->m_flags & M_EXT) == 0) {
801 m_freem(mnew);
802 ifp->if_ierrors++;
803 goto skip;
804 }
805
806 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
807 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
808 bus_dmamap_unload(sc->sc_dmat, data->map);
809
810 error = bus_dmamap_load(sc->sc_dmat, data->map,
811 mtod(mnew, void *), MCLBYTES, NULL,
812 BUS_DMA_READ | BUS_DMA_NOWAIT);
813 if (error != 0) {
814 m_freem(mnew);
815
816 /* try to reload the old mbuf */
817 error = bus_dmamap_load(sc->sc_dmat, data->map,
818 mtod(data->m, void *), MCLBYTES, NULL,
819 BUS_DMA_READ | BUS_DMA_NOWAIT);
820 if (error != 0) {
821 /* very unlikely that it will fail.. */
822 panic("%s: could not load old rx mbuf",
823 sc->sc_dev.dv_xname);
824 }
825 ifp->if_ierrors++;
826 goto skip;
827 }
828 physaddr = data->map->dm_segs[0].ds_addr;
829 }
830
831 /*
832 * New mbuf successfully loaded, update Rx ring and continue
833 * processing.
834 */
835 m = data->m;
836 data->m = mnew;
837
838 mbufcopied:
839 /* finalize mbuf */
840 m->m_pkthdr.len = m->m_len = len;
841 m->m_pkthdr.rcvif = ifp;
842
843 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
844 /*
845 * XXX
846 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
847 */
848 if (flags & NFE_RX_IP_CSUMOK) {
849 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
850 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
851 sc->sc_dev.dv_xname));
852 }
853 /*
854 * XXX
855 * no way to check M_CSUM_TCP_UDP_BAD or
856 * other protocols?
857 */
858 if (flags & NFE_RX_UDP_CSUMOK) {
859 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
860 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
861 sc->sc_dev.dv_xname));
862 } else if (flags & NFE_RX_TCP_CSUMOK) {
863 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
864 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
865 sc->sc_dev.dv_xname));
866 }
867 }
868
869 #if NBPFILTER > 0
870 if (ifp->if_bpf)
871 bpf_mtap(ifp->if_bpf, m);
872 #endif
873 ifp->if_ipackets++;
874 (*ifp->if_input)(ifp, m);
875
876 skip1:
877 /* update mapping address in h/w descriptor */
878 if (sc->sc_flags & NFE_40BIT_ADDR) {
879 #if defined(__LP64__)
880 desc64->physaddr[0] = htole32(physaddr >> 32);
881 #endif
882 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
883 } else {
884 desc32->physaddr = htole32(physaddr);
885 }
886
887 skip:
888 if (sc->sc_flags & NFE_40BIT_ADDR) {
889 desc64->length = htole16(sc->rxq.bufsz);
890 desc64->flags = htole16(NFE_RX_READY);
891
892 nfe_rxdesc64_sync(sc, desc64,
893 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
894 } else {
895 desc32->length = htole16(sc->rxq.bufsz);
896 desc32->flags = htole16(NFE_RX_READY);
897
898 nfe_rxdesc32_sync(sc, desc32,
899 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
900 }
901 }
902 /* update current RX pointer */
903 sc->rxq.cur = i;
904 }
905
906 void
907 nfe_txeof(struct nfe_softc *sc)
908 {
909 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
910 struct nfe_desc32 *desc32;
911 struct nfe_desc64 *desc64;
912 struct nfe_tx_data *data = NULL;
913 int i;
914 uint16_t flags;
915
916 for (i = sc->txq.next;
917 sc->txq.queued > 0;
918 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
919 if (sc->sc_flags & NFE_40BIT_ADDR) {
920 desc64 = &sc->txq.desc64[i];
921 nfe_txdesc64_sync(sc, desc64,
922 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
923
924 flags = le16toh(desc64->flags);
925 } else {
926 desc32 = &sc->txq.desc32[i];
927 nfe_txdesc32_sync(sc, desc32,
928 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
929
930 flags = le16toh(desc32->flags);
931 }
932
933 if ((flags & NFE_TX_VALID) != 0)
934 break;
935
936 data = &sc->txq.data[i];
937
938 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
939 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
940 data->m == NULL)
941 continue;
942
943 if ((flags & NFE_TX_ERROR_V1) != 0) {
944 printf("%s: tx v1 error 0x%04x\n",
945 sc->sc_dev.dv_xname, flags);
946 ifp->if_oerrors++;
947 } else
948 ifp->if_opackets++;
949 } else {
950 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
951 data->m == NULL)
952 continue;
953
954 if ((flags & NFE_TX_ERROR_V2) != 0) {
955 printf("%s: tx v2 error 0x%04x\n",
956 sc->sc_dev.dv_xname, flags);
957 ifp->if_oerrors++;
958 } else
959 ifp->if_opackets++;
960 }
961
962 if (data->m == NULL) { /* should not get there */
963 printf("%s: last fragment bit w/o associated mbuf!\n",
964 sc->sc_dev.dv_xname);
965 continue;
966 }
967
968 /* last fragment of the mbuf chain transmitted */
969 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
970 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
971 bus_dmamap_unload(sc->sc_dmat, data->active);
972 m_freem(data->m);
973 data->m = NULL;
974 }
975
976 sc->txq.next = i;
977
978 if (sc->txq.queued < NFE_TX_RING_COUNT) {
979 /* at least one slot freed */
980 ifp->if_flags &= ~IFF_OACTIVE;
981 }
982
983 if (sc->txq.queued == 0) {
984 /* all queued packets are sent */
985 ifp->if_timer = 0;
986 }
987 }
988
989 int
990 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
991 {
992 struct nfe_desc32 *desc32;
993 struct nfe_desc64 *desc64;
994 struct nfe_tx_data *data;
995 bus_dmamap_t map;
996 uint16_t flags, csumflags;
997 #if NVLAN > 0
998 struct m_tag *mtag;
999 uint32_t vtag = 0;
1000 #endif
1001 int error, i, first;
1002
1003 desc32 = NULL;
1004 desc64 = NULL;
1005 data = NULL;
1006
1007 flags = 0;
1008 csumflags = 0;
1009 first = sc->txq.cur;
1010
1011 map = sc->txq.data[first].map;
1012
1013 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1014 if (error != 0) {
1015 printf("%s: could not map mbuf (error %d)\n",
1016 sc->sc_dev.dv_xname, error);
1017 return error;
1018 }
1019
1020 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1021 bus_dmamap_unload(sc->sc_dmat, map);
1022 return ENOBUFS;
1023 }
1024
1025 #if NVLAN > 0
1026 /* setup h/w VLAN tagging */
1027 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1028 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1029 #endif
1030 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1031 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1032 csumflags |= NFE_TX_IP_CSUM;
1033 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1034 csumflags |= NFE_TX_TCP_UDP_CSUM;
1035 }
1036
1037 for (i = 0; i < map->dm_nsegs; i++) {
1038 data = &sc->txq.data[sc->txq.cur];
1039
1040 if (sc->sc_flags & NFE_40BIT_ADDR) {
1041 desc64 = &sc->txq.desc64[sc->txq.cur];
1042 #if defined(__LP64__)
1043 desc64->physaddr[0] =
1044 htole32(map->dm_segs[i].ds_addr >> 32);
1045 #endif
1046 desc64->physaddr[1] =
1047 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1048 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1049 desc64->flags = htole16(flags);
1050 desc64->vtag = 0;
1051 } else {
1052 desc32 = &sc->txq.desc32[sc->txq.cur];
1053
1054 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1055 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1056 desc32->flags = htole16(flags);
1057 }
1058
1059 /*
1060 * Setting of the valid bit in the first descriptor is
1061 * deferred until the whole chain is fully setup.
1062 */
1063 flags |= NFE_TX_VALID;
1064
1065 sc->txq.queued++;
1066 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1067 }
1068
1069 /* the whole mbuf chain has been setup */
1070 if (sc->sc_flags & NFE_40BIT_ADDR) {
1071 /* fix last descriptor */
1072 flags |= NFE_TX_LASTFRAG_V2;
1073 desc64->flags = htole16(flags);
1074
1075 /* Checksum flags and vtag belong to the first fragment only. */
1076 #if NVLAN > 0
1077 sc->txq.desc64[first].vtag = htole32(vtag);
1078 #endif
1079 sc->txq.desc64[first].flags |= htole16(csumflags);
1080
1081 /* finally, set the valid bit in the first descriptor */
1082 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1083 } else {
1084 /* fix last descriptor */
1085 if (sc->sc_flags & NFE_JUMBO_SUP)
1086 flags |= NFE_TX_LASTFRAG_V2;
1087 else
1088 flags |= NFE_TX_LASTFRAG_V1;
1089 desc32->flags = htole16(flags);
1090
1091 /* Checksum flags belong to the first fragment only. */
1092 sc->txq.desc32[first].flags |= htole16(csumflags);
1093
1094 /* finally, set the valid bit in the first descriptor */
1095 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1096 }
1097
1098 data->m = m0;
1099 data->active = map;
1100
1101 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1102 BUS_DMASYNC_PREWRITE);
1103
1104 return 0;
1105 }
1106
1107 void
1108 nfe_start(struct ifnet *ifp)
1109 {
1110 struct nfe_softc *sc = ifp->if_softc;
1111 int old = sc->txq.queued;
1112 struct mbuf *m0;
1113
1114 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1115 return;
1116
1117 for (;;) {
1118 IFQ_POLL(&ifp->if_snd, m0);
1119 if (m0 == NULL)
1120 break;
1121
1122 if (nfe_encap(sc, m0) != 0) {
1123 ifp->if_flags |= IFF_OACTIVE;
1124 break;
1125 }
1126
1127 /* packet put in h/w queue, remove from s/w queue */
1128 IFQ_DEQUEUE(&ifp->if_snd, m0);
1129
1130 #if NBPFILTER > 0
1131 if (ifp->if_bpf != NULL)
1132 bpf_mtap(ifp->if_bpf, m0);
1133 #endif
1134 }
1135
1136 if (sc->txq.queued != old) {
1137 /* packets are queued */
1138 if (sc->sc_flags & NFE_40BIT_ADDR)
1139 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1140 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1141 else
1142 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1143 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1144 /* kick Tx */
1145 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1146
1147 /*
1148 * Set a timeout in case the chip goes out to lunch.
1149 */
1150 ifp->if_timer = 5;
1151 }
1152 }
1153
1154 void
1155 nfe_watchdog(struct ifnet *ifp)
1156 {
1157 struct nfe_softc *sc = ifp->if_softc;
1158
1159 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1160
1161 ifp->if_flags &= ~IFF_RUNNING;
1162 nfe_init(ifp);
1163
1164 ifp->if_oerrors++;
1165 }
1166
1167 int
1168 nfe_init(struct ifnet *ifp)
1169 {
1170 struct nfe_softc *sc = ifp->if_softc;
1171 uint32_t tmp;
1172 int s;
1173
1174 if (ifp->if_flags & IFF_RUNNING)
1175 return 0;
1176
1177 nfe_stop(ifp, 0);
1178
1179 NFE_WRITE(sc, NFE_TX_UNK, 0);
1180 NFE_WRITE(sc, NFE_STATUS, 0);
1181
1182 sc->rxtxctl = NFE_RXTX_BIT2;
1183 if (sc->sc_flags & NFE_40BIT_ADDR)
1184 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1185 else if (sc->sc_flags & NFE_JUMBO_SUP)
1186 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1187 if (sc->sc_flags & NFE_HW_CSUM)
1188 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1189 #if NVLAN > 0
1190 /*
1191 * Although the adapter is capable of stripping VLAN tags from received
1192 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1193 * purpose. This will be done in software by our network stack.
1194 */
1195 if (sc->sc_flags & NFE_HW_VLAN)
1196 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1197 #endif
1198 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1199 DELAY(10);
1200 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1201
1202 #if NVLAN
1203 if (sc->sc_flags & NFE_HW_VLAN)
1204 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1205 #endif
1206
1207 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1208
1209 /* set MAC address */
1210 nfe_set_macaddr(sc, sc->sc_enaddr);
1211
1212 /* tell MAC where rings are in memory */
1213 #ifdef __LP64__
1214 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1215 #endif
1216 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1217 #ifdef __LP64__
1218 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1219 #endif
1220 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1221
1222 NFE_WRITE(sc, NFE_RING_SIZE,
1223 (NFE_RX_RING_COUNT - 1) << 16 |
1224 (NFE_TX_RING_COUNT - 1));
1225
1226 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1227
1228 /* force MAC to wakeup */
1229 tmp = NFE_READ(sc, NFE_PWR_STATE);
1230 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1231 DELAY(10);
1232 tmp = NFE_READ(sc, NFE_PWR_STATE);
1233 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1234
1235 s = splnet();
1236 nfe_intr(sc); /* XXX clear IRQ status registers */
1237 splx(s);
1238
1239 #if 1
1240 /* configure interrupts coalescing/mitigation */
1241 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1242 #else
1243 /* no interrupt mitigation: one interrupt per packet */
1244 NFE_WRITE(sc, NFE_IMTIMER, 970);
1245 #endif
1246
1247 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1248 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1249 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1250
1251 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1252 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1253
1254 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1255 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1256
1257 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1258 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1259 DELAY(10);
1260 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1261
1262 /* set Rx filter */
1263 nfe_setmulti(sc);
1264
1265 nfe_ifmedia_upd(ifp);
1266
1267 nfe_tick(sc);
1268
1269 /* enable Rx */
1270 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1271
1272 /* enable Tx */
1273 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1274
1275 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1276
1277 /* enable interrupts */
1278 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1279
1280 callout_schedule(&sc->sc_tick_ch, hz);
1281
1282 ifp->if_flags |= IFF_RUNNING;
1283 ifp->if_flags &= ~IFF_OACTIVE;
1284
1285 return 0;
1286 }
1287
1288 void
1289 nfe_stop(struct ifnet *ifp, int disable)
1290 {
1291 struct nfe_softc *sc = ifp->if_softc;
1292
1293 callout_stop(&sc->sc_tick_ch);
1294
1295 ifp->if_timer = 0;
1296 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1297
1298 mii_down(&sc->sc_mii);
1299
1300 /* abort Tx */
1301 NFE_WRITE(sc, NFE_TX_CTL, 0);
1302
1303 /* disable Rx */
1304 NFE_WRITE(sc, NFE_RX_CTL, 0);
1305
1306 /* disable interrupts */
1307 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1308
1309 /* reset Tx and Rx rings */
1310 nfe_reset_tx_ring(sc, &sc->txq);
1311 nfe_reset_rx_ring(sc, &sc->rxq);
1312 }
1313
1314 int
1315 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1316 {
1317 struct nfe_desc32 *desc32;
1318 struct nfe_desc64 *desc64;
1319 struct nfe_rx_data *data;
1320 struct nfe_jbuf *jbuf;
1321 void **desc;
1322 bus_addr_t physaddr;
1323 int i, nsegs, error, descsize;
1324
1325 if (sc->sc_flags & NFE_40BIT_ADDR) {
1326 desc = (void **)&ring->desc64;
1327 descsize = sizeof (struct nfe_desc64);
1328 } else {
1329 desc = (void **)&ring->desc32;
1330 descsize = sizeof (struct nfe_desc32);
1331 }
1332
1333 ring->cur = ring->next = 0;
1334 ring->bufsz = MCLBYTES;
1335
1336 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1337 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1338 if (error != 0) {
1339 printf("%s: could not create desc DMA map\n",
1340 sc->sc_dev.dv_xname);
1341 goto fail;
1342 }
1343
1344 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1345 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1346 if (error != 0) {
1347 printf("%s: could not allocate DMA memory\n",
1348 sc->sc_dev.dv_xname);
1349 goto fail;
1350 }
1351
1352 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1353 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1354 if (error != 0) {
1355 printf("%s: could not map desc DMA memory\n",
1356 sc->sc_dev.dv_xname);
1357 goto fail;
1358 }
1359
1360 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1361 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1362 if (error != 0) {
1363 printf("%s: could not load desc DMA map\n",
1364 sc->sc_dev.dv_xname);
1365 goto fail;
1366 }
1367
1368 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1369 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1370
1371 if (sc->sc_flags & NFE_USE_JUMBO) {
1372 ring->bufsz = NFE_JBYTES;
1373 if ((error = nfe_jpool_alloc(sc)) != 0) {
1374 printf("%s: could not allocate jumbo frames\n",
1375 sc->sc_dev.dv_xname);
1376 goto fail;
1377 }
1378 }
1379
1380 /*
1381 * Pre-allocate Rx buffers and populate Rx ring.
1382 */
1383 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1384 data = &sc->rxq.data[i];
1385
1386 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1387 if (data->m == NULL) {
1388 printf("%s: could not allocate rx mbuf\n",
1389 sc->sc_dev.dv_xname);
1390 error = ENOMEM;
1391 goto fail;
1392 }
1393
1394 if (sc->sc_flags & NFE_USE_JUMBO) {
1395 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1396 printf("%s: could not allocate jumbo buffer\n",
1397 sc->sc_dev.dv_xname);
1398 goto fail;
1399 }
1400 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1401 sc);
1402
1403 physaddr = jbuf->physaddr;
1404 } else {
1405 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1406 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1407 if (error != 0) {
1408 printf("%s: could not create DMA map\n",
1409 sc->sc_dev.dv_xname);
1410 goto fail;
1411 }
1412 MCLGET(data->m, M_DONTWAIT);
1413 if (!(data->m->m_flags & M_EXT)) {
1414 printf("%s: could not allocate mbuf cluster\n",
1415 sc->sc_dev.dv_xname);
1416 error = ENOMEM;
1417 goto fail;
1418 }
1419
1420 error = bus_dmamap_load(sc->sc_dmat, data->map,
1421 mtod(data->m, void *), MCLBYTES, NULL,
1422 BUS_DMA_READ | BUS_DMA_NOWAIT);
1423 if (error != 0) {
1424 printf("%s: could not load rx buf DMA map",
1425 sc->sc_dev.dv_xname);
1426 goto fail;
1427 }
1428 physaddr = data->map->dm_segs[0].ds_addr;
1429 }
1430
1431 if (sc->sc_flags & NFE_40BIT_ADDR) {
1432 desc64 = &sc->rxq.desc64[i];
1433 #if defined(__LP64__)
1434 desc64->physaddr[0] = htole32(physaddr >> 32);
1435 #endif
1436 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1437 desc64->length = htole16(sc->rxq.bufsz);
1438 desc64->flags = htole16(NFE_RX_READY);
1439 } else {
1440 desc32 = &sc->rxq.desc32[i];
1441 desc32->physaddr = htole32(physaddr);
1442 desc32->length = htole16(sc->rxq.bufsz);
1443 desc32->flags = htole16(NFE_RX_READY);
1444 }
1445 }
1446
1447 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1448 BUS_DMASYNC_PREWRITE);
1449
1450 return 0;
1451
1452 fail: nfe_free_rx_ring(sc, ring);
1453 return error;
1454 }
1455
1456 void
1457 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1458 {
1459 int i;
1460
1461 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1462 if (sc->sc_flags & NFE_40BIT_ADDR) {
1463 ring->desc64[i].length = htole16(ring->bufsz);
1464 ring->desc64[i].flags = htole16(NFE_RX_READY);
1465 } else {
1466 ring->desc32[i].length = htole16(ring->bufsz);
1467 ring->desc32[i].flags = htole16(NFE_RX_READY);
1468 }
1469 }
1470
1471 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1472 BUS_DMASYNC_PREWRITE);
1473
1474 ring->cur = ring->next = 0;
1475 }
1476
1477 void
1478 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1479 {
1480 struct nfe_rx_data *data;
1481 void *desc;
1482 int i, descsize;
1483
1484 if (sc->sc_flags & NFE_40BIT_ADDR) {
1485 desc = ring->desc64;
1486 descsize = sizeof (struct nfe_desc64);
1487 } else {
1488 desc = ring->desc32;
1489 descsize = sizeof (struct nfe_desc32);
1490 }
1491
1492 if (desc != NULL) {
1493 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1494 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1495 bus_dmamap_unload(sc->sc_dmat, ring->map);
1496 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1497 NFE_RX_RING_COUNT * descsize);
1498 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1499 }
1500
1501 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1502 data = &ring->data[i];
1503
1504 if (data->map != NULL) {
1505 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1506 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1507 bus_dmamap_unload(sc->sc_dmat, data->map);
1508 bus_dmamap_destroy(sc->sc_dmat, data->map);
1509 }
1510 if (data->m != NULL)
1511 m_freem(data->m);
1512 }
1513 }
1514
1515 struct nfe_jbuf *
1516 nfe_jalloc(struct nfe_softc *sc, int i)
1517 {
1518 struct nfe_jbuf *jbuf;
1519
1520 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1521 if (jbuf == NULL)
1522 return NULL;
1523 sc->rxq.jbufmap[i] =
1524 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1525 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1526 return jbuf;
1527 }
1528
1529 /*
1530 * This is called automatically by the network stack when the mbuf is freed.
1531 * Caution must be taken that the NIC might be reset by the time the mbuf is
1532 * freed.
1533 */
1534 void
1535 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1536 {
1537 struct nfe_softc *sc = arg;
1538 struct nfe_jbuf *jbuf;
1539 int i;
1540
1541 /* find the jbuf from the base pointer */
1542 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1543 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1544 printf("%s: request to free a buffer (%p) not managed by us\n",
1545 sc->sc_dev.dv_xname, buf);
1546 return;
1547 }
1548 jbuf = &sc->rxq.jbuf[i];
1549
1550 /* ..and put it back in the free list */
1551 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1552
1553 if (m != NULL)
1554 pool_cache_put(mb_cache, m);
1555 }
1556
1557 int
1558 nfe_jpool_alloc(struct nfe_softc *sc)
1559 {
1560 struct nfe_rx_ring *ring = &sc->rxq;
1561 struct nfe_jbuf *jbuf;
1562 bus_addr_t physaddr;
1563 char *buf;
1564 int i, nsegs, error;
1565
1566 /*
1567 * Allocate a big chunk of DMA'able memory.
1568 */
1569 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1570 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1571 if (error != 0) {
1572 printf("%s: could not create jumbo DMA map\n",
1573 sc->sc_dev.dv_xname);
1574 goto fail;
1575 }
1576
1577 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1578 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1579 if (error != 0) {
1580 printf("%s could not allocate jumbo DMA memory\n",
1581 sc->sc_dev.dv_xname);
1582 goto fail;
1583 }
1584
1585 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1586 &ring->jpool, BUS_DMA_NOWAIT);
1587 if (error != 0) {
1588 printf("%s: could not map jumbo DMA memory\n",
1589 sc->sc_dev.dv_xname);
1590 goto fail;
1591 }
1592
1593 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1594 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1595 if (error != 0) {
1596 printf("%s: could not load jumbo DMA map\n",
1597 sc->sc_dev.dv_xname);
1598 goto fail;
1599 }
1600
1601 /* ..and split it into 9KB chunks */
1602 SLIST_INIT(&ring->jfreelist);
1603
1604 buf = ring->jpool;
1605 physaddr = ring->jmap->dm_segs[0].ds_addr;
1606 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1607 jbuf = &ring->jbuf[i];
1608
1609 jbuf->buf = buf;
1610 jbuf->physaddr = physaddr;
1611
1612 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1613
1614 buf += NFE_JBYTES;
1615 physaddr += NFE_JBYTES;
1616 }
1617
1618 return 0;
1619
1620 fail: nfe_jpool_free(sc);
1621 return error;
1622 }
1623
1624 void
1625 nfe_jpool_free(struct nfe_softc *sc)
1626 {
1627 struct nfe_rx_ring *ring = &sc->rxq;
1628
1629 if (ring->jmap != NULL) {
1630 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1631 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1632 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1633 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1634 }
1635 if (ring->jpool != NULL) {
1636 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1637 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1638 }
1639 }
1640
1641 int
1642 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1643 {
1644 int i, nsegs, error;
1645 void **desc;
1646 int descsize;
1647
1648 if (sc->sc_flags & NFE_40BIT_ADDR) {
1649 desc = (void **)&ring->desc64;
1650 descsize = sizeof (struct nfe_desc64);
1651 } else {
1652 desc = (void **)&ring->desc32;
1653 descsize = sizeof (struct nfe_desc32);
1654 }
1655
1656 ring->queued = 0;
1657 ring->cur = ring->next = 0;
1658
1659 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1660 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1661
1662 if (error != 0) {
1663 printf("%s: could not create desc DMA map\n",
1664 sc->sc_dev.dv_xname);
1665 goto fail;
1666 }
1667
1668 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1669 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1670 if (error != 0) {
1671 printf("%s: could not allocate DMA memory\n",
1672 sc->sc_dev.dv_xname);
1673 goto fail;
1674 }
1675
1676 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1677 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1678 if (error != 0) {
1679 printf("%s: could not map desc DMA memory\n",
1680 sc->sc_dev.dv_xname);
1681 goto fail;
1682 }
1683
1684 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1685 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1686 if (error != 0) {
1687 printf("%s: could not load desc DMA map\n",
1688 sc->sc_dev.dv_xname);
1689 goto fail;
1690 }
1691
1692 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1693 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1694
1695 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1696 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1697 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1698 &ring->data[i].map);
1699 if (error != 0) {
1700 printf("%s: could not create DMA map\n",
1701 sc->sc_dev.dv_xname);
1702 goto fail;
1703 }
1704 }
1705
1706 return 0;
1707
1708 fail: nfe_free_tx_ring(sc, ring);
1709 return error;
1710 }
1711
1712 void
1713 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1714 {
1715 struct nfe_tx_data *data;
1716 int i;
1717
1718 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1719 if (sc->sc_flags & NFE_40BIT_ADDR)
1720 ring->desc64[i].flags = 0;
1721 else
1722 ring->desc32[i].flags = 0;
1723
1724 data = &ring->data[i];
1725
1726 if (data->m != NULL) {
1727 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1728 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1729 bus_dmamap_unload(sc->sc_dmat, data->active);
1730 m_freem(data->m);
1731 data->m = NULL;
1732 }
1733 }
1734
1735 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1736 BUS_DMASYNC_PREWRITE);
1737
1738 ring->queued = 0;
1739 ring->cur = ring->next = 0;
1740 }
1741
1742 void
1743 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1744 {
1745 struct nfe_tx_data *data;
1746 void *desc;
1747 int i, descsize;
1748
1749 if (sc->sc_flags & NFE_40BIT_ADDR) {
1750 desc = ring->desc64;
1751 descsize = sizeof (struct nfe_desc64);
1752 } else {
1753 desc = ring->desc32;
1754 descsize = sizeof (struct nfe_desc32);
1755 }
1756
1757 if (desc != NULL) {
1758 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1759 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1760 bus_dmamap_unload(sc->sc_dmat, ring->map);
1761 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1762 NFE_TX_RING_COUNT * descsize);
1763 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1764 }
1765
1766 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1767 data = &ring->data[i];
1768
1769 if (data->m != NULL) {
1770 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1771 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1772 bus_dmamap_unload(sc->sc_dmat, data->active);
1773 m_freem(data->m);
1774 }
1775 }
1776
1777 /* ..and now actually destroy the DMA mappings */
1778 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1779 data = &ring->data[i];
1780 if (data->map == NULL)
1781 continue;
1782 bus_dmamap_destroy(sc->sc_dmat, data->map);
1783 }
1784 }
1785
1786 int
1787 nfe_ifmedia_upd(struct ifnet *ifp)
1788 {
1789 struct nfe_softc *sc = ifp->if_softc;
1790 struct mii_data *mii = &sc->sc_mii;
1791 struct mii_softc *miisc;
1792
1793 if (mii->mii_instance != 0) {
1794 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1795 mii_phy_reset(miisc);
1796 }
1797 return mii_mediachg(mii);
1798 }
1799
1800 void
1801 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1802 {
1803 struct nfe_softc *sc = ifp->if_softc;
1804 struct mii_data *mii = &sc->sc_mii;
1805
1806 mii_pollstat(mii);
1807 ifmr->ifm_status = mii->mii_media_status;
1808 ifmr->ifm_active = mii->mii_media_active;
1809 }
1810
1811 void
1812 nfe_setmulti(struct nfe_softc *sc)
1813 {
1814 struct ethercom *ec = &sc->sc_ethercom;
1815 struct ifnet *ifp = &ec->ec_if;
1816 struct ether_multi *enm;
1817 struct ether_multistep step;
1818 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1819 uint32_t filter = NFE_RXFILTER_MAGIC;
1820 int i;
1821
1822 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1823 bzero(addr, ETHER_ADDR_LEN);
1824 bzero(mask, ETHER_ADDR_LEN);
1825 goto done;
1826 }
1827
1828 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1829 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1830
1831 ETHER_FIRST_MULTI(step, ec, enm);
1832 while (enm != NULL) {
1833 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1834 ifp->if_flags |= IFF_ALLMULTI;
1835 bzero(addr, ETHER_ADDR_LEN);
1836 bzero(mask, ETHER_ADDR_LEN);
1837 goto done;
1838 }
1839 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1840 addr[i] &= enm->enm_addrlo[i];
1841 mask[i] &= ~enm->enm_addrlo[i];
1842 }
1843 ETHER_NEXT_MULTI(step, enm);
1844 }
1845 for (i = 0; i < ETHER_ADDR_LEN; i++)
1846 mask[i] |= addr[i];
1847
1848 done:
1849 addr[0] |= 0x01; /* make sure multicast bit is set */
1850
1851 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1852 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1853 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1854 addr[5] << 8 | addr[4]);
1855 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1856 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1857 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1858 mask[5] << 8 | mask[4]);
1859
1860 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1861 NFE_WRITE(sc, NFE_RXFILTER, filter);
1862 }
1863
1864 void
1865 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1866 {
1867 uint32_t tmp;
1868
1869 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1870 addr[0] = (tmp >> 8) & 0xff;
1871 addr[1] = (tmp & 0xff);
1872
1873 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1874 addr[2] = (tmp >> 24) & 0xff;
1875 addr[3] = (tmp >> 16) & 0xff;
1876 addr[4] = (tmp >> 8) & 0xff;
1877 addr[5] = (tmp & 0xff);
1878 }
1879
1880 void
1881 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1882 {
1883 NFE_WRITE(sc, NFE_MACADDR_LO,
1884 addr[5] << 8 | addr[4]);
1885 NFE_WRITE(sc, NFE_MACADDR_HI,
1886 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1887 }
1888
1889 void
1890 nfe_tick(void *arg)
1891 {
1892 struct nfe_softc *sc = arg;
1893 int s;
1894
1895 s = splnet();
1896 mii_tick(&sc->sc_mii);
1897 splx(s);
1898
1899 callout_schedule(&sc->sc_tick_ch, hz);
1900 }
1901