if_nfe.c revision 1.25 1 /* $NetBSD: if_nfe.c,v 1.25 2007/12/17 12:41:06 tsutsui Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.25 2007/12/17 12:41:06 tsutsui Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }
185 };
186
187 int
188 nfe_match(struct device *dev, struct cfdata *match, void *aux)
189 {
190 struct pci_attach_args *pa = aux;
191 const struct nfe_product *np;
192 int i;
193
194 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
195 np = &nfe_devices[i];
196 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
197 PCI_PRODUCT(pa->pa_id) == np->product)
198 return 1;
199 }
200 return 0;
201 }
202
203 void
204 nfe_attach(struct device *parent, struct device *self, void *aux)
205 {
206 struct nfe_softc *sc = (struct nfe_softc *)self;
207 struct pci_attach_args *pa = aux;
208 pci_chipset_tag_t pc = pa->pa_pc;
209 pci_intr_handle_t ih;
210 const char *intrstr;
211 struct ifnet *ifp;
212 bus_size_t memsize;
213 pcireg_t memtype;
214 char devinfo[256];
215
216 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
217 aprint_normal(": %s (rev. 0x%02x)\n",
218 devinfo, PCI_REVISION(pa->pa_class));
219
220 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
221 switch (memtype) {
222 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
223 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
224 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
225 &sc->sc_memh, NULL, &memsize) == 0)
226 break;
227 /* FALLTHROUGH */
228 default:
229 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
230 return;
231 }
232
233 if (pci_intr_map(pa, &ih) != 0) {
234 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
235 return;
236 }
237
238 intrstr = pci_intr_string(pc, ih);
239 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
240 if (sc->sc_ih == NULL) {
241 printf("%s: could not establish interrupt",
242 sc->sc_dev.dv_xname);
243 if (intrstr != NULL)
244 printf(" at %s", intrstr);
245 printf("\n");
246 return;
247 }
248 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
249
250 sc->sc_dmat = pa->pa_dmat;
251
252 /* Check for reversed ethernet address */
253 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
254 sc->sc_flags |= NFE_CORRECT_MACADDR;
255
256 nfe_get_macaddr(sc, sc->sc_enaddr);
257 printf("%s: Ethernet address %s\n",
258 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
259
260 sc->sc_flags = 0;
261
262 switch (PCI_PRODUCT(pa->pa_id)) {
263 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
264 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
265 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
266 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
267 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
268 break;
269 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
270 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
271 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
272 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
273 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
274 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
275 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
276 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
277 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
278 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
279 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
280 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
281 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
282 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
283 sc->sc_flags |= NFE_40BIT_ADDR;
284 break;
285 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
286 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
287 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
288 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
289 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
290 break;
291 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
292 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
293 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
294 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
295 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
296 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
297 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
298 NFE_HW_VLAN;
299 break;
300 }
301
302 #ifndef NFE_NO_JUMBO
303 /* enable jumbo frames for adapters that support it */
304 if (sc->sc_flags & NFE_JUMBO_SUP)
305 sc->sc_flags |= NFE_USE_JUMBO;
306 #endif
307
308 /*
309 * Allocate Tx and Rx rings.
310 */
311 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
312 printf("%s: could not allocate Tx ring\n",
313 sc->sc_dev.dv_xname);
314 return;
315 }
316
317 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
318 printf("%s: could not allocate Rx ring\n",
319 sc->sc_dev.dv_xname);
320 nfe_free_tx_ring(sc, &sc->txq);
321 return;
322 }
323
324 ifp = &sc->sc_ethercom.ec_if;
325 ifp->if_softc = sc;
326 ifp->if_mtu = ETHERMTU;
327 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
328 ifp->if_ioctl = nfe_ioctl;
329 ifp->if_start = nfe_start;
330 ifp->if_stop = nfe_stop;
331 ifp->if_watchdog = nfe_watchdog;
332 ifp->if_init = nfe_init;
333 ifp->if_baudrate = IF_Gbps(1);
334 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
335 IFQ_SET_READY(&ifp->if_snd);
336 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
337
338 #if NVLAN > 0
339 if (sc->sc_flags & NFE_HW_VLAN)
340 sc->sc_ethercom.ec_capabilities |=
341 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
342 #endif
343 if (sc->sc_flags & NFE_HW_CSUM) {
344 ifp->if_capabilities |=
345 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
346 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
347 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
348 }
349
350 sc->sc_mii.mii_ifp = ifp;
351 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
352 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
353 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
354
355 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
356 nfe_ifmedia_sts);
357 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
358 MII_OFFSET_ANY, 0);
359 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
360 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
361 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
362 0, NULL);
363 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
364 } else
365 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
366
367 if_attach(ifp);
368 ether_ifattach(ifp, sc->sc_enaddr);
369
370 callout_init(&sc->sc_tick_ch, 0);
371 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
372
373 if (!pmf_device_register(self, NULL, NULL))
374 aprint_error_dev(self, "couldn't establish power handler\n");
375 else
376 pmf_class_network_register(self, ifp);
377 }
378
379 void
380 nfe_miibus_statchg(struct device *dev)
381 {
382 struct nfe_softc *sc = (struct nfe_softc *)dev;
383 struct mii_data *mii = &sc->sc_mii;
384 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
385
386 phy = NFE_READ(sc, NFE_PHY_IFACE);
387 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
388
389 seed = NFE_READ(sc, NFE_RNDSEED);
390 seed &= ~NFE_SEED_MASK;
391
392 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
393 phy |= NFE_PHY_HDX; /* half-duplex */
394 misc |= NFE_MISC1_HDX;
395 }
396
397 switch (IFM_SUBTYPE(mii->mii_media_active)) {
398 case IFM_1000_T: /* full-duplex only */
399 link |= NFE_MEDIA_1000T;
400 seed |= NFE_SEED_1000T;
401 phy |= NFE_PHY_1000T;
402 break;
403 case IFM_100_TX:
404 link |= NFE_MEDIA_100TX;
405 seed |= NFE_SEED_100TX;
406 phy |= NFE_PHY_100TX;
407 break;
408 case IFM_10_T:
409 link |= NFE_MEDIA_10T;
410 seed |= NFE_SEED_10T;
411 break;
412 }
413
414 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
415
416 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
417 NFE_WRITE(sc, NFE_MISC1, misc);
418 NFE_WRITE(sc, NFE_LINKSPEED, link);
419 }
420
421 int
422 nfe_miibus_readreg(struct device *dev, int phy, int reg)
423 {
424 struct nfe_softc *sc = (struct nfe_softc *)dev;
425 uint32_t val;
426 int ntries;
427
428 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
429
430 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
431 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
432 DELAY(100);
433 }
434
435 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
436
437 for (ntries = 0; ntries < 1000; ntries++) {
438 DELAY(100);
439 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
440 break;
441 }
442 if (ntries == 1000) {
443 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
444 sc->sc_dev.dv_xname));
445 return 0;
446 }
447
448 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
449 DPRINTFN(2, ("%s: could not read PHY\n",
450 sc->sc_dev.dv_xname));
451 return 0;
452 }
453
454 val = NFE_READ(sc, NFE_PHY_DATA);
455 if (val != 0xffffffff && val != 0)
456 sc->mii_phyaddr = phy;
457
458 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
459 sc->sc_dev.dv_xname, phy, reg, val));
460
461 return val;
462 }
463
464 void
465 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
466 {
467 struct nfe_softc *sc = (struct nfe_softc *)dev;
468 uint32_t ctl;
469 int ntries;
470
471 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
472
473 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
474 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
475 DELAY(100);
476 }
477
478 NFE_WRITE(sc, NFE_PHY_DATA, val);
479 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
480 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
481
482 for (ntries = 0; ntries < 1000; ntries++) {
483 DELAY(100);
484 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
485 break;
486 }
487 #ifdef NFE_DEBUG
488 if (nfedebug >= 2 && ntries == 1000)
489 printf("could not write to PHY\n");
490 #endif
491 }
492
493 int
494 nfe_intr(void *arg)
495 {
496 struct nfe_softc *sc = arg;
497 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
498 uint32_t r;
499 int handled;
500
501 if ((ifp->if_flags & IFF_UP) == 0)
502 return 0;
503
504 handled = 0;
505
506 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
507
508 for (;;) {
509 r = NFE_READ(sc, NFE_IRQ_STATUS);
510 if ((r & NFE_IRQ_WANTED) == 0)
511 break;
512
513 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
514 handled = 1;
515 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
516
517 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
518 != 0) {
519 /* check Rx ring */
520 nfe_rxeof(sc);
521 }
522
523 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
524 != 0) {
525 /* check Tx ring */
526 nfe_txeof(sc);
527 }
528
529 if ((r & NFE_IRQ_LINK) != 0) {
530 NFE_READ(sc, NFE_PHY_STATUS);
531 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
532 DPRINTF(("%s: link state changed\n",
533 sc->sc_dev.dv_xname));
534 }
535 }
536
537 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
538
539 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
540 nfe_start(ifp);
541
542 return handled;
543 }
544
545 int
546 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
547 {
548 struct nfe_softc *sc = ifp->if_softc;
549 struct ifreq *ifr = (struct ifreq *)data;
550 struct ifaddr *ifa = (struct ifaddr *)data;
551 int s, error = 0;
552
553 s = splnet();
554
555 switch (cmd) {
556 case SIOCSIFADDR:
557 ifp->if_flags |= IFF_UP;
558 nfe_init(ifp);
559 switch (ifa->ifa_addr->sa_family) {
560 #ifdef INET
561 case AF_INET:
562 arp_ifinit(ifp, ifa);
563 break;
564 #endif
565 default:
566 break;
567 }
568 break;
569 case SIOCSIFMTU:
570 if (ifr->ifr_mtu < ETHERMIN ||
571 ((sc->sc_flags & NFE_USE_JUMBO) &&
572 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
573 (!(sc->sc_flags & NFE_USE_JUMBO) &&
574 ifr->ifr_mtu > ETHERMTU))
575 error = EINVAL;
576 else if (ifp->if_mtu != ifr->ifr_mtu)
577 ifp->if_mtu = ifr->ifr_mtu;
578 break;
579 case SIOCSIFFLAGS:
580 if (ifp->if_flags & IFF_UP) {
581 /*
582 * If only the PROMISC or ALLMULTI flag changes, then
583 * don't do a full re-init of the chip, just update
584 * the Rx filter.
585 */
586 if ((ifp->if_flags & IFF_RUNNING) &&
587 ((ifp->if_flags ^ sc->sc_if_flags) &
588 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
589 nfe_setmulti(sc);
590 else
591 nfe_init(ifp);
592 } else {
593 if (ifp->if_flags & IFF_RUNNING)
594 nfe_stop(ifp, 1);
595 }
596 sc->sc_if_flags = ifp->if_flags;
597 break;
598 case SIOCADDMULTI:
599 case SIOCDELMULTI:
600 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
601 if (ifp->if_flags & IFF_RUNNING)
602 nfe_setmulti(sc);
603 error = 0;
604 }
605 break;
606 case SIOCSIFMEDIA:
607 case SIOCGIFMEDIA:
608 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
609 break;
610 default:
611 error = ether_ioctl(ifp, cmd, data);
612 if (error == ENETRESET) {
613 if (ifp->if_flags & IFF_RUNNING)
614 nfe_setmulti(sc);
615 error = 0;
616 }
617 break;
618
619 }
620
621 splx(s);
622
623 return error;
624 }
625
626 void
627 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
628 {
629 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
630 (char *)desc32 - (char *)sc->txq.desc32,
631 sizeof (struct nfe_desc32), ops);
632 }
633
634 void
635 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
636 {
637 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
638 (char *)desc64 - (char *)sc->txq.desc64,
639 sizeof (struct nfe_desc64), ops);
640 }
641
642 void
643 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
644 {
645 if (end > start) {
646 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
647 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
648 (char *)&sc->txq.desc32[end] -
649 (char *)&sc->txq.desc32[start], ops);
650 return;
651 }
652 /* sync from 'start' to end of ring */
653 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
654 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
655 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
656 (char *)&sc->txq.desc32[start], ops);
657
658 /* sync from start of ring to 'end' */
659 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
660 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
661 }
662
663 void
664 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
665 {
666 if (end > start) {
667 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
668 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
669 (char *)&sc->txq.desc64[end] -
670 (char *)&sc->txq.desc64[start], ops);
671 return;
672 }
673 /* sync from 'start' to end of ring */
674 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
675 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
676 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
677 (char *)&sc->txq.desc64[start], ops);
678
679 /* sync from start of ring to 'end' */
680 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
681 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
682 }
683
684 void
685 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
686 {
687 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
688 (char *)desc32 - (char *)sc->rxq.desc32,
689 sizeof (struct nfe_desc32), ops);
690 }
691
692 void
693 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
694 {
695 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
696 (char *)desc64 - (char *)sc->rxq.desc64,
697 sizeof (struct nfe_desc64), ops);
698 }
699
700 void
701 nfe_rxeof(struct nfe_softc *sc)
702 {
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 struct nfe_desc32 *desc32;
705 struct nfe_desc64 *desc64;
706 struct nfe_rx_data *data;
707 struct nfe_jbuf *jbuf;
708 struct mbuf *m, *mnew;
709 bus_addr_t physaddr;
710 uint16_t flags;
711 int error, len, i;
712
713 desc32 = NULL;
714 desc64 = NULL;
715 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
716 data = &sc->rxq.data[i];
717
718 if (sc->sc_flags & NFE_40BIT_ADDR) {
719 desc64 = &sc->rxq.desc64[i];
720 nfe_rxdesc64_sync(sc, desc64,
721 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
722
723 flags = le16toh(desc64->flags);
724 len = le16toh(desc64->length) & 0x3fff;
725 } else {
726 desc32 = &sc->rxq.desc32[i];
727 nfe_rxdesc32_sync(sc, desc32,
728 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
729
730 flags = le16toh(desc32->flags);
731 len = le16toh(desc32->length) & 0x3fff;
732 }
733
734 if ((flags & NFE_RX_READY) != 0)
735 break;
736
737 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
738 if ((flags & NFE_RX_VALID_V1) == 0)
739 goto skip;
740
741 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
742 flags &= ~NFE_RX_ERROR;
743 len--; /* fix buffer length */
744 }
745 } else {
746 if ((flags & NFE_RX_VALID_V2) == 0)
747 goto skip;
748
749 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
750 flags &= ~NFE_RX_ERROR;
751 len--; /* fix buffer length */
752 }
753 }
754
755 if (flags & NFE_RX_ERROR) {
756 ifp->if_ierrors++;
757 goto skip;
758 }
759
760 /*
761 * Try to allocate a new mbuf for this ring element and load
762 * it before processing the current mbuf. If the ring element
763 * cannot be loaded, drop the received packet and reuse the
764 * old mbuf. In the unlikely case that the old mbuf can't be
765 * reloaded either, explicitly panic.
766 */
767 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
768 if (mnew == NULL) {
769 ifp->if_ierrors++;
770 goto skip;
771 }
772
773 if (sc->sc_flags & NFE_USE_JUMBO) {
774 physaddr =
775 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
776 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
777 if (len > MCLBYTES) {
778 m_freem(mnew);
779 ifp->if_ierrors++;
780 goto skip1;
781 }
782 MCLGET(mnew, M_DONTWAIT);
783 if ((mnew->m_flags & M_EXT) == 0) {
784 m_freem(mnew);
785 ifp->if_ierrors++;
786 goto skip1;
787 }
788
789 memcpy(mtod(mnew, void *),
790 mtod(data->m, const void *), len);
791 m = mnew;
792 goto mbufcopied;
793 } else {
794 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
795
796 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
797 mtod(data->m, char *) - (char *)sc->rxq.jpool,
798 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
799
800 physaddr = jbuf->physaddr;
801 }
802 } else {
803 MCLGET(mnew, M_DONTWAIT);
804 if ((mnew->m_flags & M_EXT) == 0) {
805 m_freem(mnew);
806 ifp->if_ierrors++;
807 goto skip;
808 }
809
810 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
811 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
812 bus_dmamap_unload(sc->sc_dmat, data->map);
813
814 error = bus_dmamap_load(sc->sc_dmat, data->map,
815 mtod(mnew, void *), MCLBYTES, NULL,
816 BUS_DMA_READ | BUS_DMA_NOWAIT);
817 if (error != 0) {
818 m_freem(mnew);
819
820 /* try to reload the old mbuf */
821 error = bus_dmamap_load(sc->sc_dmat, data->map,
822 mtod(data->m, void *), MCLBYTES, NULL,
823 BUS_DMA_READ | BUS_DMA_NOWAIT);
824 if (error != 0) {
825 /* very unlikely that it will fail.. */
826 panic("%s: could not load old rx mbuf",
827 sc->sc_dev.dv_xname);
828 }
829 ifp->if_ierrors++;
830 goto skip;
831 }
832 physaddr = data->map->dm_segs[0].ds_addr;
833 }
834
835 /*
836 * New mbuf successfully loaded, update Rx ring and continue
837 * processing.
838 */
839 m = data->m;
840 data->m = mnew;
841
842 mbufcopied:
843 /* finalize mbuf */
844 m->m_pkthdr.len = m->m_len = len;
845 m->m_pkthdr.rcvif = ifp;
846
847 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
848 /*
849 * XXX
850 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
851 */
852 if (flags & NFE_RX_IP_CSUMOK) {
853 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
854 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
855 sc->sc_dev.dv_xname));
856 }
857 /*
858 * XXX
859 * no way to check M_CSUM_TCP_UDP_BAD or
860 * other protocols?
861 */
862 if (flags & NFE_RX_UDP_CSUMOK) {
863 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
864 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
865 sc->sc_dev.dv_xname));
866 } else if (flags & NFE_RX_TCP_CSUMOK) {
867 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
868 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
869 sc->sc_dev.dv_xname));
870 }
871 }
872
873 #if NBPFILTER > 0
874 if (ifp->if_bpf)
875 bpf_mtap(ifp->if_bpf, m);
876 #endif
877 ifp->if_ipackets++;
878 (*ifp->if_input)(ifp, m);
879
880 skip1:
881 /* update mapping address in h/w descriptor */
882 if (sc->sc_flags & NFE_40BIT_ADDR) {
883 #if defined(__LP64__)
884 desc64->physaddr[0] = htole32(physaddr >> 32);
885 #endif
886 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
887 } else {
888 desc32->physaddr = htole32(physaddr);
889 }
890
891 skip:
892 if (sc->sc_flags & NFE_40BIT_ADDR) {
893 desc64->length = htole16(sc->rxq.bufsz);
894 desc64->flags = htole16(NFE_RX_READY);
895
896 nfe_rxdesc64_sync(sc, desc64,
897 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
898 } else {
899 desc32->length = htole16(sc->rxq.bufsz);
900 desc32->flags = htole16(NFE_RX_READY);
901
902 nfe_rxdesc32_sync(sc, desc32,
903 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
904 }
905 }
906 /* update current RX pointer */
907 sc->rxq.cur = i;
908 }
909
910 void
911 nfe_txeof(struct nfe_softc *sc)
912 {
913 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
914 struct nfe_desc32 *desc32;
915 struct nfe_desc64 *desc64;
916 struct nfe_tx_data *data = NULL;
917 int i;
918 uint16_t flags;
919
920 for (i = sc->txq.next;
921 sc->txq.queued > 0;
922 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
923 if (sc->sc_flags & NFE_40BIT_ADDR) {
924 desc64 = &sc->txq.desc64[i];
925 nfe_txdesc64_sync(sc, desc64,
926 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
927
928 flags = le16toh(desc64->flags);
929 } else {
930 desc32 = &sc->txq.desc32[i];
931 nfe_txdesc32_sync(sc, desc32,
932 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
933
934 flags = le16toh(desc32->flags);
935 }
936
937 if ((flags & NFE_TX_VALID) != 0)
938 break;
939
940 data = &sc->txq.data[i];
941
942 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
943 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
944 data->m == NULL)
945 continue;
946
947 if ((flags & NFE_TX_ERROR_V1) != 0) {
948 printf("%s: tx v1 error 0x%04x\n",
949 sc->sc_dev.dv_xname, flags);
950 ifp->if_oerrors++;
951 } else
952 ifp->if_opackets++;
953 } else {
954 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
955 data->m == NULL)
956 continue;
957
958 if ((flags & NFE_TX_ERROR_V2) != 0) {
959 printf("%s: tx v2 error 0x%04x\n",
960 sc->sc_dev.dv_xname, flags);
961 ifp->if_oerrors++;
962 } else
963 ifp->if_opackets++;
964 }
965
966 if (data->m == NULL) { /* should not get there */
967 printf("%s: last fragment bit w/o associated mbuf!\n",
968 sc->sc_dev.dv_xname);
969 continue;
970 }
971
972 /* last fragment of the mbuf chain transmitted */
973 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
974 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
975 bus_dmamap_unload(sc->sc_dmat, data->active);
976 m_freem(data->m);
977 data->m = NULL;
978 }
979
980 sc->txq.next = i;
981
982 if (sc->txq.queued < NFE_TX_RING_COUNT) {
983 /* at least one slot freed */
984 ifp->if_flags &= ~IFF_OACTIVE;
985 }
986
987 if (sc->txq.queued == 0) {
988 /* all queued packets are sent */
989 ifp->if_timer = 0;
990 }
991 }
992
993 int
994 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
995 {
996 struct nfe_desc32 *desc32;
997 struct nfe_desc64 *desc64;
998 struct nfe_tx_data *data;
999 bus_dmamap_t map;
1000 uint16_t flags, csumflags;
1001 #if NVLAN > 0
1002 struct m_tag *mtag;
1003 uint32_t vtag = 0;
1004 #endif
1005 int error, i, first;
1006
1007 desc32 = NULL;
1008 desc64 = NULL;
1009 data = NULL;
1010
1011 flags = 0;
1012 csumflags = 0;
1013 first = sc->txq.cur;
1014
1015 map = sc->txq.data[first].map;
1016
1017 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1018 if (error != 0) {
1019 printf("%s: could not map mbuf (error %d)\n",
1020 sc->sc_dev.dv_xname, error);
1021 return error;
1022 }
1023
1024 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1025 bus_dmamap_unload(sc->sc_dmat, map);
1026 return ENOBUFS;
1027 }
1028
1029 #if NVLAN > 0
1030 /* setup h/w VLAN tagging */
1031 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1032 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1033 #endif
1034 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1035 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1036 csumflags |= NFE_TX_IP_CSUM;
1037 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1038 csumflags |= NFE_TX_TCP_UDP_CSUM;
1039 }
1040
1041 for (i = 0; i < map->dm_nsegs; i++) {
1042 data = &sc->txq.data[sc->txq.cur];
1043
1044 if (sc->sc_flags & NFE_40BIT_ADDR) {
1045 desc64 = &sc->txq.desc64[sc->txq.cur];
1046 #if defined(__LP64__)
1047 desc64->physaddr[0] =
1048 htole32(map->dm_segs[i].ds_addr >> 32);
1049 #endif
1050 desc64->physaddr[1] =
1051 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1052 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1053 desc64->flags = htole16(flags);
1054 desc64->vtag = 0;
1055 } else {
1056 desc32 = &sc->txq.desc32[sc->txq.cur];
1057
1058 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1059 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1060 desc32->flags = htole16(flags);
1061 }
1062
1063 /*
1064 * Setting of the valid bit in the first descriptor is
1065 * deferred until the whole chain is fully setup.
1066 */
1067 flags |= NFE_TX_VALID;
1068
1069 sc->txq.queued++;
1070 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1071 }
1072
1073 /* the whole mbuf chain has been setup */
1074 if (sc->sc_flags & NFE_40BIT_ADDR) {
1075 /* fix last descriptor */
1076 flags |= NFE_TX_LASTFRAG_V2;
1077 desc64->flags = htole16(flags);
1078
1079 /* Checksum flags and vtag belong to the first fragment only. */
1080 #if NVLAN > 0
1081 sc->txq.desc64[first].vtag = htole32(vtag);
1082 #endif
1083 sc->txq.desc64[first].flags |= htole16(csumflags);
1084
1085 /* finally, set the valid bit in the first descriptor */
1086 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1087 } else {
1088 /* fix last descriptor */
1089 if (sc->sc_flags & NFE_JUMBO_SUP)
1090 flags |= NFE_TX_LASTFRAG_V2;
1091 else
1092 flags |= NFE_TX_LASTFRAG_V1;
1093 desc32->flags = htole16(flags);
1094
1095 /* Checksum flags belong to the first fragment only. */
1096 sc->txq.desc32[first].flags |= htole16(csumflags);
1097
1098 /* finally, set the valid bit in the first descriptor */
1099 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1100 }
1101
1102 data->m = m0;
1103 data->active = map;
1104
1105 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1106 BUS_DMASYNC_PREWRITE);
1107
1108 return 0;
1109 }
1110
1111 void
1112 nfe_start(struct ifnet *ifp)
1113 {
1114 struct nfe_softc *sc = ifp->if_softc;
1115 int old = sc->txq.queued;
1116 struct mbuf *m0;
1117
1118 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1119 return;
1120
1121 for (;;) {
1122 IFQ_POLL(&ifp->if_snd, m0);
1123 if (m0 == NULL)
1124 break;
1125
1126 if (nfe_encap(sc, m0) != 0) {
1127 ifp->if_flags |= IFF_OACTIVE;
1128 break;
1129 }
1130
1131 /* packet put in h/w queue, remove from s/w queue */
1132 IFQ_DEQUEUE(&ifp->if_snd, m0);
1133
1134 #if NBPFILTER > 0
1135 if (ifp->if_bpf != NULL)
1136 bpf_mtap(ifp->if_bpf, m0);
1137 #endif
1138 }
1139
1140 if (sc->txq.queued != old) {
1141 /* packets are queued */
1142 if (sc->sc_flags & NFE_40BIT_ADDR)
1143 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1144 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1145 else
1146 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1147 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1148 /* kick Tx */
1149 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1150
1151 /*
1152 * Set a timeout in case the chip goes out to lunch.
1153 */
1154 ifp->if_timer = 5;
1155 }
1156 }
1157
1158 void
1159 nfe_watchdog(struct ifnet *ifp)
1160 {
1161 struct nfe_softc *sc = ifp->if_softc;
1162
1163 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1164
1165 ifp->if_flags &= ~IFF_RUNNING;
1166 nfe_init(ifp);
1167
1168 ifp->if_oerrors++;
1169 }
1170
1171 int
1172 nfe_init(struct ifnet *ifp)
1173 {
1174 struct nfe_softc *sc = ifp->if_softc;
1175 uint32_t tmp;
1176 int s;
1177
1178 if (ifp->if_flags & IFF_RUNNING)
1179 return 0;
1180
1181 nfe_stop(ifp, 0);
1182
1183 NFE_WRITE(sc, NFE_TX_UNK, 0);
1184 NFE_WRITE(sc, NFE_STATUS, 0);
1185
1186 sc->rxtxctl = NFE_RXTX_BIT2;
1187 if (sc->sc_flags & NFE_40BIT_ADDR)
1188 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1189 else if (sc->sc_flags & NFE_JUMBO_SUP)
1190 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1191 if (sc->sc_flags & NFE_HW_CSUM)
1192 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1193 #if NVLAN > 0
1194 /*
1195 * Although the adapter is capable of stripping VLAN tags from received
1196 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1197 * purpose. This will be done in software by our network stack.
1198 */
1199 if (sc->sc_flags & NFE_HW_VLAN)
1200 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1201 #endif
1202 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1203 DELAY(10);
1204 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1205
1206 #if NVLAN
1207 if (sc->sc_flags & NFE_HW_VLAN)
1208 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1209 #endif
1210
1211 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1212
1213 /* set MAC address */
1214 nfe_set_macaddr(sc, sc->sc_enaddr);
1215
1216 /* tell MAC where rings are in memory */
1217 #ifdef __LP64__
1218 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1219 #endif
1220 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1221 #ifdef __LP64__
1222 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1223 #endif
1224 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1225
1226 NFE_WRITE(sc, NFE_RING_SIZE,
1227 (NFE_RX_RING_COUNT - 1) << 16 |
1228 (NFE_TX_RING_COUNT - 1));
1229
1230 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1231
1232 /* force MAC to wakeup */
1233 tmp = NFE_READ(sc, NFE_PWR_STATE);
1234 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1235 DELAY(10);
1236 tmp = NFE_READ(sc, NFE_PWR_STATE);
1237 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1238
1239 s = splnet();
1240 nfe_intr(sc); /* XXX clear IRQ status registers */
1241 splx(s);
1242
1243 #if 1
1244 /* configure interrupts coalescing/mitigation */
1245 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1246 #else
1247 /* no interrupt mitigation: one interrupt per packet */
1248 NFE_WRITE(sc, NFE_IMTIMER, 970);
1249 #endif
1250
1251 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1252 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1253 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1254
1255 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1256 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1257
1258 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1259 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1260
1261 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1262 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1263 DELAY(10);
1264 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1265
1266 /* set Rx filter */
1267 nfe_setmulti(sc);
1268
1269 nfe_ifmedia_upd(ifp);
1270
1271 nfe_tick(sc);
1272
1273 /* enable Rx */
1274 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1275
1276 /* enable Tx */
1277 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1278
1279 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1280
1281 /* enable interrupts */
1282 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1283
1284 callout_schedule(&sc->sc_tick_ch, hz);
1285
1286 ifp->if_flags |= IFF_RUNNING;
1287 ifp->if_flags &= ~IFF_OACTIVE;
1288
1289 return 0;
1290 }
1291
1292 void
1293 nfe_stop(struct ifnet *ifp, int disable)
1294 {
1295 struct nfe_softc *sc = ifp->if_softc;
1296
1297 callout_stop(&sc->sc_tick_ch);
1298
1299 ifp->if_timer = 0;
1300 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1301
1302 mii_down(&sc->sc_mii);
1303
1304 /* abort Tx */
1305 NFE_WRITE(sc, NFE_TX_CTL, 0);
1306
1307 /* disable Rx */
1308 NFE_WRITE(sc, NFE_RX_CTL, 0);
1309
1310 /* disable interrupts */
1311 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1312
1313 /* reset Tx and Rx rings */
1314 nfe_reset_tx_ring(sc, &sc->txq);
1315 nfe_reset_rx_ring(sc, &sc->rxq);
1316 }
1317
1318 int
1319 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1320 {
1321 struct nfe_desc32 *desc32;
1322 struct nfe_desc64 *desc64;
1323 struct nfe_rx_data *data;
1324 struct nfe_jbuf *jbuf;
1325 void **desc;
1326 bus_addr_t physaddr;
1327 int i, nsegs, error, descsize;
1328
1329 if (sc->sc_flags & NFE_40BIT_ADDR) {
1330 desc = (void **)&ring->desc64;
1331 descsize = sizeof (struct nfe_desc64);
1332 } else {
1333 desc = (void **)&ring->desc32;
1334 descsize = sizeof (struct nfe_desc32);
1335 }
1336
1337 ring->cur = ring->next = 0;
1338 ring->bufsz = MCLBYTES;
1339
1340 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1341 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1342 if (error != 0) {
1343 printf("%s: could not create desc DMA map\n",
1344 sc->sc_dev.dv_xname);
1345 goto fail;
1346 }
1347
1348 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1349 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1350 if (error != 0) {
1351 printf("%s: could not allocate DMA memory\n",
1352 sc->sc_dev.dv_xname);
1353 goto fail;
1354 }
1355
1356 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1357 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1358 if (error != 0) {
1359 printf("%s: could not map desc DMA memory\n",
1360 sc->sc_dev.dv_xname);
1361 goto fail;
1362 }
1363
1364 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1365 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1366 if (error != 0) {
1367 printf("%s: could not load desc DMA map\n",
1368 sc->sc_dev.dv_xname);
1369 goto fail;
1370 }
1371
1372 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1373 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1374
1375 if (sc->sc_flags & NFE_USE_JUMBO) {
1376 ring->bufsz = NFE_JBYTES;
1377 if ((error = nfe_jpool_alloc(sc)) != 0) {
1378 printf("%s: could not allocate jumbo frames\n",
1379 sc->sc_dev.dv_xname);
1380 goto fail;
1381 }
1382 }
1383
1384 /*
1385 * Pre-allocate Rx buffers and populate Rx ring.
1386 */
1387 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1388 data = &sc->rxq.data[i];
1389
1390 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1391 if (data->m == NULL) {
1392 printf("%s: could not allocate rx mbuf\n",
1393 sc->sc_dev.dv_xname);
1394 error = ENOMEM;
1395 goto fail;
1396 }
1397
1398 if (sc->sc_flags & NFE_USE_JUMBO) {
1399 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1400 printf("%s: could not allocate jumbo buffer\n",
1401 sc->sc_dev.dv_xname);
1402 goto fail;
1403 }
1404 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1405 sc);
1406
1407 physaddr = jbuf->physaddr;
1408 } else {
1409 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1410 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1411 if (error != 0) {
1412 printf("%s: could not create DMA map\n",
1413 sc->sc_dev.dv_xname);
1414 goto fail;
1415 }
1416 MCLGET(data->m, M_DONTWAIT);
1417 if (!(data->m->m_flags & M_EXT)) {
1418 printf("%s: could not allocate mbuf cluster\n",
1419 sc->sc_dev.dv_xname);
1420 error = ENOMEM;
1421 goto fail;
1422 }
1423
1424 error = bus_dmamap_load(sc->sc_dmat, data->map,
1425 mtod(data->m, void *), MCLBYTES, NULL,
1426 BUS_DMA_READ | BUS_DMA_NOWAIT);
1427 if (error != 0) {
1428 printf("%s: could not load rx buf DMA map",
1429 sc->sc_dev.dv_xname);
1430 goto fail;
1431 }
1432 physaddr = data->map->dm_segs[0].ds_addr;
1433 }
1434
1435 if (sc->sc_flags & NFE_40BIT_ADDR) {
1436 desc64 = &sc->rxq.desc64[i];
1437 #if defined(__LP64__)
1438 desc64->physaddr[0] = htole32(physaddr >> 32);
1439 #endif
1440 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1441 desc64->length = htole16(sc->rxq.bufsz);
1442 desc64->flags = htole16(NFE_RX_READY);
1443 } else {
1444 desc32 = &sc->rxq.desc32[i];
1445 desc32->physaddr = htole32(physaddr);
1446 desc32->length = htole16(sc->rxq.bufsz);
1447 desc32->flags = htole16(NFE_RX_READY);
1448 }
1449 }
1450
1451 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1452 BUS_DMASYNC_PREWRITE);
1453
1454 return 0;
1455
1456 fail: nfe_free_rx_ring(sc, ring);
1457 return error;
1458 }
1459
1460 void
1461 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1462 {
1463 int i;
1464
1465 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1466 if (sc->sc_flags & NFE_40BIT_ADDR) {
1467 ring->desc64[i].length = htole16(ring->bufsz);
1468 ring->desc64[i].flags = htole16(NFE_RX_READY);
1469 } else {
1470 ring->desc32[i].length = htole16(ring->bufsz);
1471 ring->desc32[i].flags = htole16(NFE_RX_READY);
1472 }
1473 }
1474
1475 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1476 BUS_DMASYNC_PREWRITE);
1477
1478 ring->cur = ring->next = 0;
1479 }
1480
1481 void
1482 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1483 {
1484 struct nfe_rx_data *data;
1485 void *desc;
1486 int i, descsize;
1487
1488 if (sc->sc_flags & NFE_40BIT_ADDR) {
1489 desc = ring->desc64;
1490 descsize = sizeof (struct nfe_desc64);
1491 } else {
1492 desc = ring->desc32;
1493 descsize = sizeof (struct nfe_desc32);
1494 }
1495
1496 if (desc != NULL) {
1497 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1498 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1499 bus_dmamap_unload(sc->sc_dmat, ring->map);
1500 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1501 NFE_RX_RING_COUNT * descsize);
1502 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1503 }
1504
1505 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1506 data = &ring->data[i];
1507
1508 if (data->map != NULL) {
1509 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1510 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1511 bus_dmamap_unload(sc->sc_dmat, data->map);
1512 bus_dmamap_destroy(sc->sc_dmat, data->map);
1513 }
1514 if (data->m != NULL)
1515 m_freem(data->m);
1516 }
1517 }
1518
1519 struct nfe_jbuf *
1520 nfe_jalloc(struct nfe_softc *sc, int i)
1521 {
1522 struct nfe_jbuf *jbuf;
1523
1524 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1525 if (jbuf == NULL)
1526 return NULL;
1527 sc->rxq.jbufmap[i] =
1528 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1529 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1530 return jbuf;
1531 }
1532
1533 /*
1534 * This is called automatically by the network stack when the mbuf is freed.
1535 * Caution must be taken that the NIC might be reset by the time the mbuf is
1536 * freed.
1537 */
1538 void
1539 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1540 {
1541 struct nfe_softc *sc = arg;
1542 struct nfe_jbuf *jbuf;
1543 int i;
1544
1545 /* find the jbuf from the base pointer */
1546 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1547 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1548 printf("%s: request to free a buffer (%p) not managed by us\n",
1549 sc->sc_dev.dv_xname, buf);
1550 return;
1551 }
1552 jbuf = &sc->rxq.jbuf[i];
1553
1554 /* ..and put it back in the free list */
1555 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1556
1557 if (m != NULL)
1558 pool_cache_put(mb_cache, m);
1559 }
1560
1561 int
1562 nfe_jpool_alloc(struct nfe_softc *sc)
1563 {
1564 struct nfe_rx_ring *ring = &sc->rxq;
1565 struct nfe_jbuf *jbuf;
1566 bus_addr_t physaddr;
1567 char *buf;
1568 int i, nsegs, error;
1569
1570 /*
1571 * Allocate a big chunk of DMA'able memory.
1572 */
1573 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1574 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1575 if (error != 0) {
1576 printf("%s: could not create jumbo DMA map\n",
1577 sc->sc_dev.dv_xname);
1578 goto fail;
1579 }
1580
1581 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1582 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1583 if (error != 0) {
1584 printf("%s could not allocate jumbo DMA memory\n",
1585 sc->sc_dev.dv_xname);
1586 goto fail;
1587 }
1588
1589 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1590 &ring->jpool, BUS_DMA_NOWAIT);
1591 if (error != 0) {
1592 printf("%s: could not map jumbo DMA memory\n",
1593 sc->sc_dev.dv_xname);
1594 goto fail;
1595 }
1596
1597 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1598 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1599 if (error != 0) {
1600 printf("%s: could not load jumbo DMA map\n",
1601 sc->sc_dev.dv_xname);
1602 goto fail;
1603 }
1604
1605 /* ..and split it into 9KB chunks */
1606 SLIST_INIT(&ring->jfreelist);
1607
1608 buf = ring->jpool;
1609 physaddr = ring->jmap->dm_segs[0].ds_addr;
1610 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1611 jbuf = &ring->jbuf[i];
1612
1613 jbuf->buf = buf;
1614 jbuf->physaddr = physaddr;
1615
1616 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1617
1618 buf += NFE_JBYTES;
1619 physaddr += NFE_JBYTES;
1620 }
1621
1622 return 0;
1623
1624 fail: nfe_jpool_free(sc);
1625 return error;
1626 }
1627
1628 void
1629 nfe_jpool_free(struct nfe_softc *sc)
1630 {
1631 struct nfe_rx_ring *ring = &sc->rxq;
1632
1633 if (ring->jmap != NULL) {
1634 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1635 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1636 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1637 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1638 }
1639 if (ring->jpool != NULL) {
1640 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1641 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1642 }
1643 }
1644
1645 int
1646 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1647 {
1648 int i, nsegs, error;
1649 void **desc;
1650 int descsize;
1651
1652 if (sc->sc_flags & NFE_40BIT_ADDR) {
1653 desc = (void **)&ring->desc64;
1654 descsize = sizeof (struct nfe_desc64);
1655 } else {
1656 desc = (void **)&ring->desc32;
1657 descsize = sizeof (struct nfe_desc32);
1658 }
1659
1660 ring->queued = 0;
1661 ring->cur = ring->next = 0;
1662
1663 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1664 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1665
1666 if (error != 0) {
1667 printf("%s: could not create desc DMA map\n",
1668 sc->sc_dev.dv_xname);
1669 goto fail;
1670 }
1671
1672 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1673 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1674 if (error != 0) {
1675 printf("%s: could not allocate DMA memory\n",
1676 sc->sc_dev.dv_xname);
1677 goto fail;
1678 }
1679
1680 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1681 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1682 if (error != 0) {
1683 printf("%s: could not map desc DMA memory\n",
1684 sc->sc_dev.dv_xname);
1685 goto fail;
1686 }
1687
1688 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1689 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1690 if (error != 0) {
1691 printf("%s: could not load desc DMA map\n",
1692 sc->sc_dev.dv_xname);
1693 goto fail;
1694 }
1695
1696 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1697 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1698
1699 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1700 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1701 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1702 &ring->data[i].map);
1703 if (error != 0) {
1704 printf("%s: could not create DMA map\n",
1705 sc->sc_dev.dv_xname);
1706 goto fail;
1707 }
1708 }
1709
1710 return 0;
1711
1712 fail: nfe_free_tx_ring(sc, ring);
1713 return error;
1714 }
1715
1716 void
1717 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1718 {
1719 struct nfe_tx_data *data;
1720 int i;
1721
1722 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1723 if (sc->sc_flags & NFE_40BIT_ADDR)
1724 ring->desc64[i].flags = 0;
1725 else
1726 ring->desc32[i].flags = 0;
1727
1728 data = &ring->data[i];
1729
1730 if (data->m != NULL) {
1731 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1732 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1733 bus_dmamap_unload(sc->sc_dmat, data->active);
1734 m_freem(data->m);
1735 data->m = NULL;
1736 }
1737 }
1738
1739 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1740 BUS_DMASYNC_PREWRITE);
1741
1742 ring->queued = 0;
1743 ring->cur = ring->next = 0;
1744 }
1745
1746 void
1747 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1748 {
1749 struct nfe_tx_data *data;
1750 void *desc;
1751 int i, descsize;
1752
1753 if (sc->sc_flags & NFE_40BIT_ADDR) {
1754 desc = ring->desc64;
1755 descsize = sizeof (struct nfe_desc64);
1756 } else {
1757 desc = ring->desc32;
1758 descsize = sizeof (struct nfe_desc32);
1759 }
1760
1761 if (desc != NULL) {
1762 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1763 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1764 bus_dmamap_unload(sc->sc_dmat, ring->map);
1765 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1766 NFE_TX_RING_COUNT * descsize);
1767 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1768 }
1769
1770 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1771 data = &ring->data[i];
1772
1773 if (data->m != NULL) {
1774 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1775 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1776 bus_dmamap_unload(sc->sc_dmat, data->active);
1777 m_freem(data->m);
1778 }
1779 }
1780
1781 /* ..and now actually destroy the DMA mappings */
1782 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1783 data = &ring->data[i];
1784 if (data->map == NULL)
1785 continue;
1786 bus_dmamap_destroy(sc->sc_dmat, data->map);
1787 }
1788 }
1789
1790 int
1791 nfe_ifmedia_upd(struct ifnet *ifp)
1792 {
1793 struct nfe_softc *sc = ifp->if_softc;
1794 struct mii_data *mii = &sc->sc_mii;
1795 struct mii_softc *miisc;
1796
1797 if (mii->mii_instance != 0) {
1798 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1799 mii_phy_reset(miisc);
1800 }
1801 return mii_mediachg(mii);
1802 }
1803
1804 void
1805 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1806 {
1807 struct nfe_softc *sc = ifp->if_softc;
1808 struct mii_data *mii = &sc->sc_mii;
1809
1810 mii_pollstat(mii);
1811 ifmr->ifm_status = mii->mii_media_status;
1812 ifmr->ifm_active = mii->mii_media_active;
1813 }
1814
1815 void
1816 nfe_setmulti(struct nfe_softc *sc)
1817 {
1818 struct ethercom *ec = &sc->sc_ethercom;
1819 struct ifnet *ifp = &ec->ec_if;
1820 struct ether_multi *enm;
1821 struct ether_multistep step;
1822 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1823 uint32_t filter = NFE_RXFILTER_MAGIC;
1824 int i;
1825
1826 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1827 bzero(addr, ETHER_ADDR_LEN);
1828 bzero(mask, ETHER_ADDR_LEN);
1829 goto done;
1830 }
1831
1832 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1833 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1834
1835 ETHER_FIRST_MULTI(step, ec, enm);
1836 while (enm != NULL) {
1837 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1838 ifp->if_flags |= IFF_ALLMULTI;
1839 bzero(addr, ETHER_ADDR_LEN);
1840 bzero(mask, ETHER_ADDR_LEN);
1841 goto done;
1842 }
1843 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1844 addr[i] &= enm->enm_addrlo[i];
1845 mask[i] &= ~enm->enm_addrlo[i];
1846 }
1847 ETHER_NEXT_MULTI(step, enm);
1848 }
1849 for (i = 0; i < ETHER_ADDR_LEN; i++)
1850 mask[i] |= addr[i];
1851
1852 done:
1853 addr[0] |= 0x01; /* make sure multicast bit is set */
1854
1855 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1856 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1857 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1858 addr[5] << 8 | addr[4]);
1859 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1860 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1861 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1862 mask[5] << 8 | mask[4]);
1863
1864 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1865 NFE_WRITE(sc, NFE_RXFILTER, filter);
1866 }
1867
1868 void
1869 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1870 {
1871 uint32_t tmp;
1872
1873 if ((sc->sc_flags & NFE_CORRECT_MACADDR) == 0) {
1874 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1875 addr[0] = (tmp >> 8) & 0xff;
1876 addr[1] = (tmp & 0xff);
1877
1878 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1879 addr[2] = (tmp >> 24) & 0xff;
1880 addr[3] = (tmp >> 16) & 0xff;
1881 addr[4] = (tmp >> 8) & 0xff;
1882 addr[5] = (tmp & 0xff);
1883 } else {
1884 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1885 addr[5] = (tmp >> 8) & 0xff;
1886 addr[4] = (tmp & 0xff);
1887
1888 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1889 addr[3] = (tmp >> 24) & 0xff;
1890 addr[2] = (tmp >> 16) & 0xff;
1891 addr[1] = (tmp >> 8) & 0xff;
1892 addr[0] = (tmp & 0xff);
1893 }
1894 }
1895
1896 void
1897 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1898 {
1899 NFE_WRITE(sc, NFE_MACADDR_LO,
1900 addr[5] << 8 | addr[4]);
1901 NFE_WRITE(sc, NFE_MACADDR_HI,
1902 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1903 }
1904
1905 void
1906 nfe_tick(void *arg)
1907 {
1908 struct nfe_softc *sc = arg;
1909 int s;
1910
1911 s = splnet();
1912 mii_tick(&sc->sc_mii);
1913 splx(s);
1914
1915 callout_schedule(&sc->sc_tick_ch, hz);
1916 }
1917