if_nfe.c revision 1.26 1 /* $NetBSD: if_nfe.c,v 1.26 2008/01/19 22:10:18 dyoung Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.26 2008/01/19 22:10:18 dyoung Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void nfe_setmulti(struct nfe_softc *);
108 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
109 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
110 void nfe_tick(void *);
111
112 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
113
114 /*#define NFE_NO_JUMBO*/
115
116 #ifdef NFE_DEBUG
117 int nfedebug = 0;
118 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
119 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124
125 /* deal with naming differences */
126
127 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
128 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
132 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
133
134 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
135 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
138
139 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
140 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
143
144 #ifdef _LP64
145 #define __LP64__ 1
146 #endif
147
148 const struct nfe_product {
149 pci_vendor_id_t vendor;
150 pci_product_id_t product;
151 } nfe_devices[] = {
152 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
153 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }
183 };
184
185 int
186 nfe_match(struct device *dev, struct cfdata *match, void *aux)
187 {
188 struct pci_attach_args *pa = aux;
189 const struct nfe_product *np;
190 int i;
191
192 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
193 np = &nfe_devices[i];
194 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
195 PCI_PRODUCT(pa->pa_id) == np->product)
196 return 1;
197 }
198 return 0;
199 }
200
201 void
202 nfe_attach(struct device *parent, struct device *self, void *aux)
203 {
204 struct nfe_softc *sc = (struct nfe_softc *)self;
205 struct pci_attach_args *pa = aux;
206 pci_chipset_tag_t pc = pa->pa_pc;
207 pci_intr_handle_t ih;
208 const char *intrstr;
209 struct ifnet *ifp;
210 bus_size_t memsize;
211 pcireg_t memtype;
212 char devinfo[256];
213
214 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
215 aprint_normal(": %s (rev. 0x%02x)\n",
216 devinfo, PCI_REVISION(pa->pa_class));
217
218 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
219 switch (memtype) {
220 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
221 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
222 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
223 &sc->sc_memh, NULL, &memsize) == 0)
224 break;
225 /* FALLTHROUGH */
226 default:
227 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
228 return;
229 }
230
231 if (pci_intr_map(pa, &ih) != 0) {
232 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
233 return;
234 }
235
236 intrstr = pci_intr_string(pc, ih);
237 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
238 if (sc->sc_ih == NULL) {
239 printf("%s: could not establish interrupt",
240 sc->sc_dev.dv_xname);
241 if (intrstr != NULL)
242 printf(" at %s", intrstr);
243 printf("\n");
244 return;
245 }
246 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
247
248 sc->sc_dmat = pa->pa_dmat;
249
250 /* Check for reversed ethernet address */
251 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
252 sc->sc_flags |= NFE_CORRECT_MACADDR;
253
254 nfe_get_macaddr(sc, sc->sc_enaddr);
255 printf("%s: Ethernet address %s\n",
256 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
257
258 sc->sc_flags = 0;
259
260 switch (PCI_PRODUCT(pa->pa_id)) {
261 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
262 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
263 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
264 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
265 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
266 break;
267 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
269 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
270 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
271 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
272 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
273 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
276 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
277 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
278 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
279 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
280 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
281 sc->sc_flags |= NFE_40BIT_ADDR;
282 break;
283 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
284 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
285 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
286 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
287 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
288 break;
289 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
290 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
291 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
292 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
293 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
294 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
295 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
296 NFE_HW_VLAN;
297 break;
298 }
299
300 #ifndef NFE_NO_JUMBO
301 /* enable jumbo frames for adapters that support it */
302 if (sc->sc_flags & NFE_JUMBO_SUP)
303 sc->sc_flags |= NFE_USE_JUMBO;
304 #endif
305
306 /*
307 * Allocate Tx and Rx rings.
308 */
309 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
310 printf("%s: could not allocate Tx ring\n",
311 sc->sc_dev.dv_xname);
312 return;
313 }
314
315 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
316 printf("%s: could not allocate Rx ring\n",
317 sc->sc_dev.dv_xname);
318 nfe_free_tx_ring(sc, &sc->txq);
319 return;
320 }
321
322 ifp = &sc->sc_ethercom.ec_if;
323 ifp->if_softc = sc;
324 ifp->if_mtu = ETHERMTU;
325 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
326 ifp->if_ioctl = nfe_ioctl;
327 ifp->if_start = nfe_start;
328 ifp->if_stop = nfe_stop;
329 ifp->if_watchdog = nfe_watchdog;
330 ifp->if_init = nfe_init;
331 ifp->if_baudrate = IF_Gbps(1);
332 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
333 IFQ_SET_READY(&ifp->if_snd);
334 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
335
336 #if NVLAN > 0
337 if (sc->sc_flags & NFE_HW_VLAN)
338 sc->sc_ethercom.ec_capabilities |=
339 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
340 #endif
341 if (sc->sc_flags & NFE_HW_CSUM) {
342 ifp->if_capabilities |=
343 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
344 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
345 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
346 }
347
348 sc->sc_mii.mii_ifp = ifp;
349 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
350 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
351 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
352
353 sc->sc_ethercom.ec_mii = &sc->sc_mii;
354 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
355 ether_mediastatus);
356 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
357 MII_OFFSET_ANY, 0);
358 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
359 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
360 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
361 0, NULL);
362 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
363 } else
364 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
365
366 if_attach(ifp);
367 ether_ifattach(ifp, sc->sc_enaddr);
368
369 callout_init(&sc->sc_tick_ch, 0);
370 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
371
372 if (!pmf_device_register(self, NULL, NULL))
373 aprint_error_dev(self, "couldn't establish power handler\n");
374 else
375 pmf_class_network_register(self, ifp);
376 }
377
378 void
379 nfe_miibus_statchg(struct device *dev)
380 {
381 struct nfe_softc *sc = (struct nfe_softc *)dev;
382 struct mii_data *mii = &sc->sc_mii;
383 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
384
385 phy = NFE_READ(sc, NFE_PHY_IFACE);
386 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
387
388 seed = NFE_READ(sc, NFE_RNDSEED);
389 seed &= ~NFE_SEED_MASK;
390
391 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
392 phy |= NFE_PHY_HDX; /* half-duplex */
393 misc |= NFE_MISC1_HDX;
394 }
395
396 switch (IFM_SUBTYPE(mii->mii_media_active)) {
397 case IFM_1000_T: /* full-duplex only */
398 link |= NFE_MEDIA_1000T;
399 seed |= NFE_SEED_1000T;
400 phy |= NFE_PHY_1000T;
401 break;
402 case IFM_100_TX:
403 link |= NFE_MEDIA_100TX;
404 seed |= NFE_SEED_100TX;
405 phy |= NFE_PHY_100TX;
406 break;
407 case IFM_10_T:
408 link |= NFE_MEDIA_10T;
409 seed |= NFE_SEED_10T;
410 break;
411 }
412
413 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
414
415 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
416 NFE_WRITE(sc, NFE_MISC1, misc);
417 NFE_WRITE(sc, NFE_LINKSPEED, link);
418 }
419
420 int
421 nfe_miibus_readreg(struct device *dev, int phy, int reg)
422 {
423 struct nfe_softc *sc = (struct nfe_softc *)dev;
424 uint32_t val;
425 int ntries;
426
427 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
428
429 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
430 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
431 DELAY(100);
432 }
433
434 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
435
436 for (ntries = 0; ntries < 1000; ntries++) {
437 DELAY(100);
438 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
439 break;
440 }
441 if (ntries == 1000) {
442 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
443 sc->sc_dev.dv_xname));
444 return 0;
445 }
446
447 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
448 DPRINTFN(2, ("%s: could not read PHY\n",
449 sc->sc_dev.dv_xname));
450 return 0;
451 }
452
453 val = NFE_READ(sc, NFE_PHY_DATA);
454 if (val != 0xffffffff && val != 0)
455 sc->mii_phyaddr = phy;
456
457 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
458 sc->sc_dev.dv_xname, phy, reg, val));
459
460 return val;
461 }
462
463 void
464 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
465 {
466 struct nfe_softc *sc = (struct nfe_softc *)dev;
467 uint32_t ctl;
468 int ntries;
469
470 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
471
472 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
473 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
474 DELAY(100);
475 }
476
477 NFE_WRITE(sc, NFE_PHY_DATA, val);
478 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
479 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
480
481 for (ntries = 0; ntries < 1000; ntries++) {
482 DELAY(100);
483 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
484 break;
485 }
486 #ifdef NFE_DEBUG
487 if (nfedebug >= 2 && ntries == 1000)
488 printf("could not write to PHY\n");
489 #endif
490 }
491
492 int
493 nfe_intr(void *arg)
494 {
495 struct nfe_softc *sc = arg;
496 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
497 uint32_t r;
498 int handled;
499
500 if ((ifp->if_flags & IFF_UP) == 0)
501 return 0;
502
503 handled = 0;
504
505 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
506
507 for (;;) {
508 r = NFE_READ(sc, NFE_IRQ_STATUS);
509 if ((r & NFE_IRQ_WANTED) == 0)
510 break;
511
512 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
513 handled = 1;
514 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
515
516 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
517 != 0) {
518 /* check Rx ring */
519 nfe_rxeof(sc);
520 }
521
522 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
523 != 0) {
524 /* check Tx ring */
525 nfe_txeof(sc);
526 }
527
528 if ((r & NFE_IRQ_LINK) != 0) {
529 NFE_READ(sc, NFE_PHY_STATUS);
530 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
531 DPRINTF(("%s: link state changed\n",
532 sc->sc_dev.dv_xname));
533 }
534 }
535
536 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
537
538 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
539 nfe_start(ifp);
540
541 return handled;
542 }
543
544 int
545 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
546 {
547 struct nfe_softc *sc = ifp->if_softc;
548 struct ifreq *ifr = (struct ifreq *)data;
549 struct ifaddr *ifa = (struct ifaddr *)data;
550 int s, error = 0;
551
552 s = splnet();
553
554 switch (cmd) {
555 case SIOCSIFADDR:
556 ifp->if_flags |= IFF_UP;
557 nfe_init(ifp);
558 switch (ifa->ifa_addr->sa_family) {
559 #ifdef INET
560 case AF_INET:
561 arp_ifinit(ifp, ifa);
562 break;
563 #endif
564 default:
565 break;
566 }
567 break;
568 case SIOCSIFMTU:
569 if (ifr->ifr_mtu < ETHERMIN ||
570 ((sc->sc_flags & NFE_USE_JUMBO) &&
571 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
572 (!(sc->sc_flags & NFE_USE_JUMBO) &&
573 ifr->ifr_mtu > ETHERMTU))
574 error = EINVAL;
575 else if (ifp->if_mtu != ifr->ifr_mtu)
576 ifp->if_mtu = ifr->ifr_mtu;
577 break;
578 case SIOCSIFFLAGS:
579 if (ifp->if_flags & IFF_UP) {
580 /*
581 * If only the PROMISC or ALLMULTI flag changes, then
582 * don't do a full re-init of the chip, just update
583 * the Rx filter.
584 */
585 if ((ifp->if_flags & IFF_RUNNING) &&
586 ((ifp->if_flags ^ sc->sc_if_flags) &
587 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
588 nfe_setmulti(sc);
589 else
590 nfe_init(ifp);
591 } else {
592 if (ifp->if_flags & IFF_RUNNING)
593 nfe_stop(ifp, 1);
594 }
595 sc->sc_if_flags = ifp->if_flags;
596 break;
597 default:
598 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
599 if (ifp->if_flags & IFF_RUNNING)
600 nfe_setmulti(sc);
601 error = 0;
602 }
603 break;
604 }
605
606 splx(s);
607
608 return error;
609 }
610
611 void
612 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
613 {
614 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
615 (char *)desc32 - (char *)sc->txq.desc32,
616 sizeof (struct nfe_desc32), ops);
617 }
618
619 void
620 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
621 {
622 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
623 (char *)desc64 - (char *)sc->txq.desc64,
624 sizeof (struct nfe_desc64), ops);
625 }
626
627 void
628 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
629 {
630 if (end > start) {
631 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
632 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
633 (char *)&sc->txq.desc32[end] -
634 (char *)&sc->txq.desc32[start], ops);
635 return;
636 }
637 /* sync from 'start' to end of ring */
638 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
639 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
640 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
641 (char *)&sc->txq.desc32[start], ops);
642
643 /* sync from start of ring to 'end' */
644 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
645 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
646 }
647
648 void
649 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
650 {
651 if (end > start) {
652 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
653 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
654 (char *)&sc->txq.desc64[end] -
655 (char *)&sc->txq.desc64[start], ops);
656 return;
657 }
658 /* sync from 'start' to end of ring */
659 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
660 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
661 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
662 (char *)&sc->txq.desc64[start], ops);
663
664 /* sync from start of ring to 'end' */
665 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
666 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
667 }
668
669 void
670 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
671 {
672 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
673 (char *)desc32 - (char *)sc->rxq.desc32,
674 sizeof (struct nfe_desc32), ops);
675 }
676
677 void
678 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
679 {
680 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
681 (char *)desc64 - (char *)sc->rxq.desc64,
682 sizeof (struct nfe_desc64), ops);
683 }
684
685 void
686 nfe_rxeof(struct nfe_softc *sc)
687 {
688 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
689 struct nfe_desc32 *desc32;
690 struct nfe_desc64 *desc64;
691 struct nfe_rx_data *data;
692 struct nfe_jbuf *jbuf;
693 struct mbuf *m, *mnew;
694 bus_addr_t physaddr;
695 uint16_t flags;
696 int error, len, i;
697
698 desc32 = NULL;
699 desc64 = NULL;
700 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
701 data = &sc->rxq.data[i];
702
703 if (sc->sc_flags & NFE_40BIT_ADDR) {
704 desc64 = &sc->rxq.desc64[i];
705 nfe_rxdesc64_sync(sc, desc64,
706 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
707
708 flags = le16toh(desc64->flags);
709 len = le16toh(desc64->length) & 0x3fff;
710 } else {
711 desc32 = &sc->rxq.desc32[i];
712 nfe_rxdesc32_sync(sc, desc32,
713 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
714
715 flags = le16toh(desc32->flags);
716 len = le16toh(desc32->length) & 0x3fff;
717 }
718
719 if ((flags & NFE_RX_READY) != 0)
720 break;
721
722 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
723 if ((flags & NFE_RX_VALID_V1) == 0)
724 goto skip;
725
726 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
727 flags &= ~NFE_RX_ERROR;
728 len--; /* fix buffer length */
729 }
730 } else {
731 if ((flags & NFE_RX_VALID_V2) == 0)
732 goto skip;
733
734 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
735 flags &= ~NFE_RX_ERROR;
736 len--; /* fix buffer length */
737 }
738 }
739
740 if (flags & NFE_RX_ERROR) {
741 ifp->if_ierrors++;
742 goto skip;
743 }
744
745 /*
746 * Try to allocate a new mbuf for this ring element and load
747 * it before processing the current mbuf. If the ring element
748 * cannot be loaded, drop the received packet and reuse the
749 * old mbuf. In the unlikely case that the old mbuf can't be
750 * reloaded either, explicitly panic.
751 */
752 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
753 if (mnew == NULL) {
754 ifp->if_ierrors++;
755 goto skip;
756 }
757
758 if (sc->sc_flags & NFE_USE_JUMBO) {
759 physaddr =
760 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
761 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
762 if (len > MCLBYTES) {
763 m_freem(mnew);
764 ifp->if_ierrors++;
765 goto skip1;
766 }
767 MCLGET(mnew, M_DONTWAIT);
768 if ((mnew->m_flags & M_EXT) == 0) {
769 m_freem(mnew);
770 ifp->if_ierrors++;
771 goto skip1;
772 }
773
774 memcpy(mtod(mnew, void *),
775 mtod(data->m, const void *), len);
776 m = mnew;
777 goto mbufcopied;
778 } else {
779 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
780
781 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
782 mtod(data->m, char *) - (char *)sc->rxq.jpool,
783 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
784
785 physaddr = jbuf->physaddr;
786 }
787 } else {
788 MCLGET(mnew, M_DONTWAIT);
789 if ((mnew->m_flags & M_EXT) == 0) {
790 m_freem(mnew);
791 ifp->if_ierrors++;
792 goto skip;
793 }
794
795 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
796 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
797 bus_dmamap_unload(sc->sc_dmat, data->map);
798
799 error = bus_dmamap_load(sc->sc_dmat, data->map,
800 mtod(mnew, void *), MCLBYTES, NULL,
801 BUS_DMA_READ | BUS_DMA_NOWAIT);
802 if (error != 0) {
803 m_freem(mnew);
804
805 /* try to reload the old mbuf */
806 error = bus_dmamap_load(sc->sc_dmat, data->map,
807 mtod(data->m, void *), MCLBYTES, NULL,
808 BUS_DMA_READ | BUS_DMA_NOWAIT);
809 if (error != 0) {
810 /* very unlikely that it will fail.. */
811 panic("%s: could not load old rx mbuf",
812 sc->sc_dev.dv_xname);
813 }
814 ifp->if_ierrors++;
815 goto skip;
816 }
817 physaddr = data->map->dm_segs[0].ds_addr;
818 }
819
820 /*
821 * New mbuf successfully loaded, update Rx ring and continue
822 * processing.
823 */
824 m = data->m;
825 data->m = mnew;
826
827 mbufcopied:
828 /* finalize mbuf */
829 m->m_pkthdr.len = m->m_len = len;
830 m->m_pkthdr.rcvif = ifp;
831
832 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
833 /*
834 * XXX
835 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
836 */
837 if (flags & NFE_RX_IP_CSUMOK) {
838 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
839 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
840 sc->sc_dev.dv_xname));
841 }
842 /*
843 * XXX
844 * no way to check M_CSUM_TCP_UDP_BAD or
845 * other protocols?
846 */
847 if (flags & NFE_RX_UDP_CSUMOK) {
848 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
849 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
850 sc->sc_dev.dv_xname));
851 } else if (flags & NFE_RX_TCP_CSUMOK) {
852 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
853 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
854 sc->sc_dev.dv_xname));
855 }
856 }
857
858 #if NBPFILTER > 0
859 if (ifp->if_bpf)
860 bpf_mtap(ifp->if_bpf, m);
861 #endif
862 ifp->if_ipackets++;
863 (*ifp->if_input)(ifp, m);
864
865 skip1:
866 /* update mapping address in h/w descriptor */
867 if (sc->sc_flags & NFE_40BIT_ADDR) {
868 #if defined(__LP64__)
869 desc64->physaddr[0] = htole32(physaddr >> 32);
870 #endif
871 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
872 } else {
873 desc32->physaddr = htole32(physaddr);
874 }
875
876 skip:
877 if (sc->sc_flags & NFE_40BIT_ADDR) {
878 desc64->length = htole16(sc->rxq.bufsz);
879 desc64->flags = htole16(NFE_RX_READY);
880
881 nfe_rxdesc64_sync(sc, desc64,
882 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
883 } else {
884 desc32->length = htole16(sc->rxq.bufsz);
885 desc32->flags = htole16(NFE_RX_READY);
886
887 nfe_rxdesc32_sync(sc, desc32,
888 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
889 }
890 }
891 /* update current RX pointer */
892 sc->rxq.cur = i;
893 }
894
895 void
896 nfe_txeof(struct nfe_softc *sc)
897 {
898 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
899 struct nfe_desc32 *desc32;
900 struct nfe_desc64 *desc64;
901 struct nfe_tx_data *data = NULL;
902 int i;
903 uint16_t flags;
904
905 for (i = sc->txq.next;
906 sc->txq.queued > 0;
907 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
908 if (sc->sc_flags & NFE_40BIT_ADDR) {
909 desc64 = &sc->txq.desc64[i];
910 nfe_txdesc64_sync(sc, desc64,
911 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
912
913 flags = le16toh(desc64->flags);
914 } else {
915 desc32 = &sc->txq.desc32[i];
916 nfe_txdesc32_sync(sc, desc32,
917 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
918
919 flags = le16toh(desc32->flags);
920 }
921
922 if ((flags & NFE_TX_VALID) != 0)
923 break;
924
925 data = &sc->txq.data[i];
926
927 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
928 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
929 data->m == NULL)
930 continue;
931
932 if ((flags & NFE_TX_ERROR_V1) != 0) {
933 printf("%s: tx v1 error 0x%04x\n",
934 sc->sc_dev.dv_xname, flags);
935 ifp->if_oerrors++;
936 } else
937 ifp->if_opackets++;
938 } else {
939 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
940 data->m == NULL)
941 continue;
942
943 if ((flags & NFE_TX_ERROR_V2) != 0) {
944 printf("%s: tx v2 error 0x%04x\n",
945 sc->sc_dev.dv_xname, flags);
946 ifp->if_oerrors++;
947 } else
948 ifp->if_opackets++;
949 }
950
951 if (data->m == NULL) { /* should not get there */
952 printf("%s: last fragment bit w/o associated mbuf!\n",
953 sc->sc_dev.dv_xname);
954 continue;
955 }
956
957 /* last fragment of the mbuf chain transmitted */
958 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
959 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
960 bus_dmamap_unload(sc->sc_dmat, data->active);
961 m_freem(data->m);
962 data->m = NULL;
963 }
964
965 sc->txq.next = i;
966
967 if (sc->txq.queued < NFE_TX_RING_COUNT) {
968 /* at least one slot freed */
969 ifp->if_flags &= ~IFF_OACTIVE;
970 }
971
972 if (sc->txq.queued == 0) {
973 /* all queued packets are sent */
974 ifp->if_timer = 0;
975 }
976 }
977
978 int
979 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
980 {
981 struct nfe_desc32 *desc32;
982 struct nfe_desc64 *desc64;
983 struct nfe_tx_data *data;
984 bus_dmamap_t map;
985 uint16_t flags, csumflags;
986 #if NVLAN > 0
987 struct m_tag *mtag;
988 uint32_t vtag = 0;
989 #endif
990 int error, i, first;
991
992 desc32 = NULL;
993 desc64 = NULL;
994 data = NULL;
995
996 flags = 0;
997 csumflags = 0;
998 first = sc->txq.cur;
999
1000 map = sc->txq.data[first].map;
1001
1002 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1003 if (error != 0) {
1004 printf("%s: could not map mbuf (error %d)\n",
1005 sc->sc_dev.dv_xname, error);
1006 return error;
1007 }
1008
1009 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1010 bus_dmamap_unload(sc->sc_dmat, map);
1011 return ENOBUFS;
1012 }
1013
1014 #if NVLAN > 0
1015 /* setup h/w VLAN tagging */
1016 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1017 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1018 #endif
1019 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1020 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1021 csumflags |= NFE_TX_IP_CSUM;
1022 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1023 csumflags |= NFE_TX_TCP_UDP_CSUM;
1024 }
1025
1026 for (i = 0; i < map->dm_nsegs; i++) {
1027 data = &sc->txq.data[sc->txq.cur];
1028
1029 if (sc->sc_flags & NFE_40BIT_ADDR) {
1030 desc64 = &sc->txq.desc64[sc->txq.cur];
1031 #if defined(__LP64__)
1032 desc64->physaddr[0] =
1033 htole32(map->dm_segs[i].ds_addr >> 32);
1034 #endif
1035 desc64->physaddr[1] =
1036 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1037 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1038 desc64->flags = htole16(flags);
1039 desc64->vtag = 0;
1040 } else {
1041 desc32 = &sc->txq.desc32[sc->txq.cur];
1042
1043 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1044 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1045 desc32->flags = htole16(flags);
1046 }
1047
1048 /*
1049 * Setting of the valid bit in the first descriptor is
1050 * deferred until the whole chain is fully setup.
1051 */
1052 flags |= NFE_TX_VALID;
1053
1054 sc->txq.queued++;
1055 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1056 }
1057
1058 /* the whole mbuf chain has been setup */
1059 if (sc->sc_flags & NFE_40BIT_ADDR) {
1060 /* fix last descriptor */
1061 flags |= NFE_TX_LASTFRAG_V2;
1062 desc64->flags = htole16(flags);
1063
1064 /* Checksum flags and vtag belong to the first fragment only. */
1065 #if NVLAN > 0
1066 sc->txq.desc64[first].vtag = htole32(vtag);
1067 #endif
1068 sc->txq.desc64[first].flags |= htole16(csumflags);
1069
1070 /* finally, set the valid bit in the first descriptor */
1071 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1072 } else {
1073 /* fix last descriptor */
1074 if (sc->sc_flags & NFE_JUMBO_SUP)
1075 flags |= NFE_TX_LASTFRAG_V2;
1076 else
1077 flags |= NFE_TX_LASTFRAG_V1;
1078 desc32->flags = htole16(flags);
1079
1080 /* Checksum flags belong to the first fragment only. */
1081 sc->txq.desc32[first].flags |= htole16(csumflags);
1082
1083 /* finally, set the valid bit in the first descriptor */
1084 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1085 }
1086
1087 data->m = m0;
1088 data->active = map;
1089
1090 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1091 BUS_DMASYNC_PREWRITE);
1092
1093 return 0;
1094 }
1095
1096 void
1097 nfe_start(struct ifnet *ifp)
1098 {
1099 struct nfe_softc *sc = ifp->if_softc;
1100 int old = sc->txq.queued;
1101 struct mbuf *m0;
1102
1103 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1104 return;
1105
1106 for (;;) {
1107 IFQ_POLL(&ifp->if_snd, m0);
1108 if (m0 == NULL)
1109 break;
1110
1111 if (nfe_encap(sc, m0) != 0) {
1112 ifp->if_flags |= IFF_OACTIVE;
1113 break;
1114 }
1115
1116 /* packet put in h/w queue, remove from s/w queue */
1117 IFQ_DEQUEUE(&ifp->if_snd, m0);
1118
1119 #if NBPFILTER > 0
1120 if (ifp->if_bpf != NULL)
1121 bpf_mtap(ifp->if_bpf, m0);
1122 #endif
1123 }
1124
1125 if (sc->txq.queued != old) {
1126 /* packets are queued */
1127 if (sc->sc_flags & NFE_40BIT_ADDR)
1128 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1129 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1130 else
1131 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1132 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1133 /* kick Tx */
1134 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1135
1136 /*
1137 * Set a timeout in case the chip goes out to lunch.
1138 */
1139 ifp->if_timer = 5;
1140 }
1141 }
1142
1143 void
1144 nfe_watchdog(struct ifnet *ifp)
1145 {
1146 struct nfe_softc *sc = ifp->if_softc;
1147
1148 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1149
1150 ifp->if_flags &= ~IFF_RUNNING;
1151 nfe_init(ifp);
1152
1153 ifp->if_oerrors++;
1154 }
1155
1156 int
1157 nfe_init(struct ifnet *ifp)
1158 {
1159 struct nfe_softc *sc = ifp->if_softc;
1160 uint32_t tmp;
1161 int rc = 0, s;
1162
1163 if (ifp->if_flags & IFF_RUNNING)
1164 return 0;
1165
1166 nfe_stop(ifp, 0);
1167
1168 NFE_WRITE(sc, NFE_TX_UNK, 0);
1169 NFE_WRITE(sc, NFE_STATUS, 0);
1170
1171 sc->rxtxctl = NFE_RXTX_BIT2;
1172 if (sc->sc_flags & NFE_40BIT_ADDR)
1173 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1174 else if (sc->sc_flags & NFE_JUMBO_SUP)
1175 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1176 if (sc->sc_flags & NFE_HW_CSUM)
1177 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1178 #if NVLAN > 0
1179 /*
1180 * Although the adapter is capable of stripping VLAN tags from received
1181 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1182 * purpose. This will be done in software by our network stack.
1183 */
1184 if (sc->sc_flags & NFE_HW_VLAN)
1185 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1186 #endif
1187 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1188 DELAY(10);
1189 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1190
1191 #if NVLAN
1192 if (sc->sc_flags & NFE_HW_VLAN)
1193 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1194 #endif
1195
1196 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1197
1198 /* set MAC address */
1199 nfe_set_macaddr(sc, sc->sc_enaddr);
1200
1201 /* tell MAC where rings are in memory */
1202 #ifdef __LP64__
1203 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1204 #endif
1205 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1206 #ifdef __LP64__
1207 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1208 #endif
1209 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1210
1211 NFE_WRITE(sc, NFE_RING_SIZE,
1212 (NFE_RX_RING_COUNT - 1) << 16 |
1213 (NFE_TX_RING_COUNT - 1));
1214
1215 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1216
1217 /* force MAC to wakeup */
1218 tmp = NFE_READ(sc, NFE_PWR_STATE);
1219 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1220 DELAY(10);
1221 tmp = NFE_READ(sc, NFE_PWR_STATE);
1222 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1223
1224 s = splnet();
1225 nfe_intr(sc); /* XXX clear IRQ status registers */
1226 splx(s);
1227
1228 #if 1
1229 /* configure interrupts coalescing/mitigation */
1230 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1231 #else
1232 /* no interrupt mitigation: one interrupt per packet */
1233 NFE_WRITE(sc, NFE_IMTIMER, 970);
1234 #endif
1235
1236 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1237 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1238 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1239
1240 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1241 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1242
1243 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1244 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1245
1246 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1247 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1248 DELAY(10);
1249 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1250
1251 /* set Rx filter */
1252 nfe_setmulti(sc);
1253
1254 if ((rc = ether_mediachange(ifp)) != 0)
1255 goto out;
1256
1257 nfe_tick(sc);
1258
1259 /* enable Rx */
1260 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1261
1262 /* enable Tx */
1263 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1264
1265 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1266
1267 /* enable interrupts */
1268 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1269
1270 callout_schedule(&sc->sc_tick_ch, hz);
1271
1272 ifp->if_flags |= IFF_RUNNING;
1273 ifp->if_flags &= ~IFF_OACTIVE;
1274
1275 out:
1276 return rc;
1277 }
1278
1279 void
1280 nfe_stop(struct ifnet *ifp, int disable)
1281 {
1282 struct nfe_softc *sc = ifp->if_softc;
1283
1284 callout_stop(&sc->sc_tick_ch);
1285
1286 ifp->if_timer = 0;
1287 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1288
1289 mii_down(&sc->sc_mii);
1290
1291 /* abort Tx */
1292 NFE_WRITE(sc, NFE_TX_CTL, 0);
1293
1294 /* disable Rx */
1295 NFE_WRITE(sc, NFE_RX_CTL, 0);
1296
1297 /* disable interrupts */
1298 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1299
1300 /* reset Tx and Rx rings */
1301 nfe_reset_tx_ring(sc, &sc->txq);
1302 nfe_reset_rx_ring(sc, &sc->rxq);
1303 }
1304
1305 int
1306 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1307 {
1308 struct nfe_desc32 *desc32;
1309 struct nfe_desc64 *desc64;
1310 struct nfe_rx_data *data;
1311 struct nfe_jbuf *jbuf;
1312 void **desc;
1313 bus_addr_t physaddr;
1314 int i, nsegs, error, descsize;
1315
1316 if (sc->sc_flags & NFE_40BIT_ADDR) {
1317 desc = (void **)&ring->desc64;
1318 descsize = sizeof (struct nfe_desc64);
1319 } else {
1320 desc = (void **)&ring->desc32;
1321 descsize = sizeof (struct nfe_desc32);
1322 }
1323
1324 ring->cur = ring->next = 0;
1325 ring->bufsz = MCLBYTES;
1326
1327 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1328 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1329 if (error != 0) {
1330 printf("%s: could not create desc DMA map\n",
1331 sc->sc_dev.dv_xname);
1332 goto fail;
1333 }
1334
1335 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1336 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1337 if (error != 0) {
1338 printf("%s: could not allocate DMA memory\n",
1339 sc->sc_dev.dv_xname);
1340 goto fail;
1341 }
1342
1343 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1344 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1345 if (error != 0) {
1346 printf("%s: could not map desc DMA memory\n",
1347 sc->sc_dev.dv_xname);
1348 goto fail;
1349 }
1350
1351 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1352 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1353 if (error != 0) {
1354 printf("%s: could not load desc DMA map\n",
1355 sc->sc_dev.dv_xname);
1356 goto fail;
1357 }
1358
1359 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1360 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1361
1362 if (sc->sc_flags & NFE_USE_JUMBO) {
1363 ring->bufsz = NFE_JBYTES;
1364 if ((error = nfe_jpool_alloc(sc)) != 0) {
1365 printf("%s: could not allocate jumbo frames\n",
1366 sc->sc_dev.dv_xname);
1367 goto fail;
1368 }
1369 }
1370
1371 /*
1372 * Pre-allocate Rx buffers and populate Rx ring.
1373 */
1374 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1375 data = &sc->rxq.data[i];
1376
1377 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1378 if (data->m == NULL) {
1379 printf("%s: could not allocate rx mbuf\n",
1380 sc->sc_dev.dv_xname);
1381 error = ENOMEM;
1382 goto fail;
1383 }
1384
1385 if (sc->sc_flags & NFE_USE_JUMBO) {
1386 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1387 printf("%s: could not allocate jumbo buffer\n",
1388 sc->sc_dev.dv_xname);
1389 goto fail;
1390 }
1391 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1392 sc);
1393
1394 physaddr = jbuf->physaddr;
1395 } else {
1396 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1397 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1398 if (error != 0) {
1399 printf("%s: could not create DMA map\n",
1400 sc->sc_dev.dv_xname);
1401 goto fail;
1402 }
1403 MCLGET(data->m, M_DONTWAIT);
1404 if (!(data->m->m_flags & M_EXT)) {
1405 printf("%s: could not allocate mbuf cluster\n",
1406 sc->sc_dev.dv_xname);
1407 error = ENOMEM;
1408 goto fail;
1409 }
1410
1411 error = bus_dmamap_load(sc->sc_dmat, data->map,
1412 mtod(data->m, void *), MCLBYTES, NULL,
1413 BUS_DMA_READ | BUS_DMA_NOWAIT);
1414 if (error != 0) {
1415 printf("%s: could not load rx buf DMA map",
1416 sc->sc_dev.dv_xname);
1417 goto fail;
1418 }
1419 physaddr = data->map->dm_segs[0].ds_addr;
1420 }
1421
1422 if (sc->sc_flags & NFE_40BIT_ADDR) {
1423 desc64 = &sc->rxq.desc64[i];
1424 #if defined(__LP64__)
1425 desc64->physaddr[0] = htole32(physaddr >> 32);
1426 #endif
1427 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1428 desc64->length = htole16(sc->rxq.bufsz);
1429 desc64->flags = htole16(NFE_RX_READY);
1430 } else {
1431 desc32 = &sc->rxq.desc32[i];
1432 desc32->physaddr = htole32(physaddr);
1433 desc32->length = htole16(sc->rxq.bufsz);
1434 desc32->flags = htole16(NFE_RX_READY);
1435 }
1436 }
1437
1438 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1439 BUS_DMASYNC_PREWRITE);
1440
1441 return 0;
1442
1443 fail: nfe_free_rx_ring(sc, ring);
1444 return error;
1445 }
1446
1447 void
1448 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1449 {
1450 int i;
1451
1452 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1453 if (sc->sc_flags & NFE_40BIT_ADDR) {
1454 ring->desc64[i].length = htole16(ring->bufsz);
1455 ring->desc64[i].flags = htole16(NFE_RX_READY);
1456 } else {
1457 ring->desc32[i].length = htole16(ring->bufsz);
1458 ring->desc32[i].flags = htole16(NFE_RX_READY);
1459 }
1460 }
1461
1462 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1463 BUS_DMASYNC_PREWRITE);
1464
1465 ring->cur = ring->next = 0;
1466 }
1467
1468 void
1469 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1470 {
1471 struct nfe_rx_data *data;
1472 void *desc;
1473 int i, descsize;
1474
1475 if (sc->sc_flags & NFE_40BIT_ADDR) {
1476 desc = ring->desc64;
1477 descsize = sizeof (struct nfe_desc64);
1478 } else {
1479 desc = ring->desc32;
1480 descsize = sizeof (struct nfe_desc32);
1481 }
1482
1483 if (desc != NULL) {
1484 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1485 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1486 bus_dmamap_unload(sc->sc_dmat, ring->map);
1487 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1488 NFE_RX_RING_COUNT * descsize);
1489 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1490 }
1491
1492 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1493 data = &ring->data[i];
1494
1495 if (data->map != NULL) {
1496 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1497 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1498 bus_dmamap_unload(sc->sc_dmat, data->map);
1499 bus_dmamap_destroy(sc->sc_dmat, data->map);
1500 }
1501 if (data->m != NULL)
1502 m_freem(data->m);
1503 }
1504 }
1505
1506 struct nfe_jbuf *
1507 nfe_jalloc(struct nfe_softc *sc, int i)
1508 {
1509 struct nfe_jbuf *jbuf;
1510
1511 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1512 if (jbuf == NULL)
1513 return NULL;
1514 sc->rxq.jbufmap[i] =
1515 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1516 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1517 return jbuf;
1518 }
1519
1520 /*
1521 * This is called automatically by the network stack when the mbuf is freed.
1522 * Caution must be taken that the NIC might be reset by the time the mbuf is
1523 * freed.
1524 */
1525 void
1526 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1527 {
1528 struct nfe_softc *sc = arg;
1529 struct nfe_jbuf *jbuf;
1530 int i;
1531
1532 /* find the jbuf from the base pointer */
1533 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1534 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1535 printf("%s: request to free a buffer (%p) not managed by us\n",
1536 sc->sc_dev.dv_xname, buf);
1537 return;
1538 }
1539 jbuf = &sc->rxq.jbuf[i];
1540
1541 /* ..and put it back in the free list */
1542 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1543
1544 if (m != NULL)
1545 pool_cache_put(mb_cache, m);
1546 }
1547
1548 int
1549 nfe_jpool_alloc(struct nfe_softc *sc)
1550 {
1551 struct nfe_rx_ring *ring = &sc->rxq;
1552 struct nfe_jbuf *jbuf;
1553 bus_addr_t physaddr;
1554 char *buf;
1555 int i, nsegs, error;
1556
1557 /*
1558 * Allocate a big chunk of DMA'able memory.
1559 */
1560 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1561 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1562 if (error != 0) {
1563 printf("%s: could not create jumbo DMA map\n",
1564 sc->sc_dev.dv_xname);
1565 goto fail;
1566 }
1567
1568 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1569 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1570 if (error != 0) {
1571 printf("%s could not allocate jumbo DMA memory\n",
1572 sc->sc_dev.dv_xname);
1573 goto fail;
1574 }
1575
1576 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1577 &ring->jpool, BUS_DMA_NOWAIT);
1578 if (error != 0) {
1579 printf("%s: could not map jumbo DMA memory\n",
1580 sc->sc_dev.dv_xname);
1581 goto fail;
1582 }
1583
1584 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1585 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1586 if (error != 0) {
1587 printf("%s: could not load jumbo DMA map\n",
1588 sc->sc_dev.dv_xname);
1589 goto fail;
1590 }
1591
1592 /* ..and split it into 9KB chunks */
1593 SLIST_INIT(&ring->jfreelist);
1594
1595 buf = ring->jpool;
1596 physaddr = ring->jmap->dm_segs[0].ds_addr;
1597 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1598 jbuf = &ring->jbuf[i];
1599
1600 jbuf->buf = buf;
1601 jbuf->physaddr = physaddr;
1602
1603 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1604
1605 buf += NFE_JBYTES;
1606 physaddr += NFE_JBYTES;
1607 }
1608
1609 return 0;
1610
1611 fail: nfe_jpool_free(sc);
1612 return error;
1613 }
1614
1615 void
1616 nfe_jpool_free(struct nfe_softc *sc)
1617 {
1618 struct nfe_rx_ring *ring = &sc->rxq;
1619
1620 if (ring->jmap != NULL) {
1621 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1622 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1623 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1624 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1625 }
1626 if (ring->jpool != NULL) {
1627 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1628 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1629 }
1630 }
1631
1632 int
1633 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1634 {
1635 int i, nsegs, error;
1636 void **desc;
1637 int descsize;
1638
1639 if (sc->sc_flags & NFE_40BIT_ADDR) {
1640 desc = (void **)&ring->desc64;
1641 descsize = sizeof (struct nfe_desc64);
1642 } else {
1643 desc = (void **)&ring->desc32;
1644 descsize = sizeof (struct nfe_desc32);
1645 }
1646
1647 ring->queued = 0;
1648 ring->cur = ring->next = 0;
1649
1650 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1651 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1652
1653 if (error != 0) {
1654 printf("%s: could not create desc DMA map\n",
1655 sc->sc_dev.dv_xname);
1656 goto fail;
1657 }
1658
1659 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1660 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1661 if (error != 0) {
1662 printf("%s: could not allocate DMA memory\n",
1663 sc->sc_dev.dv_xname);
1664 goto fail;
1665 }
1666
1667 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1668 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1669 if (error != 0) {
1670 printf("%s: could not map desc DMA memory\n",
1671 sc->sc_dev.dv_xname);
1672 goto fail;
1673 }
1674
1675 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1676 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1677 if (error != 0) {
1678 printf("%s: could not load desc DMA map\n",
1679 sc->sc_dev.dv_xname);
1680 goto fail;
1681 }
1682
1683 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1684 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1685
1686 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1687 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1688 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1689 &ring->data[i].map);
1690 if (error != 0) {
1691 printf("%s: could not create DMA map\n",
1692 sc->sc_dev.dv_xname);
1693 goto fail;
1694 }
1695 }
1696
1697 return 0;
1698
1699 fail: nfe_free_tx_ring(sc, ring);
1700 return error;
1701 }
1702
1703 void
1704 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1705 {
1706 struct nfe_tx_data *data;
1707 int i;
1708
1709 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1710 if (sc->sc_flags & NFE_40BIT_ADDR)
1711 ring->desc64[i].flags = 0;
1712 else
1713 ring->desc32[i].flags = 0;
1714
1715 data = &ring->data[i];
1716
1717 if (data->m != NULL) {
1718 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1719 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1720 bus_dmamap_unload(sc->sc_dmat, data->active);
1721 m_freem(data->m);
1722 data->m = NULL;
1723 }
1724 }
1725
1726 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1727 BUS_DMASYNC_PREWRITE);
1728
1729 ring->queued = 0;
1730 ring->cur = ring->next = 0;
1731 }
1732
1733 void
1734 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1735 {
1736 struct nfe_tx_data *data;
1737 void *desc;
1738 int i, descsize;
1739
1740 if (sc->sc_flags & NFE_40BIT_ADDR) {
1741 desc = ring->desc64;
1742 descsize = sizeof (struct nfe_desc64);
1743 } else {
1744 desc = ring->desc32;
1745 descsize = sizeof (struct nfe_desc32);
1746 }
1747
1748 if (desc != NULL) {
1749 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1750 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1751 bus_dmamap_unload(sc->sc_dmat, ring->map);
1752 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1753 NFE_TX_RING_COUNT * descsize);
1754 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1755 }
1756
1757 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1758 data = &ring->data[i];
1759
1760 if (data->m != NULL) {
1761 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1762 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1763 bus_dmamap_unload(sc->sc_dmat, data->active);
1764 m_freem(data->m);
1765 }
1766 }
1767
1768 /* ..and now actually destroy the DMA mappings */
1769 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1770 data = &ring->data[i];
1771 if (data->map == NULL)
1772 continue;
1773 bus_dmamap_destroy(sc->sc_dmat, data->map);
1774 }
1775 }
1776
1777 void
1778 nfe_setmulti(struct nfe_softc *sc)
1779 {
1780 struct ethercom *ec = &sc->sc_ethercom;
1781 struct ifnet *ifp = &ec->ec_if;
1782 struct ether_multi *enm;
1783 struct ether_multistep step;
1784 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1785 uint32_t filter = NFE_RXFILTER_MAGIC;
1786 int i;
1787
1788 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1789 bzero(addr, ETHER_ADDR_LEN);
1790 bzero(mask, ETHER_ADDR_LEN);
1791 goto done;
1792 }
1793
1794 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1795 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1796
1797 ETHER_FIRST_MULTI(step, ec, enm);
1798 while (enm != NULL) {
1799 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1800 ifp->if_flags |= IFF_ALLMULTI;
1801 bzero(addr, ETHER_ADDR_LEN);
1802 bzero(mask, ETHER_ADDR_LEN);
1803 goto done;
1804 }
1805 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1806 addr[i] &= enm->enm_addrlo[i];
1807 mask[i] &= ~enm->enm_addrlo[i];
1808 }
1809 ETHER_NEXT_MULTI(step, enm);
1810 }
1811 for (i = 0; i < ETHER_ADDR_LEN; i++)
1812 mask[i] |= addr[i];
1813
1814 done:
1815 addr[0] |= 0x01; /* make sure multicast bit is set */
1816
1817 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1818 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1819 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1820 addr[5] << 8 | addr[4]);
1821 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1822 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1823 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1824 mask[5] << 8 | mask[4]);
1825
1826 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1827 NFE_WRITE(sc, NFE_RXFILTER, filter);
1828 }
1829
1830 void
1831 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1832 {
1833 uint32_t tmp;
1834
1835 if ((sc->sc_flags & NFE_CORRECT_MACADDR) == 0) {
1836 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1837 addr[0] = (tmp >> 8) & 0xff;
1838 addr[1] = (tmp & 0xff);
1839
1840 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1841 addr[2] = (tmp >> 24) & 0xff;
1842 addr[3] = (tmp >> 16) & 0xff;
1843 addr[4] = (tmp >> 8) & 0xff;
1844 addr[5] = (tmp & 0xff);
1845 } else {
1846 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1847 addr[5] = (tmp >> 8) & 0xff;
1848 addr[4] = (tmp & 0xff);
1849
1850 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1851 addr[3] = (tmp >> 24) & 0xff;
1852 addr[2] = (tmp >> 16) & 0xff;
1853 addr[1] = (tmp >> 8) & 0xff;
1854 addr[0] = (tmp & 0xff);
1855 }
1856 }
1857
1858 void
1859 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1860 {
1861 NFE_WRITE(sc, NFE_MACADDR_LO,
1862 addr[5] << 8 | addr[4]);
1863 NFE_WRITE(sc, NFE_MACADDR_HI,
1864 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1865 }
1866
1867 void
1868 nfe_tick(void *arg)
1869 {
1870 struct nfe_softc *sc = arg;
1871 int s;
1872
1873 s = splnet();
1874 mii_tick(&sc->sc_mii);
1875 splx(s);
1876
1877 callout_schedule(&sc->sc_tick_ch, hz);
1878 }
1879