if_nfe.c revision 1.28 1 /* $NetBSD: if_nfe.c,v 1.28 2008/02/07 01:21:56 dyoung Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.28 2008/02/07 01:21:56 dyoung Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void nfe_setmulti(struct nfe_softc *);
108 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
109 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
110 void nfe_tick(void *);
111
112 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
113
114 /*#define NFE_NO_JUMBO*/
115
116 #ifdef NFE_DEBUG
117 int nfedebug = 0;
118 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
119 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
120 #else
121 #define DPRINTF(x)
122 #define DPRINTFN(n,x)
123 #endif
124
125 /* deal with naming differences */
126
127 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
128 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
132 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
133
134 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
135 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
138
139 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
140 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
143
144 #ifdef _LP64
145 #define __LP64__ 1
146 #endif
147
148 const struct nfe_product {
149 pci_vendor_id_t vendor;
150 pci_product_id_t product;
151 } nfe_devices[] = {
152 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
153 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }
183 };
184
185 int
186 nfe_match(struct device *dev, struct cfdata *match, void *aux)
187 {
188 struct pci_attach_args *pa = aux;
189 const struct nfe_product *np;
190 int i;
191
192 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
193 np = &nfe_devices[i];
194 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
195 PCI_PRODUCT(pa->pa_id) == np->product)
196 return 1;
197 }
198 return 0;
199 }
200
201 void
202 nfe_attach(struct device *parent, struct device *self, void *aux)
203 {
204 struct nfe_softc *sc = (struct nfe_softc *)self;
205 struct pci_attach_args *pa = aux;
206 pci_chipset_tag_t pc = pa->pa_pc;
207 pci_intr_handle_t ih;
208 const char *intrstr;
209 struct ifnet *ifp;
210 bus_size_t memsize;
211 pcireg_t memtype;
212 char devinfo[256];
213
214 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
215 aprint_normal(": %s (rev. 0x%02x)\n",
216 devinfo, PCI_REVISION(pa->pa_class));
217
218 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
219 switch (memtype) {
220 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
221 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
222 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
223 &sc->sc_memh, NULL, &memsize) == 0)
224 break;
225 /* FALLTHROUGH */
226 default:
227 printf("%s: could not map mem space\n", sc->sc_dev.dv_xname);
228 return;
229 }
230
231 if (pci_intr_map(pa, &ih) != 0) {
232 printf("%s: could not map interrupt\n", sc->sc_dev.dv_xname);
233 return;
234 }
235
236 intrstr = pci_intr_string(pc, ih);
237 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
238 if (sc->sc_ih == NULL) {
239 printf("%s: could not establish interrupt",
240 sc->sc_dev.dv_xname);
241 if (intrstr != NULL)
242 printf(" at %s", intrstr);
243 printf("\n");
244 return;
245 }
246 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
247
248 sc->sc_dmat = pa->pa_dmat;
249
250 /* Check for reversed ethernet address */
251 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
252 sc->sc_flags |= NFE_CORRECT_MACADDR;
253
254 nfe_get_macaddr(sc, sc->sc_enaddr);
255 printf("%s: Ethernet address %s\n",
256 sc->sc_dev.dv_xname, ether_sprintf(sc->sc_enaddr));
257
258 sc->sc_flags = 0;
259
260 switch (PCI_PRODUCT(pa->pa_id)) {
261 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
262 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
263 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
264 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
265 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
266 break;
267 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
268 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
269 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
270 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
271 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
272 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
273 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
275 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
276 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
277 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
278 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
279 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
280 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
281 sc->sc_flags |= NFE_40BIT_ADDR |NFE_PWR_MGMT;
282 break;
283 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
284 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
285 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
286 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
287 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
288 break;
289 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
290 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
291 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
292 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
293 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
294 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
295 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
296 NFE_HW_VLAN | NFE_PWR_MGMT;
297 break;
298 }
299
300 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
301 /* wakeup some newer chips from powerdown mode */
302 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
303 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
304 DELAY(100);
305 NFE_WRITE(sc, NFE_MAC_RESET, 0);
306 DELAY(100);
307 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
308 NFE_WRITE(sc, NFE_PWR2_CTL,
309 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
310 }
311
312 #ifndef NFE_NO_JUMBO
313 /* enable jumbo frames for adapters that support it */
314 if (sc->sc_flags & NFE_JUMBO_SUP)
315 sc->sc_flags |= NFE_USE_JUMBO;
316 #endif
317
318 /*
319 * Allocate Tx and Rx rings.
320 */
321 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
322 printf("%s: could not allocate Tx ring\n",
323 sc->sc_dev.dv_xname);
324 return;
325 }
326
327 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
328 printf("%s: could not allocate Rx ring\n",
329 sc->sc_dev.dv_xname);
330 nfe_free_tx_ring(sc, &sc->txq);
331 return;
332 }
333
334 ifp = &sc->sc_ethercom.ec_if;
335 ifp->if_softc = sc;
336 ifp->if_mtu = ETHERMTU;
337 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
338 ifp->if_ioctl = nfe_ioctl;
339 ifp->if_start = nfe_start;
340 ifp->if_stop = nfe_stop;
341 ifp->if_watchdog = nfe_watchdog;
342 ifp->if_init = nfe_init;
343 ifp->if_baudrate = IF_Gbps(1);
344 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
345 IFQ_SET_READY(&ifp->if_snd);
346 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
347
348 #if NVLAN > 0
349 if (sc->sc_flags & NFE_HW_VLAN)
350 sc->sc_ethercom.ec_capabilities |=
351 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
352 #endif
353 if (sc->sc_flags & NFE_HW_CSUM) {
354 ifp->if_capabilities |=
355 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
356 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
357 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
358 }
359
360 sc->sc_mii.mii_ifp = ifp;
361 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
362 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
363 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
364
365 sc->sc_ethercom.ec_mii = &sc->sc_mii;
366 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
367 ether_mediastatus);
368 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
369 MII_OFFSET_ANY, 0);
370 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
371 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
372 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
373 0, NULL);
374 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
375 } else
376 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
377
378 if_attach(ifp);
379 ether_ifattach(ifp, sc->sc_enaddr);
380
381 callout_init(&sc->sc_tick_ch, 0);
382 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
383
384 if (!pmf_device_register(self, NULL, NULL))
385 aprint_error_dev(self, "couldn't establish power handler\n");
386 else
387 pmf_class_network_register(self, ifp);
388 }
389
390 void
391 nfe_miibus_statchg(struct device *dev)
392 {
393 struct nfe_softc *sc = (struct nfe_softc *)dev;
394 struct mii_data *mii = &sc->sc_mii;
395 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
396
397 phy = NFE_READ(sc, NFE_PHY_IFACE);
398 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
399
400 seed = NFE_READ(sc, NFE_RNDSEED);
401 seed &= ~NFE_SEED_MASK;
402
403 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
404 phy |= NFE_PHY_HDX; /* half-duplex */
405 misc |= NFE_MISC1_HDX;
406 }
407
408 switch (IFM_SUBTYPE(mii->mii_media_active)) {
409 case IFM_1000_T: /* full-duplex only */
410 link |= NFE_MEDIA_1000T;
411 seed |= NFE_SEED_1000T;
412 phy |= NFE_PHY_1000T;
413 break;
414 case IFM_100_TX:
415 link |= NFE_MEDIA_100TX;
416 seed |= NFE_SEED_100TX;
417 phy |= NFE_PHY_100TX;
418 break;
419 case IFM_10_T:
420 link |= NFE_MEDIA_10T;
421 seed |= NFE_SEED_10T;
422 break;
423 }
424
425 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
426
427 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
428 NFE_WRITE(sc, NFE_MISC1, misc);
429 NFE_WRITE(sc, NFE_LINKSPEED, link);
430 }
431
432 int
433 nfe_miibus_readreg(struct device *dev, int phy, int reg)
434 {
435 struct nfe_softc *sc = (struct nfe_softc *)dev;
436 uint32_t val;
437 int ntries;
438
439 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
440
441 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
442 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
443 DELAY(100);
444 }
445
446 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
447
448 for (ntries = 0; ntries < 1000; ntries++) {
449 DELAY(100);
450 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
451 break;
452 }
453 if (ntries == 1000) {
454 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
455 sc->sc_dev.dv_xname));
456 return 0;
457 }
458
459 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
460 DPRINTFN(2, ("%s: could not read PHY\n",
461 sc->sc_dev.dv_xname));
462 return 0;
463 }
464
465 val = NFE_READ(sc, NFE_PHY_DATA);
466 if (val != 0xffffffff && val != 0)
467 sc->mii_phyaddr = phy;
468
469 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
470 sc->sc_dev.dv_xname, phy, reg, val));
471
472 return val;
473 }
474
475 void
476 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
477 {
478 struct nfe_softc *sc = (struct nfe_softc *)dev;
479 uint32_t ctl;
480 int ntries;
481
482 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
483
484 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
485 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
486 DELAY(100);
487 }
488
489 NFE_WRITE(sc, NFE_PHY_DATA, val);
490 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
491 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
492
493 for (ntries = 0; ntries < 1000; ntries++) {
494 DELAY(100);
495 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
496 break;
497 }
498 #ifdef NFE_DEBUG
499 if (nfedebug >= 2 && ntries == 1000)
500 printf("could not write to PHY\n");
501 #endif
502 }
503
504 int
505 nfe_intr(void *arg)
506 {
507 struct nfe_softc *sc = arg;
508 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
509 uint32_t r;
510 int handled;
511
512 if ((ifp->if_flags & IFF_UP) == 0)
513 return 0;
514
515 handled = 0;
516
517 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
518
519 for (;;) {
520 r = NFE_READ(sc, NFE_IRQ_STATUS);
521 if ((r & NFE_IRQ_WANTED) == 0)
522 break;
523
524 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
525 handled = 1;
526 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
527
528 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
529 != 0) {
530 /* check Rx ring */
531 nfe_rxeof(sc);
532 }
533
534 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
535 != 0) {
536 /* check Tx ring */
537 nfe_txeof(sc);
538 }
539
540 if ((r & NFE_IRQ_LINK) != 0) {
541 NFE_READ(sc, NFE_PHY_STATUS);
542 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
543 DPRINTF(("%s: link state changed\n",
544 sc->sc_dev.dv_xname));
545 }
546 }
547
548 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
549
550 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
551 nfe_start(ifp);
552
553 return handled;
554 }
555
556 int
557 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
558 {
559 struct nfe_softc *sc = ifp->if_softc;
560 struct ifreq *ifr = (struct ifreq *)data;
561 struct ifaddr *ifa = (struct ifaddr *)data;
562 int s, error = 0;
563
564 s = splnet();
565
566 switch (cmd) {
567 case SIOCSIFADDR:
568 ifp->if_flags |= IFF_UP;
569 nfe_init(ifp);
570 switch (ifa->ifa_addr->sa_family) {
571 #ifdef INET
572 case AF_INET:
573 arp_ifinit(ifp, ifa);
574 break;
575 #endif
576 default:
577 break;
578 }
579 break;
580 case SIOCSIFMTU:
581 if (ifr->ifr_mtu < ETHERMIN ||
582 ((sc->sc_flags & NFE_USE_JUMBO) &&
583 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
584 (!(sc->sc_flags & NFE_USE_JUMBO) &&
585 ifr->ifr_mtu > ETHERMTU))
586 error = EINVAL;
587 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
588 error = 0;
589 break;
590 case SIOCSIFFLAGS:
591 if (ifp->if_flags & IFF_UP) {
592 /*
593 * If only the PROMISC or ALLMULTI flag changes, then
594 * don't do a full re-init of the chip, just update
595 * the Rx filter.
596 */
597 if ((ifp->if_flags & IFF_RUNNING) &&
598 ((ifp->if_flags ^ sc->sc_if_flags) &
599 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
600 nfe_setmulti(sc);
601 else
602 nfe_init(ifp);
603 } else {
604 if (ifp->if_flags & IFF_RUNNING)
605 nfe_stop(ifp, 1);
606 }
607 sc->sc_if_flags = ifp->if_flags;
608 break;
609 default:
610 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
611 break;
612
613 error = 0;
614
615 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
616 ;
617 else if (ifp->if_flags & IFF_RUNNING)
618 nfe_setmulti(sc);
619 break;
620 }
621
622 splx(s);
623
624 return error;
625 }
626
627 void
628 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
629 {
630 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
631 (char *)desc32 - (char *)sc->txq.desc32,
632 sizeof (struct nfe_desc32), ops);
633 }
634
635 void
636 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
637 {
638 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
639 (char *)desc64 - (char *)sc->txq.desc64,
640 sizeof (struct nfe_desc64), ops);
641 }
642
643 void
644 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
645 {
646 if (end > start) {
647 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
648 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
649 (char *)&sc->txq.desc32[end] -
650 (char *)&sc->txq.desc32[start], ops);
651 return;
652 }
653 /* sync from 'start' to end of ring */
654 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
655 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
656 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
657 (char *)&sc->txq.desc32[start], ops);
658
659 /* sync from start of ring to 'end' */
660 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
661 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
662 }
663
664 void
665 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
666 {
667 if (end > start) {
668 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
669 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
670 (char *)&sc->txq.desc64[end] -
671 (char *)&sc->txq.desc64[start], ops);
672 return;
673 }
674 /* sync from 'start' to end of ring */
675 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
676 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
677 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
678 (char *)&sc->txq.desc64[start], ops);
679
680 /* sync from start of ring to 'end' */
681 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
682 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
683 }
684
685 void
686 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
687 {
688 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
689 (char *)desc32 - (char *)sc->rxq.desc32,
690 sizeof (struct nfe_desc32), ops);
691 }
692
693 void
694 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
695 {
696 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
697 (char *)desc64 - (char *)sc->rxq.desc64,
698 sizeof (struct nfe_desc64), ops);
699 }
700
701 void
702 nfe_rxeof(struct nfe_softc *sc)
703 {
704 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
705 struct nfe_desc32 *desc32;
706 struct nfe_desc64 *desc64;
707 struct nfe_rx_data *data;
708 struct nfe_jbuf *jbuf;
709 struct mbuf *m, *mnew;
710 bus_addr_t physaddr;
711 uint16_t flags;
712 int error, len, i;
713
714 desc32 = NULL;
715 desc64 = NULL;
716 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
717 data = &sc->rxq.data[i];
718
719 if (sc->sc_flags & NFE_40BIT_ADDR) {
720 desc64 = &sc->rxq.desc64[i];
721 nfe_rxdesc64_sync(sc, desc64,
722 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
723
724 flags = le16toh(desc64->flags);
725 len = le16toh(desc64->length) & 0x3fff;
726 } else {
727 desc32 = &sc->rxq.desc32[i];
728 nfe_rxdesc32_sync(sc, desc32,
729 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
730
731 flags = le16toh(desc32->flags);
732 len = le16toh(desc32->length) & 0x3fff;
733 }
734
735 if ((flags & NFE_RX_READY) != 0)
736 break;
737
738 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
739 if ((flags & NFE_RX_VALID_V1) == 0)
740 goto skip;
741
742 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
743 flags &= ~NFE_RX_ERROR;
744 len--; /* fix buffer length */
745 }
746 } else {
747 if ((flags & NFE_RX_VALID_V2) == 0)
748 goto skip;
749
750 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
751 flags &= ~NFE_RX_ERROR;
752 len--; /* fix buffer length */
753 }
754 }
755
756 if (flags & NFE_RX_ERROR) {
757 ifp->if_ierrors++;
758 goto skip;
759 }
760
761 /*
762 * Try to allocate a new mbuf for this ring element and load
763 * it before processing the current mbuf. If the ring element
764 * cannot be loaded, drop the received packet and reuse the
765 * old mbuf. In the unlikely case that the old mbuf can't be
766 * reloaded either, explicitly panic.
767 */
768 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
769 if (mnew == NULL) {
770 ifp->if_ierrors++;
771 goto skip;
772 }
773
774 if (sc->sc_flags & NFE_USE_JUMBO) {
775 physaddr =
776 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
777 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
778 if (len > MCLBYTES) {
779 m_freem(mnew);
780 ifp->if_ierrors++;
781 goto skip1;
782 }
783 MCLGET(mnew, M_DONTWAIT);
784 if ((mnew->m_flags & M_EXT) == 0) {
785 m_freem(mnew);
786 ifp->if_ierrors++;
787 goto skip1;
788 }
789
790 memcpy(mtod(mnew, void *),
791 mtod(data->m, const void *), len);
792 m = mnew;
793 goto mbufcopied;
794 } else {
795 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
796
797 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
798 mtod(data->m, char *) - (char *)sc->rxq.jpool,
799 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
800
801 physaddr = jbuf->physaddr;
802 }
803 } else {
804 MCLGET(mnew, M_DONTWAIT);
805 if ((mnew->m_flags & M_EXT) == 0) {
806 m_freem(mnew);
807 ifp->if_ierrors++;
808 goto skip;
809 }
810
811 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
812 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
813 bus_dmamap_unload(sc->sc_dmat, data->map);
814
815 error = bus_dmamap_load(sc->sc_dmat, data->map,
816 mtod(mnew, void *), MCLBYTES, NULL,
817 BUS_DMA_READ | BUS_DMA_NOWAIT);
818 if (error != 0) {
819 m_freem(mnew);
820
821 /* try to reload the old mbuf */
822 error = bus_dmamap_load(sc->sc_dmat, data->map,
823 mtod(data->m, void *), MCLBYTES, NULL,
824 BUS_DMA_READ | BUS_DMA_NOWAIT);
825 if (error != 0) {
826 /* very unlikely that it will fail.. */
827 panic("%s: could not load old rx mbuf",
828 sc->sc_dev.dv_xname);
829 }
830 ifp->if_ierrors++;
831 goto skip;
832 }
833 physaddr = data->map->dm_segs[0].ds_addr;
834 }
835
836 /*
837 * New mbuf successfully loaded, update Rx ring and continue
838 * processing.
839 */
840 m = data->m;
841 data->m = mnew;
842
843 mbufcopied:
844 /* finalize mbuf */
845 m->m_pkthdr.len = m->m_len = len;
846 m->m_pkthdr.rcvif = ifp;
847
848 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
849 /*
850 * XXX
851 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
852 */
853 if (flags & NFE_RX_IP_CSUMOK) {
854 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
855 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
856 sc->sc_dev.dv_xname));
857 }
858 /*
859 * XXX
860 * no way to check M_CSUM_TCP_UDP_BAD or
861 * other protocols?
862 */
863 if (flags & NFE_RX_UDP_CSUMOK) {
864 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
865 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
866 sc->sc_dev.dv_xname));
867 } else if (flags & NFE_RX_TCP_CSUMOK) {
868 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
869 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
870 sc->sc_dev.dv_xname));
871 }
872 }
873
874 #if NBPFILTER > 0
875 if (ifp->if_bpf)
876 bpf_mtap(ifp->if_bpf, m);
877 #endif
878 ifp->if_ipackets++;
879 (*ifp->if_input)(ifp, m);
880
881 skip1:
882 /* update mapping address in h/w descriptor */
883 if (sc->sc_flags & NFE_40BIT_ADDR) {
884 #if defined(__LP64__)
885 desc64->physaddr[0] = htole32(physaddr >> 32);
886 #endif
887 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
888 } else {
889 desc32->physaddr = htole32(physaddr);
890 }
891
892 skip:
893 if (sc->sc_flags & NFE_40BIT_ADDR) {
894 desc64->length = htole16(sc->rxq.bufsz);
895 desc64->flags = htole16(NFE_RX_READY);
896
897 nfe_rxdesc64_sync(sc, desc64,
898 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
899 } else {
900 desc32->length = htole16(sc->rxq.bufsz);
901 desc32->flags = htole16(NFE_RX_READY);
902
903 nfe_rxdesc32_sync(sc, desc32,
904 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
905 }
906 }
907 /* update current RX pointer */
908 sc->rxq.cur = i;
909 }
910
911 void
912 nfe_txeof(struct nfe_softc *sc)
913 {
914 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
915 struct nfe_desc32 *desc32;
916 struct nfe_desc64 *desc64;
917 struct nfe_tx_data *data = NULL;
918 int i;
919 uint16_t flags;
920
921 for (i = sc->txq.next;
922 sc->txq.queued > 0;
923 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
924 if (sc->sc_flags & NFE_40BIT_ADDR) {
925 desc64 = &sc->txq.desc64[i];
926 nfe_txdesc64_sync(sc, desc64,
927 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
928
929 flags = le16toh(desc64->flags);
930 } else {
931 desc32 = &sc->txq.desc32[i];
932 nfe_txdesc32_sync(sc, desc32,
933 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
934
935 flags = le16toh(desc32->flags);
936 }
937
938 if ((flags & NFE_TX_VALID) != 0)
939 break;
940
941 data = &sc->txq.data[i];
942
943 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
944 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
945 data->m == NULL)
946 continue;
947
948 if ((flags & NFE_TX_ERROR_V1) != 0) {
949 printf("%s: tx v1 error 0x%04x\n",
950 sc->sc_dev.dv_xname, flags);
951 ifp->if_oerrors++;
952 } else
953 ifp->if_opackets++;
954 } else {
955 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
956 data->m == NULL)
957 continue;
958
959 if ((flags & NFE_TX_ERROR_V2) != 0) {
960 printf("%s: tx v2 error 0x%04x\n",
961 sc->sc_dev.dv_xname, flags);
962 ifp->if_oerrors++;
963 } else
964 ifp->if_opackets++;
965 }
966
967 if (data->m == NULL) { /* should not get there */
968 printf("%s: last fragment bit w/o associated mbuf!\n",
969 sc->sc_dev.dv_xname);
970 continue;
971 }
972
973 /* last fragment of the mbuf chain transmitted */
974 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
975 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
976 bus_dmamap_unload(sc->sc_dmat, data->active);
977 m_freem(data->m);
978 data->m = NULL;
979 }
980
981 sc->txq.next = i;
982
983 if (sc->txq.queued < NFE_TX_RING_COUNT) {
984 /* at least one slot freed */
985 ifp->if_flags &= ~IFF_OACTIVE;
986 }
987
988 if (sc->txq.queued == 0) {
989 /* all queued packets are sent */
990 ifp->if_timer = 0;
991 }
992 }
993
994 int
995 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
996 {
997 struct nfe_desc32 *desc32;
998 struct nfe_desc64 *desc64;
999 struct nfe_tx_data *data;
1000 bus_dmamap_t map;
1001 uint16_t flags, csumflags;
1002 #if NVLAN > 0
1003 struct m_tag *mtag;
1004 uint32_t vtag = 0;
1005 #endif
1006 int error, i, first;
1007
1008 desc32 = NULL;
1009 desc64 = NULL;
1010 data = NULL;
1011
1012 flags = 0;
1013 csumflags = 0;
1014 first = sc->txq.cur;
1015
1016 map = sc->txq.data[first].map;
1017
1018 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1019 if (error != 0) {
1020 printf("%s: could not map mbuf (error %d)\n",
1021 sc->sc_dev.dv_xname, error);
1022 return error;
1023 }
1024
1025 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1026 bus_dmamap_unload(sc->sc_dmat, map);
1027 return ENOBUFS;
1028 }
1029
1030 #if NVLAN > 0
1031 /* setup h/w VLAN tagging */
1032 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1033 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1034 #endif
1035 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1036 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1037 csumflags |= NFE_TX_IP_CSUM;
1038 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1039 csumflags |= NFE_TX_TCP_UDP_CSUM;
1040 }
1041
1042 for (i = 0; i < map->dm_nsegs; i++) {
1043 data = &sc->txq.data[sc->txq.cur];
1044
1045 if (sc->sc_flags & NFE_40BIT_ADDR) {
1046 desc64 = &sc->txq.desc64[sc->txq.cur];
1047 #if defined(__LP64__)
1048 desc64->physaddr[0] =
1049 htole32(map->dm_segs[i].ds_addr >> 32);
1050 #endif
1051 desc64->physaddr[1] =
1052 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1053 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1054 desc64->flags = htole16(flags);
1055 desc64->vtag = 0;
1056 } else {
1057 desc32 = &sc->txq.desc32[sc->txq.cur];
1058
1059 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1060 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1061 desc32->flags = htole16(flags);
1062 }
1063
1064 /*
1065 * Setting of the valid bit in the first descriptor is
1066 * deferred until the whole chain is fully setup.
1067 */
1068 flags |= NFE_TX_VALID;
1069
1070 sc->txq.queued++;
1071 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1072 }
1073
1074 /* the whole mbuf chain has been setup */
1075 if (sc->sc_flags & NFE_40BIT_ADDR) {
1076 /* fix last descriptor */
1077 flags |= NFE_TX_LASTFRAG_V2;
1078 desc64->flags = htole16(flags);
1079
1080 /* Checksum flags and vtag belong to the first fragment only. */
1081 #if NVLAN > 0
1082 sc->txq.desc64[first].vtag = htole32(vtag);
1083 #endif
1084 sc->txq.desc64[first].flags |= htole16(csumflags);
1085
1086 /* finally, set the valid bit in the first descriptor */
1087 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1088 } else {
1089 /* fix last descriptor */
1090 if (sc->sc_flags & NFE_JUMBO_SUP)
1091 flags |= NFE_TX_LASTFRAG_V2;
1092 else
1093 flags |= NFE_TX_LASTFRAG_V1;
1094 desc32->flags = htole16(flags);
1095
1096 /* Checksum flags belong to the first fragment only. */
1097 sc->txq.desc32[first].flags |= htole16(csumflags);
1098
1099 /* finally, set the valid bit in the first descriptor */
1100 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1101 }
1102
1103 data->m = m0;
1104 data->active = map;
1105
1106 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1107 BUS_DMASYNC_PREWRITE);
1108
1109 return 0;
1110 }
1111
1112 void
1113 nfe_start(struct ifnet *ifp)
1114 {
1115 struct nfe_softc *sc = ifp->if_softc;
1116 int old = sc->txq.queued;
1117 struct mbuf *m0;
1118
1119 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1120 return;
1121
1122 for (;;) {
1123 IFQ_POLL(&ifp->if_snd, m0);
1124 if (m0 == NULL)
1125 break;
1126
1127 if (nfe_encap(sc, m0) != 0) {
1128 ifp->if_flags |= IFF_OACTIVE;
1129 break;
1130 }
1131
1132 /* packet put in h/w queue, remove from s/w queue */
1133 IFQ_DEQUEUE(&ifp->if_snd, m0);
1134
1135 #if NBPFILTER > 0
1136 if (ifp->if_bpf != NULL)
1137 bpf_mtap(ifp->if_bpf, m0);
1138 #endif
1139 }
1140
1141 if (sc->txq.queued != old) {
1142 /* packets are queued */
1143 if (sc->sc_flags & NFE_40BIT_ADDR)
1144 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1145 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1146 else
1147 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1148 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1149 /* kick Tx */
1150 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1151
1152 /*
1153 * Set a timeout in case the chip goes out to lunch.
1154 */
1155 ifp->if_timer = 5;
1156 }
1157 }
1158
1159 void
1160 nfe_watchdog(struct ifnet *ifp)
1161 {
1162 struct nfe_softc *sc = ifp->if_softc;
1163
1164 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1165
1166 ifp->if_flags &= ~IFF_RUNNING;
1167 nfe_init(ifp);
1168
1169 ifp->if_oerrors++;
1170 }
1171
1172 int
1173 nfe_init(struct ifnet *ifp)
1174 {
1175 struct nfe_softc *sc = ifp->if_softc;
1176 uint32_t tmp;
1177 int rc = 0, s;
1178
1179 if (ifp->if_flags & IFF_RUNNING)
1180 return 0;
1181
1182 nfe_stop(ifp, 0);
1183
1184 NFE_WRITE(sc, NFE_TX_UNK, 0);
1185 NFE_WRITE(sc, NFE_STATUS, 0);
1186
1187 sc->rxtxctl = NFE_RXTX_BIT2;
1188 if (sc->sc_flags & NFE_40BIT_ADDR)
1189 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1190 else if (sc->sc_flags & NFE_JUMBO_SUP)
1191 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1192 if (sc->sc_flags & NFE_HW_CSUM)
1193 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1194 #if NVLAN > 0
1195 /*
1196 * Although the adapter is capable of stripping VLAN tags from received
1197 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1198 * purpose. This will be done in software by our network stack.
1199 */
1200 if (sc->sc_flags & NFE_HW_VLAN)
1201 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1202 #endif
1203 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1204 DELAY(10);
1205 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1206
1207 #if NVLAN
1208 if (sc->sc_flags & NFE_HW_VLAN)
1209 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1210 #endif
1211
1212 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1213
1214 /* set MAC address */
1215 nfe_set_macaddr(sc, sc->sc_enaddr);
1216
1217 /* tell MAC where rings are in memory */
1218 #ifdef __LP64__
1219 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1220 #endif
1221 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1222 #ifdef __LP64__
1223 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1224 #endif
1225 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1226
1227 NFE_WRITE(sc, NFE_RING_SIZE,
1228 (NFE_RX_RING_COUNT - 1) << 16 |
1229 (NFE_TX_RING_COUNT - 1));
1230
1231 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1232
1233 /* force MAC to wakeup */
1234 tmp = NFE_READ(sc, NFE_PWR_STATE);
1235 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1236 DELAY(10);
1237 tmp = NFE_READ(sc, NFE_PWR_STATE);
1238 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1239
1240 s = splnet();
1241 nfe_intr(sc); /* XXX clear IRQ status registers */
1242 splx(s);
1243
1244 #if 1
1245 /* configure interrupts coalescing/mitigation */
1246 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1247 #else
1248 /* no interrupt mitigation: one interrupt per packet */
1249 NFE_WRITE(sc, NFE_IMTIMER, 970);
1250 #endif
1251
1252 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1253 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1254 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1255
1256 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1257 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1258
1259 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1260 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1261
1262 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1263 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1264 DELAY(10);
1265 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1266
1267 /* set Rx filter */
1268 nfe_setmulti(sc);
1269
1270 if ((rc = ether_mediachange(ifp)) != 0)
1271 goto out;
1272
1273 nfe_tick(sc);
1274
1275 /* enable Rx */
1276 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1277
1278 /* enable Tx */
1279 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1280
1281 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1282
1283 /* enable interrupts */
1284 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1285
1286 callout_schedule(&sc->sc_tick_ch, hz);
1287
1288 ifp->if_flags |= IFF_RUNNING;
1289 ifp->if_flags &= ~IFF_OACTIVE;
1290
1291 out:
1292 return rc;
1293 }
1294
1295 void
1296 nfe_stop(struct ifnet *ifp, int disable)
1297 {
1298 struct nfe_softc *sc = ifp->if_softc;
1299
1300 callout_stop(&sc->sc_tick_ch);
1301
1302 ifp->if_timer = 0;
1303 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1304
1305 mii_down(&sc->sc_mii);
1306
1307 /* abort Tx */
1308 NFE_WRITE(sc, NFE_TX_CTL, 0);
1309
1310 /* disable Rx */
1311 NFE_WRITE(sc, NFE_RX_CTL, 0);
1312
1313 /* disable interrupts */
1314 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1315
1316 /* reset Tx and Rx rings */
1317 nfe_reset_tx_ring(sc, &sc->txq);
1318 nfe_reset_rx_ring(sc, &sc->rxq);
1319 }
1320
1321 int
1322 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1323 {
1324 struct nfe_desc32 *desc32;
1325 struct nfe_desc64 *desc64;
1326 struct nfe_rx_data *data;
1327 struct nfe_jbuf *jbuf;
1328 void **desc;
1329 bus_addr_t physaddr;
1330 int i, nsegs, error, descsize;
1331
1332 if (sc->sc_flags & NFE_40BIT_ADDR) {
1333 desc = (void **)&ring->desc64;
1334 descsize = sizeof (struct nfe_desc64);
1335 } else {
1336 desc = (void **)&ring->desc32;
1337 descsize = sizeof (struct nfe_desc32);
1338 }
1339
1340 ring->cur = ring->next = 0;
1341 ring->bufsz = MCLBYTES;
1342
1343 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1344 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1345 if (error != 0) {
1346 printf("%s: could not create desc DMA map\n",
1347 sc->sc_dev.dv_xname);
1348 goto fail;
1349 }
1350
1351 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1352 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1353 if (error != 0) {
1354 printf("%s: could not allocate DMA memory\n",
1355 sc->sc_dev.dv_xname);
1356 goto fail;
1357 }
1358
1359 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1360 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1361 if (error != 0) {
1362 printf("%s: could not map desc DMA memory\n",
1363 sc->sc_dev.dv_xname);
1364 goto fail;
1365 }
1366
1367 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1368 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1369 if (error != 0) {
1370 printf("%s: could not load desc DMA map\n",
1371 sc->sc_dev.dv_xname);
1372 goto fail;
1373 }
1374
1375 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1376 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1377
1378 if (sc->sc_flags & NFE_USE_JUMBO) {
1379 ring->bufsz = NFE_JBYTES;
1380 if ((error = nfe_jpool_alloc(sc)) != 0) {
1381 printf("%s: could not allocate jumbo frames\n",
1382 sc->sc_dev.dv_xname);
1383 goto fail;
1384 }
1385 }
1386
1387 /*
1388 * Pre-allocate Rx buffers and populate Rx ring.
1389 */
1390 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1391 data = &sc->rxq.data[i];
1392
1393 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1394 if (data->m == NULL) {
1395 printf("%s: could not allocate rx mbuf\n",
1396 sc->sc_dev.dv_xname);
1397 error = ENOMEM;
1398 goto fail;
1399 }
1400
1401 if (sc->sc_flags & NFE_USE_JUMBO) {
1402 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1403 printf("%s: could not allocate jumbo buffer\n",
1404 sc->sc_dev.dv_xname);
1405 goto fail;
1406 }
1407 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1408 sc);
1409
1410 physaddr = jbuf->physaddr;
1411 } else {
1412 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1413 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1414 if (error != 0) {
1415 printf("%s: could not create DMA map\n",
1416 sc->sc_dev.dv_xname);
1417 goto fail;
1418 }
1419 MCLGET(data->m, M_DONTWAIT);
1420 if (!(data->m->m_flags & M_EXT)) {
1421 printf("%s: could not allocate mbuf cluster\n",
1422 sc->sc_dev.dv_xname);
1423 error = ENOMEM;
1424 goto fail;
1425 }
1426
1427 error = bus_dmamap_load(sc->sc_dmat, data->map,
1428 mtod(data->m, void *), MCLBYTES, NULL,
1429 BUS_DMA_READ | BUS_DMA_NOWAIT);
1430 if (error != 0) {
1431 printf("%s: could not load rx buf DMA map",
1432 sc->sc_dev.dv_xname);
1433 goto fail;
1434 }
1435 physaddr = data->map->dm_segs[0].ds_addr;
1436 }
1437
1438 if (sc->sc_flags & NFE_40BIT_ADDR) {
1439 desc64 = &sc->rxq.desc64[i];
1440 #if defined(__LP64__)
1441 desc64->physaddr[0] = htole32(physaddr >> 32);
1442 #endif
1443 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1444 desc64->length = htole16(sc->rxq.bufsz);
1445 desc64->flags = htole16(NFE_RX_READY);
1446 } else {
1447 desc32 = &sc->rxq.desc32[i];
1448 desc32->physaddr = htole32(physaddr);
1449 desc32->length = htole16(sc->rxq.bufsz);
1450 desc32->flags = htole16(NFE_RX_READY);
1451 }
1452 }
1453
1454 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1455 BUS_DMASYNC_PREWRITE);
1456
1457 return 0;
1458
1459 fail: nfe_free_rx_ring(sc, ring);
1460 return error;
1461 }
1462
1463 void
1464 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1465 {
1466 int i;
1467
1468 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1469 if (sc->sc_flags & NFE_40BIT_ADDR) {
1470 ring->desc64[i].length = htole16(ring->bufsz);
1471 ring->desc64[i].flags = htole16(NFE_RX_READY);
1472 } else {
1473 ring->desc32[i].length = htole16(ring->bufsz);
1474 ring->desc32[i].flags = htole16(NFE_RX_READY);
1475 }
1476 }
1477
1478 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1479 BUS_DMASYNC_PREWRITE);
1480
1481 ring->cur = ring->next = 0;
1482 }
1483
1484 void
1485 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1486 {
1487 struct nfe_rx_data *data;
1488 void *desc;
1489 int i, descsize;
1490
1491 if (sc->sc_flags & NFE_40BIT_ADDR) {
1492 desc = ring->desc64;
1493 descsize = sizeof (struct nfe_desc64);
1494 } else {
1495 desc = ring->desc32;
1496 descsize = sizeof (struct nfe_desc32);
1497 }
1498
1499 if (desc != NULL) {
1500 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1501 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1502 bus_dmamap_unload(sc->sc_dmat, ring->map);
1503 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1504 NFE_RX_RING_COUNT * descsize);
1505 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1506 }
1507
1508 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1509 data = &ring->data[i];
1510
1511 if (data->map != NULL) {
1512 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1513 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1514 bus_dmamap_unload(sc->sc_dmat, data->map);
1515 bus_dmamap_destroy(sc->sc_dmat, data->map);
1516 }
1517 if (data->m != NULL)
1518 m_freem(data->m);
1519 }
1520 }
1521
1522 struct nfe_jbuf *
1523 nfe_jalloc(struct nfe_softc *sc, int i)
1524 {
1525 struct nfe_jbuf *jbuf;
1526
1527 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1528 if (jbuf == NULL)
1529 return NULL;
1530 sc->rxq.jbufmap[i] =
1531 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1532 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1533 return jbuf;
1534 }
1535
1536 /*
1537 * This is called automatically by the network stack when the mbuf is freed.
1538 * Caution must be taken that the NIC might be reset by the time the mbuf is
1539 * freed.
1540 */
1541 void
1542 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1543 {
1544 struct nfe_softc *sc = arg;
1545 struct nfe_jbuf *jbuf;
1546 int i;
1547
1548 /* find the jbuf from the base pointer */
1549 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1550 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1551 printf("%s: request to free a buffer (%p) not managed by us\n",
1552 sc->sc_dev.dv_xname, buf);
1553 return;
1554 }
1555 jbuf = &sc->rxq.jbuf[i];
1556
1557 /* ..and put it back in the free list */
1558 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1559
1560 if (m != NULL)
1561 pool_cache_put(mb_cache, m);
1562 }
1563
1564 int
1565 nfe_jpool_alloc(struct nfe_softc *sc)
1566 {
1567 struct nfe_rx_ring *ring = &sc->rxq;
1568 struct nfe_jbuf *jbuf;
1569 bus_addr_t physaddr;
1570 char *buf;
1571 int i, nsegs, error;
1572
1573 /*
1574 * Allocate a big chunk of DMA'able memory.
1575 */
1576 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1577 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1578 if (error != 0) {
1579 printf("%s: could not create jumbo DMA map\n",
1580 sc->sc_dev.dv_xname);
1581 goto fail;
1582 }
1583
1584 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1585 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1586 if (error != 0) {
1587 printf("%s could not allocate jumbo DMA memory\n",
1588 sc->sc_dev.dv_xname);
1589 goto fail;
1590 }
1591
1592 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1593 &ring->jpool, BUS_DMA_NOWAIT);
1594 if (error != 0) {
1595 printf("%s: could not map jumbo DMA memory\n",
1596 sc->sc_dev.dv_xname);
1597 goto fail;
1598 }
1599
1600 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1601 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1602 if (error != 0) {
1603 printf("%s: could not load jumbo DMA map\n",
1604 sc->sc_dev.dv_xname);
1605 goto fail;
1606 }
1607
1608 /* ..and split it into 9KB chunks */
1609 SLIST_INIT(&ring->jfreelist);
1610
1611 buf = ring->jpool;
1612 physaddr = ring->jmap->dm_segs[0].ds_addr;
1613 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1614 jbuf = &ring->jbuf[i];
1615
1616 jbuf->buf = buf;
1617 jbuf->physaddr = physaddr;
1618
1619 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1620
1621 buf += NFE_JBYTES;
1622 physaddr += NFE_JBYTES;
1623 }
1624
1625 return 0;
1626
1627 fail: nfe_jpool_free(sc);
1628 return error;
1629 }
1630
1631 void
1632 nfe_jpool_free(struct nfe_softc *sc)
1633 {
1634 struct nfe_rx_ring *ring = &sc->rxq;
1635
1636 if (ring->jmap != NULL) {
1637 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1638 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1639 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1640 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1641 }
1642 if (ring->jpool != NULL) {
1643 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1644 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1645 }
1646 }
1647
1648 int
1649 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1650 {
1651 int i, nsegs, error;
1652 void **desc;
1653 int descsize;
1654
1655 if (sc->sc_flags & NFE_40BIT_ADDR) {
1656 desc = (void **)&ring->desc64;
1657 descsize = sizeof (struct nfe_desc64);
1658 } else {
1659 desc = (void **)&ring->desc32;
1660 descsize = sizeof (struct nfe_desc32);
1661 }
1662
1663 ring->queued = 0;
1664 ring->cur = ring->next = 0;
1665
1666 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1667 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1668
1669 if (error != 0) {
1670 printf("%s: could not create desc DMA map\n",
1671 sc->sc_dev.dv_xname);
1672 goto fail;
1673 }
1674
1675 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1676 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1677 if (error != 0) {
1678 printf("%s: could not allocate DMA memory\n",
1679 sc->sc_dev.dv_xname);
1680 goto fail;
1681 }
1682
1683 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1684 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1685 if (error != 0) {
1686 printf("%s: could not map desc DMA memory\n",
1687 sc->sc_dev.dv_xname);
1688 goto fail;
1689 }
1690
1691 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1692 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1693 if (error != 0) {
1694 printf("%s: could not load desc DMA map\n",
1695 sc->sc_dev.dv_xname);
1696 goto fail;
1697 }
1698
1699 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1700 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1701
1702 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1703 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1704 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1705 &ring->data[i].map);
1706 if (error != 0) {
1707 printf("%s: could not create DMA map\n",
1708 sc->sc_dev.dv_xname);
1709 goto fail;
1710 }
1711 }
1712
1713 return 0;
1714
1715 fail: nfe_free_tx_ring(sc, ring);
1716 return error;
1717 }
1718
1719 void
1720 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1721 {
1722 struct nfe_tx_data *data;
1723 int i;
1724
1725 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1726 if (sc->sc_flags & NFE_40BIT_ADDR)
1727 ring->desc64[i].flags = 0;
1728 else
1729 ring->desc32[i].flags = 0;
1730
1731 data = &ring->data[i];
1732
1733 if (data->m != NULL) {
1734 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1735 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1736 bus_dmamap_unload(sc->sc_dmat, data->active);
1737 m_freem(data->m);
1738 data->m = NULL;
1739 }
1740 }
1741
1742 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1743 BUS_DMASYNC_PREWRITE);
1744
1745 ring->queued = 0;
1746 ring->cur = ring->next = 0;
1747 }
1748
1749 void
1750 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1751 {
1752 struct nfe_tx_data *data;
1753 void *desc;
1754 int i, descsize;
1755
1756 if (sc->sc_flags & NFE_40BIT_ADDR) {
1757 desc = ring->desc64;
1758 descsize = sizeof (struct nfe_desc64);
1759 } else {
1760 desc = ring->desc32;
1761 descsize = sizeof (struct nfe_desc32);
1762 }
1763
1764 if (desc != NULL) {
1765 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1766 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1767 bus_dmamap_unload(sc->sc_dmat, ring->map);
1768 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1769 NFE_TX_RING_COUNT * descsize);
1770 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1771 }
1772
1773 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1774 data = &ring->data[i];
1775
1776 if (data->m != NULL) {
1777 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1778 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1779 bus_dmamap_unload(sc->sc_dmat, data->active);
1780 m_freem(data->m);
1781 }
1782 }
1783
1784 /* ..and now actually destroy the DMA mappings */
1785 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1786 data = &ring->data[i];
1787 if (data->map == NULL)
1788 continue;
1789 bus_dmamap_destroy(sc->sc_dmat, data->map);
1790 }
1791 }
1792
1793 void
1794 nfe_setmulti(struct nfe_softc *sc)
1795 {
1796 struct ethercom *ec = &sc->sc_ethercom;
1797 struct ifnet *ifp = &ec->ec_if;
1798 struct ether_multi *enm;
1799 struct ether_multistep step;
1800 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1801 uint32_t filter = NFE_RXFILTER_MAGIC;
1802 int i;
1803
1804 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1805 bzero(addr, ETHER_ADDR_LEN);
1806 bzero(mask, ETHER_ADDR_LEN);
1807 goto done;
1808 }
1809
1810 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1811 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1812
1813 ETHER_FIRST_MULTI(step, ec, enm);
1814 while (enm != NULL) {
1815 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1816 ifp->if_flags |= IFF_ALLMULTI;
1817 bzero(addr, ETHER_ADDR_LEN);
1818 bzero(mask, ETHER_ADDR_LEN);
1819 goto done;
1820 }
1821 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1822 addr[i] &= enm->enm_addrlo[i];
1823 mask[i] &= ~enm->enm_addrlo[i];
1824 }
1825 ETHER_NEXT_MULTI(step, enm);
1826 }
1827 for (i = 0; i < ETHER_ADDR_LEN; i++)
1828 mask[i] |= addr[i];
1829
1830 done:
1831 addr[0] |= 0x01; /* make sure multicast bit is set */
1832
1833 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1834 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1835 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1836 addr[5] << 8 | addr[4]);
1837 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1838 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1839 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1840 mask[5] << 8 | mask[4]);
1841
1842 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1843 NFE_WRITE(sc, NFE_RXFILTER, filter);
1844 }
1845
1846 void
1847 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1848 {
1849 uint32_t tmp;
1850
1851 if ((sc->sc_flags & NFE_CORRECT_MACADDR) == 0) {
1852 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1853 addr[0] = (tmp >> 8) & 0xff;
1854 addr[1] = (tmp & 0xff);
1855
1856 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1857 addr[2] = (tmp >> 24) & 0xff;
1858 addr[3] = (tmp >> 16) & 0xff;
1859 addr[4] = (tmp >> 8) & 0xff;
1860 addr[5] = (tmp & 0xff);
1861 } else {
1862 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1863 addr[5] = (tmp >> 8) & 0xff;
1864 addr[4] = (tmp & 0xff);
1865
1866 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1867 addr[3] = (tmp >> 24) & 0xff;
1868 addr[2] = (tmp >> 16) & 0xff;
1869 addr[1] = (tmp >> 8) & 0xff;
1870 addr[0] = (tmp & 0xff);
1871 }
1872 }
1873
1874 void
1875 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1876 {
1877 NFE_WRITE(sc, NFE_MACADDR_LO,
1878 addr[5] << 8 | addr[4]);
1879 NFE_WRITE(sc, NFE_MACADDR_HI,
1880 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1881 }
1882
1883 void
1884 nfe_tick(void *arg)
1885 {
1886 struct nfe_softc *sc = arg;
1887 int s;
1888
1889 s = splnet();
1890 mii_tick(&sc->sc_mii);
1891 splx(s);
1892
1893 callout_schedule(&sc->sc_tick_ch, hz);
1894 }
1895