if_nfe.c revision 1.30 1 /* $NetBSD: if_nfe.c,v 1.30 2008/03/26 14:46:21 cube Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.30 2008/03/26 14:46:21 cube Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(device_t, cfdata_t, void *);
77 void nfe_attach(device_t, device_t, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(device_t);
80 int nfe_miibus_readreg(device_t, int, int);
81 void nfe_miibus_writereg(device_t, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, void *);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
98 void nfe_jfree(struct mbuf *, void *, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void nfe_setmulti(struct nfe_softc *);
108 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
109 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
110 void nfe_tick(void *);
111
112 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
113 NULL, NULL);
114
115 /*#define NFE_NO_JUMBO*/
116
117 #ifdef NFE_DEBUG
118 int nfedebug = 0;
119 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
120 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
121 #else
122 #define DPRINTF(x)
123 #define DPRINTFN(n,x)
124 #endif
125
126 /* deal with naming differences */
127
128 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
129 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
130 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
131 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
132 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
133 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
134
135 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
136 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
137 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
138 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
139
140 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
141 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
142 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
143 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
144
145 #ifdef _LP64
146 #define __LP64__ 1
147 #endif
148
149 const struct nfe_product {
150 pci_vendor_id_t vendor;
151 pci_product_id_t product;
152 } nfe_devices[] = {
153 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
184 };
185
186 int
187 nfe_match(device_t dev, cfdata_t match, void *aux)
188 {
189 struct pci_attach_args *pa = aux;
190 const struct nfe_product *np;
191 int i;
192
193 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
194 np = &nfe_devices[i];
195 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
196 PCI_PRODUCT(pa->pa_id) == np->product)
197 return 1;
198 }
199 return 0;
200 }
201
202 void
203 nfe_attach(device_t parent, device_t self, void *aux)
204 {
205 struct nfe_softc *sc = device_private(self);
206 struct pci_attach_args *pa = aux;
207 pci_chipset_tag_t pc = pa->pa_pc;
208 pci_intr_handle_t ih;
209 const char *intrstr;
210 struct ifnet *ifp;
211 bus_size_t memsize;
212 pcireg_t memtype;
213 char devinfo[256];
214
215 sc->sc_dev = self;
216 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
217 aprint_normal(": %s (rev. 0x%02x)\n",
218 devinfo, PCI_REVISION(pa->pa_class));
219
220 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
221 switch (memtype) {
222 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
223 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
224 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
225 &sc->sc_memh, NULL, &memsize) == 0)
226 break;
227 /* FALLTHROUGH */
228 default:
229 aprint_error_dev(self, "could not map mem space\n");
230 return;
231 }
232
233 if (pci_intr_map(pa, &ih) != 0) {
234 aprint_error_dev(self, "could not map interrupt\n");
235 return;
236 }
237
238 intrstr = pci_intr_string(pc, ih);
239 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
240 if (sc->sc_ih == NULL) {
241 aprint_error_dev(self, "could not establish interrupt");
242 if (intrstr != NULL)
243 aprint_normal(" at %s", intrstr);
244 aprint_normal("\n");
245 return;
246 }
247 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
248
249 sc->sc_dmat = pa->pa_dmat;
250
251 /* Check for reversed ethernet address */
252 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
253 sc->sc_flags |= NFE_CORRECT_MACADDR;
254
255 nfe_get_macaddr(sc, sc->sc_enaddr);
256 aprint_normal_dev(self, "Ethernet address %s\n",
257 ether_sprintf(sc->sc_enaddr));
258
259 sc->sc_flags = 0;
260
261 switch (PCI_PRODUCT(pa->pa_id)) {
262 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
263 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
264 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
265 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
266 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
267 break;
268 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
269 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
270 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
271 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
272 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
273 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
274 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
275 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
276 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
277 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
278 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
279 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
280 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
281 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
282 sc->sc_flags |= NFE_40BIT_ADDR |NFE_PWR_MGMT;
283 break;
284 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
285 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
286 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
287 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
288 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
289 break;
290 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
291 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
292 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
293 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
294 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
295 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
296 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
297 NFE_HW_VLAN | NFE_PWR_MGMT;
298 break;
299 }
300
301 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
302 /* wakeup some newer chips from powerdown mode */
303 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
304 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
305 DELAY(100);
306 NFE_WRITE(sc, NFE_MAC_RESET, 0);
307 DELAY(100);
308 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
309 NFE_WRITE(sc, NFE_PWR2_CTL,
310 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
311 }
312
313 #ifndef NFE_NO_JUMBO
314 /* enable jumbo frames for adapters that support it */
315 if (sc->sc_flags & NFE_JUMBO_SUP)
316 sc->sc_flags |= NFE_USE_JUMBO;
317 #endif
318
319 /*
320 * Allocate Tx and Rx rings.
321 */
322 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
323 aprint_error_dev(self, "could not allocate Tx ring\n");
324 return;
325 }
326
327 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
328 aprint_error_dev(self, "could not allocate Rx ring\n");
329 nfe_free_tx_ring(sc, &sc->txq);
330 return;
331 }
332
333 ifp = &sc->sc_ethercom.ec_if;
334 ifp->if_softc = sc;
335 ifp->if_mtu = ETHERMTU;
336 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
337 ifp->if_ioctl = nfe_ioctl;
338 ifp->if_start = nfe_start;
339 ifp->if_stop = nfe_stop;
340 ifp->if_watchdog = nfe_watchdog;
341 ifp->if_init = nfe_init;
342 ifp->if_baudrate = IF_Gbps(1);
343 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
344 IFQ_SET_READY(&ifp->if_snd);
345 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
346
347 #if NVLAN > 0
348 if (sc->sc_flags & NFE_HW_VLAN)
349 sc->sc_ethercom.ec_capabilities |=
350 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
351 #endif
352 if (sc->sc_flags & NFE_HW_CSUM) {
353 ifp->if_capabilities |=
354 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
355 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
356 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
357 }
358
359 sc->sc_mii.mii_ifp = ifp;
360 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
361 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
362 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
363
364 sc->sc_ethercom.ec_mii = &sc->sc_mii;
365 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
366 ether_mediastatus);
367 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
368 MII_OFFSET_ANY, 0);
369 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
370 aprint_error_dev(self, "no PHY found!\n");
371 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
372 0, NULL);
373 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
374 } else
375 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
376
377 if_attach(ifp);
378 ether_ifattach(ifp, sc->sc_enaddr);
379
380 callout_init(&sc->sc_tick_ch, 0);
381 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
382
383 if (!pmf_device_register(self, NULL, NULL))
384 aprint_error_dev(self, "couldn't establish power handler\n");
385 else
386 pmf_class_network_register(self, ifp);
387 }
388
389 void
390 nfe_miibus_statchg(device_t dev)
391 {
392 struct nfe_softc *sc = device_private(dev);
393 struct mii_data *mii = &sc->sc_mii;
394 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
395
396 phy = NFE_READ(sc, NFE_PHY_IFACE);
397 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
398
399 seed = NFE_READ(sc, NFE_RNDSEED);
400 seed &= ~NFE_SEED_MASK;
401
402 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
403 phy |= NFE_PHY_HDX; /* half-duplex */
404 misc |= NFE_MISC1_HDX;
405 }
406
407 switch (IFM_SUBTYPE(mii->mii_media_active)) {
408 case IFM_1000_T: /* full-duplex only */
409 link |= NFE_MEDIA_1000T;
410 seed |= NFE_SEED_1000T;
411 phy |= NFE_PHY_1000T;
412 break;
413 case IFM_100_TX:
414 link |= NFE_MEDIA_100TX;
415 seed |= NFE_SEED_100TX;
416 phy |= NFE_PHY_100TX;
417 break;
418 case IFM_10_T:
419 link |= NFE_MEDIA_10T;
420 seed |= NFE_SEED_10T;
421 break;
422 }
423
424 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
425
426 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
427 NFE_WRITE(sc, NFE_MISC1, misc);
428 NFE_WRITE(sc, NFE_LINKSPEED, link);
429 }
430
431 int
432 nfe_miibus_readreg(device_t dev, int phy, int reg)
433 {
434 struct nfe_softc *sc = device_private(dev);
435 uint32_t val;
436 int ntries;
437
438 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
439
440 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
441 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
442 DELAY(100);
443 }
444
445 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
446
447 for (ntries = 0; ntries < 1000; ntries++) {
448 DELAY(100);
449 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
450 break;
451 }
452 if (ntries == 1000) {
453 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
454 device_xname(sc->sc_dev)));
455 return 0;
456 }
457
458 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
459 DPRINTFN(2, ("%s: could not read PHY\n",
460 device_xname(sc->sc_dev)));
461 return 0;
462 }
463
464 val = NFE_READ(sc, NFE_PHY_DATA);
465 if (val != 0xffffffff && val != 0)
466 sc->mii_phyaddr = phy;
467
468 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
469 device_xname(sc->sc_dev), phy, reg, val));
470
471 return val;
472 }
473
474 void
475 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
476 {
477 struct nfe_softc *sc = device_private(dev);
478 uint32_t ctl;
479 int ntries;
480
481 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
482
483 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
484 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
485 DELAY(100);
486 }
487
488 NFE_WRITE(sc, NFE_PHY_DATA, val);
489 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
490 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
491
492 for (ntries = 0; ntries < 1000; ntries++) {
493 DELAY(100);
494 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
495 break;
496 }
497 #ifdef NFE_DEBUG
498 if (nfedebug >= 2 && ntries == 1000)
499 printf("could not write to PHY\n");
500 #endif
501 }
502
503 int
504 nfe_intr(void *arg)
505 {
506 struct nfe_softc *sc = arg;
507 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
508 uint32_t r;
509 int handled;
510
511 if ((ifp->if_flags & IFF_UP) == 0)
512 return 0;
513
514 handled = 0;
515
516 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
517
518 for (;;) {
519 r = NFE_READ(sc, NFE_IRQ_STATUS);
520 if ((r & NFE_IRQ_WANTED) == 0)
521 break;
522
523 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
524 handled = 1;
525 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
526
527 if ((r & (NFE_IRQ_RXERR | NFE_IRQ_RX_NOBUF | NFE_IRQ_RX))
528 != 0) {
529 /* check Rx ring */
530 nfe_rxeof(sc);
531 }
532
533 if ((r & (NFE_IRQ_TXERR | NFE_IRQ_TXERR2 | NFE_IRQ_TX_DONE))
534 != 0) {
535 /* check Tx ring */
536 nfe_txeof(sc);
537 }
538
539 if ((r & NFE_IRQ_LINK) != 0) {
540 NFE_READ(sc, NFE_PHY_STATUS);
541 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
542 DPRINTF(("%s: link state changed\n",
543 device_xname(sc->sc_dev)));
544 }
545 }
546
547 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
548
549 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
550 nfe_start(ifp);
551
552 return handled;
553 }
554
555 int
556 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
557 {
558 struct nfe_softc *sc = ifp->if_softc;
559 struct ifreq *ifr = (struct ifreq *)data;
560 struct ifaddr *ifa = (struct ifaddr *)data;
561 int s, error = 0;
562
563 s = splnet();
564
565 switch (cmd) {
566 case SIOCSIFADDR:
567 ifp->if_flags |= IFF_UP;
568 nfe_init(ifp);
569 switch (ifa->ifa_addr->sa_family) {
570 #ifdef INET
571 case AF_INET:
572 arp_ifinit(ifp, ifa);
573 break;
574 #endif
575 default:
576 break;
577 }
578 break;
579 case SIOCSIFMTU:
580 if (ifr->ifr_mtu < ETHERMIN ||
581 ((sc->sc_flags & NFE_USE_JUMBO) &&
582 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
583 (!(sc->sc_flags & NFE_USE_JUMBO) &&
584 ifr->ifr_mtu > ETHERMTU))
585 error = EINVAL;
586 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
587 error = 0;
588 break;
589 case SIOCSIFFLAGS:
590 if (ifp->if_flags & IFF_UP) {
591 /*
592 * If only the PROMISC or ALLMULTI flag changes, then
593 * don't do a full re-init of the chip, just update
594 * the Rx filter.
595 */
596 if ((ifp->if_flags & IFF_RUNNING) &&
597 ((ifp->if_flags ^ sc->sc_if_flags) &
598 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
599 nfe_setmulti(sc);
600 else
601 nfe_init(ifp);
602 } else {
603 if (ifp->if_flags & IFF_RUNNING)
604 nfe_stop(ifp, 1);
605 }
606 sc->sc_if_flags = ifp->if_flags;
607 break;
608 default:
609 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
610 break;
611
612 error = 0;
613
614 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
615 ;
616 else if (ifp->if_flags & IFF_RUNNING)
617 nfe_setmulti(sc);
618 break;
619 }
620
621 splx(s);
622
623 return error;
624 }
625
626 void
627 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
628 {
629 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
630 (char *)desc32 - (char *)sc->txq.desc32,
631 sizeof (struct nfe_desc32), ops);
632 }
633
634 void
635 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
636 {
637 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
638 (char *)desc64 - (char *)sc->txq.desc64,
639 sizeof (struct nfe_desc64), ops);
640 }
641
642 void
643 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
644 {
645 if (end > start) {
646 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
647 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
648 (char *)&sc->txq.desc32[end] -
649 (char *)&sc->txq.desc32[start], ops);
650 return;
651 }
652 /* sync from 'start' to end of ring */
653 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
654 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
655 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
656 (char *)&sc->txq.desc32[start], ops);
657
658 /* sync from start of ring to 'end' */
659 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
660 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
661 }
662
663 void
664 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
665 {
666 if (end > start) {
667 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
668 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
669 (char *)&sc->txq.desc64[end] -
670 (char *)&sc->txq.desc64[start], ops);
671 return;
672 }
673 /* sync from 'start' to end of ring */
674 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
675 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
676 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
677 (char *)&sc->txq.desc64[start], ops);
678
679 /* sync from start of ring to 'end' */
680 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
681 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
682 }
683
684 void
685 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
686 {
687 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
688 (char *)desc32 - (char *)sc->rxq.desc32,
689 sizeof (struct nfe_desc32), ops);
690 }
691
692 void
693 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
694 {
695 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
696 (char *)desc64 - (char *)sc->rxq.desc64,
697 sizeof (struct nfe_desc64), ops);
698 }
699
700 void
701 nfe_rxeof(struct nfe_softc *sc)
702 {
703 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
704 struct nfe_desc32 *desc32;
705 struct nfe_desc64 *desc64;
706 struct nfe_rx_data *data;
707 struct nfe_jbuf *jbuf;
708 struct mbuf *m, *mnew;
709 bus_addr_t physaddr;
710 uint16_t flags;
711 int error, len, i;
712
713 desc32 = NULL;
714 desc64 = NULL;
715 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
716 data = &sc->rxq.data[i];
717
718 if (sc->sc_flags & NFE_40BIT_ADDR) {
719 desc64 = &sc->rxq.desc64[i];
720 nfe_rxdesc64_sync(sc, desc64,
721 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
722
723 flags = le16toh(desc64->flags);
724 len = le16toh(desc64->length) & 0x3fff;
725 } else {
726 desc32 = &sc->rxq.desc32[i];
727 nfe_rxdesc32_sync(sc, desc32,
728 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
729
730 flags = le16toh(desc32->flags);
731 len = le16toh(desc32->length) & 0x3fff;
732 }
733
734 if ((flags & NFE_RX_READY) != 0)
735 break;
736
737 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
738 if ((flags & NFE_RX_VALID_V1) == 0)
739 goto skip;
740
741 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
742 flags &= ~NFE_RX_ERROR;
743 len--; /* fix buffer length */
744 }
745 } else {
746 if ((flags & NFE_RX_VALID_V2) == 0)
747 goto skip;
748
749 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
750 flags &= ~NFE_RX_ERROR;
751 len--; /* fix buffer length */
752 }
753 }
754
755 if (flags & NFE_RX_ERROR) {
756 ifp->if_ierrors++;
757 goto skip;
758 }
759
760 /*
761 * Try to allocate a new mbuf for this ring element and load
762 * it before processing the current mbuf. If the ring element
763 * cannot be loaded, drop the received packet and reuse the
764 * old mbuf. In the unlikely case that the old mbuf can't be
765 * reloaded either, explicitly panic.
766 */
767 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
768 if (mnew == NULL) {
769 ifp->if_ierrors++;
770 goto skip;
771 }
772
773 if (sc->sc_flags & NFE_USE_JUMBO) {
774 physaddr =
775 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
776 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
777 if (len > MCLBYTES) {
778 m_freem(mnew);
779 ifp->if_ierrors++;
780 goto skip1;
781 }
782 MCLGET(mnew, M_DONTWAIT);
783 if ((mnew->m_flags & M_EXT) == 0) {
784 m_freem(mnew);
785 ifp->if_ierrors++;
786 goto skip1;
787 }
788
789 memcpy(mtod(mnew, void *),
790 mtod(data->m, const void *), len);
791 m = mnew;
792 goto mbufcopied;
793 } else {
794 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
795
796 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
797 mtod(data->m, char *) - (char *)sc->rxq.jpool,
798 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
799
800 physaddr = jbuf->physaddr;
801 }
802 } else {
803 MCLGET(mnew, M_DONTWAIT);
804 if ((mnew->m_flags & M_EXT) == 0) {
805 m_freem(mnew);
806 ifp->if_ierrors++;
807 goto skip;
808 }
809
810 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
811 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
812 bus_dmamap_unload(sc->sc_dmat, data->map);
813
814 error = bus_dmamap_load(sc->sc_dmat, data->map,
815 mtod(mnew, void *), MCLBYTES, NULL,
816 BUS_DMA_READ | BUS_DMA_NOWAIT);
817 if (error != 0) {
818 m_freem(mnew);
819
820 /* try to reload the old mbuf */
821 error = bus_dmamap_load(sc->sc_dmat, data->map,
822 mtod(data->m, void *), MCLBYTES, NULL,
823 BUS_DMA_READ | BUS_DMA_NOWAIT);
824 if (error != 0) {
825 /* very unlikely that it will fail.. */
826 panic("%s: could not load old rx mbuf",
827 device_xname(sc->sc_dev));
828 }
829 ifp->if_ierrors++;
830 goto skip;
831 }
832 physaddr = data->map->dm_segs[0].ds_addr;
833 }
834
835 /*
836 * New mbuf successfully loaded, update Rx ring and continue
837 * processing.
838 */
839 m = data->m;
840 data->m = mnew;
841
842 mbufcopied:
843 /* finalize mbuf */
844 m->m_pkthdr.len = m->m_len = len;
845 m->m_pkthdr.rcvif = ifp;
846
847 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
848 /*
849 * XXX
850 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
851 */
852 if (flags & NFE_RX_IP_CSUMOK) {
853 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
854 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
855 device_xname(sc->sc_dev)));
856 }
857 /*
858 * XXX
859 * no way to check M_CSUM_TCP_UDP_BAD or
860 * other protocols?
861 */
862 if (flags & NFE_RX_UDP_CSUMOK) {
863 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
864 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
865 device_xname(sc->sc_dev)));
866 } else if (flags & NFE_RX_TCP_CSUMOK) {
867 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
868 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
869 device_xname(sc->sc_dev)));
870 }
871 }
872
873 #if NBPFILTER > 0
874 if (ifp->if_bpf)
875 bpf_mtap(ifp->if_bpf, m);
876 #endif
877 ifp->if_ipackets++;
878 (*ifp->if_input)(ifp, m);
879
880 skip1:
881 /* update mapping address in h/w descriptor */
882 if (sc->sc_flags & NFE_40BIT_ADDR) {
883 #if defined(__LP64__)
884 desc64->physaddr[0] = htole32(physaddr >> 32);
885 #endif
886 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
887 } else {
888 desc32->physaddr = htole32(physaddr);
889 }
890
891 skip:
892 if (sc->sc_flags & NFE_40BIT_ADDR) {
893 desc64->length = htole16(sc->rxq.bufsz);
894 desc64->flags = htole16(NFE_RX_READY);
895
896 nfe_rxdesc64_sync(sc, desc64,
897 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
898 } else {
899 desc32->length = htole16(sc->rxq.bufsz);
900 desc32->flags = htole16(NFE_RX_READY);
901
902 nfe_rxdesc32_sync(sc, desc32,
903 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
904 }
905 }
906 /* update current RX pointer */
907 sc->rxq.cur = i;
908 }
909
910 void
911 nfe_txeof(struct nfe_softc *sc)
912 {
913 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
914 struct nfe_desc32 *desc32;
915 struct nfe_desc64 *desc64;
916 struct nfe_tx_data *data = NULL;
917 int i;
918 uint16_t flags;
919
920 for (i = sc->txq.next;
921 sc->txq.queued > 0;
922 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
923 if (sc->sc_flags & NFE_40BIT_ADDR) {
924 desc64 = &sc->txq.desc64[i];
925 nfe_txdesc64_sync(sc, desc64,
926 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
927
928 flags = le16toh(desc64->flags);
929 } else {
930 desc32 = &sc->txq.desc32[i];
931 nfe_txdesc32_sync(sc, desc32,
932 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
933
934 flags = le16toh(desc32->flags);
935 }
936
937 if ((flags & NFE_TX_VALID) != 0)
938 break;
939
940 data = &sc->txq.data[i];
941
942 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
943 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
944 data->m == NULL)
945 continue;
946
947 if ((flags & NFE_TX_ERROR_V1) != 0) {
948 aprint_error_dev(sc->sc_dev,
949 "tx v1 error 0x%04x\n", flags);
950 ifp->if_oerrors++;
951 } else
952 ifp->if_opackets++;
953 } else {
954 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
955 data->m == NULL)
956 continue;
957
958 if ((flags & NFE_TX_ERROR_V2) != 0) {
959 aprint_error_dev(sc->sc_dev,
960 "tx v2 error 0x%04x\n", flags);
961 ifp->if_oerrors++;
962 } else
963 ifp->if_opackets++;
964 }
965
966 if (data->m == NULL) { /* should not get there */
967 aprint_error_dev(sc->sc_dev,
968 "last fragment bit w/o associated mbuf!\n");
969 continue;
970 }
971
972 /* last fragment of the mbuf chain transmitted */
973 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
974 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
975 bus_dmamap_unload(sc->sc_dmat, data->active);
976 m_freem(data->m);
977 data->m = NULL;
978 }
979
980 sc->txq.next = i;
981
982 if (sc->txq.queued < NFE_TX_RING_COUNT) {
983 /* at least one slot freed */
984 ifp->if_flags &= ~IFF_OACTIVE;
985 }
986
987 if (sc->txq.queued == 0) {
988 /* all queued packets are sent */
989 ifp->if_timer = 0;
990 }
991 }
992
993 int
994 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
995 {
996 struct nfe_desc32 *desc32;
997 struct nfe_desc64 *desc64;
998 struct nfe_tx_data *data;
999 bus_dmamap_t map;
1000 uint16_t flags, csumflags;
1001 #if NVLAN > 0
1002 struct m_tag *mtag;
1003 uint32_t vtag = 0;
1004 #endif
1005 int error, i, first;
1006
1007 desc32 = NULL;
1008 desc64 = NULL;
1009 data = NULL;
1010
1011 flags = 0;
1012 csumflags = 0;
1013 first = sc->txq.cur;
1014
1015 map = sc->txq.data[first].map;
1016
1017 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1018 if (error != 0) {
1019 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1020 error);
1021 return error;
1022 }
1023
1024 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1025 bus_dmamap_unload(sc->sc_dmat, map);
1026 return ENOBUFS;
1027 }
1028
1029 #if NVLAN > 0
1030 /* setup h/w VLAN tagging */
1031 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1032 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1033 #endif
1034 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1035 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1036 csumflags |= NFE_TX_IP_CSUM;
1037 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1038 csumflags |= NFE_TX_TCP_UDP_CSUM;
1039 }
1040
1041 for (i = 0; i < map->dm_nsegs; i++) {
1042 data = &sc->txq.data[sc->txq.cur];
1043
1044 if (sc->sc_flags & NFE_40BIT_ADDR) {
1045 desc64 = &sc->txq.desc64[sc->txq.cur];
1046 #if defined(__LP64__)
1047 desc64->physaddr[0] =
1048 htole32(map->dm_segs[i].ds_addr >> 32);
1049 #endif
1050 desc64->physaddr[1] =
1051 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1052 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1053 desc64->flags = htole16(flags);
1054 desc64->vtag = 0;
1055 } else {
1056 desc32 = &sc->txq.desc32[sc->txq.cur];
1057
1058 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1059 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1060 desc32->flags = htole16(flags);
1061 }
1062
1063 /*
1064 * Setting of the valid bit in the first descriptor is
1065 * deferred until the whole chain is fully setup.
1066 */
1067 flags |= NFE_TX_VALID;
1068
1069 sc->txq.queued++;
1070 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1071 }
1072
1073 /* the whole mbuf chain has been setup */
1074 if (sc->sc_flags & NFE_40BIT_ADDR) {
1075 /* fix last descriptor */
1076 flags |= NFE_TX_LASTFRAG_V2;
1077 desc64->flags = htole16(flags);
1078
1079 /* Checksum flags and vtag belong to the first fragment only. */
1080 #if NVLAN > 0
1081 sc->txq.desc64[first].vtag = htole32(vtag);
1082 #endif
1083 sc->txq.desc64[first].flags |= htole16(csumflags);
1084
1085 /* finally, set the valid bit in the first descriptor */
1086 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1087 } else {
1088 /* fix last descriptor */
1089 if (sc->sc_flags & NFE_JUMBO_SUP)
1090 flags |= NFE_TX_LASTFRAG_V2;
1091 else
1092 flags |= NFE_TX_LASTFRAG_V1;
1093 desc32->flags = htole16(flags);
1094
1095 /* Checksum flags belong to the first fragment only. */
1096 sc->txq.desc32[first].flags |= htole16(csumflags);
1097
1098 /* finally, set the valid bit in the first descriptor */
1099 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1100 }
1101
1102 data->m = m0;
1103 data->active = map;
1104
1105 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1106 BUS_DMASYNC_PREWRITE);
1107
1108 return 0;
1109 }
1110
1111 void
1112 nfe_start(struct ifnet *ifp)
1113 {
1114 struct nfe_softc *sc = ifp->if_softc;
1115 int old = sc->txq.queued;
1116 struct mbuf *m0;
1117
1118 if ((ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING)
1119 return;
1120
1121 for (;;) {
1122 IFQ_POLL(&ifp->if_snd, m0);
1123 if (m0 == NULL)
1124 break;
1125
1126 if (nfe_encap(sc, m0) != 0) {
1127 ifp->if_flags |= IFF_OACTIVE;
1128 break;
1129 }
1130
1131 /* packet put in h/w queue, remove from s/w queue */
1132 IFQ_DEQUEUE(&ifp->if_snd, m0);
1133
1134 #if NBPFILTER > 0
1135 if (ifp->if_bpf != NULL)
1136 bpf_mtap(ifp->if_bpf, m0);
1137 #endif
1138 }
1139
1140 if (sc->txq.queued != old) {
1141 /* packets are queued */
1142 if (sc->sc_flags & NFE_40BIT_ADDR)
1143 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1144 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1145 else
1146 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1147 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1148 /* kick Tx */
1149 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1150
1151 /*
1152 * Set a timeout in case the chip goes out to lunch.
1153 */
1154 ifp->if_timer = 5;
1155 }
1156 }
1157
1158 void
1159 nfe_watchdog(struct ifnet *ifp)
1160 {
1161 struct nfe_softc *sc = ifp->if_softc;
1162
1163 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1164
1165 ifp->if_flags &= ~IFF_RUNNING;
1166 nfe_init(ifp);
1167
1168 ifp->if_oerrors++;
1169 }
1170
1171 int
1172 nfe_init(struct ifnet *ifp)
1173 {
1174 struct nfe_softc *sc = ifp->if_softc;
1175 uint32_t tmp;
1176 int rc = 0, s;
1177
1178 if (ifp->if_flags & IFF_RUNNING)
1179 return 0;
1180
1181 nfe_stop(ifp, 0);
1182
1183 NFE_WRITE(sc, NFE_TX_UNK, 0);
1184 NFE_WRITE(sc, NFE_STATUS, 0);
1185
1186 sc->rxtxctl = NFE_RXTX_BIT2;
1187 if (sc->sc_flags & NFE_40BIT_ADDR)
1188 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1189 else if (sc->sc_flags & NFE_JUMBO_SUP)
1190 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1191 if (sc->sc_flags & NFE_HW_CSUM)
1192 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1193 #if NVLAN > 0
1194 /*
1195 * Although the adapter is capable of stripping VLAN tags from received
1196 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1197 * purpose. This will be done in software by our network stack.
1198 */
1199 if (sc->sc_flags & NFE_HW_VLAN)
1200 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1201 #endif
1202 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1203 DELAY(10);
1204 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1205
1206 #if NVLAN
1207 if (sc->sc_flags & NFE_HW_VLAN)
1208 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1209 #endif
1210
1211 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1212
1213 /* set MAC address */
1214 nfe_set_macaddr(sc, sc->sc_enaddr);
1215
1216 /* tell MAC where rings are in memory */
1217 #ifdef __LP64__
1218 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1219 #endif
1220 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1221 #ifdef __LP64__
1222 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1223 #endif
1224 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1225
1226 NFE_WRITE(sc, NFE_RING_SIZE,
1227 (NFE_RX_RING_COUNT - 1) << 16 |
1228 (NFE_TX_RING_COUNT - 1));
1229
1230 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1231
1232 /* force MAC to wakeup */
1233 tmp = NFE_READ(sc, NFE_PWR_STATE);
1234 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1235 DELAY(10);
1236 tmp = NFE_READ(sc, NFE_PWR_STATE);
1237 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1238
1239 s = splnet();
1240 nfe_intr(sc); /* XXX clear IRQ status registers */
1241 splx(s);
1242
1243 #if 1
1244 /* configure interrupts coalescing/mitigation */
1245 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1246 #else
1247 /* no interrupt mitigation: one interrupt per packet */
1248 NFE_WRITE(sc, NFE_IMTIMER, 970);
1249 #endif
1250
1251 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1252 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1253 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1254
1255 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1256 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1257
1258 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1259 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1260
1261 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1262 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1263 DELAY(10);
1264 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1265
1266 /* set Rx filter */
1267 nfe_setmulti(sc);
1268
1269 if ((rc = ether_mediachange(ifp)) != 0)
1270 goto out;
1271
1272 nfe_tick(sc);
1273
1274 /* enable Rx */
1275 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1276
1277 /* enable Tx */
1278 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1279
1280 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1281
1282 /* enable interrupts */
1283 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1284
1285 callout_schedule(&sc->sc_tick_ch, hz);
1286
1287 ifp->if_flags |= IFF_RUNNING;
1288 ifp->if_flags &= ~IFF_OACTIVE;
1289
1290 out:
1291 return rc;
1292 }
1293
1294 void
1295 nfe_stop(struct ifnet *ifp, int disable)
1296 {
1297 struct nfe_softc *sc = ifp->if_softc;
1298
1299 callout_stop(&sc->sc_tick_ch);
1300
1301 ifp->if_timer = 0;
1302 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1303
1304 mii_down(&sc->sc_mii);
1305
1306 /* abort Tx */
1307 NFE_WRITE(sc, NFE_TX_CTL, 0);
1308
1309 /* disable Rx */
1310 NFE_WRITE(sc, NFE_RX_CTL, 0);
1311
1312 /* disable interrupts */
1313 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1314
1315 /* reset Tx and Rx rings */
1316 nfe_reset_tx_ring(sc, &sc->txq);
1317 nfe_reset_rx_ring(sc, &sc->rxq);
1318 }
1319
1320 int
1321 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1322 {
1323 struct nfe_desc32 *desc32;
1324 struct nfe_desc64 *desc64;
1325 struct nfe_rx_data *data;
1326 struct nfe_jbuf *jbuf;
1327 void **desc;
1328 bus_addr_t physaddr;
1329 int i, nsegs, error, descsize;
1330
1331 if (sc->sc_flags & NFE_40BIT_ADDR) {
1332 desc = (void **)&ring->desc64;
1333 descsize = sizeof (struct nfe_desc64);
1334 } else {
1335 desc = (void **)&ring->desc32;
1336 descsize = sizeof (struct nfe_desc32);
1337 }
1338
1339 ring->cur = ring->next = 0;
1340 ring->bufsz = MCLBYTES;
1341
1342 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1343 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1344 if (error != 0) {
1345 aprint_error_dev(sc->sc_dev,
1346 "could not create desc DMA map\n");
1347 goto fail;
1348 }
1349
1350 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1351 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1352 if (error != 0) {
1353 aprint_error_dev(sc->sc_dev,
1354 "could not allocate DMA memory\n");
1355 goto fail;
1356 }
1357
1358 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1359 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1360 if (error != 0) {
1361 aprint_error_dev(sc->sc_dev,
1362 "could not map desc DMA memory\n");
1363 goto fail;
1364 }
1365
1366 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1367 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1368 if (error != 0) {
1369 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1370 goto fail;
1371 }
1372
1373 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1374 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1375
1376 if (sc->sc_flags & NFE_USE_JUMBO) {
1377 ring->bufsz = NFE_JBYTES;
1378 if ((error = nfe_jpool_alloc(sc)) != 0) {
1379 aprint_error_dev(sc->sc_dev,
1380 "could not allocate jumbo frames\n");
1381 goto fail;
1382 }
1383 }
1384
1385 /*
1386 * Pre-allocate Rx buffers and populate Rx ring.
1387 */
1388 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1389 data = &sc->rxq.data[i];
1390
1391 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1392 if (data->m == NULL) {
1393 aprint_error_dev(sc->sc_dev,
1394 "could not allocate rx mbuf\n");
1395 error = ENOMEM;
1396 goto fail;
1397 }
1398
1399 if (sc->sc_flags & NFE_USE_JUMBO) {
1400 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1401 aprint_error_dev(sc->sc_dev,
1402 "could not allocate jumbo buffer\n");
1403 goto fail;
1404 }
1405 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1406 sc);
1407
1408 physaddr = jbuf->physaddr;
1409 } else {
1410 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1411 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1412 if (error != 0) {
1413 aprint_error_dev(sc->sc_dev,
1414 "could not create DMA map\n");
1415 goto fail;
1416 }
1417 MCLGET(data->m, M_DONTWAIT);
1418 if (!(data->m->m_flags & M_EXT)) {
1419 aprint_error_dev(sc->sc_dev,
1420 "could not allocate mbuf cluster\n");
1421 error = ENOMEM;
1422 goto fail;
1423 }
1424
1425 error = bus_dmamap_load(sc->sc_dmat, data->map,
1426 mtod(data->m, void *), MCLBYTES, NULL,
1427 BUS_DMA_READ | BUS_DMA_NOWAIT);
1428 if (error != 0) {
1429 aprint_error_dev(sc->sc_dev,
1430 "could not load rx buf DMA map");
1431 goto fail;
1432 }
1433 physaddr = data->map->dm_segs[0].ds_addr;
1434 }
1435
1436 if (sc->sc_flags & NFE_40BIT_ADDR) {
1437 desc64 = &sc->rxq.desc64[i];
1438 #if defined(__LP64__)
1439 desc64->physaddr[0] = htole32(physaddr >> 32);
1440 #endif
1441 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1442 desc64->length = htole16(sc->rxq.bufsz);
1443 desc64->flags = htole16(NFE_RX_READY);
1444 } else {
1445 desc32 = &sc->rxq.desc32[i];
1446 desc32->physaddr = htole32(physaddr);
1447 desc32->length = htole16(sc->rxq.bufsz);
1448 desc32->flags = htole16(NFE_RX_READY);
1449 }
1450 }
1451
1452 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1453 BUS_DMASYNC_PREWRITE);
1454
1455 return 0;
1456
1457 fail: nfe_free_rx_ring(sc, ring);
1458 return error;
1459 }
1460
1461 void
1462 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1463 {
1464 int i;
1465
1466 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1467 if (sc->sc_flags & NFE_40BIT_ADDR) {
1468 ring->desc64[i].length = htole16(ring->bufsz);
1469 ring->desc64[i].flags = htole16(NFE_RX_READY);
1470 } else {
1471 ring->desc32[i].length = htole16(ring->bufsz);
1472 ring->desc32[i].flags = htole16(NFE_RX_READY);
1473 }
1474 }
1475
1476 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1477 BUS_DMASYNC_PREWRITE);
1478
1479 ring->cur = ring->next = 0;
1480 }
1481
1482 void
1483 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1484 {
1485 struct nfe_rx_data *data;
1486 void *desc;
1487 int i, descsize;
1488
1489 if (sc->sc_flags & NFE_40BIT_ADDR) {
1490 desc = ring->desc64;
1491 descsize = sizeof (struct nfe_desc64);
1492 } else {
1493 desc = ring->desc32;
1494 descsize = sizeof (struct nfe_desc32);
1495 }
1496
1497 if (desc != NULL) {
1498 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1499 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1500 bus_dmamap_unload(sc->sc_dmat, ring->map);
1501 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1502 NFE_RX_RING_COUNT * descsize);
1503 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1504 }
1505
1506 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1507 data = &ring->data[i];
1508
1509 if (data->map != NULL) {
1510 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1511 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1512 bus_dmamap_unload(sc->sc_dmat, data->map);
1513 bus_dmamap_destroy(sc->sc_dmat, data->map);
1514 }
1515 if (data->m != NULL)
1516 m_freem(data->m);
1517 }
1518 }
1519
1520 struct nfe_jbuf *
1521 nfe_jalloc(struct nfe_softc *sc, int i)
1522 {
1523 struct nfe_jbuf *jbuf;
1524
1525 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1526 if (jbuf == NULL)
1527 return NULL;
1528 sc->rxq.jbufmap[i] =
1529 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1530 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1531 return jbuf;
1532 }
1533
1534 /*
1535 * This is called automatically by the network stack when the mbuf is freed.
1536 * Caution must be taken that the NIC might be reset by the time the mbuf is
1537 * freed.
1538 */
1539 void
1540 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1541 {
1542 struct nfe_softc *sc = arg;
1543 struct nfe_jbuf *jbuf;
1544 int i;
1545
1546 /* find the jbuf from the base pointer */
1547 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1548 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1549 aprint_error_dev(sc->sc_dev,
1550 "request to free a buffer (%p) not managed by us\n", buf);
1551 return;
1552 }
1553 jbuf = &sc->rxq.jbuf[i];
1554
1555 /* ..and put it back in the free list */
1556 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1557
1558 if (m != NULL)
1559 pool_cache_put(mb_cache, m);
1560 }
1561
1562 int
1563 nfe_jpool_alloc(struct nfe_softc *sc)
1564 {
1565 struct nfe_rx_ring *ring = &sc->rxq;
1566 struct nfe_jbuf *jbuf;
1567 bus_addr_t physaddr;
1568 char *buf;
1569 int i, nsegs, error;
1570
1571 /*
1572 * Allocate a big chunk of DMA'able memory.
1573 */
1574 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1575 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1576 if (error != 0) {
1577 aprint_error_dev(sc->sc_dev,
1578 "could not create jumbo DMA map\n");
1579 goto fail;
1580 }
1581
1582 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1583 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1584 if (error != 0) {
1585 aprint_error_dev(sc->sc_dev,
1586 "could not allocate jumbo DMA memory\n");
1587 goto fail;
1588 }
1589
1590 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1591 &ring->jpool, BUS_DMA_NOWAIT);
1592 if (error != 0) {
1593 aprint_error_dev(sc->sc_dev,
1594 "could not map jumbo DMA memory\n");
1595 goto fail;
1596 }
1597
1598 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1599 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1600 if (error != 0) {
1601 aprint_error_dev(sc->sc_dev,
1602 "could not load jumbo DMA map\n");
1603 goto fail;
1604 }
1605
1606 /* ..and split it into 9KB chunks */
1607 SLIST_INIT(&ring->jfreelist);
1608
1609 buf = ring->jpool;
1610 physaddr = ring->jmap->dm_segs[0].ds_addr;
1611 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1612 jbuf = &ring->jbuf[i];
1613
1614 jbuf->buf = buf;
1615 jbuf->physaddr = physaddr;
1616
1617 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1618
1619 buf += NFE_JBYTES;
1620 physaddr += NFE_JBYTES;
1621 }
1622
1623 return 0;
1624
1625 fail: nfe_jpool_free(sc);
1626 return error;
1627 }
1628
1629 void
1630 nfe_jpool_free(struct nfe_softc *sc)
1631 {
1632 struct nfe_rx_ring *ring = &sc->rxq;
1633
1634 if (ring->jmap != NULL) {
1635 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1636 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1637 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1638 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1639 }
1640 if (ring->jpool != NULL) {
1641 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1642 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1643 }
1644 }
1645
1646 int
1647 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1648 {
1649 int i, nsegs, error;
1650 void **desc;
1651 int descsize;
1652
1653 if (sc->sc_flags & NFE_40BIT_ADDR) {
1654 desc = (void **)&ring->desc64;
1655 descsize = sizeof (struct nfe_desc64);
1656 } else {
1657 desc = (void **)&ring->desc32;
1658 descsize = sizeof (struct nfe_desc32);
1659 }
1660
1661 ring->queued = 0;
1662 ring->cur = ring->next = 0;
1663
1664 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1665 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1666
1667 if (error != 0) {
1668 aprint_error_dev(sc->sc_dev,
1669 "could not create desc DMA map\n");
1670 goto fail;
1671 }
1672
1673 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1674 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1675 if (error != 0) {
1676 aprint_error_dev(sc->sc_dev,
1677 "could not allocate DMA memory\n");
1678 goto fail;
1679 }
1680
1681 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1682 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1683 if (error != 0) {
1684 aprint_error_dev(sc->sc_dev,
1685 "could not map desc DMA memory\n");
1686 goto fail;
1687 }
1688
1689 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1690 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1691 if (error != 0) {
1692 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1693 goto fail;
1694 }
1695
1696 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1697 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1698
1699 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1700 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1701 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1702 &ring->data[i].map);
1703 if (error != 0) {
1704 aprint_error_dev(sc->sc_dev,
1705 "could not create DMA map\n");
1706 goto fail;
1707 }
1708 }
1709
1710 return 0;
1711
1712 fail: nfe_free_tx_ring(sc, ring);
1713 return error;
1714 }
1715
1716 void
1717 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1718 {
1719 struct nfe_tx_data *data;
1720 int i;
1721
1722 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1723 if (sc->sc_flags & NFE_40BIT_ADDR)
1724 ring->desc64[i].flags = 0;
1725 else
1726 ring->desc32[i].flags = 0;
1727
1728 data = &ring->data[i];
1729
1730 if (data->m != NULL) {
1731 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1732 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1733 bus_dmamap_unload(sc->sc_dmat, data->active);
1734 m_freem(data->m);
1735 data->m = NULL;
1736 }
1737 }
1738
1739 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1740 BUS_DMASYNC_PREWRITE);
1741
1742 ring->queued = 0;
1743 ring->cur = ring->next = 0;
1744 }
1745
1746 void
1747 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1748 {
1749 struct nfe_tx_data *data;
1750 void *desc;
1751 int i, descsize;
1752
1753 if (sc->sc_flags & NFE_40BIT_ADDR) {
1754 desc = ring->desc64;
1755 descsize = sizeof (struct nfe_desc64);
1756 } else {
1757 desc = ring->desc32;
1758 descsize = sizeof (struct nfe_desc32);
1759 }
1760
1761 if (desc != NULL) {
1762 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1763 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1764 bus_dmamap_unload(sc->sc_dmat, ring->map);
1765 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1766 NFE_TX_RING_COUNT * descsize);
1767 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1768 }
1769
1770 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1771 data = &ring->data[i];
1772
1773 if (data->m != NULL) {
1774 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1775 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1776 bus_dmamap_unload(sc->sc_dmat, data->active);
1777 m_freem(data->m);
1778 }
1779 }
1780
1781 /* ..and now actually destroy the DMA mappings */
1782 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1783 data = &ring->data[i];
1784 if (data->map == NULL)
1785 continue;
1786 bus_dmamap_destroy(sc->sc_dmat, data->map);
1787 }
1788 }
1789
1790 void
1791 nfe_setmulti(struct nfe_softc *sc)
1792 {
1793 struct ethercom *ec = &sc->sc_ethercom;
1794 struct ifnet *ifp = &ec->ec_if;
1795 struct ether_multi *enm;
1796 struct ether_multistep step;
1797 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1798 uint32_t filter = NFE_RXFILTER_MAGIC;
1799 int i;
1800
1801 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1802 bzero(addr, ETHER_ADDR_LEN);
1803 bzero(mask, ETHER_ADDR_LEN);
1804 goto done;
1805 }
1806
1807 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1808 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1809
1810 ETHER_FIRST_MULTI(step, ec, enm);
1811 while (enm != NULL) {
1812 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1813 ifp->if_flags |= IFF_ALLMULTI;
1814 bzero(addr, ETHER_ADDR_LEN);
1815 bzero(mask, ETHER_ADDR_LEN);
1816 goto done;
1817 }
1818 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1819 addr[i] &= enm->enm_addrlo[i];
1820 mask[i] &= ~enm->enm_addrlo[i];
1821 }
1822 ETHER_NEXT_MULTI(step, enm);
1823 }
1824 for (i = 0; i < ETHER_ADDR_LEN; i++)
1825 mask[i] |= addr[i];
1826
1827 done:
1828 addr[0] |= 0x01; /* make sure multicast bit is set */
1829
1830 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1831 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1832 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1833 addr[5] << 8 | addr[4]);
1834 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1835 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1836 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1837 mask[5] << 8 | mask[4]);
1838
1839 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1840 NFE_WRITE(sc, NFE_RXFILTER, filter);
1841 }
1842
1843 void
1844 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1845 {
1846 uint32_t tmp;
1847
1848 if ((sc->sc_flags & NFE_CORRECT_MACADDR) == 0) {
1849 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1850 addr[0] = (tmp >> 8) & 0xff;
1851 addr[1] = (tmp & 0xff);
1852
1853 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1854 addr[2] = (tmp >> 24) & 0xff;
1855 addr[3] = (tmp >> 16) & 0xff;
1856 addr[4] = (tmp >> 8) & 0xff;
1857 addr[5] = (tmp & 0xff);
1858 } else {
1859 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1860 addr[5] = (tmp >> 8) & 0xff;
1861 addr[4] = (tmp & 0xff);
1862
1863 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1864 addr[3] = (tmp >> 24) & 0xff;
1865 addr[2] = (tmp >> 16) & 0xff;
1866 addr[1] = (tmp >> 8) & 0xff;
1867 addr[0] = (tmp & 0xff);
1868 }
1869 }
1870
1871 void
1872 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1873 {
1874 NFE_WRITE(sc, NFE_MACADDR_LO,
1875 addr[5] << 8 | addr[4]);
1876 NFE_WRITE(sc, NFE_MACADDR_HI,
1877 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1878 }
1879
1880 void
1881 nfe_tick(void *arg)
1882 {
1883 struct nfe_softc *sc = arg;
1884 int s;
1885
1886 s = splnet();
1887 mii_tick(&sc->sc_mii);
1888 splx(s);
1889
1890 callout_schedule(&sc->sc_tick_ch, hz);
1891 }
1892