if_nfe.c revision 1.34 1 /* $NetBSD: if_nfe.c,v 1.34 2008/04/20 08:57:37 cube Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.34 2008/04/20 08:57:37 cube Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/callout.h>
41 #include <sys/socket.h>
42
43 #include <sys/bus.h>
44
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 #include <net/if_arp.h>
50
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_inarp.h>
57 #endif
58
59 #if NVLAN > 0
60 #include <net/if_types.h>
61 #endif
62
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/pci/if_nfereg.h>
75 #include <dev/pci/if_nfevar.h>
76
77 int nfe_match(device_t, cfdata_t, void *);
78 void nfe_attach(device_t, device_t, void *);
79 void nfe_power(int, void *);
80 void nfe_miibus_statchg(device_t);
81 int nfe_miibus_readreg(device_t, int, int);
82 void nfe_miibus_writereg(device_t, int, int, int);
83 int nfe_intr(void *);
84 int nfe_ioctl(struct ifnet *, u_long, void *);
85 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91 void nfe_rxeof(struct nfe_softc *);
92 void nfe_txeof(struct nfe_softc *);
93 int nfe_encap(struct nfe_softc *, struct mbuf *);
94 void nfe_start(struct ifnet *);
95 void nfe_watchdog(struct ifnet *);
96 int nfe_init(struct ifnet *);
97 void nfe_stop(struct ifnet *, int);
98 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99 void nfe_jfree(struct mbuf *, void *, size_t, void *);
100 int nfe_jpool_alloc(struct nfe_softc *);
101 void nfe_jpool_free(struct nfe_softc *);
102 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void nfe_setmulti(struct nfe_softc *);
109 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111 void nfe_tick(void *);
112
113 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
114 NULL, NULL);
115
116 /* #define NFE_NO_JUMBO */
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
193 };
194
195 int
196 nfe_match(device_t dev, cfdata_t match, void *aux)
197 {
198 struct pci_attach_args *pa = aux;
199 const struct nfe_product *np;
200 int i;
201
202 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
203 np = &nfe_devices[i];
204 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
205 PCI_PRODUCT(pa->pa_id) == np->product)
206 return 1;
207 }
208 return 0;
209 }
210
211 void
212 nfe_attach(device_t parent, device_t self, void *aux)
213 {
214 struct nfe_softc *sc = device_private(self);
215 struct pci_attach_args *pa = aux;
216 pci_chipset_tag_t pc = pa->pa_pc;
217 pci_intr_handle_t ih;
218 const char *intrstr;
219 struct ifnet *ifp;
220 bus_size_t memsize;
221 pcireg_t memtype;
222 char devinfo[256];
223
224 sc->sc_dev = self;
225 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
226 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
227
228 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
229 switch (memtype) {
230 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
231 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
232 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
233 &sc->sc_memh, NULL, &memsize) == 0)
234 break;
235 /* FALLTHROUGH */
236 default:
237 aprint_error_dev(self, "could not map mem space\n");
238 return;
239 }
240
241 if (pci_intr_map(pa, &ih) != 0) {
242 aprint_error_dev(self, "could not map interrupt\n");
243 return;
244 }
245
246 intrstr = pci_intr_string(pc, ih);
247 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
248 if (sc->sc_ih == NULL) {
249 aprint_error_dev(self, "could not establish interrupt");
250 if (intrstr != NULL)
251 aprint_normal(" at %s", intrstr);
252 aprint_normal("\n");
253 return;
254 }
255 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
256
257 sc->sc_dmat = pa->pa_dmat;
258
259 sc->sc_flags = 0;
260
261 switch (PCI_PRODUCT(pa->pa_id)) {
262 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
263 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
264 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
265 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
266 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
267 break;
268 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
269 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
270 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
271 break;
272 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
273 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
274 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
275 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
276 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
277 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
278 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
279 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
280 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
281 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
282 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
283 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
284 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
285 NFE_PWR_MGMT;
286 break;
287 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
288 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
289 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
290 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
291 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
292 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
293 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
294 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
295 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
296 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
297 break;
298 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
299 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
300 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
301 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
302 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
303 break;
304 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
305 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
306 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
307 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
308 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
309 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
310 break;
311 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
312 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
313 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
314 NFE_HW_VLAN | NFE_PWR_MGMT;
315 break;
316 }
317
318 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
319 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
320 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
321 DELAY(100);
322 NFE_WRITE(sc, NFE_MAC_RESET, 0);
323 DELAY(100);
324 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
325 NFE_WRITE(sc, NFE_PWR2_CTL,
326 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
327 }
328
329 #ifndef NFE_NO_JUMBO
330 /* enable jumbo frames for adapters that support it */
331 if (sc->sc_flags & NFE_JUMBO_SUP)
332 sc->sc_flags |= NFE_USE_JUMBO;
333 #endif
334
335 /* Check for reversed ethernet address */
336 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
337 sc->sc_flags |= NFE_CORRECT_MACADDR;
338
339 nfe_get_macaddr(sc, sc->sc_enaddr);
340 aprint_normal_dev(self, "Ethernet address %s\n",
341 ether_sprintf(sc->sc_enaddr));
342
343 /*
344 * Allocate Tx and Rx rings.
345 */
346 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
347 aprint_error_dev(self, "could not allocate Tx ring\n");
348 return;
349 }
350
351 mutex_init(&sc->rxq.mtx, MUTEX_SPIN, IPL_NET);
352
353 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
354 aprint_error_dev(self, "could not allocate Rx ring\n");
355 nfe_free_tx_ring(sc, &sc->txq);
356 return;
357 }
358
359 ifp = &sc->sc_ethercom.ec_if;
360 ifp->if_softc = sc;
361 ifp->if_mtu = ETHERMTU;
362 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 ifp->if_ioctl = nfe_ioctl;
364 ifp->if_start = nfe_start;
365 ifp->if_stop = nfe_stop;
366 ifp->if_watchdog = nfe_watchdog;
367 ifp->if_init = nfe_init;
368 ifp->if_baudrate = IF_Gbps(1);
369 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
370 IFQ_SET_READY(&ifp->if_snd);
371 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
372
373 #ifdef notyet
374 if (sc->sc_flags & NFE_USE_JUMBO)
375 ifp->if_hardmtu = NFE_JUMBO_MTU;
376 #endif
377
378 #if NVLAN > 0
379 if (sc->sc_flags & NFE_HW_VLAN)
380 sc->sc_ethercom.ec_capabilities |=
381 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
382 #endif
383 if (sc->sc_flags & NFE_HW_CSUM) {
384 ifp->if_capabilities |=
385 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
386 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
387 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
388 }
389
390 sc->sc_mii.mii_ifp = ifp;
391 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
392 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
393 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
394
395 sc->sc_ethercom.ec_mii = &sc->sc_mii;
396 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
397 ether_mediastatus);
398 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
399 MII_OFFSET_ANY, 0);
400 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
401 aprint_error_dev(self, "no PHY found!\n");
402 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
403 0, NULL);
404 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
405 } else
406 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
407
408 if_attach(ifp);
409 ether_ifattach(ifp, sc->sc_enaddr);
410
411 callout_init(&sc->sc_tick_ch, 0);
412 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
413
414 if (!pmf_device_register(self, NULL, NULL))
415 aprint_error_dev(self, "couldn't establish power handler\n");
416 else
417 pmf_class_network_register(self, ifp);
418 }
419
420 void
421 nfe_miibus_statchg(device_t dev)
422 {
423 struct nfe_softc *sc = device_private(dev);
424 struct mii_data *mii = &sc->sc_mii;
425 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
426
427 phy = NFE_READ(sc, NFE_PHY_IFACE);
428 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
429
430 seed = NFE_READ(sc, NFE_RNDSEED);
431 seed &= ~NFE_SEED_MASK;
432
433 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
434 phy |= NFE_PHY_HDX; /* half-duplex */
435 misc |= NFE_MISC1_HDX;
436 }
437
438 switch (IFM_SUBTYPE(mii->mii_media_active)) {
439 case IFM_1000_T: /* full-duplex only */
440 link |= NFE_MEDIA_1000T;
441 seed |= NFE_SEED_1000T;
442 phy |= NFE_PHY_1000T;
443 break;
444 case IFM_100_TX:
445 link |= NFE_MEDIA_100TX;
446 seed |= NFE_SEED_100TX;
447 phy |= NFE_PHY_100TX;
448 break;
449 case IFM_10_T:
450 link |= NFE_MEDIA_10T;
451 seed |= NFE_SEED_10T;
452 break;
453 }
454
455 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
456
457 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
458 NFE_WRITE(sc, NFE_MISC1, misc);
459 NFE_WRITE(sc, NFE_LINKSPEED, link);
460 }
461
462 int
463 nfe_miibus_readreg(device_t dev, int phy, int reg)
464 {
465 struct nfe_softc *sc = device_private(dev);
466 uint32_t val;
467 int ntries;
468
469 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
470
471 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
472 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
473 DELAY(100);
474 }
475
476 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
477
478 for (ntries = 0; ntries < 1000; ntries++) {
479 DELAY(100);
480 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
481 break;
482 }
483 if (ntries == 1000) {
484 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
485 device_xname(sc->sc_dev)));
486 return 0;
487 }
488
489 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
490 DPRINTFN(2, ("%s: could not read PHY\n",
491 device_xname(sc->sc_dev)));
492 return 0;
493 }
494
495 val = NFE_READ(sc, NFE_PHY_DATA);
496 if (val != 0xffffffff && val != 0)
497 sc->mii_phyaddr = phy;
498
499 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
500 device_xname(sc->sc_dev), phy, reg, val));
501
502 return val;
503 }
504
505 void
506 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
507 {
508 struct nfe_softc *sc = device_private(dev);
509 uint32_t ctl;
510 int ntries;
511
512 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
513
514 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
515 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
516 DELAY(100);
517 }
518
519 NFE_WRITE(sc, NFE_PHY_DATA, val);
520 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
521 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
522
523 for (ntries = 0; ntries < 1000; ntries++) {
524 DELAY(100);
525 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
526 break;
527 }
528 #ifdef NFE_DEBUG
529 if (nfedebug >= 2 && ntries == 1000)
530 printf("could not write to PHY\n");
531 #endif
532 }
533
534 int
535 nfe_intr(void *arg)
536 {
537 struct nfe_softc *sc = arg;
538 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
539 uint32_t r;
540 int handled;
541
542 if ((ifp->if_flags & IFF_UP) == 0)
543 return 0;
544
545 handled = 0;
546
547 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
548
549 for (;;) {
550 r = NFE_READ(sc, NFE_IRQ_STATUS);
551 if ((r & NFE_IRQ_WANTED) == 0)
552 break;
553
554 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
555 handled = 1;
556 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
557
558 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
559 /* check Rx ring */
560 nfe_rxeof(sc);
561 }
562 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
563 /* check Tx ring */
564 nfe_txeof(sc);
565 }
566 if ((r & NFE_IRQ_LINK) != 0) {
567 NFE_READ(sc, NFE_PHY_STATUS);
568 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
569 DPRINTF(("%s: link state changed\n",
570 device_xname(sc->sc_dev)));
571 }
572 }
573
574 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
575
576 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
577 nfe_start(ifp);
578
579 return handled;
580 }
581
582 int
583 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
584 {
585 struct nfe_softc *sc = ifp->if_softc;
586 struct ifreq *ifr = (struct ifreq *)data;
587 struct ifaddr *ifa = (struct ifaddr *)data;
588 int s, error = 0;
589
590 s = splnet();
591
592 switch (cmd) {
593 case SIOCSIFADDR:
594 ifp->if_flags |= IFF_UP;
595 nfe_init(ifp);
596 switch (ifa->ifa_addr->sa_family) {
597 #ifdef INET
598 case AF_INET:
599 arp_ifinit(ifp, ifa);
600 break;
601 #endif
602 default:
603 break;
604 }
605 break;
606 case SIOCSIFMTU:
607 if (ifr->ifr_mtu < ETHERMIN ||
608 ((sc->sc_flags & NFE_USE_JUMBO) &&
609 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
610 (!(sc->sc_flags & NFE_USE_JUMBO) &&
611 ifr->ifr_mtu > ETHERMTU))
612 error = EINVAL;
613 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
614 error = 0;
615 break;
616 case SIOCSIFFLAGS:
617 if (ifp->if_flags & IFF_UP) {
618 /*
619 * If only the PROMISC or ALLMULTI flag changes, then
620 * don't do a full re-init of the chip, just update
621 * the Rx filter.
622 */
623 if ((ifp->if_flags & IFF_RUNNING) &&
624 ((ifp->if_flags ^ sc->sc_if_flags) &
625 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
626 nfe_setmulti(sc);
627 } else
628 nfe_init(ifp);
629 } else {
630 if (ifp->if_flags & IFF_RUNNING)
631 nfe_stop(ifp, 1);
632 }
633 sc->sc_if_flags = ifp->if_flags;
634 break;
635 default:
636 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
637 break;
638
639 error = 0;
640
641 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
642 ;
643 else if (ifp->if_flags & IFF_RUNNING)
644 nfe_setmulti(sc);
645 break;
646 }
647
648 splx(s);
649
650 return error;
651 }
652
653 void
654 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
655 {
656 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
657 (char *)desc32 - (char *)sc->txq.desc32,
658 sizeof (struct nfe_desc32), ops);
659 }
660
661 void
662 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
663 {
664 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
665 (char *)desc64 - (char *)sc->txq.desc64,
666 sizeof (struct nfe_desc64), ops);
667 }
668
669 void
670 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
671 {
672 if (end > start) {
673 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
674 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
675 (char *)&sc->txq.desc32[end] -
676 (char *)&sc->txq.desc32[start], ops);
677 return;
678 }
679 /* sync from 'start' to end of ring */
680 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
681 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
682 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
683 (char *)&sc->txq.desc32[start], ops);
684
685 /* sync from start of ring to 'end' */
686 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
687 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
688 }
689
690 void
691 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
692 {
693 if (end > start) {
694 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
695 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
696 (char *)&sc->txq.desc64[end] -
697 (char *)&sc->txq.desc64[start], ops);
698 return;
699 }
700 /* sync from 'start' to end of ring */
701 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
702 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
703 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
704 (char *)&sc->txq.desc64[start], ops);
705
706 /* sync from start of ring to 'end' */
707 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
708 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
709 }
710
711 void
712 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
713 {
714 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
715 (char *)desc32 - (char *)sc->rxq.desc32,
716 sizeof (struct nfe_desc32), ops);
717 }
718
719 void
720 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
721 {
722 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
723 (char *)desc64 - (char *)sc->rxq.desc64,
724 sizeof (struct nfe_desc64), ops);
725 }
726
727 void
728 nfe_rxeof(struct nfe_softc *sc)
729 {
730 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
731 struct nfe_desc32 *desc32;
732 struct nfe_desc64 *desc64;
733 struct nfe_rx_data *data;
734 struct nfe_jbuf *jbuf;
735 struct mbuf *m, *mnew;
736 bus_addr_t physaddr;
737 uint16_t flags;
738 int error, len, i;
739
740 desc32 = NULL;
741 desc64 = NULL;
742 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
743 data = &sc->rxq.data[i];
744
745 if (sc->sc_flags & NFE_40BIT_ADDR) {
746 desc64 = &sc->rxq.desc64[i];
747 nfe_rxdesc64_sync(sc, desc64,
748 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
749
750 flags = le16toh(desc64->flags);
751 len = le16toh(desc64->length) & 0x3fff;
752 } else {
753 desc32 = &sc->rxq.desc32[i];
754 nfe_rxdesc32_sync(sc, desc32,
755 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
756
757 flags = le16toh(desc32->flags);
758 len = le16toh(desc32->length) & 0x3fff;
759 }
760
761 if ((flags & NFE_RX_READY) != 0)
762 break;
763
764 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
765 if ((flags & NFE_RX_VALID_V1) == 0)
766 goto skip;
767
768 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
769 flags &= ~NFE_RX_ERROR;
770 len--; /* fix buffer length */
771 }
772 } else {
773 if ((flags & NFE_RX_VALID_V2) == 0)
774 goto skip;
775
776 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
777 flags &= ~NFE_RX_ERROR;
778 len--; /* fix buffer length */
779 }
780 }
781
782 if (flags & NFE_RX_ERROR) {
783 ifp->if_ierrors++;
784 goto skip;
785 }
786
787 /*
788 * Try to allocate a new mbuf for this ring element and load
789 * it before processing the current mbuf. If the ring element
790 * cannot be loaded, drop the received packet and reuse the
791 * old mbuf. In the unlikely case that the old mbuf can't be
792 * reloaded either, explicitly panic.
793 */
794 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
795 if (mnew == NULL) {
796 ifp->if_ierrors++;
797 goto skip;
798 }
799
800 if (sc->sc_flags & NFE_USE_JUMBO) {
801 physaddr =
802 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
803 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
804 if (len > MCLBYTES) {
805 m_freem(mnew);
806 ifp->if_ierrors++;
807 goto skip1;
808 }
809 MCLGET(mnew, M_DONTWAIT);
810 if ((mnew->m_flags & M_EXT) == 0) {
811 m_freem(mnew);
812 ifp->if_ierrors++;
813 goto skip1;
814 }
815
816 (void)memcpy(mtod(mnew, void *),
817 mtod(data->m, const void *), len);
818 m = mnew;
819 goto mbufcopied;
820 } else {
821 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
822 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
823 mtod(data->m, char *) - (char *)sc->rxq.jpool,
824 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
825
826 physaddr = jbuf->physaddr;
827 }
828 } else {
829 MCLGET(mnew, M_DONTWAIT);
830 if ((mnew->m_flags & M_EXT) == 0) {
831 m_freem(mnew);
832 ifp->if_ierrors++;
833 goto skip;
834 }
835
836 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
837 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
838 bus_dmamap_unload(sc->sc_dmat, data->map);
839
840 error = bus_dmamap_load(sc->sc_dmat, data->map,
841 mtod(mnew, void *), MCLBYTES, NULL,
842 BUS_DMA_READ | BUS_DMA_NOWAIT);
843 if (error != 0) {
844 m_freem(mnew);
845
846 /* try to reload the old mbuf */
847 error = bus_dmamap_load(sc->sc_dmat, data->map,
848 mtod(data->m, void *), MCLBYTES, NULL,
849 BUS_DMA_READ | BUS_DMA_NOWAIT);
850 if (error != 0) {
851 /* very unlikely that it will fail.. */
852 panic("%s: could not load old rx mbuf",
853 device_xname(sc->sc_dev));
854 }
855 ifp->if_ierrors++;
856 goto skip;
857 }
858 physaddr = data->map->dm_segs[0].ds_addr;
859 }
860
861 /*
862 * New mbuf successfully loaded, update Rx ring and continue
863 * processing.
864 */
865 m = data->m;
866 data->m = mnew;
867
868 mbufcopied:
869 /* finalize mbuf */
870 m->m_pkthdr.len = m->m_len = len;
871 m->m_pkthdr.rcvif = ifp;
872
873 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
874 /*
875 * XXX
876 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
877 */
878 if (flags & NFE_RX_IP_CSUMOK) {
879 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
880 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
881 device_xname(sc->sc_dev)));
882 }
883 /*
884 * XXX
885 * no way to check M_CSUM_TCP_UDP_BAD or
886 * other protocols?
887 */
888 if (flags & NFE_RX_UDP_CSUMOK) {
889 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
890 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
891 device_xname(sc->sc_dev)));
892 } else if (flags & NFE_RX_TCP_CSUMOK) {
893 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
894 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
895 device_xname(sc->sc_dev)));
896 }
897 }
898 #if NBPFILTER > 0
899 if (ifp->if_bpf)
900 bpf_mtap(ifp->if_bpf, m);
901 #endif
902 ifp->if_ipackets++;
903 (*ifp->if_input)(ifp, m);
904
905 skip1:
906 /* update mapping address in h/w descriptor */
907 if (sc->sc_flags & NFE_40BIT_ADDR) {
908 #if defined(__LP64__)
909 desc64->physaddr[0] = htole32(physaddr >> 32);
910 #endif
911 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
912 } else {
913 desc32->physaddr = htole32(physaddr);
914 }
915
916 skip:
917 if (sc->sc_flags & NFE_40BIT_ADDR) {
918 desc64->length = htole16(sc->rxq.bufsz);
919 desc64->flags = htole16(NFE_RX_READY);
920
921 nfe_rxdesc64_sync(sc, desc64,
922 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
923 } else {
924 desc32->length = htole16(sc->rxq.bufsz);
925 desc32->flags = htole16(NFE_RX_READY);
926
927 nfe_rxdesc32_sync(sc, desc32,
928 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
929 }
930 }
931 /* update current RX pointer */
932 sc->rxq.cur = i;
933 }
934
935 void
936 nfe_txeof(struct nfe_softc *sc)
937 {
938 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
939 struct nfe_desc32 *desc32;
940 struct nfe_desc64 *desc64;
941 struct nfe_tx_data *data = NULL;
942 int i;
943 uint16_t flags;
944 char buf[128];
945
946 for (i = sc->txq.next;
947 sc->txq.queued > 0;
948 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
949 if (sc->sc_flags & NFE_40BIT_ADDR) {
950 desc64 = &sc->txq.desc64[i];
951 nfe_txdesc64_sync(sc, desc64,
952 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
953
954 flags = le16toh(desc64->flags);
955 } else {
956 desc32 = &sc->txq.desc32[i];
957 nfe_txdesc32_sync(sc, desc32,
958 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
959
960 flags = le16toh(desc32->flags);
961 }
962
963 if ((flags & NFE_TX_VALID) != 0)
964 break;
965
966 data = &sc->txq.data[i];
967
968 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
969 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
970 data->m == NULL)
971 continue;
972
973 if ((flags & NFE_TX_ERROR_V1) != 0) {
974 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
975 bitmask_snprintf(flags, NFE_V1_TXERR,
976 buf, sizeof(buf)));
977 ifp->if_oerrors++;
978 } else
979 ifp->if_opackets++;
980 } else {
981 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
982 data->m == NULL)
983 continue;
984
985 if ((flags & NFE_TX_ERROR_V2) != 0) {
986 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
987 bitmask_snprintf(flags, NFE_V2_TXERR,
988 buf, sizeof(buf)));
989 ifp->if_oerrors++;
990 } else
991 ifp->if_opackets++;
992 }
993
994 if (data->m == NULL) { /* should not get there */
995 aprint_error_dev(sc->sc_dev,
996 "last fragment bit w/o associated mbuf!\n");
997 continue;
998 }
999
1000 /* last fragment of the mbuf chain transmitted */
1001 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1002 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1003 bus_dmamap_unload(sc->sc_dmat, data->active);
1004 m_freem(data->m);
1005 data->m = NULL;
1006 }
1007
1008 sc->txq.next = i;
1009
1010 if (sc->txq.queued < NFE_TX_RING_COUNT) {
1011 /* at least one slot freed */
1012 ifp->if_flags &= ~IFF_OACTIVE;
1013 }
1014
1015 if (sc->txq.queued == 0) {
1016 /* all queued packets are sent */
1017 ifp->if_timer = 0;
1018 }
1019 }
1020
1021 int
1022 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1023 {
1024 struct nfe_desc32 *desc32;
1025 struct nfe_desc64 *desc64;
1026 struct nfe_tx_data *data;
1027 bus_dmamap_t map;
1028 uint16_t flags, csumflags;
1029 #if NVLAN > 0
1030 struct m_tag *mtag;
1031 uint32_t vtag = 0;
1032 #endif
1033 int error, i, first;
1034
1035 desc32 = NULL;
1036 desc64 = NULL;
1037 data = NULL;
1038
1039 flags = 0;
1040 csumflags = 0;
1041 first = sc->txq.cur;
1042
1043 map = sc->txq.data[first].map;
1044
1045 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1046 if (error != 0) {
1047 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1048 error);
1049 return error;
1050 }
1051
1052 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1053 bus_dmamap_unload(sc->sc_dmat, map);
1054 return ENOBUFS;
1055 }
1056
1057 #if NVLAN > 0
1058 /* setup h/w VLAN tagging */
1059 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1060 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1061 #endif
1062 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1063 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1064 csumflags |= NFE_TX_IP_CSUM;
1065 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1066 csumflags |= NFE_TX_TCP_UDP_CSUM;
1067 }
1068
1069 for (i = 0; i < map->dm_nsegs; i++) {
1070 data = &sc->txq.data[sc->txq.cur];
1071
1072 if (sc->sc_flags & NFE_40BIT_ADDR) {
1073 desc64 = &sc->txq.desc64[sc->txq.cur];
1074 #if defined(__LP64__)
1075 desc64->physaddr[0] =
1076 htole32(map->dm_segs[i].ds_addr >> 32);
1077 #endif
1078 desc64->physaddr[1] =
1079 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1080 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1081 desc64->flags = htole16(flags);
1082 desc64->vtag = 0;
1083 } else {
1084 desc32 = &sc->txq.desc32[sc->txq.cur];
1085
1086 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1087 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1088 desc32->flags = htole16(flags);
1089 }
1090
1091 /*
1092 * Setting of the valid bit in the first descriptor is
1093 * deferred until the whole chain is fully setup.
1094 */
1095 flags |= NFE_TX_VALID;
1096
1097 sc->txq.queued++;
1098 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1099 }
1100
1101 /* the whole mbuf chain has been setup */
1102 if (sc->sc_flags & NFE_40BIT_ADDR) {
1103 /* fix last descriptor */
1104 flags |= NFE_TX_LASTFRAG_V2;
1105 desc64->flags = htole16(flags);
1106
1107 /* Checksum flags and vtag belong to the first fragment only. */
1108 #if NVLAN > 0
1109 sc->txq.desc64[first].vtag = htole32(vtag);
1110 #endif
1111 sc->txq.desc64[first].flags |= htole16(csumflags);
1112
1113 /* finally, set the valid bit in the first descriptor */
1114 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1115 } else {
1116 /* fix last descriptor */
1117 if (sc->sc_flags & NFE_JUMBO_SUP)
1118 flags |= NFE_TX_LASTFRAG_V2;
1119 else
1120 flags |= NFE_TX_LASTFRAG_V1;
1121 desc32->flags = htole16(flags);
1122
1123 /* Checksum flags belong to the first fragment only. */
1124 sc->txq.desc32[first].flags |= htole16(csumflags);
1125
1126 /* finally, set the valid bit in the first descriptor */
1127 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1128 }
1129
1130 data->m = m0;
1131 data->active = map;
1132
1133 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1134 BUS_DMASYNC_PREWRITE);
1135
1136 return 0;
1137 }
1138
1139 void
1140 nfe_start(struct ifnet *ifp)
1141 {
1142 struct nfe_softc *sc = ifp->if_softc;
1143 int old = sc->txq.queued;
1144 struct mbuf *m0;
1145
1146 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1147 return;
1148
1149 for (;;) {
1150 IFQ_POLL(&ifp->if_snd, m0);
1151 if (m0 == NULL)
1152 break;
1153
1154 if (nfe_encap(sc, m0) != 0) {
1155 ifp->if_flags |= IFF_OACTIVE;
1156 break;
1157 }
1158
1159 /* packet put in h/w queue, remove from s/w queue */
1160 IFQ_DEQUEUE(&ifp->if_snd, m0);
1161
1162 #if NBPFILTER > 0
1163 if (ifp->if_bpf != NULL)
1164 bpf_mtap(ifp->if_bpf, m0);
1165 #endif
1166 }
1167
1168 if (sc->txq.queued != old) {
1169 /* packets are queued */
1170 if (sc->sc_flags & NFE_40BIT_ADDR)
1171 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1172 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1173 else
1174 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1175 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1176 /* kick Tx */
1177 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1178
1179 /*
1180 * Set a timeout in case the chip goes out to lunch.
1181 */
1182 ifp->if_timer = 5;
1183 }
1184 }
1185
1186 void
1187 nfe_watchdog(struct ifnet *ifp)
1188 {
1189 struct nfe_softc *sc = ifp->if_softc;
1190
1191 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1192
1193 ifp->if_flags &= ~IFF_RUNNING;
1194 nfe_init(ifp);
1195
1196 ifp->if_oerrors++;
1197 }
1198
1199 int
1200 nfe_init(struct ifnet *ifp)
1201 {
1202 struct nfe_softc *sc = ifp->if_softc;
1203 uint32_t tmp;
1204 int rc = 0, s;
1205
1206 if (ifp->if_flags & IFF_RUNNING)
1207 return 0;
1208
1209 nfe_stop(ifp, 0);
1210
1211 NFE_WRITE(sc, NFE_TX_UNK, 0);
1212 NFE_WRITE(sc, NFE_STATUS, 0);
1213
1214 sc->rxtxctl = NFE_RXTX_BIT2;
1215 if (sc->sc_flags & NFE_40BIT_ADDR)
1216 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1217 else if (sc->sc_flags & NFE_JUMBO_SUP)
1218 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1219 if (sc->sc_flags & NFE_HW_CSUM)
1220 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1221 #if NVLAN > 0
1222 /*
1223 * Although the adapter is capable of stripping VLAN tags from received
1224 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1225 * purpose. This will be done in software by our network stack.
1226 */
1227 if (sc->sc_flags & NFE_HW_VLAN)
1228 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1229 #endif
1230 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1231 DELAY(10);
1232 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1233
1234 #if NVLAN
1235 if (sc->sc_flags & NFE_HW_VLAN)
1236 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1237 #endif
1238
1239 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1240
1241 /* set MAC address */
1242 nfe_set_macaddr(sc, sc->sc_enaddr);
1243
1244 /* tell MAC where rings are in memory */
1245 #ifdef __LP64__
1246 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1247 #endif
1248 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1249 #ifdef __LP64__
1250 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1251 #endif
1252 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1253
1254 NFE_WRITE(sc, NFE_RING_SIZE,
1255 (NFE_RX_RING_COUNT - 1) << 16 |
1256 (NFE_TX_RING_COUNT - 1));
1257
1258 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1259
1260 /* force MAC to wakeup */
1261 tmp = NFE_READ(sc, NFE_PWR_STATE);
1262 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1263 DELAY(10);
1264 tmp = NFE_READ(sc, NFE_PWR_STATE);
1265 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1266
1267 s = splnet();
1268 nfe_intr(sc); /* XXX clear IRQ status registers */
1269 splx(s);
1270
1271 #if 1
1272 /* configure interrupts coalescing/mitigation */
1273 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1274 #else
1275 /* no interrupt mitigation: one interrupt per packet */
1276 NFE_WRITE(sc, NFE_IMTIMER, 970);
1277 #endif
1278
1279 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1280 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1281 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1282
1283 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1284 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1285
1286 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1287 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1288
1289 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1290 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1291 DELAY(10);
1292 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1293
1294 /* set Rx filter */
1295 nfe_setmulti(sc);
1296
1297 if ((rc = ether_mediachange(ifp)) != 0)
1298 goto out;
1299
1300 nfe_tick(sc);
1301
1302 /* enable Rx */
1303 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1304
1305 /* enable Tx */
1306 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1307
1308 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1309
1310 /* enable interrupts */
1311 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1312
1313 callout_schedule(&sc->sc_tick_ch, hz);
1314
1315 ifp->if_flags |= IFF_RUNNING;
1316 ifp->if_flags &= ~IFF_OACTIVE;
1317
1318 out:
1319 return rc;
1320 }
1321
1322 void
1323 nfe_stop(struct ifnet *ifp, int disable)
1324 {
1325 struct nfe_softc *sc = ifp->if_softc;
1326
1327 callout_stop(&sc->sc_tick_ch);
1328
1329 ifp->if_timer = 0;
1330 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1331
1332 mii_down(&sc->sc_mii);
1333
1334 /* abort Tx */
1335 NFE_WRITE(sc, NFE_TX_CTL, 0);
1336
1337 /* disable Rx */
1338 NFE_WRITE(sc, NFE_RX_CTL, 0);
1339
1340 /* disable interrupts */
1341 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1342
1343 /* reset Tx and Rx rings */
1344 nfe_reset_tx_ring(sc, &sc->txq);
1345 nfe_reset_rx_ring(sc, &sc->rxq);
1346 }
1347
1348 int
1349 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1350 {
1351 struct nfe_desc32 *desc32;
1352 struct nfe_desc64 *desc64;
1353 struct nfe_rx_data *data;
1354 struct nfe_jbuf *jbuf;
1355 void **desc;
1356 bus_addr_t physaddr;
1357 int i, nsegs, error, descsize;
1358
1359 if (sc->sc_flags & NFE_40BIT_ADDR) {
1360 desc = (void **)&ring->desc64;
1361 descsize = sizeof (struct nfe_desc64);
1362 } else {
1363 desc = (void **)&ring->desc32;
1364 descsize = sizeof (struct nfe_desc32);
1365 }
1366
1367 ring->cur = ring->next = 0;
1368 ring->bufsz = MCLBYTES;
1369
1370 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1371 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1372 if (error != 0) {
1373 aprint_error_dev(sc->sc_dev,
1374 "could not create desc DMA map\n");
1375 goto fail;
1376 }
1377
1378 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1379 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1380 if (error != 0) {
1381 aprint_error_dev(sc->sc_dev,
1382 "could not allocate DMA memory\n");
1383 goto fail;
1384 }
1385
1386 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1387 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1388 if (error != 0) {
1389 aprint_error_dev(sc->sc_dev,
1390 "could not map desc DMA memory\n");
1391 goto fail;
1392 }
1393
1394 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1395 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1396 if (error != 0) {
1397 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1398 goto fail;
1399 }
1400
1401 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1402 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1403
1404 if (sc->sc_flags & NFE_USE_JUMBO) {
1405 ring->bufsz = NFE_JBYTES;
1406 if ((error = nfe_jpool_alloc(sc)) != 0) {
1407 aprint_error_dev(sc->sc_dev,
1408 "could not allocate jumbo frames\n");
1409 goto fail;
1410 }
1411 }
1412
1413 /*
1414 * Pre-allocate Rx buffers and populate Rx ring.
1415 */
1416 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1417 data = &sc->rxq.data[i];
1418
1419 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1420 if (data->m == NULL) {
1421 aprint_error_dev(sc->sc_dev,
1422 "could not allocate rx mbuf\n");
1423 error = ENOMEM;
1424 goto fail;
1425 }
1426
1427 if (sc->sc_flags & NFE_USE_JUMBO) {
1428 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1429 aprint_error_dev(sc->sc_dev,
1430 "could not allocate jumbo buffer\n");
1431 goto fail;
1432 }
1433 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1434 sc);
1435
1436 physaddr = jbuf->physaddr;
1437 } else {
1438 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1439 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1440 if (error != 0) {
1441 aprint_error_dev(sc->sc_dev,
1442 "could not create DMA map\n");
1443 goto fail;
1444 }
1445 MCLGET(data->m, M_DONTWAIT);
1446 if (!(data->m->m_flags & M_EXT)) {
1447 aprint_error_dev(sc->sc_dev,
1448 "could not allocate mbuf cluster\n");
1449 error = ENOMEM;
1450 goto fail;
1451 }
1452
1453 error = bus_dmamap_load(sc->sc_dmat, data->map,
1454 mtod(data->m, void *), MCLBYTES, NULL,
1455 BUS_DMA_READ | BUS_DMA_NOWAIT);
1456 if (error != 0) {
1457 aprint_error_dev(sc->sc_dev,
1458 "could not load rx buf DMA map");
1459 goto fail;
1460 }
1461 physaddr = data->map->dm_segs[0].ds_addr;
1462 }
1463
1464 if (sc->sc_flags & NFE_40BIT_ADDR) {
1465 desc64 = &sc->rxq.desc64[i];
1466 #if defined(__LP64__)
1467 desc64->physaddr[0] = htole32(physaddr >> 32);
1468 #endif
1469 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1470 desc64->length = htole16(sc->rxq.bufsz);
1471 desc64->flags = htole16(NFE_RX_READY);
1472 } else {
1473 desc32 = &sc->rxq.desc32[i];
1474 desc32->physaddr = htole32(physaddr);
1475 desc32->length = htole16(sc->rxq.bufsz);
1476 desc32->flags = htole16(NFE_RX_READY);
1477 }
1478 }
1479
1480 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1481 BUS_DMASYNC_PREWRITE);
1482
1483 return 0;
1484
1485 fail: nfe_free_rx_ring(sc, ring);
1486 return error;
1487 }
1488
1489 void
1490 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1491 {
1492 int i;
1493
1494 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1495 if (sc->sc_flags & NFE_40BIT_ADDR) {
1496 ring->desc64[i].length = htole16(ring->bufsz);
1497 ring->desc64[i].flags = htole16(NFE_RX_READY);
1498 } else {
1499 ring->desc32[i].length = htole16(ring->bufsz);
1500 ring->desc32[i].flags = htole16(NFE_RX_READY);
1501 }
1502 }
1503
1504 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1505 BUS_DMASYNC_PREWRITE);
1506
1507 ring->cur = ring->next = 0;
1508 }
1509
1510 void
1511 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1512 {
1513 struct nfe_rx_data *data;
1514 void *desc;
1515 int i, descsize;
1516
1517 if (sc->sc_flags & NFE_40BIT_ADDR) {
1518 desc = ring->desc64;
1519 descsize = sizeof (struct nfe_desc64);
1520 } else {
1521 desc = ring->desc32;
1522 descsize = sizeof (struct nfe_desc32);
1523 }
1524
1525 if (desc != NULL) {
1526 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1527 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1528 bus_dmamap_unload(sc->sc_dmat, ring->map);
1529 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1530 NFE_RX_RING_COUNT * descsize);
1531 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1532 }
1533
1534 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1535 data = &ring->data[i];
1536
1537 if (data->map != NULL) {
1538 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1539 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1540 bus_dmamap_unload(sc->sc_dmat, data->map);
1541 bus_dmamap_destroy(sc->sc_dmat, data->map);
1542 }
1543 if (data->m != NULL)
1544 m_freem(data->m);
1545 }
1546 }
1547
1548 struct nfe_jbuf *
1549 nfe_jalloc(struct nfe_softc *sc, int i)
1550 {
1551 struct nfe_jbuf *jbuf;
1552
1553 mutex_enter(&sc->rxq.mtx);
1554 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1555 if (jbuf != NULL)
1556 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1557 mutex_exit(&sc->rxq.mtx);
1558 if (jbuf == NULL)
1559 return NULL;
1560 sc->rxq.jbufmap[i] =
1561 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1562 return jbuf;
1563 }
1564
1565 /*
1566 * This is called automatically by the network stack when the mbuf is freed.
1567 * Caution must be taken that the NIC might be reset by the time the mbuf is
1568 * freed.
1569 */
1570 void
1571 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1572 {
1573 struct nfe_softc *sc = arg;
1574 struct nfe_jbuf *jbuf;
1575 int i;
1576
1577 /* find the jbuf from the base pointer */
1578 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1579 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1580 aprint_error_dev(sc->sc_dev,
1581 "request to free a buffer (%p) not managed by us\n", buf);
1582 return;
1583 }
1584 jbuf = &sc->rxq.jbuf[i];
1585
1586 /* ..and put it back in the free list */
1587 mutex_enter(&sc->rxq.mtx);
1588 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1589 mutex_exit(&sc->rxq.mtx);
1590
1591 if (m != NULL)
1592 pool_cache_put(mb_cache, m);
1593 }
1594
1595 int
1596 nfe_jpool_alloc(struct nfe_softc *sc)
1597 {
1598 struct nfe_rx_ring *ring = &sc->rxq;
1599 struct nfe_jbuf *jbuf;
1600 bus_addr_t physaddr;
1601 char *buf;
1602 int i, nsegs, error;
1603
1604 /*
1605 * Allocate a big chunk of DMA'able memory.
1606 */
1607 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1608 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1609 if (error != 0) {
1610 aprint_error_dev(sc->sc_dev,
1611 "could not create jumbo DMA map\n");
1612 goto fail;
1613 }
1614
1615 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1616 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1617 if (error != 0) {
1618 aprint_error_dev(sc->sc_dev,
1619 "could not allocate jumbo DMA memory\n");
1620 goto fail;
1621 }
1622
1623 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1624 &ring->jpool, BUS_DMA_NOWAIT);
1625 if (error != 0) {
1626 aprint_error_dev(sc->sc_dev,
1627 "could not map jumbo DMA memory\n");
1628 goto fail;
1629 }
1630
1631 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1632 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1633 if (error != 0) {
1634 aprint_error_dev(sc->sc_dev,
1635 "could not load jumbo DMA map\n");
1636 goto fail;
1637 }
1638
1639 /* ..and split it into 9KB chunks */
1640 SLIST_INIT(&ring->jfreelist);
1641
1642 buf = ring->jpool;
1643 physaddr = ring->jmap->dm_segs[0].ds_addr;
1644 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1645 jbuf = &ring->jbuf[i];
1646
1647 jbuf->buf = buf;
1648 jbuf->physaddr = physaddr;
1649
1650 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1651
1652 buf += NFE_JBYTES;
1653 physaddr += NFE_JBYTES;
1654 }
1655
1656 return 0;
1657
1658 fail: nfe_jpool_free(sc);
1659 return error;
1660 }
1661
1662 void
1663 nfe_jpool_free(struct nfe_softc *sc)
1664 {
1665 struct nfe_rx_ring *ring = &sc->rxq;
1666
1667 if (ring->jmap != NULL) {
1668 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1669 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1670 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1671 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1672 }
1673 if (ring->jpool != NULL) {
1674 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1675 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1676 }
1677 }
1678
1679 int
1680 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1681 {
1682 int i, nsegs, error;
1683 void **desc;
1684 int descsize;
1685
1686 if (sc->sc_flags & NFE_40BIT_ADDR) {
1687 desc = (void **)&ring->desc64;
1688 descsize = sizeof (struct nfe_desc64);
1689 } else {
1690 desc = (void **)&ring->desc32;
1691 descsize = sizeof (struct nfe_desc32);
1692 }
1693
1694 ring->queued = 0;
1695 ring->cur = ring->next = 0;
1696
1697 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1698 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1699
1700 if (error != 0) {
1701 aprint_error_dev(sc->sc_dev,
1702 "could not create desc DMA map\n");
1703 goto fail;
1704 }
1705
1706 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1707 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1708 if (error != 0) {
1709 aprint_error_dev(sc->sc_dev,
1710 "could not allocate DMA memory\n");
1711 goto fail;
1712 }
1713
1714 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1715 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1716 if (error != 0) {
1717 aprint_error_dev(sc->sc_dev,
1718 "could not map desc DMA memory\n");
1719 goto fail;
1720 }
1721
1722 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1723 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1724 if (error != 0) {
1725 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1726 goto fail;
1727 }
1728
1729 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1730 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1731
1732 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1733 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1734 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1735 &ring->data[i].map);
1736 if (error != 0) {
1737 aprint_error_dev(sc->sc_dev,
1738 "could not create DMA map\n");
1739 goto fail;
1740 }
1741 }
1742
1743 return 0;
1744
1745 fail: nfe_free_tx_ring(sc, ring);
1746 return error;
1747 }
1748
1749 void
1750 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1751 {
1752 struct nfe_tx_data *data;
1753 int i;
1754
1755 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1756 if (sc->sc_flags & NFE_40BIT_ADDR)
1757 ring->desc64[i].flags = 0;
1758 else
1759 ring->desc32[i].flags = 0;
1760
1761 data = &ring->data[i];
1762
1763 if (data->m != NULL) {
1764 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1765 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1766 bus_dmamap_unload(sc->sc_dmat, data->active);
1767 m_freem(data->m);
1768 data->m = NULL;
1769 }
1770 }
1771
1772 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1773 BUS_DMASYNC_PREWRITE);
1774
1775 ring->queued = 0;
1776 ring->cur = ring->next = 0;
1777 }
1778
1779 void
1780 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1781 {
1782 struct nfe_tx_data *data;
1783 void *desc;
1784 int i, descsize;
1785
1786 if (sc->sc_flags & NFE_40BIT_ADDR) {
1787 desc = ring->desc64;
1788 descsize = sizeof (struct nfe_desc64);
1789 } else {
1790 desc = ring->desc32;
1791 descsize = sizeof (struct nfe_desc32);
1792 }
1793
1794 if (desc != NULL) {
1795 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1796 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1797 bus_dmamap_unload(sc->sc_dmat, ring->map);
1798 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1799 NFE_TX_RING_COUNT * descsize);
1800 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1801 }
1802
1803 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1804 data = &ring->data[i];
1805
1806 if (data->m != NULL) {
1807 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1808 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1809 bus_dmamap_unload(sc->sc_dmat, data->active);
1810 m_freem(data->m);
1811 }
1812 }
1813
1814 /* ..and now actually destroy the DMA mappings */
1815 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1816 data = &ring->data[i];
1817 if (data->map == NULL)
1818 continue;
1819 bus_dmamap_destroy(sc->sc_dmat, data->map);
1820 }
1821 }
1822
1823 void
1824 nfe_setmulti(struct nfe_softc *sc)
1825 {
1826 struct ethercom *ec = &sc->sc_ethercom;
1827 struct ifnet *ifp = &ec->ec_if;
1828 struct ether_multi *enm;
1829 struct ether_multistep step;
1830 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1831 uint32_t filter = NFE_RXFILTER_MAGIC;
1832 int i;
1833
1834 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1835 bzero(addr, ETHER_ADDR_LEN);
1836 bzero(mask, ETHER_ADDR_LEN);
1837 goto done;
1838 }
1839
1840 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1841 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1842
1843 ETHER_FIRST_MULTI(step, ec, enm);
1844 while (enm != NULL) {
1845 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1846 ifp->if_flags |= IFF_ALLMULTI;
1847 bzero(addr, ETHER_ADDR_LEN);
1848 bzero(mask, ETHER_ADDR_LEN);
1849 goto done;
1850 }
1851 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1852 addr[i] &= enm->enm_addrlo[i];
1853 mask[i] &= ~enm->enm_addrlo[i];
1854 }
1855 ETHER_NEXT_MULTI(step, enm);
1856 }
1857 for (i = 0; i < ETHER_ADDR_LEN; i++)
1858 mask[i] |= addr[i];
1859
1860 done:
1861 addr[0] |= 0x01; /* make sure multicast bit is set */
1862
1863 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1864 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1865 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1866 addr[5] << 8 | addr[4]);
1867 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1868 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1869 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1870 mask[5] << 8 | mask[4]);
1871
1872 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1873 NFE_WRITE(sc, NFE_RXFILTER, filter);
1874 }
1875
1876 void
1877 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1878 {
1879 uint32_t tmp;
1880
1881 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1882 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1883 addr[0] = (tmp & 0xff);
1884 addr[1] = (tmp >> 8) & 0xff;
1885 addr[2] = (tmp >> 16) & 0xff;
1886 addr[3] = (tmp >> 24) & 0xff;
1887
1888 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1889 addr[4] = (tmp & 0xff);
1890 addr[5] = (tmp >> 8) & 0xff;
1891
1892 } else {
1893 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1894 addr[0] = (tmp >> 8) & 0xff;
1895 addr[1] = (tmp & 0xff);
1896
1897 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1898 addr[2] = (tmp >> 24) & 0xff;
1899 addr[3] = (tmp >> 16) & 0xff;
1900 addr[4] = (tmp >> 8) & 0xff;
1901 addr[5] = (tmp & 0xff);
1902 }
1903 }
1904
1905 void
1906 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1907 {
1908 NFE_WRITE(sc, NFE_MACADDR_LO,
1909 addr[5] << 8 | addr[4]);
1910 NFE_WRITE(sc, NFE_MACADDR_HI,
1911 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1912 }
1913
1914 void
1915 nfe_tick(void *arg)
1916 {
1917 struct nfe_softc *sc = arg;
1918 int s;
1919
1920 s = splnet();
1921 mii_tick(&sc->sc_mii);
1922 splx(s);
1923
1924 callout_schedule(&sc->sc_tick_ch, hz);
1925 }
1926