if_nfe.c revision 1.36.6.1 1 /* $NetBSD: if_nfe.c,v 1.36.6.1 2009/03/02 20:46:03 snj Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.36.6.1 2009/03/02 20:46:03 snj Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/callout.h>
41 #include <sys/socket.h>
42
43 #include <sys/bus.h>
44
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 #include <net/if_arp.h>
50
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_inarp.h>
57 #endif
58
59 #if NVLAN > 0
60 #include <net/if_types.h>
61 #endif
62
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/pci/if_nfereg.h>
75 #include <dev/pci/if_nfevar.h>
76
77 int nfe_match(device_t, cfdata_t, void *);
78 void nfe_attach(device_t, device_t, void *);
79 void nfe_power(int, void *);
80 void nfe_miibus_statchg(device_t);
81 int nfe_miibus_readreg(device_t, int, int);
82 void nfe_miibus_writereg(device_t, int, int, int);
83 int nfe_intr(void *);
84 int nfe_ioctl(struct ifnet *, u_long, void *);
85 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91 void nfe_rxeof(struct nfe_softc *);
92 void nfe_txeof(struct nfe_softc *);
93 int nfe_encap(struct nfe_softc *, struct mbuf *);
94 void nfe_start(struct ifnet *);
95 void nfe_watchdog(struct ifnet *);
96 int nfe_init(struct ifnet *);
97 void nfe_stop(struct ifnet *, int);
98 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99 void nfe_jfree(struct mbuf *, void *, size_t, void *);
100 int nfe_jpool_alloc(struct nfe_softc *);
101 void nfe_jpool_free(struct nfe_softc *);
102 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void nfe_setmulti(struct nfe_softc *);
109 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111 void nfe_tick(void *);
112 void nfe_poweron(device_t);
113 bool nfe_resume(device_t PMF_FN_PROTO);
114
115 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
116 NULL, NULL);
117
118 /* #define NFE_NO_JUMBO */
119
120 #ifdef NFE_DEBUG
121 int nfedebug = 0;
122 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
123 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
124 #else
125 #define DPRINTF(x)
126 #define DPRINTFN(n,x)
127 #endif
128
129 /* deal with naming differences */
130
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
135 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
136 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
137
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
140 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
142
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
145 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
147
148 #ifdef _LP64
149 #define __LP64__ 1
150 #endif
151
152 const struct nfe_product {
153 pci_vendor_id_t vendor;
154 pci_product_id_t product;
155 } nfe_devices[] = {
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
195 };
196
197 int
198 nfe_match(device_t dev, cfdata_t match, void *aux)
199 {
200 struct pci_attach_args *pa = aux;
201 const struct nfe_product *np;
202 int i;
203
204 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
205 np = &nfe_devices[i];
206 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
207 PCI_PRODUCT(pa->pa_id) == np->product)
208 return 1;
209 }
210 return 0;
211 }
212
213 void
214 nfe_attach(device_t parent, device_t self, void *aux)
215 {
216 struct nfe_softc *sc = device_private(self);
217 struct pci_attach_args *pa = aux;
218 pci_chipset_tag_t pc = pa->pa_pc;
219 pci_intr_handle_t ih;
220 const char *intrstr;
221 struct ifnet *ifp;
222 bus_size_t memsize;
223 pcireg_t memtype;
224 char devinfo[256];
225
226 sc->sc_dev = self;
227 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
228 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
229
230 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
231 switch (memtype) {
232 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
233 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
234 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
235 &sc->sc_memh, NULL, &memsize) == 0)
236 break;
237 /* FALLTHROUGH */
238 default:
239 aprint_error_dev(self, "could not map mem space\n");
240 return;
241 }
242
243 if (pci_intr_map(pa, &ih) != 0) {
244 aprint_error_dev(self, "could not map interrupt\n");
245 goto fail;
246 }
247
248 intrstr = pci_intr_string(pc, ih);
249 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
250 if (sc->sc_ih == NULL) {
251 aprint_error_dev(self, "could not establish interrupt");
252 if (intrstr != NULL)
253 aprint_normal(" at %s", intrstr);
254 aprint_normal("\n");
255 goto fail;
256 }
257 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
258
259 sc->sc_dmat = pa->pa_dmat;
260
261 sc->sc_flags = 0;
262
263 switch (PCI_PRODUCT(pa->pa_id)) {
264 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
265 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
266 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
268 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
269 break;
270 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
271 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
272 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
273 break;
274 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
275 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
276 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
277 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
278 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
279 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
280 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
281 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
282 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
283 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
284 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
285 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
286 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
287 NFE_PWR_MGMT;
288 break;
289 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
290 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
291 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
292 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
293 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
294 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
295 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
296 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
297 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
298 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
299 break;
300 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
301 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
302 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
303 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
304 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
305 break;
306 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
307 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
308 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
309 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
310 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
311 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
312 break;
313 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
314 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
315 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
316 NFE_HW_VLAN | NFE_PWR_MGMT;
317 break;
318 }
319
320 nfe_poweron(self);
321
322 #ifndef NFE_NO_JUMBO
323 /* enable jumbo frames for adapters that support it */
324 if (sc->sc_flags & NFE_JUMBO_SUP)
325 sc->sc_flags |= NFE_USE_JUMBO;
326 #endif
327
328 /* Check for reversed ethernet address */
329 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
330 sc->sc_flags |= NFE_CORRECT_MACADDR;
331
332 nfe_get_macaddr(sc, sc->sc_enaddr);
333 aprint_normal_dev(self, "Ethernet address %s\n",
334 ether_sprintf(sc->sc_enaddr));
335
336 /*
337 * Allocate Tx and Rx rings.
338 */
339 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
340 aprint_error_dev(self, "could not allocate Tx ring\n");
341 goto fail;
342 }
343
344 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
345
346 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
347 aprint_error_dev(self, "could not allocate Rx ring\n");
348 nfe_free_tx_ring(sc, &sc->txq);
349 goto fail;
350 }
351
352 ifp = &sc->sc_ethercom.ec_if;
353 ifp->if_softc = sc;
354 ifp->if_mtu = ETHERMTU;
355 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
356 ifp->if_ioctl = nfe_ioctl;
357 ifp->if_start = nfe_start;
358 ifp->if_stop = nfe_stop;
359 ifp->if_watchdog = nfe_watchdog;
360 ifp->if_init = nfe_init;
361 ifp->if_baudrate = IF_Gbps(1);
362 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
363 IFQ_SET_READY(&ifp->if_snd);
364 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
365
366 #ifdef notyet
367 if (sc->sc_flags & NFE_USE_JUMBO)
368 ifp->if_hardmtu = NFE_JUMBO_MTU;
369 #endif
370
371 #if NVLAN > 0
372 if (sc->sc_flags & NFE_HW_VLAN)
373 sc->sc_ethercom.ec_capabilities |=
374 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
375 #endif
376 if (sc->sc_flags & NFE_HW_CSUM) {
377 ifp->if_capabilities |=
378 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
379 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
380 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
381 }
382
383 sc->sc_mii.mii_ifp = ifp;
384 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
385 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
386 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
387
388 sc->sc_ethercom.ec_mii = &sc->sc_mii;
389 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
390 ether_mediastatus);
391 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
392 MII_OFFSET_ANY, 0);
393 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
394 aprint_error_dev(self, "no PHY found!\n");
395 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
396 0, NULL);
397 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
398 } else
399 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
400
401 if_attach(ifp);
402 ether_ifattach(ifp, sc->sc_enaddr);
403
404 callout_init(&sc->sc_tick_ch, 0);
405 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
406
407 if (!pmf_device_register(self, NULL, nfe_resume))
408 aprint_error_dev(self, "couldn't establish power handler\n");
409 else
410 pmf_class_network_register(self, ifp);
411
412 return;
413
414 fail:
415 if (sc->sc_ih != NULL) {
416 pci_intr_disestablish(pc, sc->sc_ih);
417 sc->sc_ih = NULL;
418 }
419 if (memsize)
420 bus_space_unmap(sc->sc_memt, sc->sc_memh, memsize);
421 }
422
423 void
424 nfe_miibus_statchg(device_t dev)
425 {
426 struct nfe_softc *sc = device_private(dev);
427 struct mii_data *mii = &sc->sc_mii;
428 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
429
430 phy = NFE_READ(sc, NFE_PHY_IFACE);
431 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
432
433 seed = NFE_READ(sc, NFE_RNDSEED);
434 seed &= ~NFE_SEED_MASK;
435
436 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
437 phy |= NFE_PHY_HDX; /* half-duplex */
438 misc |= NFE_MISC1_HDX;
439 }
440
441 switch (IFM_SUBTYPE(mii->mii_media_active)) {
442 case IFM_1000_T: /* full-duplex only */
443 link |= NFE_MEDIA_1000T;
444 seed |= NFE_SEED_1000T;
445 phy |= NFE_PHY_1000T;
446 break;
447 case IFM_100_TX:
448 link |= NFE_MEDIA_100TX;
449 seed |= NFE_SEED_100TX;
450 phy |= NFE_PHY_100TX;
451 break;
452 case IFM_10_T:
453 link |= NFE_MEDIA_10T;
454 seed |= NFE_SEED_10T;
455 break;
456 }
457
458 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
459
460 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
461 NFE_WRITE(sc, NFE_MISC1, misc);
462 NFE_WRITE(sc, NFE_LINKSPEED, link);
463 }
464
465 int
466 nfe_miibus_readreg(device_t dev, int phy, int reg)
467 {
468 struct nfe_softc *sc = device_private(dev);
469 uint32_t val;
470 int ntries;
471
472 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
473
474 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
475 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
476 DELAY(100);
477 }
478
479 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
480
481 for (ntries = 0; ntries < 1000; ntries++) {
482 DELAY(100);
483 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
484 break;
485 }
486 if (ntries == 1000) {
487 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
488 device_xname(sc->sc_dev)));
489 return 0;
490 }
491
492 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
493 DPRINTFN(2, ("%s: could not read PHY\n",
494 device_xname(sc->sc_dev)));
495 return 0;
496 }
497
498 val = NFE_READ(sc, NFE_PHY_DATA);
499 if (val != 0xffffffff && val != 0)
500 sc->mii_phyaddr = phy;
501
502 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
503 device_xname(sc->sc_dev), phy, reg, val));
504
505 return val;
506 }
507
508 void
509 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
510 {
511 struct nfe_softc *sc = device_private(dev);
512 uint32_t ctl;
513 int ntries;
514
515 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
516
517 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
518 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
519 DELAY(100);
520 }
521
522 NFE_WRITE(sc, NFE_PHY_DATA, val);
523 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
524 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
525
526 for (ntries = 0; ntries < 1000; ntries++) {
527 DELAY(100);
528 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
529 break;
530 }
531 #ifdef NFE_DEBUG
532 if (nfedebug >= 2 && ntries == 1000)
533 printf("could not write to PHY\n");
534 #endif
535 }
536
537 int
538 nfe_intr(void *arg)
539 {
540 struct nfe_softc *sc = arg;
541 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
542 uint32_t r;
543 int handled;
544
545 if ((ifp->if_flags & IFF_UP) == 0)
546 return 0;
547
548 handled = 0;
549
550 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
551
552 for (;;) {
553 r = NFE_READ(sc, NFE_IRQ_STATUS);
554 if ((r & NFE_IRQ_WANTED) == 0)
555 break;
556
557 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
558 handled = 1;
559 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
560
561 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
562 /* check Rx ring */
563 nfe_rxeof(sc);
564 }
565 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
566 /* check Tx ring */
567 nfe_txeof(sc);
568 }
569 if ((r & NFE_IRQ_LINK) != 0) {
570 NFE_READ(sc, NFE_PHY_STATUS);
571 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
572 DPRINTF(("%s: link state changed\n",
573 device_xname(sc->sc_dev)));
574 }
575 }
576
577 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
578
579 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
580 nfe_start(ifp);
581
582 return handled;
583 }
584
585 int
586 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
587 {
588 struct nfe_softc *sc = ifp->if_softc;
589 struct ifreq *ifr = (struct ifreq *)data;
590 struct ifaddr *ifa = (struct ifaddr *)data;
591 int s, error = 0;
592
593 s = splnet();
594
595 switch (cmd) {
596 case SIOCSIFADDR:
597 ifp->if_flags |= IFF_UP;
598 nfe_init(ifp);
599 switch (ifa->ifa_addr->sa_family) {
600 #ifdef INET
601 case AF_INET:
602 arp_ifinit(ifp, ifa);
603 break;
604 #endif
605 default:
606 break;
607 }
608 break;
609 case SIOCSIFMTU:
610 if (ifr->ifr_mtu < ETHERMIN ||
611 ((sc->sc_flags & NFE_USE_JUMBO) &&
612 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
613 (!(sc->sc_flags & NFE_USE_JUMBO) &&
614 ifr->ifr_mtu > ETHERMTU))
615 error = EINVAL;
616 else if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
617 error = 0;
618 break;
619 case SIOCSIFFLAGS:
620 if (ifp->if_flags & IFF_UP) {
621 /*
622 * If only the PROMISC or ALLMULTI flag changes, then
623 * don't do a full re-init of the chip, just update
624 * the Rx filter.
625 */
626 if ((ifp->if_flags & IFF_RUNNING) &&
627 ((ifp->if_flags ^ sc->sc_if_flags) &
628 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
629 nfe_setmulti(sc);
630 } else
631 nfe_init(ifp);
632 } else {
633 if (ifp->if_flags & IFF_RUNNING)
634 nfe_stop(ifp, 1);
635 }
636 sc->sc_if_flags = ifp->if_flags;
637 break;
638 default:
639 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
640 break;
641
642 error = 0;
643
644 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
645 ;
646 else if (ifp->if_flags & IFF_RUNNING)
647 nfe_setmulti(sc);
648 break;
649 }
650
651 splx(s);
652
653 return error;
654 }
655
656 void
657 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
658 {
659 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
660 (char *)desc32 - (char *)sc->txq.desc32,
661 sizeof (struct nfe_desc32), ops);
662 }
663
664 void
665 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
666 {
667 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
668 (char *)desc64 - (char *)sc->txq.desc64,
669 sizeof (struct nfe_desc64), ops);
670 }
671
672 void
673 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
674 {
675 if (end > start) {
676 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
677 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
678 (char *)&sc->txq.desc32[end] -
679 (char *)&sc->txq.desc32[start], ops);
680 return;
681 }
682 /* sync from 'start' to end of ring */
683 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
684 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
685 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
686 (char *)&sc->txq.desc32[start], ops);
687
688 /* sync from start of ring to 'end' */
689 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
690 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
691 }
692
693 void
694 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
695 {
696 if (end > start) {
697 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
698 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
699 (char *)&sc->txq.desc64[end] -
700 (char *)&sc->txq.desc64[start], ops);
701 return;
702 }
703 /* sync from 'start' to end of ring */
704 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
705 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
706 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
707 (char *)&sc->txq.desc64[start], ops);
708
709 /* sync from start of ring to 'end' */
710 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
711 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
712 }
713
714 void
715 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
716 {
717 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
718 (char *)desc32 - (char *)sc->rxq.desc32,
719 sizeof (struct nfe_desc32), ops);
720 }
721
722 void
723 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
724 {
725 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
726 (char *)desc64 - (char *)sc->rxq.desc64,
727 sizeof (struct nfe_desc64), ops);
728 }
729
730 void
731 nfe_rxeof(struct nfe_softc *sc)
732 {
733 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
734 struct nfe_desc32 *desc32;
735 struct nfe_desc64 *desc64;
736 struct nfe_rx_data *data;
737 struct nfe_jbuf *jbuf;
738 struct mbuf *m, *mnew;
739 bus_addr_t physaddr;
740 uint16_t flags;
741 int error, len, i;
742
743 desc32 = NULL;
744 desc64 = NULL;
745 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
746 data = &sc->rxq.data[i];
747
748 if (sc->sc_flags & NFE_40BIT_ADDR) {
749 desc64 = &sc->rxq.desc64[i];
750 nfe_rxdesc64_sync(sc, desc64,
751 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
752
753 flags = le16toh(desc64->flags);
754 len = le16toh(desc64->length) & 0x3fff;
755 } else {
756 desc32 = &sc->rxq.desc32[i];
757 nfe_rxdesc32_sync(sc, desc32,
758 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
759
760 flags = le16toh(desc32->flags);
761 len = le16toh(desc32->length) & 0x3fff;
762 }
763
764 if ((flags & NFE_RX_READY) != 0)
765 break;
766
767 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
768 if ((flags & NFE_RX_VALID_V1) == 0)
769 goto skip;
770
771 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
772 flags &= ~NFE_RX_ERROR;
773 len--; /* fix buffer length */
774 }
775 } else {
776 if ((flags & NFE_RX_VALID_V2) == 0)
777 goto skip;
778
779 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
780 flags &= ~NFE_RX_ERROR;
781 len--; /* fix buffer length */
782 }
783 }
784
785 if (flags & NFE_RX_ERROR) {
786 ifp->if_ierrors++;
787 goto skip;
788 }
789
790 /*
791 * Try to allocate a new mbuf for this ring element and load
792 * it before processing the current mbuf. If the ring element
793 * cannot be loaded, drop the received packet and reuse the
794 * old mbuf. In the unlikely case that the old mbuf can't be
795 * reloaded either, explicitly panic.
796 */
797 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
798 if (mnew == NULL) {
799 ifp->if_ierrors++;
800 goto skip;
801 }
802
803 if (sc->sc_flags & NFE_USE_JUMBO) {
804 physaddr =
805 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
806 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
807 if (len > MCLBYTES) {
808 m_freem(mnew);
809 ifp->if_ierrors++;
810 goto skip1;
811 }
812 MCLGET(mnew, M_DONTWAIT);
813 if ((mnew->m_flags & M_EXT) == 0) {
814 m_freem(mnew);
815 ifp->if_ierrors++;
816 goto skip1;
817 }
818
819 (void)memcpy(mtod(mnew, void *),
820 mtod(data->m, const void *), len);
821 m = mnew;
822 goto mbufcopied;
823 } else {
824 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
825 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
826 mtod(data->m, char *) - (char *)sc->rxq.jpool,
827 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
828
829 physaddr = jbuf->physaddr;
830 }
831 } else {
832 MCLGET(mnew, M_DONTWAIT);
833 if ((mnew->m_flags & M_EXT) == 0) {
834 m_freem(mnew);
835 ifp->if_ierrors++;
836 goto skip;
837 }
838
839 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
840 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
841 bus_dmamap_unload(sc->sc_dmat, data->map);
842
843 error = bus_dmamap_load(sc->sc_dmat, data->map,
844 mtod(mnew, void *), MCLBYTES, NULL,
845 BUS_DMA_READ | BUS_DMA_NOWAIT);
846 if (error != 0) {
847 m_freem(mnew);
848
849 /* try to reload the old mbuf */
850 error = bus_dmamap_load(sc->sc_dmat, data->map,
851 mtod(data->m, void *), MCLBYTES, NULL,
852 BUS_DMA_READ | BUS_DMA_NOWAIT);
853 if (error != 0) {
854 /* very unlikely that it will fail.. */
855 panic("%s: could not load old rx mbuf",
856 device_xname(sc->sc_dev));
857 }
858 ifp->if_ierrors++;
859 goto skip;
860 }
861 physaddr = data->map->dm_segs[0].ds_addr;
862 }
863
864 /*
865 * New mbuf successfully loaded, update Rx ring and continue
866 * processing.
867 */
868 m = data->m;
869 data->m = mnew;
870
871 mbufcopied:
872 /* finalize mbuf */
873 m->m_pkthdr.len = m->m_len = len;
874 m->m_pkthdr.rcvif = ifp;
875
876 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
877 /*
878 * XXX
879 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
880 */
881 if (flags & NFE_RX_IP_CSUMOK) {
882 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
883 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
884 device_xname(sc->sc_dev)));
885 }
886 /*
887 * XXX
888 * no way to check M_CSUM_TCP_UDP_BAD or
889 * other protocols?
890 */
891 if (flags & NFE_RX_UDP_CSUMOK) {
892 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
893 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
894 device_xname(sc->sc_dev)));
895 } else if (flags & NFE_RX_TCP_CSUMOK) {
896 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
897 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
898 device_xname(sc->sc_dev)));
899 }
900 }
901 #if NBPFILTER > 0
902 if (ifp->if_bpf)
903 bpf_mtap(ifp->if_bpf, m);
904 #endif
905 ifp->if_ipackets++;
906 (*ifp->if_input)(ifp, m);
907
908 skip1:
909 /* update mapping address in h/w descriptor */
910 if (sc->sc_flags & NFE_40BIT_ADDR) {
911 #if defined(__LP64__)
912 desc64->physaddr[0] = htole32(physaddr >> 32);
913 #endif
914 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
915 } else {
916 desc32->physaddr = htole32(physaddr);
917 }
918
919 skip:
920 if (sc->sc_flags & NFE_40BIT_ADDR) {
921 desc64->length = htole16(sc->rxq.bufsz);
922 desc64->flags = htole16(NFE_RX_READY);
923
924 nfe_rxdesc64_sync(sc, desc64,
925 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
926 } else {
927 desc32->length = htole16(sc->rxq.bufsz);
928 desc32->flags = htole16(NFE_RX_READY);
929
930 nfe_rxdesc32_sync(sc, desc32,
931 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
932 }
933 }
934 /* update current RX pointer */
935 sc->rxq.cur = i;
936 }
937
938 void
939 nfe_txeof(struct nfe_softc *sc)
940 {
941 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
942 struct nfe_desc32 *desc32;
943 struct nfe_desc64 *desc64;
944 struct nfe_tx_data *data = NULL;
945 int i;
946 uint16_t flags;
947 char buf[128];
948
949 for (i = sc->txq.next;
950 sc->txq.queued > 0;
951 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
952 if (sc->sc_flags & NFE_40BIT_ADDR) {
953 desc64 = &sc->txq.desc64[i];
954 nfe_txdesc64_sync(sc, desc64,
955 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
956
957 flags = le16toh(desc64->flags);
958 } else {
959 desc32 = &sc->txq.desc32[i];
960 nfe_txdesc32_sync(sc, desc32,
961 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
962
963 flags = le16toh(desc32->flags);
964 }
965
966 if ((flags & NFE_TX_VALID) != 0)
967 break;
968
969 data = &sc->txq.data[i];
970
971 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
972 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
973 data->m == NULL)
974 continue;
975
976 if ((flags & NFE_TX_ERROR_V1) != 0) {
977 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
978 bitmask_snprintf(flags, NFE_V1_TXERR,
979 buf, sizeof(buf)));
980 ifp->if_oerrors++;
981 } else
982 ifp->if_opackets++;
983 } else {
984 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
985 data->m == NULL)
986 continue;
987
988 if ((flags & NFE_TX_ERROR_V2) != 0) {
989 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
990 bitmask_snprintf(flags, NFE_V2_TXERR,
991 buf, sizeof(buf)));
992 ifp->if_oerrors++;
993 } else
994 ifp->if_opackets++;
995 }
996
997 if (data->m == NULL) { /* should not get there */
998 aprint_error_dev(sc->sc_dev,
999 "last fragment bit w/o associated mbuf!\n");
1000 continue;
1001 }
1002
1003 /* last fragment of the mbuf chain transmitted */
1004 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1005 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1006 bus_dmamap_unload(sc->sc_dmat, data->active);
1007 m_freem(data->m);
1008 data->m = NULL;
1009 }
1010
1011 sc->txq.next = i;
1012
1013 if (sc->txq.queued < NFE_TX_RING_COUNT) {
1014 /* at least one slot freed */
1015 ifp->if_flags &= ~IFF_OACTIVE;
1016 }
1017
1018 if (sc->txq.queued == 0) {
1019 /* all queued packets are sent */
1020 ifp->if_timer = 0;
1021 }
1022 }
1023
1024 int
1025 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1026 {
1027 struct nfe_desc32 *desc32;
1028 struct nfe_desc64 *desc64;
1029 struct nfe_tx_data *data;
1030 bus_dmamap_t map;
1031 uint16_t flags, csumflags;
1032 #if NVLAN > 0
1033 struct m_tag *mtag;
1034 uint32_t vtag = 0;
1035 #endif
1036 int error, i, first;
1037
1038 desc32 = NULL;
1039 desc64 = NULL;
1040 data = NULL;
1041
1042 flags = 0;
1043 csumflags = 0;
1044 first = sc->txq.cur;
1045
1046 map = sc->txq.data[first].map;
1047
1048 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1049 if (error != 0) {
1050 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1051 error);
1052 return error;
1053 }
1054
1055 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1056 bus_dmamap_unload(sc->sc_dmat, map);
1057 return ENOBUFS;
1058 }
1059
1060 #if NVLAN > 0
1061 /* setup h/w VLAN tagging */
1062 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1063 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1064 #endif
1065 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1066 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1067 csumflags |= NFE_TX_IP_CSUM;
1068 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1069 csumflags |= NFE_TX_TCP_UDP_CSUM;
1070 }
1071
1072 for (i = 0; i < map->dm_nsegs; i++) {
1073 data = &sc->txq.data[sc->txq.cur];
1074
1075 if (sc->sc_flags & NFE_40BIT_ADDR) {
1076 desc64 = &sc->txq.desc64[sc->txq.cur];
1077 #if defined(__LP64__)
1078 desc64->physaddr[0] =
1079 htole32(map->dm_segs[i].ds_addr >> 32);
1080 #endif
1081 desc64->physaddr[1] =
1082 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1083 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1084 desc64->flags = htole16(flags);
1085 desc64->vtag = 0;
1086 } else {
1087 desc32 = &sc->txq.desc32[sc->txq.cur];
1088
1089 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1090 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1091 desc32->flags = htole16(flags);
1092 }
1093
1094 /*
1095 * Setting of the valid bit in the first descriptor is
1096 * deferred until the whole chain is fully setup.
1097 */
1098 flags |= NFE_TX_VALID;
1099
1100 sc->txq.queued++;
1101 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1102 }
1103
1104 /* the whole mbuf chain has been setup */
1105 if (sc->sc_flags & NFE_40BIT_ADDR) {
1106 /* fix last descriptor */
1107 flags |= NFE_TX_LASTFRAG_V2;
1108 desc64->flags = htole16(flags);
1109
1110 /* Checksum flags and vtag belong to the first fragment only. */
1111 #if NVLAN > 0
1112 sc->txq.desc64[first].vtag = htole32(vtag);
1113 #endif
1114 sc->txq.desc64[first].flags |= htole16(csumflags);
1115
1116 /* finally, set the valid bit in the first descriptor */
1117 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1118 } else {
1119 /* fix last descriptor */
1120 if (sc->sc_flags & NFE_JUMBO_SUP)
1121 flags |= NFE_TX_LASTFRAG_V2;
1122 else
1123 flags |= NFE_TX_LASTFRAG_V1;
1124 desc32->flags = htole16(flags);
1125
1126 /* Checksum flags belong to the first fragment only. */
1127 sc->txq.desc32[first].flags |= htole16(csumflags);
1128
1129 /* finally, set the valid bit in the first descriptor */
1130 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1131 }
1132
1133 data->m = m0;
1134 data->active = map;
1135
1136 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1137 BUS_DMASYNC_PREWRITE);
1138
1139 return 0;
1140 }
1141
1142 void
1143 nfe_start(struct ifnet *ifp)
1144 {
1145 struct nfe_softc *sc = ifp->if_softc;
1146 int old = sc->txq.queued;
1147 struct mbuf *m0;
1148
1149 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1150 return;
1151
1152 for (;;) {
1153 IFQ_POLL(&ifp->if_snd, m0);
1154 if (m0 == NULL)
1155 break;
1156
1157 if (nfe_encap(sc, m0) != 0) {
1158 ifp->if_flags |= IFF_OACTIVE;
1159 break;
1160 }
1161
1162 /* packet put in h/w queue, remove from s/w queue */
1163 IFQ_DEQUEUE(&ifp->if_snd, m0);
1164
1165 #if NBPFILTER > 0
1166 if (ifp->if_bpf != NULL)
1167 bpf_mtap(ifp->if_bpf, m0);
1168 #endif
1169 }
1170
1171 if (sc->txq.queued != old) {
1172 /* packets are queued */
1173 if (sc->sc_flags & NFE_40BIT_ADDR)
1174 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1175 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1176 else
1177 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1178 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1179 /* kick Tx */
1180 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1181
1182 /*
1183 * Set a timeout in case the chip goes out to lunch.
1184 */
1185 ifp->if_timer = 5;
1186 }
1187 }
1188
1189 void
1190 nfe_watchdog(struct ifnet *ifp)
1191 {
1192 struct nfe_softc *sc = ifp->if_softc;
1193
1194 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1195
1196 ifp->if_flags &= ~IFF_RUNNING;
1197 nfe_init(ifp);
1198
1199 ifp->if_oerrors++;
1200 }
1201
1202 int
1203 nfe_init(struct ifnet *ifp)
1204 {
1205 struct nfe_softc *sc = ifp->if_softc;
1206 uint32_t tmp;
1207 int rc = 0, s;
1208
1209 if (ifp->if_flags & IFF_RUNNING)
1210 return 0;
1211
1212 nfe_stop(ifp, 0);
1213
1214 NFE_WRITE(sc, NFE_TX_UNK, 0);
1215 NFE_WRITE(sc, NFE_STATUS, 0);
1216
1217 sc->rxtxctl = NFE_RXTX_BIT2;
1218 if (sc->sc_flags & NFE_40BIT_ADDR)
1219 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1220 else if (sc->sc_flags & NFE_JUMBO_SUP)
1221 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1222 if (sc->sc_flags & NFE_HW_CSUM)
1223 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1224 #if NVLAN > 0
1225 /*
1226 * Although the adapter is capable of stripping VLAN tags from received
1227 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1228 * purpose. This will be done in software by our network stack.
1229 */
1230 if (sc->sc_flags & NFE_HW_VLAN)
1231 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1232 #endif
1233 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1234 DELAY(10);
1235 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1236
1237 #if NVLAN
1238 if (sc->sc_flags & NFE_HW_VLAN)
1239 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1240 #endif
1241
1242 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1243
1244 /* set MAC address */
1245 nfe_set_macaddr(sc, sc->sc_enaddr);
1246
1247 /* tell MAC where rings are in memory */
1248 #ifdef __LP64__
1249 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1250 #endif
1251 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1252 #ifdef __LP64__
1253 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1254 #endif
1255 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1256
1257 NFE_WRITE(sc, NFE_RING_SIZE,
1258 (NFE_RX_RING_COUNT - 1) << 16 |
1259 (NFE_TX_RING_COUNT - 1));
1260
1261 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1262
1263 /* force MAC to wakeup */
1264 tmp = NFE_READ(sc, NFE_PWR_STATE);
1265 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1266 DELAY(10);
1267 tmp = NFE_READ(sc, NFE_PWR_STATE);
1268 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1269
1270 s = splnet();
1271 nfe_intr(sc); /* XXX clear IRQ status registers */
1272 splx(s);
1273
1274 #if 1
1275 /* configure interrupts coalescing/mitigation */
1276 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1277 #else
1278 /* no interrupt mitigation: one interrupt per packet */
1279 NFE_WRITE(sc, NFE_IMTIMER, 970);
1280 #endif
1281
1282 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1283 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1284 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1285
1286 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1287 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1288
1289 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1290 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1291
1292 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1293 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1294 DELAY(10);
1295 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1296
1297 /* set Rx filter */
1298 nfe_setmulti(sc);
1299
1300 if ((rc = ether_mediachange(ifp)) != 0)
1301 goto out;
1302
1303 nfe_tick(sc);
1304
1305 /* enable Rx */
1306 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1307
1308 /* enable Tx */
1309 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1310
1311 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1312
1313 /* enable interrupts */
1314 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1315
1316 callout_schedule(&sc->sc_tick_ch, hz);
1317
1318 ifp->if_flags |= IFF_RUNNING;
1319 ifp->if_flags &= ~IFF_OACTIVE;
1320
1321 out:
1322 return rc;
1323 }
1324
1325 void
1326 nfe_stop(struct ifnet *ifp, int disable)
1327 {
1328 struct nfe_softc *sc = ifp->if_softc;
1329
1330 callout_stop(&sc->sc_tick_ch);
1331
1332 ifp->if_timer = 0;
1333 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1334
1335 mii_down(&sc->sc_mii);
1336
1337 /* abort Tx */
1338 NFE_WRITE(sc, NFE_TX_CTL, 0);
1339
1340 /* disable Rx */
1341 NFE_WRITE(sc, NFE_RX_CTL, 0);
1342
1343 /* disable interrupts */
1344 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1345
1346 /* reset Tx and Rx rings */
1347 nfe_reset_tx_ring(sc, &sc->txq);
1348 nfe_reset_rx_ring(sc, &sc->rxq);
1349 }
1350
1351 int
1352 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1353 {
1354 struct nfe_desc32 *desc32;
1355 struct nfe_desc64 *desc64;
1356 struct nfe_rx_data *data;
1357 struct nfe_jbuf *jbuf;
1358 void **desc;
1359 bus_addr_t physaddr;
1360 int i, nsegs, error, descsize;
1361
1362 if (sc->sc_flags & NFE_40BIT_ADDR) {
1363 desc = (void **)&ring->desc64;
1364 descsize = sizeof (struct nfe_desc64);
1365 } else {
1366 desc = (void **)&ring->desc32;
1367 descsize = sizeof (struct nfe_desc32);
1368 }
1369
1370 ring->cur = ring->next = 0;
1371 ring->bufsz = MCLBYTES;
1372
1373 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1374 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1375 if (error != 0) {
1376 aprint_error_dev(sc->sc_dev,
1377 "could not create desc DMA map\n");
1378 ring->map = NULL;
1379 goto fail;
1380 }
1381
1382 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1383 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1384 if (error != 0) {
1385 aprint_error_dev(sc->sc_dev,
1386 "could not allocate DMA memory\n");
1387 goto fail;
1388 }
1389
1390 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1391 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1392 if (error != 0) {
1393 aprint_error_dev(sc->sc_dev,
1394 "could not map desc DMA memory\n");
1395 goto fail;
1396 }
1397
1398 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1399 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1400 if (error != 0) {
1401 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1402 goto fail;
1403 }
1404
1405 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1406 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1407
1408 if (sc->sc_flags & NFE_USE_JUMBO) {
1409 ring->bufsz = NFE_JBYTES;
1410 if ((error = nfe_jpool_alloc(sc)) != 0) {
1411 aprint_error_dev(sc->sc_dev,
1412 "could not allocate jumbo frames\n");
1413 goto fail;
1414 }
1415 }
1416
1417 /*
1418 * Pre-allocate Rx buffers and populate Rx ring.
1419 */
1420 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1421 data = &sc->rxq.data[i];
1422
1423 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1424 if (data->m == NULL) {
1425 aprint_error_dev(sc->sc_dev,
1426 "could not allocate rx mbuf\n");
1427 error = ENOMEM;
1428 goto fail;
1429 }
1430
1431 if (sc->sc_flags & NFE_USE_JUMBO) {
1432 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1433 aprint_error_dev(sc->sc_dev,
1434 "could not allocate jumbo buffer\n");
1435 goto fail;
1436 }
1437 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1438 sc);
1439
1440 physaddr = jbuf->physaddr;
1441 } else {
1442 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1443 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1444 if (error != 0) {
1445 aprint_error_dev(sc->sc_dev,
1446 "could not create DMA map\n");
1447 data->map = NULL;
1448 goto fail;
1449 }
1450 MCLGET(data->m, M_DONTWAIT);
1451 if (!(data->m->m_flags & M_EXT)) {
1452 aprint_error_dev(sc->sc_dev,
1453 "could not allocate mbuf cluster\n");
1454 error = ENOMEM;
1455 goto fail;
1456 }
1457
1458 error = bus_dmamap_load(sc->sc_dmat, data->map,
1459 mtod(data->m, void *), MCLBYTES, NULL,
1460 BUS_DMA_READ | BUS_DMA_NOWAIT);
1461 if (error != 0) {
1462 aprint_error_dev(sc->sc_dev,
1463 "could not load rx buf DMA map");
1464 goto fail;
1465 }
1466 physaddr = data->map->dm_segs[0].ds_addr;
1467 }
1468
1469 if (sc->sc_flags & NFE_40BIT_ADDR) {
1470 desc64 = &sc->rxq.desc64[i];
1471 #if defined(__LP64__)
1472 desc64->physaddr[0] = htole32(physaddr >> 32);
1473 #endif
1474 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1475 desc64->length = htole16(sc->rxq.bufsz);
1476 desc64->flags = htole16(NFE_RX_READY);
1477 } else {
1478 desc32 = &sc->rxq.desc32[i];
1479 desc32->physaddr = htole32(physaddr);
1480 desc32->length = htole16(sc->rxq.bufsz);
1481 desc32->flags = htole16(NFE_RX_READY);
1482 }
1483 }
1484
1485 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1486 BUS_DMASYNC_PREWRITE);
1487
1488 return 0;
1489
1490 fail: nfe_free_rx_ring(sc, ring);
1491 return error;
1492 }
1493
1494 void
1495 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1496 {
1497 int i;
1498
1499 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1500 if (sc->sc_flags & NFE_40BIT_ADDR) {
1501 ring->desc64[i].length = htole16(ring->bufsz);
1502 ring->desc64[i].flags = htole16(NFE_RX_READY);
1503 } else {
1504 ring->desc32[i].length = htole16(ring->bufsz);
1505 ring->desc32[i].flags = htole16(NFE_RX_READY);
1506 }
1507 }
1508
1509 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1510 BUS_DMASYNC_PREWRITE);
1511
1512 ring->cur = ring->next = 0;
1513 }
1514
1515 void
1516 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1517 {
1518 struct nfe_rx_data *data;
1519 void *desc;
1520 int i, descsize;
1521
1522 if (sc->sc_flags & NFE_40BIT_ADDR) {
1523 desc = ring->desc64;
1524 descsize = sizeof (struct nfe_desc64);
1525 } else {
1526 desc = ring->desc32;
1527 descsize = sizeof (struct nfe_desc32);
1528 }
1529
1530 if (desc != NULL) {
1531 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1532 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1533 bus_dmamap_unload(sc->sc_dmat, ring->map);
1534 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1535 NFE_RX_RING_COUNT * descsize);
1536 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1537 }
1538
1539 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1540 data = &ring->data[i];
1541
1542 if (data->map != NULL) {
1543 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1544 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1545 bus_dmamap_unload(sc->sc_dmat, data->map);
1546 bus_dmamap_destroy(sc->sc_dmat, data->map);
1547 }
1548 if (data->m != NULL)
1549 m_freem(data->m);
1550 }
1551 }
1552
1553 struct nfe_jbuf *
1554 nfe_jalloc(struct nfe_softc *sc, int i)
1555 {
1556 struct nfe_jbuf *jbuf;
1557
1558 mutex_enter(&sc->rxq.mtx);
1559 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1560 if (jbuf != NULL)
1561 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1562 mutex_exit(&sc->rxq.mtx);
1563 if (jbuf == NULL)
1564 return NULL;
1565 sc->rxq.jbufmap[i] =
1566 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1567 return jbuf;
1568 }
1569
1570 /*
1571 * This is called automatically by the network stack when the mbuf is freed.
1572 * Caution must be taken that the NIC might be reset by the time the mbuf is
1573 * freed.
1574 */
1575 void
1576 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1577 {
1578 struct nfe_softc *sc = arg;
1579 struct nfe_jbuf *jbuf;
1580 int i;
1581
1582 /* find the jbuf from the base pointer */
1583 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1584 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1585 aprint_error_dev(sc->sc_dev,
1586 "request to free a buffer (%p) not managed by us\n", buf);
1587 return;
1588 }
1589 jbuf = &sc->rxq.jbuf[i];
1590
1591 /* ..and put it back in the free list */
1592 mutex_enter(&sc->rxq.mtx);
1593 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1594 mutex_exit(&sc->rxq.mtx);
1595
1596 if (m != NULL)
1597 pool_cache_put(mb_cache, m);
1598 }
1599
1600 int
1601 nfe_jpool_alloc(struct nfe_softc *sc)
1602 {
1603 struct nfe_rx_ring *ring = &sc->rxq;
1604 struct nfe_jbuf *jbuf;
1605 bus_addr_t physaddr;
1606 char *buf;
1607 int i, nsegs, error;
1608
1609 /*
1610 * Allocate a big chunk of DMA'able memory.
1611 */
1612 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1613 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1614 if (error != 0) {
1615 aprint_error_dev(sc->sc_dev,
1616 "could not create jumbo DMA map\n");
1617 ring->jmap = NULL;
1618 goto fail;
1619 }
1620
1621 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1622 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1623 if (error != 0) {
1624 aprint_error_dev(sc->sc_dev,
1625 "could not allocate jumbo DMA memory\n");
1626 goto fail;
1627 }
1628
1629 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1630 &ring->jpool, BUS_DMA_NOWAIT);
1631 if (error != 0) {
1632 aprint_error_dev(sc->sc_dev,
1633 "could not map jumbo DMA memory\n");
1634 goto fail;
1635 }
1636
1637 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1638 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1639 if (error != 0) {
1640 aprint_error_dev(sc->sc_dev,
1641 "could not load jumbo DMA map\n");
1642 goto fail;
1643 }
1644
1645 /* ..and split it into 9KB chunks */
1646 SLIST_INIT(&ring->jfreelist);
1647
1648 buf = ring->jpool;
1649 physaddr = ring->jmap->dm_segs[0].ds_addr;
1650 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1651 jbuf = &ring->jbuf[i];
1652
1653 jbuf->buf = buf;
1654 jbuf->physaddr = physaddr;
1655
1656 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1657
1658 buf += NFE_JBYTES;
1659 physaddr += NFE_JBYTES;
1660 }
1661
1662 return 0;
1663
1664 fail: nfe_jpool_free(sc);
1665 return error;
1666 }
1667
1668 void
1669 nfe_jpool_free(struct nfe_softc *sc)
1670 {
1671 struct nfe_rx_ring *ring = &sc->rxq;
1672
1673 if (ring->jmap != NULL) {
1674 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1675 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1676 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1677 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1678 }
1679 if (ring->jpool != NULL) {
1680 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1681 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1682 }
1683 }
1684
1685 int
1686 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1687 {
1688 int i, nsegs, error;
1689 void **desc;
1690 int descsize;
1691
1692 if (sc->sc_flags & NFE_40BIT_ADDR) {
1693 desc = (void **)&ring->desc64;
1694 descsize = sizeof (struct nfe_desc64);
1695 } else {
1696 desc = (void **)&ring->desc32;
1697 descsize = sizeof (struct nfe_desc32);
1698 }
1699
1700 ring->queued = 0;
1701 ring->cur = ring->next = 0;
1702
1703 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1704 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1705
1706 if (error != 0) {
1707 aprint_error_dev(sc->sc_dev,
1708 "could not create desc DMA map\n");
1709 ring->map = NULL;
1710 goto fail;
1711 }
1712
1713 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1714 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1715 if (error != 0) {
1716 aprint_error_dev(sc->sc_dev,
1717 "could not allocate DMA memory\n");
1718 goto fail;
1719 }
1720
1721 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1722 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1723 if (error != 0) {
1724 aprint_error_dev(sc->sc_dev,
1725 "could not map desc DMA memory\n");
1726 goto fail;
1727 }
1728
1729 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1730 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1731 if (error != 0) {
1732 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1733 goto fail;
1734 }
1735
1736 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1737 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1738
1739 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1740 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1741 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1742 &ring->data[i].map);
1743 if (error != 0) {
1744 aprint_error_dev(sc->sc_dev,
1745 "could not create DMA map\n");
1746 ring->data[i].map = NULL;
1747 goto fail;
1748 }
1749 }
1750
1751 return 0;
1752
1753 fail: nfe_free_tx_ring(sc, ring);
1754 return error;
1755 }
1756
1757 void
1758 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1759 {
1760 struct nfe_tx_data *data;
1761 int i;
1762
1763 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1764 if (sc->sc_flags & NFE_40BIT_ADDR)
1765 ring->desc64[i].flags = 0;
1766 else
1767 ring->desc32[i].flags = 0;
1768
1769 data = &ring->data[i];
1770
1771 if (data->m != NULL) {
1772 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1773 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1774 bus_dmamap_unload(sc->sc_dmat, data->active);
1775 m_freem(data->m);
1776 data->m = NULL;
1777 }
1778 }
1779
1780 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1781 BUS_DMASYNC_PREWRITE);
1782
1783 ring->queued = 0;
1784 ring->cur = ring->next = 0;
1785 }
1786
1787 void
1788 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1789 {
1790 struct nfe_tx_data *data;
1791 void *desc;
1792 int i, descsize;
1793
1794 if (sc->sc_flags & NFE_40BIT_ADDR) {
1795 desc = ring->desc64;
1796 descsize = sizeof (struct nfe_desc64);
1797 } else {
1798 desc = ring->desc32;
1799 descsize = sizeof (struct nfe_desc32);
1800 }
1801
1802 if (desc != NULL) {
1803 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1804 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1805 bus_dmamap_unload(sc->sc_dmat, ring->map);
1806 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1807 NFE_TX_RING_COUNT * descsize);
1808 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1809 }
1810
1811 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1812 data = &ring->data[i];
1813
1814 if (data->m != NULL) {
1815 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1816 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1817 bus_dmamap_unload(sc->sc_dmat, data->active);
1818 m_freem(data->m);
1819 }
1820 }
1821
1822 /* ..and now actually destroy the DMA mappings */
1823 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1824 data = &ring->data[i];
1825 if (data->map == NULL)
1826 continue;
1827 bus_dmamap_destroy(sc->sc_dmat, data->map);
1828 }
1829 }
1830
1831 void
1832 nfe_setmulti(struct nfe_softc *sc)
1833 {
1834 struct ethercom *ec = &sc->sc_ethercom;
1835 struct ifnet *ifp = &ec->ec_if;
1836 struct ether_multi *enm;
1837 struct ether_multistep step;
1838 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1839 uint32_t filter = NFE_RXFILTER_MAGIC;
1840 int i;
1841
1842 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1843 bzero(addr, ETHER_ADDR_LEN);
1844 bzero(mask, ETHER_ADDR_LEN);
1845 goto done;
1846 }
1847
1848 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1849 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1850
1851 ETHER_FIRST_MULTI(step, ec, enm);
1852 while (enm != NULL) {
1853 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1854 ifp->if_flags |= IFF_ALLMULTI;
1855 bzero(addr, ETHER_ADDR_LEN);
1856 bzero(mask, ETHER_ADDR_LEN);
1857 goto done;
1858 }
1859 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1860 addr[i] &= enm->enm_addrlo[i];
1861 mask[i] &= ~enm->enm_addrlo[i];
1862 }
1863 ETHER_NEXT_MULTI(step, enm);
1864 }
1865 for (i = 0; i < ETHER_ADDR_LEN; i++)
1866 mask[i] |= addr[i];
1867
1868 done:
1869 addr[0] |= 0x01; /* make sure multicast bit is set */
1870
1871 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1872 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1873 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1874 addr[5] << 8 | addr[4]);
1875 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1876 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1877 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1878 mask[5] << 8 | mask[4]);
1879
1880 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1881 NFE_WRITE(sc, NFE_RXFILTER, filter);
1882 }
1883
1884 void
1885 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1886 {
1887 uint32_t tmp;
1888
1889 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1890 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1891 addr[0] = (tmp & 0xff);
1892 addr[1] = (tmp >> 8) & 0xff;
1893 addr[2] = (tmp >> 16) & 0xff;
1894 addr[3] = (tmp >> 24) & 0xff;
1895
1896 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1897 addr[4] = (tmp & 0xff);
1898 addr[5] = (tmp >> 8) & 0xff;
1899
1900 } else {
1901 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1902 addr[0] = (tmp >> 8) & 0xff;
1903 addr[1] = (tmp & 0xff);
1904
1905 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1906 addr[2] = (tmp >> 24) & 0xff;
1907 addr[3] = (tmp >> 16) & 0xff;
1908 addr[4] = (tmp >> 8) & 0xff;
1909 addr[5] = (tmp & 0xff);
1910 }
1911 }
1912
1913 void
1914 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1915 {
1916 NFE_WRITE(sc, NFE_MACADDR_LO,
1917 addr[5] << 8 | addr[4]);
1918 NFE_WRITE(sc, NFE_MACADDR_HI,
1919 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1920 }
1921
1922 void
1923 nfe_tick(void *arg)
1924 {
1925 struct nfe_softc *sc = arg;
1926 int s;
1927
1928 s = splnet();
1929 mii_tick(&sc->sc_mii);
1930 splx(s);
1931
1932 callout_schedule(&sc->sc_tick_ch, hz);
1933 }
1934
1935 void
1936 nfe_poweron(device_t self)
1937 {
1938 struct nfe_softc *sc = device_private(self);
1939
1940 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1941 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1942 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1943 DELAY(100);
1944 NFE_WRITE(sc, NFE_MAC_RESET, 0);
1945 DELAY(100);
1946 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1947 NFE_WRITE(sc, NFE_PWR2_CTL,
1948 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1949 }
1950 }
1951
1952 bool
1953 nfe_resume(device_t dv PMF_FN_ARGS)
1954 {
1955 nfe_poweron(dv);
1956
1957 return true;
1958 }
1959