if_nfe.c revision 1.37 1 /* $NetBSD: if_nfe.c,v 1.37 2008/11/07 00:20:07 dyoung Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.37 2008/11/07 00:20:07 dyoung Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/callout.h>
41 #include <sys/socket.h>
42
43 #include <sys/bus.h>
44
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 #include <net/if_arp.h>
50
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_inarp.h>
57 #endif
58
59 #if NVLAN > 0
60 #include <net/if_types.h>
61 #endif
62
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/pci/if_nfereg.h>
75 #include <dev/pci/if_nfevar.h>
76
77 static int nfe_ifflags_cb(struct ethercom *);
78
79 int nfe_match(device_t, cfdata_t, void *);
80 void nfe_attach(device_t, device_t, void *);
81 void nfe_power(int, void *);
82 void nfe_miibus_statchg(device_t);
83 int nfe_miibus_readreg(device_t, int, int);
84 void nfe_miibus_writereg(device_t, int, int, int);
85 int nfe_intr(void *);
86 int nfe_ioctl(struct ifnet *, u_long, void *);
87 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
88 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
89 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
90 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
91 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
92 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
93 void nfe_rxeof(struct nfe_softc *);
94 void nfe_txeof(struct nfe_softc *);
95 int nfe_encap(struct nfe_softc *, struct mbuf *);
96 void nfe_start(struct ifnet *);
97 void nfe_watchdog(struct ifnet *);
98 int nfe_init(struct ifnet *);
99 void nfe_stop(struct ifnet *, int);
100 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
101 void nfe_jfree(struct mbuf *, void *, size_t, void *);
102 int nfe_jpool_alloc(struct nfe_softc *);
103 void nfe_jpool_free(struct nfe_softc *);
104 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
106 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
107 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
109 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
110 void nfe_setmulti(struct nfe_softc *);
111 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
112 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
113 void nfe_tick(void *);
114 void nfe_poweron(device_t);
115 bool nfe_resume(device_t PMF_FN_PROTO);
116
117 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
118 NULL, NULL);
119
120 /* #define NFE_NO_JUMBO */
121
122 #ifdef NFE_DEBUG
123 int nfedebug = 0;
124 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
125 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
126 #else
127 #define DPRINTF(x)
128 #define DPRINTFN(n,x)
129 #endif
130
131 /* deal with naming differences */
132
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
135 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
136 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
137 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
138 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
139
140 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
142 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
143 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
144
145 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
147 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
148 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
149
150 #ifdef _LP64
151 #define __LP64__ 1
152 #endif
153
154 const struct nfe_product {
155 pci_vendor_id_t vendor;
156 pci_product_id_t product;
157 } nfe_devices[] = {
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
195 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
196 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
197 };
198
199 int
200 nfe_match(device_t dev, cfdata_t match, void *aux)
201 {
202 struct pci_attach_args *pa = aux;
203 const struct nfe_product *np;
204 int i;
205
206 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
207 np = &nfe_devices[i];
208 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
209 PCI_PRODUCT(pa->pa_id) == np->product)
210 return 1;
211 }
212 return 0;
213 }
214
215 void
216 nfe_attach(device_t parent, device_t self, void *aux)
217 {
218 struct nfe_softc *sc = device_private(self);
219 struct pci_attach_args *pa = aux;
220 pci_chipset_tag_t pc = pa->pa_pc;
221 pci_intr_handle_t ih;
222 const char *intrstr;
223 struct ifnet *ifp;
224 bus_size_t memsize;
225 pcireg_t memtype;
226 char devinfo[256];
227
228 sc->sc_dev = self;
229 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
230 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
231
232 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
233 switch (memtype) {
234 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
235 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
236 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
237 &sc->sc_memh, NULL, &memsize) == 0)
238 break;
239 /* FALLTHROUGH */
240 default:
241 aprint_error_dev(self, "could not map mem space\n");
242 return;
243 }
244
245 if (pci_intr_map(pa, &ih) != 0) {
246 aprint_error_dev(self, "could not map interrupt\n");
247 return;
248 }
249
250 intrstr = pci_intr_string(pc, ih);
251 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
252 if (sc->sc_ih == NULL) {
253 aprint_error_dev(self, "could not establish interrupt");
254 if (intrstr != NULL)
255 aprint_normal(" at %s", intrstr);
256 aprint_normal("\n");
257 return;
258 }
259 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
260
261 sc->sc_dmat = pa->pa_dmat;
262
263 sc->sc_flags = 0;
264
265 switch (PCI_PRODUCT(pa->pa_id)) {
266 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
268 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
269 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
270 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
271 break;
272 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
273 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
274 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
275 break;
276 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
277 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
278 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
279 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
280 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
281 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
282 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
283 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
284 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
285 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
286 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
287 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
288 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
289 NFE_PWR_MGMT;
290 break;
291 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
292 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
293 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
294 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
295 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
296 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
297 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
298 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
299 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
300 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
301 break;
302 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
303 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
304 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
305 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
306 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
307 break;
308 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
309 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
310 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
311 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
312 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
313 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
314 break;
315 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
316 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
317 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
318 NFE_HW_VLAN | NFE_PWR_MGMT;
319 break;
320 }
321
322 nfe_poweron(self);
323
324 #ifndef NFE_NO_JUMBO
325 /* enable jumbo frames for adapters that support it */
326 if (sc->sc_flags & NFE_JUMBO_SUP)
327 sc->sc_flags |= NFE_USE_JUMBO;
328 #endif
329
330 /* Check for reversed ethernet address */
331 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
332 sc->sc_flags |= NFE_CORRECT_MACADDR;
333
334 nfe_get_macaddr(sc, sc->sc_enaddr);
335 aprint_normal_dev(self, "Ethernet address %s\n",
336 ether_sprintf(sc->sc_enaddr));
337
338 /*
339 * Allocate Tx and Rx rings.
340 */
341 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
342 aprint_error_dev(self, "could not allocate Tx ring\n");
343 return;
344 }
345
346 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
347
348 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
349 aprint_error_dev(self, "could not allocate Rx ring\n");
350 nfe_free_tx_ring(sc, &sc->txq);
351 return;
352 }
353
354 ifp = &sc->sc_ethercom.ec_if;
355 ifp->if_softc = sc;
356 ifp->if_mtu = ETHERMTU;
357 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
358 ifp->if_ioctl = nfe_ioctl;
359 ifp->if_start = nfe_start;
360 ifp->if_stop = nfe_stop;
361 ifp->if_watchdog = nfe_watchdog;
362 ifp->if_init = nfe_init;
363 ifp->if_baudrate = IF_Gbps(1);
364 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
365 IFQ_SET_READY(&ifp->if_snd);
366 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
367
368 if (sc->sc_flags & NFE_USE_JUMBO)
369 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
370
371 #if NVLAN > 0
372 if (sc->sc_flags & NFE_HW_VLAN)
373 sc->sc_ethercom.ec_capabilities |=
374 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
375 #endif
376 if (sc->sc_flags & NFE_HW_CSUM) {
377 ifp->if_capabilities |=
378 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
379 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
380 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
381 }
382
383 sc->sc_mii.mii_ifp = ifp;
384 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
385 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
386 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
387
388 sc->sc_ethercom.ec_mii = &sc->sc_mii;
389 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
390 ether_mediastatus);
391 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
392 MII_OFFSET_ANY, 0);
393 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
394 aprint_error_dev(self, "no PHY found!\n");
395 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
396 0, NULL);
397 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
398 } else
399 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
400
401 if_attach(ifp);
402 ether_ifattach(ifp, sc->sc_enaddr);
403 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
404
405 callout_init(&sc->sc_tick_ch, 0);
406 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
407
408 if (!pmf_device_register(self, NULL, nfe_resume))
409 aprint_error_dev(self, "couldn't establish power handler\n");
410 else
411 pmf_class_network_register(self, ifp);
412 }
413
414 void
415 nfe_miibus_statchg(device_t dev)
416 {
417 struct nfe_softc *sc = device_private(dev);
418 struct mii_data *mii = &sc->sc_mii;
419 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
420
421 phy = NFE_READ(sc, NFE_PHY_IFACE);
422 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
423
424 seed = NFE_READ(sc, NFE_RNDSEED);
425 seed &= ~NFE_SEED_MASK;
426
427 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
428 phy |= NFE_PHY_HDX; /* half-duplex */
429 misc |= NFE_MISC1_HDX;
430 }
431
432 switch (IFM_SUBTYPE(mii->mii_media_active)) {
433 case IFM_1000_T: /* full-duplex only */
434 link |= NFE_MEDIA_1000T;
435 seed |= NFE_SEED_1000T;
436 phy |= NFE_PHY_1000T;
437 break;
438 case IFM_100_TX:
439 link |= NFE_MEDIA_100TX;
440 seed |= NFE_SEED_100TX;
441 phy |= NFE_PHY_100TX;
442 break;
443 case IFM_10_T:
444 link |= NFE_MEDIA_10T;
445 seed |= NFE_SEED_10T;
446 break;
447 }
448
449 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
450
451 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
452 NFE_WRITE(sc, NFE_MISC1, misc);
453 NFE_WRITE(sc, NFE_LINKSPEED, link);
454 }
455
456 int
457 nfe_miibus_readreg(device_t dev, int phy, int reg)
458 {
459 struct nfe_softc *sc = device_private(dev);
460 uint32_t val;
461 int ntries;
462
463 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
464
465 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
466 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
467 DELAY(100);
468 }
469
470 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
471
472 for (ntries = 0; ntries < 1000; ntries++) {
473 DELAY(100);
474 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
475 break;
476 }
477 if (ntries == 1000) {
478 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
479 device_xname(sc->sc_dev)));
480 return 0;
481 }
482
483 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
484 DPRINTFN(2, ("%s: could not read PHY\n",
485 device_xname(sc->sc_dev)));
486 return 0;
487 }
488
489 val = NFE_READ(sc, NFE_PHY_DATA);
490 if (val != 0xffffffff && val != 0)
491 sc->mii_phyaddr = phy;
492
493 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
494 device_xname(sc->sc_dev), phy, reg, val));
495
496 return val;
497 }
498
499 void
500 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
501 {
502 struct nfe_softc *sc = device_private(dev);
503 uint32_t ctl;
504 int ntries;
505
506 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
507
508 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
509 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
510 DELAY(100);
511 }
512
513 NFE_WRITE(sc, NFE_PHY_DATA, val);
514 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
515 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
516
517 for (ntries = 0; ntries < 1000; ntries++) {
518 DELAY(100);
519 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
520 break;
521 }
522 #ifdef NFE_DEBUG
523 if (nfedebug >= 2 && ntries == 1000)
524 printf("could not write to PHY\n");
525 #endif
526 }
527
528 int
529 nfe_intr(void *arg)
530 {
531 struct nfe_softc *sc = arg;
532 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
533 uint32_t r;
534 int handled;
535
536 if ((ifp->if_flags & IFF_UP) == 0)
537 return 0;
538
539 handled = 0;
540
541 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
542
543 for (;;) {
544 r = NFE_READ(sc, NFE_IRQ_STATUS);
545 if ((r & NFE_IRQ_WANTED) == 0)
546 break;
547
548 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
549 handled = 1;
550 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
551
552 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
553 /* check Rx ring */
554 nfe_rxeof(sc);
555 }
556 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
557 /* check Tx ring */
558 nfe_txeof(sc);
559 }
560 if ((r & NFE_IRQ_LINK) != 0) {
561 NFE_READ(sc, NFE_PHY_STATUS);
562 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
563 DPRINTF(("%s: link state changed\n",
564 device_xname(sc->sc_dev)));
565 }
566 }
567
568 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
569
570 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
571 nfe_start(ifp);
572
573 return handled;
574 }
575
576 static int
577 nfe_ifflags_cb(struct ethercom *ec)
578 {
579 struct ifnet *ifp = &ec->ec_if;
580 struct nfe_softc *sc = ifp->if_softc;
581 int change = ifp->if_flags ^ sc->sc_if_flags;
582
583 /*
584 * If only the PROMISC flag changes, then
585 * don't do a full re-init of the chip, just update
586 * the Rx filter.
587 */
588 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
589 return ENETRESET;
590 else if ((change & IFF_PROMISC) != 0)
591 nfe_setmulti(sc);
592
593 return 0;
594 }
595
596 int
597 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
598 {
599 struct nfe_softc *sc = ifp->if_softc;
600 struct ifaddr *ifa = (struct ifaddr *)data;
601 int s, error = 0;
602
603 s = splnet();
604
605 switch (cmd) {
606 case SIOCINITIFADDR:
607 ifp->if_flags |= IFF_UP;
608 nfe_init(ifp);
609 switch (ifa->ifa_addr->sa_family) {
610 #ifdef INET
611 case AF_INET:
612 arp_ifinit(ifp, ifa);
613 break;
614 #endif
615 default:
616 break;
617 }
618 break;
619 default:
620 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
621 break;
622
623 error = 0;
624
625 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
626 ;
627 else if (ifp->if_flags & IFF_RUNNING)
628 nfe_setmulti(sc);
629 break;
630 }
631 sc->sc_if_flags = ifp->if_flags;
632
633 splx(s);
634
635 return error;
636 }
637
638 void
639 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
640 {
641 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
642 (char *)desc32 - (char *)sc->txq.desc32,
643 sizeof (struct nfe_desc32), ops);
644 }
645
646 void
647 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
648 {
649 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
650 (char *)desc64 - (char *)sc->txq.desc64,
651 sizeof (struct nfe_desc64), ops);
652 }
653
654 void
655 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
656 {
657 if (end > start) {
658 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
659 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
660 (char *)&sc->txq.desc32[end] -
661 (char *)&sc->txq.desc32[start], ops);
662 return;
663 }
664 /* sync from 'start' to end of ring */
665 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
666 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
667 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
668 (char *)&sc->txq.desc32[start], ops);
669
670 /* sync from start of ring to 'end' */
671 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
672 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
673 }
674
675 void
676 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
677 {
678 if (end > start) {
679 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
680 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
681 (char *)&sc->txq.desc64[end] -
682 (char *)&sc->txq.desc64[start], ops);
683 return;
684 }
685 /* sync from 'start' to end of ring */
686 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
687 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
688 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
689 (char *)&sc->txq.desc64[start], ops);
690
691 /* sync from start of ring to 'end' */
692 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
693 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
694 }
695
696 void
697 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
698 {
699 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
700 (char *)desc32 - (char *)sc->rxq.desc32,
701 sizeof (struct nfe_desc32), ops);
702 }
703
704 void
705 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
706 {
707 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
708 (char *)desc64 - (char *)sc->rxq.desc64,
709 sizeof (struct nfe_desc64), ops);
710 }
711
712 void
713 nfe_rxeof(struct nfe_softc *sc)
714 {
715 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
716 struct nfe_desc32 *desc32;
717 struct nfe_desc64 *desc64;
718 struct nfe_rx_data *data;
719 struct nfe_jbuf *jbuf;
720 struct mbuf *m, *mnew;
721 bus_addr_t physaddr;
722 uint16_t flags;
723 int error, len, i;
724
725 desc32 = NULL;
726 desc64 = NULL;
727 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
728 data = &sc->rxq.data[i];
729
730 if (sc->sc_flags & NFE_40BIT_ADDR) {
731 desc64 = &sc->rxq.desc64[i];
732 nfe_rxdesc64_sync(sc, desc64,
733 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
734
735 flags = le16toh(desc64->flags);
736 len = le16toh(desc64->length) & 0x3fff;
737 } else {
738 desc32 = &sc->rxq.desc32[i];
739 nfe_rxdesc32_sync(sc, desc32,
740 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
741
742 flags = le16toh(desc32->flags);
743 len = le16toh(desc32->length) & 0x3fff;
744 }
745
746 if ((flags & NFE_RX_READY) != 0)
747 break;
748
749 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
750 if ((flags & NFE_RX_VALID_V1) == 0)
751 goto skip;
752
753 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
754 flags &= ~NFE_RX_ERROR;
755 len--; /* fix buffer length */
756 }
757 } else {
758 if ((flags & NFE_RX_VALID_V2) == 0)
759 goto skip;
760
761 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
762 flags &= ~NFE_RX_ERROR;
763 len--; /* fix buffer length */
764 }
765 }
766
767 if (flags & NFE_RX_ERROR) {
768 ifp->if_ierrors++;
769 goto skip;
770 }
771
772 /*
773 * Try to allocate a new mbuf for this ring element and load
774 * it before processing the current mbuf. If the ring element
775 * cannot be loaded, drop the received packet and reuse the
776 * old mbuf. In the unlikely case that the old mbuf can't be
777 * reloaded either, explicitly panic.
778 */
779 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
780 if (mnew == NULL) {
781 ifp->if_ierrors++;
782 goto skip;
783 }
784
785 if (sc->sc_flags & NFE_USE_JUMBO) {
786 physaddr =
787 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
788 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
789 if (len > MCLBYTES) {
790 m_freem(mnew);
791 ifp->if_ierrors++;
792 goto skip1;
793 }
794 MCLGET(mnew, M_DONTWAIT);
795 if ((mnew->m_flags & M_EXT) == 0) {
796 m_freem(mnew);
797 ifp->if_ierrors++;
798 goto skip1;
799 }
800
801 (void)memcpy(mtod(mnew, void *),
802 mtod(data->m, const void *), len);
803 m = mnew;
804 goto mbufcopied;
805 } else {
806 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
807 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
808 mtod(data->m, char *) - (char *)sc->rxq.jpool,
809 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
810
811 physaddr = jbuf->physaddr;
812 }
813 } else {
814 MCLGET(mnew, M_DONTWAIT);
815 if ((mnew->m_flags & M_EXT) == 0) {
816 m_freem(mnew);
817 ifp->if_ierrors++;
818 goto skip;
819 }
820
821 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
822 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
823 bus_dmamap_unload(sc->sc_dmat, data->map);
824
825 error = bus_dmamap_load(sc->sc_dmat, data->map,
826 mtod(mnew, void *), MCLBYTES, NULL,
827 BUS_DMA_READ | BUS_DMA_NOWAIT);
828 if (error != 0) {
829 m_freem(mnew);
830
831 /* try to reload the old mbuf */
832 error = bus_dmamap_load(sc->sc_dmat, data->map,
833 mtod(data->m, void *), MCLBYTES, NULL,
834 BUS_DMA_READ | BUS_DMA_NOWAIT);
835 if (error != 0) {
836 /* very unlikely that it will fail.. */
837 panic("%s: could not load old rx mbuf",
838 device_xname(sc->sc_dev));
839 }
840 ifp->if_ierrors++;
841 goto skip;
842 }
843 physaddr = data->map->dm_segs[0].ds_addr;
844 }
845
846 /*
847 * New mbuf successfully loaded, update Rx ring and continue
848 * processing.
849 */
850 m = data->m;
851 data->m = mnew;
852
853 mbufcopied:
854 /* finalize mbuf */
855 m->m_pkthdr.len = m->m_len = len;
856 m->m_pkthdr.rcvif = ifp;
857
858 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
859 /*
860 * XXX
861 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
862 */
863 if (flags & NFE_RX_IP_CSUMOK) {
864 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
865 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
866 device_xname(sc->sc_dev)));
867 }
868 /*
869 * XXX
870 * no way to check M_CSUM_TCP_UDP_BAD or
871 * other protocols?
872 */
873 if (flags & NFE_RX_UDP_CSUMOK) {
874 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
875 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
876 device_xname(sc->sc_dev)));
877 } else if (flags & NFE_RX_TCP_CSUMOK) {
878 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
879 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
880 device_xname(sc->sc_dev)));
881 }
882 }
883 #if NBPFILTER > 0
884 if (ifp->if_bpf)
885 bpf_mtap(ifp->if_bpf, m);
886 #endif
887 ifp->if_ipackets++;
888 (*ifp->if_input)(ifp, m);
889
890 skip1:
891 /* update mapping address in h/w descriptor */
892 if (sc->sc_flags & NFE_40BIT_ADDR) {
893 #if defined(__LP64__)
894 desc64->physaddr[0] = htole32(physaddr >> 32);
895 #endif
896 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
897 } else {
898 desc32->physaddr = htole32(physaddr);
899 }
900
901 skip:
902 if (sc->sc_flags & NFE_40BIT_ADDR) {
903 desc64->length = htole16(sc->rxq.bufsz);
904 desc64->flags = htole16(NFE_RX_READY);
905
906 nfe_rxdesc64_sync(sc, desc64,
907 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
908 } else {
909 desc32->length = htole16(sc->rxq.bufsz);
910 desc32->flags = htole16(NFE_RX_READY);
911
912 nfe_rxdesc32_sync(sc, desc32,
913 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
914 }
915 }
916 /* update current RX pointer */
917 sc->rxq.cur = i;
918 }
919
920 void
921 nfe_txeof(struct nfe_softc *sc)
922 {
923 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
924 struct nfe_desc32 *desc32;
925 struct nfe_desc64 *desc64;
926 struct nfe_tx_data *data = NULL;
927 int i;
928 uint16_t flags;
929 char buf[128];
930
931 for (i = sc->txq.next;
932 sc->txq.queued > 0;
933 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
934 if (sc->sc_flags & NFE_40BIT_ADDR) {
935 desc64 = &sc->txq.desc64[i];
936 nfe_txdesc64_sync(sc, desc64,
937 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
938
939 flags = le16toh(desc64->flags);
940 } else {
941 desc32 = &sc->txq.desc32[i];
942 nfe_txdesc32_sync(sc, desc32,
943 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
944
945 flags = le16toh(desc32->flags);
946 }
947
948 if ((flags & NFE_TX_VALID) != 0)
949 break;
950
951 data = &sc->txq.data[i];
952
953 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
954 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
955 data->m == NULL)
956 continue;
957
958 if ((flags & NFE_TX_ERROR_V1) != 0) {
959 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
960 bitmask_snprintf(flags, NFE_V1_TXERR,
961 buf, sizeof(buf)));
962 ifp->if_oerrors++;
963 } else
964 ifp->if_opackets++;
965 } else {
966 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
967 data->m == NULL)
968 continue;
969
970 if ((flags & NFE_TX_ERROR_V2) != 0) {
971 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
972 bitmask_snprintf(flags, NFE_V2_TXERR,
973 buf, sizeof(buf)));
974 ifp->if_oerrors++;
975 } else
976 ifp->if_opackets++;
977 }
978
979 if (data->m == NULL) { /* should not get there */
980 aprint_error_dev(sc->sc_dev,
981 "last fragment bit w/o associated mbuf!\n");
982 continue;
983 }
984
985 /* last fragment of the mbuf chain transmitted */
986 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
987 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
988 bus_dmamap_unload(sc->sc_dmat, data->active);
989 m_freem(data->m);
990 data->m = NULL;
991 }
992
993 sc->txq.next = i;
994
995 if (sc->txq.queued < NFE_TX_RING_COUNT) {
996 /* at least one slot freed */
997 ifp->if_flags &= ~IFF_OACTIVE;
998 }
999
1000 if (sc->txq.queued == 0) {
1001 /* all queued packets are sent */
1002 ifp->if_timer = 0;
1003 }
1004 }
1005
1006 int
1007 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1008 {
1009 struct nfe_desc32 *desc32;
1010 struct nfe_desc64 *desc64;
1011 struct nfe_tx_data *data;
1012 bus_dmamap_t map;
1013 uint16_t flags, csumflags;
1014 #if NVLAN > 0
1015 struct m_tag *mtag;
1016 uint32_t vtag = 0;
1017 #endif
1018 int error, i, first;
1019
1020 desc32 = NULL;
1021 desc64 = NULL;
1022 data = NULL;
1023
1024 flags = 0;
1025 csumflags = 0;
1026 first = sc->txq.cur;
1027
1028 map = sc->txq.data[first].map;
1029
1030 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1031 if (error != 0) {
1032 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1033 error);
1034 return error;
1035 }
1036
1037 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1038 bus_dmamap_unload(sc->sc_dmat, map);
1039 return ENOBUFS;
1040 }
1041
1042 #if NVLAN > 0
1043 /* setup h/w VLAN tagging */
1044 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1045 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1046 #endif
1047 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1048 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1049 csumflags |= NFE_TX_IP_CSUM;
1050 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1051 csumflags |= NFE_TX_TCP_UDP_CSUM;
1052 }
1053
1054 for (i = 0; i < map->dm_nsegs; i++) {
1055 data = &sc->txq.data[sc->txq.cur];
1056
1057 if (sc->sc_flags & NFE_40BIT_ADDR) {
1058 desc64 = &sc->txq.desc64[sc->txq.cur];
1059 #if defined(__LP64__)
1060 desc64->physaddr[0] =
1061 htole32(map->dm_segs[i].ds_addr >> 32);
1062 #endif
1063 desc64->physaddr[1] =
1064 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1065 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1066 desc64->flags = htole16(flags);
1067 desc64->vtag = 0;
1068 } else {
1069 desc32 = &sc->txq.desc32[sc->txq.cur];
1070
1071 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1072 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1073 desc32->flags = htole16(flags);
1074 }
1075
1076 /*
1077 * Setting of the valid bit in the first descriptor is
1078 * deferred until the whole chain is fully setup.
1079 */
1080 flags |= NFE_TX_VALID;
1081
1082 sc->txq.queued++;
1083 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1084 }
1085
1086 /* the whole mbuf chain has been setup */
1087 if (sc->sc_flags & NFE_40BIT_ADDR) {
1088 /* fix last descriptor */
1089 flags |= NFE_TX_LASTFRAG_V2;
1090 desc64->flags = htole16(flags);
1091
1092 /* Checksum flags and vtag belong to the first fragment only. */
1093 #if NVLAN > 0
1094 sc->txq.desc64[first].vtag = htole32(vtag);
1095 #endif
1096 sc->txq.desc64[first].flags |= htole16(csumflags);
1097
1098 /* finally, set the valid bit in the first descriptor */
1099 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1100 } else {
1101 /* fix last descriptor */
1102 if (sc->sc_flags & NFE_JUMBO_SUP)
1103 flags |= NFE_TX_LASTFRAG_V2;
1104 else
1105 flags |= NFE_TX_LASTFRAG_V1;
1106 desc32->flags = htole16(flags);
1107
1108 /* Checksum flags belong to the first fragment only. */
1109 sc->txq.desc32[first].flags |= htole16(csumflags);
1110
1111 /* finally, set the valid bit in the first descriptor */
1112 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1113 }
1114
1115 data->m = m0;
1116 data->active = map;
1117
1118 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1119 BUS_DMASYNC_PREWRITE);
1120
1121 return 0;
1122 }
1123
1124 void
1125 nfe_start(struct ifnet *ifp)
1126 {
1127 struct nfe_softc *sc = ifp->if_softc;
1128 int old = sc->txq.queued;
1129 struct mbuf *m0;
1130
1131 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1132 return;
1133
1134 for (;;) {
1135 IFQ_POLL(&ifp->if_snd, m0);
1136 if (m0 == NULL)
1137 break;
1138
1139 if (nfe_encap(sc, m0) != 0) {
1140 ifp->if_flags |= IFF_OACTIVE;
1141 break;
1142 }
1143
1144 /* packet put in h/w queue, remove from s/w queue */
1145 IFQ_DEQUEUE(&ifp->if_snd, m0);
1146
1147 #if NBPFILTER > 0
1148 if (ifp->if_bpf != NULL)
1149 bpf_mtap(ifp->if_bpf, m0);
1150 #endif
1151 }
1152
1153 if (sc->txq.queued != old) {
1154 /* packets are queued */
1155 if (sc->sc_flags & NFE_40BIT_ADDR)
1156 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1157 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1158 else
1159 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1160 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1161 /* kick Tx */
1162 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1163
1164 /*
1165 * Set a timeout in case the chip goes out to lunch.
1166 */
1167 ifp->if_timer = 5;
1168 }
1169 }
1170
1171 void
1172 nfe_watchdog(struct ifnet *ifp)
1173 {
1174 struct nfe_softc *sc = ifp->if_softc;
1175
1176 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1177
1178 ifp->if_flags &= ~IFF_RUNNING;
1179 nfe_init(ifp);
1180
1181 ifp->if_oerrors++;
1182 }
1183
1184 int
1185 nfe_init(struct ifnet *ifp)
1186 {
1187 struct nfe_softc *sc = ifp->if_softc;
1188 uint32_t tmp;
1189 int rc = 0, s;
1190
1191 if (ifp->if_flags & IFF_RUNNING)
1192 return 0;
1193
1194 nfe_stop(ifp, 0);
1195
1196 NFE_WRITE(sc, NFE_TX_UNK, 0);
1197 NFE_WRITE(sc, NFE_STATUS, 0);
1198
1199 sc->rxtxctl = NFE_RXTX_BIT2;
1200 if (sc->sc_flags & NFE_40BIT_ADDR)
1201 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1202 else if (sc->sc_flags & NFE_JUMBO_SUP)
1203 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1204 if (sc->sc_flags & NFE_HW_CSUM)
1205 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1206 #if NVLAN > 0
1207 /*
1208 * Although the adapter is capable of stripping VLAN tags from received
1209 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1210 * purpose. This will be done in software by our network stack.
1211 */
1212 if (sc->sc_flags & NFE_HW_VLAN)
1213 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1214 #endif
1215 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1216 DELAY(10);
1217 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1218
1219 #if NVLAN
1220 if (sc->sc_flags & NFE_HW_VLAN)
1221 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1222 #endif
1223
1224 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1225
1226 /* set MAC address */
1227 nfe_set_macaddr(sc, sc->sc_enaddr);
1228
1229 /* tell MAC where rings are in memory */
1230 #ifdef __LP64__
1231 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1232 #endif
1233 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1234 #ifdef __LP64__
1235 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1236 #endif
1237 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1238
1239 NFE_WRITE(sc, NFE_RING_SIZE,
1240 (NFE_RX_RING_COUNT - 1) << 16 |
1241 (NFE_TX_RING_COUNT - 1));
1242
1243 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1244
1245 /* force MAC to wakeup */
1246 tmp = NFE_READ(sc, NFE_PWR_STATE);
1247 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1248 DELAY(10);
1249 tmp = NFE_READ(sc, NFE_PWR_STATE);
1250 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1251
1252 s = splnet();
1253 nfe_intr(sc); /* XXX clear IRQ status registers */
1254 splx(s);
1255
1256 #if 1
1257 /* configure interrupts coalescing/mitigation */
1258 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1259 #else
1260 /* no interrupt mitigation: one interrupt per packet */
1261 NFE_WRITE(sc, NFE_IMTIMER, 970);
1262 #endif
1263
1264 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1265 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1266 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1267
1268 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1269 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1270
1271 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1272 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1273
1274 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1275 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1276 DELAY(10);
1277 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1278
1279 /* set Rx filter */
1280 nfe_setmulti(sc);
1281
1282 if ((rc = ether_mediachange(ifp)) != 0)
1283 goto out;
1284
1285 nfe_tick(sc);
1286
1287 /* enable Rx */
1288 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1289
1290 /* enable Tx */
1291 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1292
1293 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1294
1295 /* enable interrupts */
1296 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1297
1298 callout_schedule(&sc->sc_tick_ch, hz);
1299
1300 ifp->if_flags |= IFF_RUNNING;
1301 ifp->if_flags &= ~IFF_OACTIVE;
1302
1303 out:
1304 return rc;
1305 }
1306
1307 void
1308 nfe_stop(struct ifnet *ifp, int disable)
1309 {
1310 struct nfe_softc *sc = ifp->if_softc;
1311
1312 callout_stop(&sc->sc_tick_ch);
1313
1314 ifp->if_timer = 0;
1315 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1316
1317 mii_down(&sc->sc_mii);
1318
1319 /* abort Tx */
1320 NFE_WRITE(sc, NFE_TX_CTL, 0);
1321
1322 /* disable Rx */
1323 NFE_WRITE(sc, NFE_RX_CTL, 0);
1324
1325 /* disable interrupts */
1326 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1327
1328 /* reset Tx and Rx rings */
1329 nfe_reset_tx_ring(sc, &sc->txq);
1330 nfe_reset_rx_ring(sc, &sc->rxq);
1331 }
1332
1333 int
1334 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1335 {
1336 struct nfe_desc32 *desc32;
1337 struct nfe_desc64 *desc64;
1338 struct nfe_rx_data *data;
1339 struct nfe_jbuf *jbuf;
1340 void **desc;
1341 bus_addr_t physaddr;
1342 int i, nsegs, error, descsize;
1343
1344 if (sc->sc_flags & NFE_40BIT_ADDR) {
1345 desc = (void **)&ring->desc64;
1346 descsize = sizeof (struct nfe_desc64);
1347 } else {
1348 desc = (void **)&ring->desc32;
1349 descsize = sizeof (struct nfe_desc32);
1350 }
1351
1352 ring->cur = ring->next = 0;
1353 ring->bufsz = MCLBYTES;
1354
1355 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1356 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1357 if (error != 0) {
1358 aprint_error_dev(sc->sc_dev,
1359 "could not create desc DMA map\n");
1360 goto fail;
1361 }
1362
1363 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1364 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1365 if (error != 0) {
1366 aprint_error_dev(sc->sc_dev,
1367 "could not allocate DMA memory\n");
1368 goto fail;
1369 }
1370
1371 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1372 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1373 if (error != 0) {
1374 aprint_error_dev(sc->sc_dev,
1375 "could not map desc DMA memory\n");
1376 goto fail;
1377 }
1378
1379 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1380 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1381 if (error != 0) {
1382 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1383 goto fail;
1384 }
1385
1386 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1387 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1388
1389 if (sc->sc_flags & NFE_USE_JUMBO) {
1390 ring->bufsz = NFE_JBYTES;
1391 if ((error = nfe_jpool_alloc(sc)) != 0) {
1392 aprint_error_dev(sc->sc_dev,
1393 "could not allocate jumbo frames\n");
1394 goto fail;
1395 }
1396 }
1397
1398 /*
1399 * Pre-allocate Rx buffers and populate Rx ring.
1400 */
1401 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1402 data = &sc->rxq.data[i];
1403
1404 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1405 if (data->m == NULL) {
1406 aprint_error_dev(sc->sc_dev,
1407 "could not allocate rx mbuf\n");
1408 error = ENOMEM;
1409 goto fail;
1410 }
1411
1412 if (sc->sc_flags & NFE_USE_JUMBO) {
1413 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1414 aprint_error_dev(sc->sc_dev,
1415 "could not allocate jumbo buffer\n");
1416 goto fail;
1417 }
1418 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1419 sc);
1420
1421 physaddr = jbuf->physaddr;
1422 } else {
1423 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1424 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1425 if (error != 0) {
1426 aprint_error_dev(sc->sc_dev,
1427 "could not create DMA map\n");
1428 goto fail;
1429 }
1430 MCLGET(data->m, M_DONTWAIT);
1431 if (!(data->m->m_flags & M_EXT)) {
1432 aprint_error_dev(sc->sc_dev,
1433 "could not allocate mbuf cluster\n");
1434 error = ENOMEM;
1435 goto fail;
1436 }
1437
1438 error = bus_dmamap_load(sc->sc_dmat, data->map,
1439 mtod(data->m, void *), MCLBYTES, NULL,
1440 BUS_DMA_READ | BUS_DMA_NOWAIT);
1441 if (error != 0) {
1442 aprint_error_dev(sc->sc_dev,
1443 "could not load rx buf DMA map");
1444 goto fail;
1445 }
1446 physaddr = data->map->dm_segs[0].ds_addr;
1447 }
1448
1449 if (sc->sc_flags & NFE_40BIT_ADDR) {
1450 desc64 = &sc->rxq.desc64[i];
1451 #if defined(__LP64__)
1452 desc64->physaddr[0] = htole32(physaddr >> 32);
1453 #endif
1454 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1455 desc64->length = htole16(sc->rxq.bufsz);
1456 desc64->flags = htole16(NFE_RX_READY);
1457 } else {
1458 desc32 = &sc->rxq.desc32[i];
1459 desc32->physaddr = htole32(physaddr);
1460 desc32->length = htole16(sc->rxq.bufsz);
1461 desc32->flags = htole16(NFE_RX_READY);
1462 }
1463 }
1464
1465 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1466 BUS_DMASYNC_PREWRITE);
1467
1468 return 0;
1469
1470 fail: nfe_free_rx_ring(sc, ring);
1471 return error;
1472 }
1473
1474 void
1475 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1476 {
1477 int i;
1478
1479 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1480 if (sc->sc_flags & NFE_40BIT_ADDR) {
1481 ring->desc64[i].length = htole16(ring->bufsz);
1482 ring->desc64[i].flags = htole16(NFE_RX_READY);
1483 } else {
1484 ring->desc32[i].length = htole16(ring->bufsz);
1485 ring->desc32[i].flags = htole16(NFE_RX_READY);
1486 }
1487 }
1488
1489 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1490 BUS_DMASYNC_PREWRITE);
1491
1492 ring->cur = ring->next = 0;
1493 }
1494
1495 void
1496 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1497 {
1498 struct nfe_rx_data *data;
1499 void *desc;
1500 int i, descsize;
1501
1502 if (sc->sc_flags & NFE_40BIT_ADDR) {
1503 desc = ring->desc64;
1504 descsize = sizeof (struct nfe_desc64);
1505 } else {
1506 desc = ring->desc32;
1507 descsize = sizeof (struct nfe_desc32);
1508 }
1509
1510 if (desc != NULL) {
1511 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1512 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1513 bus_dmamap_unload(sc->sc_dmat, ring->map);
1514 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1515 NFE_RX_RING_COUNT * descsize);
1516 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1517 }
1518
1519 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1520 data = &ring->data[i];
1521
1522 if (data->map != NULL) {
1523 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1524 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1525 bus_dmamap_unload(sc->sc_dmat, data->map);
1526 bus_dmamap_destroy(sc->sc_dmat, data->map);
1527 }
1528 if (data->m != NULL)
1529 m_freem(data->m);
1530 }
1531 }
1532
1533 struct nfe_jbuf *
1534 nfe_jalloc(struct nfe_softc *sc, int i)
1535 {
1536 struct nfe_jbuf *jbuf;
1537
1538 mutex_enter(&sc->rxq.mtx);
1539 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1540 if (jbuf != NULL)
1541 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1542 mutex_exit(&sc->rxq.mtx);
1543 if (jbuf == NULL)
1544 return NULL;
1545 sc->rxq.jbufmap[i] =
1546 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1547 return jbuf;
1548 }
1549
1550 /*
1551 * This is called automatically by the network stack when the mbuf is freed.
1552 * Caution must be taken that the NIC might be reset by the time the mbuf is
1553 * freed.
1554 */
1555 void
1556 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1557 {
1558 struct nfe_softc *sc = arg;
1559 struct nfe_jbuf *jbuf;
1560 int i;
1561
1562 /* find the jbuf from the base pointer */
1563 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1564 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1565 aprint_error_dev(sc->sc_dev,
1566 "request to free a buffer (%p) not managed by us\n", buf);
1567 return;
1568 }
1569 jbuf = &sc->rxq.jbuf[i];
1570
1571 /* ..and put it back in the free list */
1572 mutex_enter(&sc->rxq.mtx);
1573 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1574 mutex_exit(&sc->rxq.mtx);
1575
1576 if (m != NULL)
1577 pool_cache_put(mb_cache, m);
1578 }
1579
1580 int
1581 nfe_jpool_alloc(struct nfe_softc *sc)
1582 {
1583 struct nfe_rx_ring *ring = &sc->rxq;
1584 struct nfe_jbuf *jbuf;
1585 bus_addr_t physaddr;
1586 char *buf;
1587 int i, nsegs, error;
1588
1589 /*
1590 * Allocate a big chunk of DMA'able memory.
1591 */
1592 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1593 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1594 if (error != 0) {
1595 aprint_error_dev(sc->sc_dev,
1596 "could not create jumbo DMA map\n");
1597 goto fail;
1598 }
1599
1600 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1601 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1602 if (error != 0) {
1603 aprint_error_dev(sc->sc_dev,
1604 "could not allocate jumbo DMA memory\n");
1605 goto fail;
1606 }
1607
1608 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1609 &ring->jpool, BUS_DMA_NOWAIT);
1610 if (error != 0) {
1611 aprint_error_dev(sc->sc_dev,
1612 "could not map jumbo DMA memory\n");
1613 goto fail;
1614 }
1615
1616 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1617 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1618 if (error != 0) {
1619 aprint_error_dev(sc->sc_dev,
1620 "could not load jumbo DMA map\n");
1621 goto fail;
1622 }
1623
1624 /* ..and split it into 9KB chunks */
1625 SLIST_INIT(&ring->jfreelist);
1626
1627 buf = ring->jpool;
1628 physaddr = ring->jmap->dm_segs[0].ds_addr;
1629 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1630 jbuf = &ring->jbuf[i];
1631
1632 jbuf->buf = buf;
1633 jbuf->physaddr = physaddr;
1634
1635 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1636
1637 buf += NFE_JBYTES;
1638 physaddr += NFE_JBYTES;
1639 }
1640
1641 return 0;
1642
1643 fail: nfe_jpool_free(sc);
1644 return error;
1645 }
1646
1647 void
1648 nfe_jpool_free(struct nfe_softc *sc)
1649 {
1650 struct nfe_rx_ring *ring = &sc->rxq;
1651
1652 if (ring->jmap != NULL) {
1653 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1654 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1655 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1656 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1657 }
1658 if (ring->jpool != NULL) {
1659 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1660 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1661 }
1662 }
1663
1664 int
1665 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1666 {
1667 int i, nsegs, error;
1668 void **desc;
1669 int descsize;
1670
1671 if (sc->sc_flags & NFE_40BIT_ADDR) {
1672 desc = (void **)&ring->desc64;
1673 descsize = sizeof (struct nfe_desc64);
1674 } else {
1675 desc = (void **)&ring->desc32;
1676 descsize = sizeof (struct nfe_desc32);
1677 }
1678
1679 ring->queued = 0;
1680 ring->cur = ring->next = 0;
1681
1682 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1683 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1684
1685 if (error != 0) {
1686 aprint_error_dev(sc->sc_dev,
1687 "could not create desc DMA map\n");
1688 goto fail;
1689 }
1690
1691 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1692 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1693 if (error != 0) {
1694 aprint_error_dev(sc->sc_dev,
1695 "could not allocate DMA memory\n");
1696 goto fail;
1697 }
1698
1699 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1700 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1701 if (error != 0) {
1702 aprint_error_dev(sc->sc_dev,
1703 "could not map desc DMA memory\n");
1704 goto fail;
1705 }
1706
1707 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1708 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1709 if (error != 0) {
1710 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1711 goto fail;
1712 }
1713
1714 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1715 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1716
1717 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1718 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1719 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1720 &ring->data[i].map);
1721 if (error != 0) {
1722 aprint_error_dev(sc->sc_dev,
1723 "could not create DMA map\n");
1724 goto fail;
1725 }
1726 }
1727
1728 return 0;
1729
1730 fail: nfe_free_tx_ring(sc, ring);
1731 return error;
1732 }
1733
1734 void
1735 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1736 {
1737 struct nfe_tx_data *data;
1738 int i;
1739
1740 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1741 if (sc->sc_flags & NFE_40BIT_ADDR)
1742 ring->desc64[i].flags = 0;
1743 else
1744 ring->desc32[i].flags = 0;
1745
1746 data = &ring->data[i];
1747
1748 if (data->m != NULL) {
1749 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1750 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1751 bus_dmamap_unload(sc->sc_dmat, data->active);
1752 m_freem(data->m);
1753 data->m = NULL;
1754 }
1755 }
1756
1757 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1758 BUS_DMASYNC_PREWRITE);
1759
1760 ring->queued = 0;
1761 ring->cur = ring->next = 0;
1762 }
1763
1764 void
1765 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1766 {
1767 struct nfe_tx_data *data;
1768 void *desc;
1769 int i, descsize;
1770
1771 if (sc->sc_flags & NFE_40BIT_ADDR) {
1772 desc = ring->desc64;
1773 descsize = sizeof (struct nfe_desc64);
1774 } else {
1775 desc = ring->desc32;
1776 descsize = sizeof (struct nfe_desc32);
1777 }
1778
1779 if (desc != NULL) {
1780 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1781 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1782 bus_dmamap_unload(sc->sc_dmat, ring->map);
1783 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1784 NFE_TX_RING_COUNT * descsize);
1785 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1786 }
1787
1788 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1789 data = &ring->data[i];
1790
1791 if (data->m != NULL) {
1792 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1793 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1794 bus_dmamap_unload(sc->sc_dmat, data->active);
1795 m_freem(data->m);
1796 }
1797 }
1798
1799 /* ..and now actually destroy the DMA mappings */
1800 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1801 data = &ring->data[i];
1802 if (data->map == NULL)
1803 continue;
1804 bus_dmamap_destroy(sc->sc_dmat, data->map);
1805 }
1806 }
1807
1808 void
1809 nfe_setmulti(struct nfe_softc *sc)
1810 {
1811 struct ethercom *ec = &sc->sc_ethercom;
1812 struct ifnet *ifp = &ec->ec_if;
1813 struct ether_multi *enm;
1814 struct ether_multistep step;
1815 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1816 uint32_t filter = NFE_RXFILTER_MAGIC;
1817 int i;
1818
1819 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1820 bzero(addr, ETHER_ADDR_LEN);
1821 bzero(mask, ETHER_ADDR_LEN);
1822 goto done;
1823 }
1824
1825 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1826 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1827
1828 ETHER_FIRST_MULTI(step, ec, enm);
1829 while (enm != NULL) {
1830 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1831 ifp->if_flags |= IFF_ALLMULTI;
1832 bzero(addr, ETHER_ADDR_LEN);
1833 bzero(mask, ETHER_ADDR_LEN);
1834 goto done;
1835 }
1836 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1837 addr[i] &= enm->enm_addrlo[i];
1838 mask[i] &= ~enm->enm_addrlo[i];
1839 }
1840 ETHER_NEXT_MULTI(step, enm);
1841 }
1842 for (i = 0; i < ETHER_ADDR_LEN; i++)
1843 mask[i] |= addr[i];
1844
1845 done:
1846 addr[0] |= 0x01; /* make sure multicast bit is set */
1847
1848 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1849 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1850 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1851 addr[5] << 8 | addr[4]);
1852 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1853 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1854 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1855 mask[5] << 8 | mask[4]);
1856
1857 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1858 NFE_WRITE(sc, NFE_RXFILTER, filter);
1859 }
1860
1861 void
1862 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1863 {
1864 uint32_t tmp;
1865
1866 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1867 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1868 addr[0] = (tmp & 0xff);
1869 addr[1] = (tmp >> 8) & 0xff;
1870 addr[2] = (tmp >> 16) & 0xff;
1871 addr[3] = (tmp >> 24) & 0xff;
1872
1873 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1874 addr[4] = (tmp & 0xff);
1875 addr[5] = (tmp >> 8) & 0xff;
1876
1877 } else {
1878 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1879 addr[0] = (tmp >> 8) & 0xff;
1880 addr[1] = (tmp & 0xff);
1881
1882 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1883 addr[2] = (tmp >> 24) & 0xff;
1884 addr[3] = (tmp >> 16) & 0xff;
1885 addr[4] = (tmp >> 8) & 0xff;
1886 addr[5] = (tmp & 0xff);
1887 }
1888 }
1889
1890 void
1891 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1892 {
1893 NFE_WRITE(sc, NFE_MACADDR_LO,
1894 addr[5] << 8 | addr[4]);
1895 NFE_WRITE(sc, NFE_MACADDR_HI,
1896 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1897 }
1898
1899 void
1900 nfe_tick(void *arg)
1901 {
1902 struct nfe_softc *sc = arg;
1903 int s;
1904
1905 s = splnet();
1906 mii_tick(&sc->sc_mii);
1907 splx(s);
1908
1909 callout_schedule(&sc->sc_tick_ch, hz);
1910 }
1911
1912 void
1913 nfe_poweron(device_t self)
1914 {
1915 struct nfe_softc *sc = device_private(self);
1916
1917 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1918 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1919 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1920 DELAY(100);
1921 NFE_WRITE(sc, NFE_MAC_RESET, 0);
1922 DELAY(100);
1923 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1924 NFE_WRITE(sc, NFE_PWR2_CTL,
1925 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1926 }
1927 }
1928
1929 bool
1930 nfe_resume(device_t dv PMF_FN_ARGS)
1931 {
1932 nfe_poweron(dv);
1933
1934 return true;
1935 }
1936