if_nfe.c revision 1.4 1 /* $NetBSD: if_nfe.c,v 1.4 2006/09/03 07:42:04 xtraeme Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.4 2006/09/03 07:42:04 xtraeme Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <machine/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, caddr_t);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
98 void nfe_jfree(struct mbuf *, caddr_t, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206
207 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
208 switch (memtype) {
209 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
210 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
211 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
212 &sc->sc_memh, NULL, &memsize) == 0)
213 break;
214 /* FALLTHROUGH */
215 default:
216 printf(": could not map mem space\n");
217 return;
218 }
219
220 if (pci_intr_map(pa, &ih) != 0) {
221 printf(": could not map interrupt\n");
222 return;
223 }
224
225 intrstr = pci_intr_string(pc, ih);
226 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
227 if (sc->sc_ih == NULL) {
228 printf(": could not establish interrupt");
229 if (intrstr != NULL)
230 printf(" at %s", intrstr);
231 printf("\n");
232 return;
233 }
234 printf(": %s", intrstr);
235
236 sc->sc_dmat = pa->pa_dmat;
237
238 nfe_get_macaddr(sc, sc->sc_enaddr);
239 printf(", address %s\n", ether_sprintf(sc->sc_enaddr));
240
241 sc->sc_flags = 0;
242
243 switch (PCI_PRODUCT(pa->pa_id)) {
244 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
245 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
246 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
247 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
248 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
249 break;
250 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
251 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
252 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
253 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
254 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
255 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
256 sc->sc_flags |= NFE_40BIT_ADDR;
257 break;
258 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
259 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
260 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
261 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
262 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
263 break;
264 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
265 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
266 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
267 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
268 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
269 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
270 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
271 NFE_HW_VLAN;
272 break;
273 }
274
275 #ifndef NFE_NO_JUMBO
276 /* enable jumbo frames for adapters that support it */
277 if (sc->sc_flags & NFE_JUMBO_SUP)
278 sc->sc_flags |= NFE_USE_JUMBO;
279 #endif
280
281 /*
282 * Allocate Tx and Rx rings.
283 */
284 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
285 printf("%s: could not allocate Tx ring\n",
286 sc->sc_dev.dv_xname);
287 return;
288 }
289
290 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
291 printf("%s: could not allocate Rx ring\n",
292 sc->sc_dev.dv_xname);
293 nfe_free_tx_ring(sc, &sc->txq);
294 return;
295 }
296
297 ifp = &sc->sc_ethercom.ec_if;
298 ifp->if_softc = sc;
299 ifp->if_mtu = ETHERMTU;
300 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
301 ifp->if_ioctl = nfe_ioctl;
302 ifp->if_start = nfe_start;
303 ifp->if_watchdog = nfe_watchdog;
304 ifp->if_init = nfe_init;
305 ifp->if_baudrate = IF_Gbps(1);
306 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
307 IFQ_SET_READY(&ifp->if_snd);
308 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
309
310 #if NVLAN > 0
311 if (sc->sc_flags & NFE_HW_VLAN)
312 sc->sc_ethercom.ec_capabilities |=
313 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
314 #endif
315 #ifdef NFE_CSUM
316 if (sc->sc_flags & NFE_HW_CSUM) {
317 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
318 IFCAP_CSUM_UDPv4;
319 }
320 #endif
321
322 sc->sc_mii.mii_ifp = ifp;
323 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
324 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
325 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
326
327 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
328 nfe_ifmedia_sts);
329 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
330 MII_OFFSET_ANY, 0);
331 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
332 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
333 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
334 0, NULL);
335 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
336 } else
337 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
338
339 if_attach(ifp);
340 ether_ifattach(ifp, sc->sc_enaddr);
341
342 callout_init(&sc->sc_tick_ch);
343 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
344
345 sc->sc_powerhook = powerhook_establish(nfe_power, sc);
346 }
347
348 void
349 nfe_power(int why, void *arg)
350 {
351 struct nfe_softc *sc = arg;
352 struct ifnet *ifp;
353
354 if (why == PWR_RESUME) {
355 ifp = &sc->sc_ethercom.ec_if;
356 if (ifp->if_flags & IFF_UP) {
357 ifp->if_flags &= ~IFF_RUNNING;
358 nfe_init(ifp);
359 if (ifp->if_flags & IFF_RUNNING)
360 nfe_start(ifp);
361 }
362 }
363 }
364
365 void
366 nfe_miibus_statchg(struct device *dev)
367 {
368 struct nfe_softc *sc = (struct nfe_softc *)dev;
369 struct mii_data *mii = &sc->sc_mii;
370 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
371
372 phy = NFE_READ(sc, NFE_PHY_IFACE);
373 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
374
375 seed = NFE_READ(sc, NFE_RNDSEED);
376 seed &= ~NFE_SEED_MASK;
377
378 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
379 phy |= NFE_PHY_HDX; /* half-duplex */
380 misc |= NFE_MISC1_HDX;
381 }
382
383 switch (IFM_SUBTYPE(mii->mii_media_active)) {
384 case IFM_1000_T: /* full-duplex only */
385 link |= NFE_MEDIA_1000T;
386 seed |= NFE_SEED_1000T;
387 phy |= NFE_PHY_1000T;
388 break;
389 case IFM_100_TX:
390 link |= NFE_MEDIA_100TX;
391 seed |= NFE_SEED_100TX;
392 phy |= NFE_PHY_100TX;
393 break;
394 case IFM_10_T:
395 link |= NFE_MEDIA_10T;
396 seed |= NFE_SEED_10T;
397 break;
398 }
399
400 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
401
402 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
403 NFE_WRITE(sc, NFE_MISC1, misc);
404 NFE_WRITE(sc, NFE_LINKSPEED, link);
405 }
406
407 int
408 nfe_miibus_readreg(struct device *dev, int phy, int reg)
409 {
410 struct nfe_softc *sc = (struct nfe_softc *)dev;
411 uint32_t val;
412 int ntries;
413
414 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
415
416 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
417 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
418 DELAY(100);
419 }
420
421 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
422
423 for (ntries = 0; ntries < 1000; ntries++) {
424 DELAY(100);
425 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
426 break;
427 }
428 if (ntries == 1000) {
429 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
430 sc->sc_dev.dv_xname));
431 return 0;
432 }
433
434 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
435 DPRINTFN(2, ("%s: could not read PHY\n",
436 sc->sc_dev.dv_xname));
437 return 0;
438 }
439
440 val = NFE_READ(sc, NFE_PHY_DATA);
441 if (val != 0xffffffff && val != 0)
442 sc->mii_phyaddr = phy;
443
444 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
445 sc->sc_dev.dv_xname, phy, reg, val));
446
447 return val;
448 }
449
450 void
451 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
452 {
453 struct nfe_softc *sc = (struct nfe_softc *)dev;
454 uint32_t ctl;
455 int ntries;
456
457 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
458
459 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
460 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
461 DELAY(100);
462 }
463
464 NFE_WRITE(sc, NFE_PHY_DATA, val);
465 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
466 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
467
468 for (ntries = 0; ntries < 1000; ntries++) {
469 DELAY(100);
470 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
471 break;
472 }
473 #ifdef NFE_DEBUG
474 if (nfedebug >= 2 && ntries == 1000)
475 printf("could not write to PHY\n");
476 #endif
477 }
478
479 int
480 nfe_intr(void *arg)
481 {
482 struct nfe_softc *sc = arg;
483 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
484 uint32_t r;
485
486 if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0)
487 return 0; /* not for us */
488 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
489
490 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
491
492 if (r & NFE_IRQ_LINK) {
493 NFE_READ(sc, NFE_PHY_STATUS);
494 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
495 DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname));
496 }
497
498 if (ifp->if_flags & IFF_RUNNING) {
499 /* check Rx ring */
500 nfe_rxeof(sc);
501
502 /* check Tx ring */
503 nfe_txeof(sc);
504 }
505
506 return 1;
507 }
508
509 int
510 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
511 {
512 struct nfe_softc *sc = ifp->if_softc;
513 struct ifreq *ifr = (struct ifreq *)data;
514 struct ifaddr *ifa = (struct ifaddr *)data;
515 int s, error = 0;
516
517 s = splnet();
518
519 switch (cmd) {
520 case SIOCSIFADDR:
521 ifp->if_flags |= IFF_UP;
522 nfe_init(ifp);
523 switch (ifa->ifa_addr->sa_family) {
524 #ifdef INET
525 case AF_INET:
526 arp_ifinit(ifp, ifa);
527 break;
528 #endif
529 default:
530 break;
531 }
532 break;
533 case SIOCSIFMTU:
534 if (ifr->ifr_mtu < ETHERMIN ||
535 ((sc->sc_flags & NFE_USE_JUMBO) &&
536 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
537 (!(sc->sc_flags & NFE_USE_JUMBO) &&
538 ifr->ifr_mtu > ETHERMTU))
539 error = EINVAL;
540 else if (ifp->if_mtu != ifr->ifr_mtu)
541 ifp->if_mtu = ifr->ifr_mtu;
542 break;
543 case SIOCSIFFLAGS:
544 if (ifp->if_flags & IFF_UP) {
545 /*
546 * If only the PROMISC or ALLMULTI flag changes, then
547 * don't do a full re-init of the chip, just update
548 * the Rx filter.
549 */
550 if ((ifp->if_flags & IFF_RUNNING) &&
551 ((ifp->if_flags ^ sc->sc_if_flags) &
552 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
553 nfe_setmulti(sc);
554 else
555 nfe_init(ifp);
556 } else {
557 if (ifp->if_flags & IFF_RUNNING)
558 nfe_stop(ifp, 1);
559 }
560 sc->sc_if_flags = ifp->if_flags;
561 break;
562 case SIOCADDMULTI:
563 case SIOCDELMULTI:
564 error = (cmd == SIOCADDMULTI) ?
565 ether_addmulti(ifr, &sc->sc_ethercom) :
566 ether_delmulti(ifr, &sc->sc_ethercom);
567
568 if (error == ENETRESET) {
569 if (ifp->if_flags & IFF_RUNNING)
570 nfe_setmulti(sc);
571 error = 0;
572 }
573 break;
574 case SIOCSIFMEDIA:
575 case SIOCGIFMEDIA:
576 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
577 break;
578 default:
579 error = ether_ioctl(ifp, cmd, data);
580 if (error == ENETRESET) {
581 if (ifp->if_flags & IFF_RUNNING)
582 nfe_setmulti(sc);
583 error = 0;
584 }
585 break;
586
587 }
588
589 splx(s);
590
591 return error;
592 }
593
594 void
595 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
596 {
597 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
598 (caddr_t)desc32 - (caddr_t)sc->txq.desc32,
599 sizeof (struct nfe_desc32), ops);
600 }
601
602 void
603 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
604 {
605 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
606 (caddr_t)desc64 - (caddr_t)sc->txq.desc64,
607 sizeof (struct nfe_desc64), ops);
608 }
609
610 void
611 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
612 {
613 if (end > start) {
614 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
615 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
616 (caddr_t)&sc->txq.desc32[end] -
617 (caddr_t)&sc->txq.desc32[start], ops);
618 return;
619 }
620 /* sync from 'start' to end of ring */
621 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
622 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
623 (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] -
624 (caddr_t)&sc->txq.desc32[start], ops);
625
626 /* sync from start of ring to 'end' */
627 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
628 (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops);
629 }
630
631 void
632 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
633 {
634 if (end > start) {
635 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
636 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
637 (caddr_t)&sc->txq.desc64[end] -
638 (caddr_t)&sc->txq.desc64[start], ops);
639 return;
640 }
641 /* sync from 'start' to end of ring */
642 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
643 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
644 (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] -
645 (caddr_t)&sc->txq.desc64[start], ops);
646
647 /* sync from start of ring to 'end' */
648 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
649 (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops);
650 }
651
652 void
653 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
654 {
655 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
656 (caddr_t)desc32 - (caddr_t)sc->rxq.desc32,
657 sizeof (struct nfe_desc32), ops);
658 }
659
660 void
661 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
662 {
663 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
664 (caddr_t)desc64 - (caddr_t)sc->rxq.desc64,
665 sizeof (struct nfe_desc64), ops);
666 }
667
668 void
669 nfe_rxeof(struct nfe_softc *sc)
670 {
671 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
672 struct nfe_desc32 *desc32;
673 struct nfe_desc64 *desc64;
674 struct nfe_rx_data *data;
675 struct nfe_jbuf *jbuf;
676 struct mbuf *m, *mnew;
677 bus_addr_t physaddr;
678 uint16_t flags;
679 int error, len;
680
681 desc32 = NULL;
682 desc64 = NULL;
683 for (;;) {
684 data = &sc->rxq.data[sc->rxq.cur];
685
686 if (sc->sc_flags & NFE_40BIT_ADDR) {
687 desc64 = &sc->rxq.desc64[sc->rxq.cur];
688 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
689
690 flags = le16toh(desc64->flags);
691 len = le16toh(desc64->length) & 0x3fff;
692 } else {
693 desc32 = &sc->rxq.desc32[sc->rxq.cur];
694 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
695
696 flags = le16toh(desc32->flags);
697 len = le16toh(desc32->length) & 0x3fff;
698 }
699
700 if (flags & NFE_RX_READY)
701 break;
702
703 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
704 if (!(flags & NFE_RX_VALID_V1))
705 goto skip;
706
707 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
708 flags &= ~NFE_RX_ERROR;
709 len--; /* fix buffer length */
710 }
711 } else {
712 if (!(flags & NFE_RX_VALID_V2))
713 goto skip;
714
715 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
716 flags &= ~NFE_RX_ERROR;
717 len--; /* fix buffer length */
718 }
719 }
720
721 if (flags & NFE_RX_ERROR) {
722 ifp->if_ierrors++;
723 goto skip;
724 }
725
726 /*
727 * Try to allocate a new mbuf for this ring element and load
728 * it before processing the current mbuf. If the ring element
729 * cannot be loaded, drop the received packet and reuse the
730 * old mbuf. In the unlikely case that the old mbuf can't be
731 * reloaded either, explicitly panic.
732 */
733 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
734 if (mnew == NULL) {
735 ifp->if_ierrors++;
736 goto skip;
737 }
738
739 if (sc->sc_flags & NFE_USE_JUMBO) {
740 if ((jbuf = nfe_jalloc(sc)) == NULL) {
741 m_freem(mnew);
742 ifp->if_ierrors++;
743 goto skip;
744 }
745 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
746
747 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
748 mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES,
749 BUS_DMASYNC_POSTREAD);
750
751 physaddr = jbuf->physaddr;
752 } else {
753 MCLGET(mnew, M_DONTWAIT);
754 if (!(mnew->m_flags & M_EXT)) {
755 m_freem(mnew);
756 ifp->if_ierrors++;
757 goto skip;
758 }
759
760 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
761 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
762 bus_dmamap_unload(sc->sc_dmat, data->map);
763
764 error = bus_dmamap_load(sc->sc_dmat, data->map,
765 mtod(mnew, void *), MCLBYTES, NULL,
766 BUS_DMA_READ | BUS_DMA_NOWAIT);
767 if (error != 0) {
768 m_freem(mnew);
769
770 /* try to reload the old mbuf */
771 error = bus_dmamap_load(sc->sc_dmat, data->map,
772 mtod(data->m, void *), MCLBYTES, NULL,
773 BUS_DMA_READ | BUS_DMA_NOWAIT);
774 if (error != 0) {
775 /* very unlikely that it will fail.. */
776 panic("%s: could not load old rx mbuf",
777 sc->sc_dev.dv_xname);
778 }
779 ifp->if_ierrors++;
780 goto skip;
781 }
782 physaddr = data->map->dm_segs[0].ds_addr;
783 }
784
785 /*
786 * New mbuf successfully loaded, update Rx ring and continue
787 * processing.
788 */
789 m = data->m;
790 data->m = mnew;
791
792 /* finalize mbuf */
793 m->m_pkthdr.len = m->m_len = len;
794 m->m_pkthdr.rcvif = ifp;
795
796 #ifdef notyet
797 if (sc->sc_flags & NFE_HW_CSUM) {
798 if (flags & NFE_RX_IP_CSUMOK)
799 m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
800 if (flags & NFE_RX_UDP_CSUMOK)
801 m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
802 if (flags & NFE_RX_TCP_CSUMOK)
803 m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
804 }
805 #elif defined(NFE_CSUM)
806 if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
807 m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
808 #endif
809
810 #if NBPFILTER > 0
811 if (ifp->if_bpf)
812 bpf_mtap(ifp->if_bpf, m);
813 #endif
814 ifp->if_ipackets++;
815 (*ifp->if_input)(ifp, m);
816
817 /* update mapping address in h/w descriptor */
818 if (sc->sc_flags & NFE_40BIT_ADDR) {
819 #if defined(__LP64__)
820 desc64->physaddr[0] = htole32(physaddr >> 32);
821 #endif
822 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
823 } else {
824 desc32->physaddr = htole32(physaddr);
825 }
826
827 skip: if (sc->sc_flags & NFE_40BIT_ADDR) {
828 desc64->length = htole16(sc->rxq.bufsz);
829 desc64->flags = htole16(NFE_RX_READY);
830
831 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
832 } else {
833 desc32->length = htole16(sc->rxq.bufsz);
834 desc32->flags = htole16(NFE_RX_READY);
835
836 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
837 }
838
839 sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
840 }
841 }
842
843 void
844 nfe_txeof(struct nfe_softc *sc)
845 {
846 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
847 struct nfe_desc32 *desc32;
848 struct nfe_desc64 *desc64;
849 struct nfe_tx_data *data = NULL;
850 uint16_t flags;
851
852 while (sc->txq.next != sc->txq.cur) {
853 if (sc->sc_flags & NFE_40BIT_ADDR) {
854 desc64 = &sc->txq.desc64[sc->txq.next];
855 nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
856
857 flags = le16toh(desc64->flags);
858 } else {
859 desc32 = &sc->txq.desc32[sc->txq.next];
860 nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
861
862 flags = le16toh(desc32->flags);
863 }
864
865 if (flags & NFE_TX_VALID)
866 break;
867
868 data = &sc->txq.data[sc->txq.next];
869
870 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
871 if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
872 goto skip;
873
874 if ((flags & NFE_TX_ERROR_V1) != 0) {
875 printf("%s: tx v1 error 0x%04x\n",
876 sc->sc_dev.dv_xname, flags);
877 ifp->if_oerrors++;
878 } else
879 ifp->if_opackets++;
880 } else {
881 if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
882 goto skip;
883
884 if ((flags & NFE_TX_ERROR_V2) != 0) {
885 printf("%s: tx v2 error 0x%04x\n",
886 sc->sc_dev.dv_xname, flags);
887 ifp->if_oerrors++;
888 } else
889 ifp->if_opackets++;
890 }
891
892 if (data->m == NULL) { /* should not get there */
893 printf("%s: last fragment bit w/o associated mbuf!\n",
894 sc->sc_dev.dv_xname);
895 goto skip;
896 }
897
898 /* last fragment of the mbuf chain transmitted */
899 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
900 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
901 bus_dmamap_unload(sc->sc_dmat, data->active);
902 m_freem(data->m);
903 data->m = NULL;
904
905 ifp->if_timer = 0;
906
907 skip: sc->txq.queued--;
908 sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
909 }
910
911 if (data != NULL) { /* at least one slot freed */
912 ifp->if_flags &= ~IFF_OACTIVE;
913 nfe_start(ifp);
914 }
915 }
916
917 int
918 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
919 {
920 struct nfe_desc32 *desc32;
921 struct nfe_desc64 *desc64;
922 struct nfe_tx_data *data;
923 bus_dmamap_t map;
924 uint16_t flags = NFE_TX_VALID;
925 #if NVLAN > 0
926 struct m_tag *mtag;
927 uint32_t vtag = 0;
928 #endif
929 int error, i;
930
931 desc32 = NULL;
932 desc64 = NULL;
933 data = NULL;
934 map = sc->txq.data[sc->txq.cur].map;
935
936 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
937 if (error != 0) {
938 printf("%s: could not map mbuf (error %d)\n",
939 sc->sc_dev.dv_xname, error);
940 return error;
941 }
942
943 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
944 bus_dmamap_unload(sc->sc_dmat, map);
945 return ENOBUFS;
946 }
947
948 #if NVLAN > 0
949 /* setup h/w VLAN tagging */
950 if (sc->sc_ethercom.ec_nvlans) {
951 mtag = m_tag_find(m0, PACKET_TAG_VLAN, NULL);
952 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
953 }
954 #endif
955 #ifdef NFE_CSUM
956 if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
957 flags |= NFE_TX_IP_CSUM;
958 if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
959 flags |= NFE_TX_TCP_CSUM;
960 #endif
961
962 for (i = 0; i < map->dm_nsegs; i++) {
963 data = &sc->txq.data[sc->txq.cur];
964
965 if (sc->sc_flags & NFE_40BIT_ADDR) {
966 desc64 = &sc->txq.desc64[sc->txq.cur];
967 #if defined(__LP64__)
968 desc64->physaddr[0] =
969 htole32(map->dm_segs[i].ds_addr >> 32);
970 #endif
971 desc64->physaddr[1] =
972 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
973 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
974 desc64->flags = htole16(flags);
975 #if NVLAN > 0
976 desc64->vtag = htole32(vtag);
977 #endif
978 } else {
979 desc32 = &sc->txq.desc32[sc->txq.cur];
980
981 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
982 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
983 desc32->flags = htole16(flags);
984 }
985
986 /* csum flags and vtag belong to the first fragment only */
987 if (map->dm_nsegs > 1) {
988 flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
989 #if NVLAN > 0
990 vtag = 0;
991 #endif
992 }
993
994 sc->txq.queued++;
995 sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
996 }
997
998 /* the whole mbuf chain has been DMA mapped, fix last descriptor */
999 if (sc->sc_flags & NFE_40BIT_ADDR) {
1000 flags |= NFE_TX_LASTFRAG_V2;
1001 desc64->flags = htole16(flags);
1002 } else {
1003 if (sc->sc_flags & NFE_JUMBO_SUP)
1004 flags |= NFE_TX_LASTFRAG_V2;
1005 else
1006 flags |= NFE_TX_LASTFRAG_V1;
1007 desc32->flags = htole16(flags);
1008 }
1009
1010 data->m = m0;
1011 data->active = map;
1012
1013 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1014 BUS_DMASYNC_PREWRITE);
1015
1016 return 0;
1017 }
1018
1019 void
1020 nfe_start(struct ifnet *ifp)
1021 {
1022 struct nfe_softc *sc = ifp->if_softc;
1023 int old = sc->txq.cur;
1024 struct mbuf *m0;
1025
1026 for (;;) {
1027 IFQ_POLL(&ifp->if_snd, m0);
1028 if (m0 == NULL)
1029 break;
1030
1031 if (nfe_encap(sc, m0) != 0) {
1032 ifp->if_flags |= IFF_OACTIVE;
1033 break;
1034 }
1035
1036 /* packet put in h/w queue, remove from s/w queue */
1037 IFQ_DEQUEUE(&ifp->if_snd, m0);
1038
1039 #if NBPFILTER > 0
1040 if (ifp->if_bpf != NULL)
1041 bpf_mtap(ifp->if_bpf, m0);
1042 #endif
1043 }
1044 if (sc->txq.cur == old) /* nothing sent */
1045 return;
1046
1047 if (sc->sc_flags & NFE_40BIT_ADDR)
1048 nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1049 else
1050 nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1051
1052 /* kick Tx */
1053 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1054
1055 /*
1056 * Set a timeout in case the chip goes out to lunch.
1057 */
1058 ifp->if_timer = 5;
1059 }
1060
1061 void
1062 nfe_watchdog(struct ifnet *ifp)
1063 {
1064 struct nfe_softc *sc = ifp->if_softc;
1065
1066 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1067
1068 ifp->if_flags &= ~IFF_RUNNING;
1069 nfe_init(ifp);
1070
1071 ifp->if_oerrors++;
1072 }
1073
1074 int
1075 nfe_init(struct ifnet *ifp)
1076 {
1077 struct nfe_softc *sc = ifp->if_softc;
1078 uint32_t tmp;
1079
1080 if (ifp->if_flags & IFF_RUNNING)
1081 return 0;
1082
1083 nfe_stop(ifp, 0);
1084
1085 NFE_WRITE(sc, NFE_TX_UNK, 0);
1086 NFE_WRITE(sc, NFE_STATUS, 0);
1087
1088 sc->rxtxctl = NFE_RXTX_BIT2;
1089 if (sc->sc_flags & NFE_40BIT_ADDR)
1090 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1091 else if (sc->sc_flags & NFE_JUMBO_SUP)
1092 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1093 #ifdef NFE_CSUM
1094 if (sc->sc_flags & NFE_HW_CSUM)
1095 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1096 #endif
1097 #if NVLAN > 0
1098 /*
1099 * Although the adapter is capable of stripping VLAN tags from received
1100 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1101 * purpose. This will be done in software by our network stack.
1102 */
1103 if (sc->sc_flags & NFE_HW_VLAN)
1104 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1105 #endif
1106 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1107 DELAY(10);
1108 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1109
1110 #if NVLAN
1111 if (sc->sc_flags & NFE_HW_VLAN)
1112 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1113 #endif
1114
1115 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1116
1117 /* set MAC address */
1118 nfe_set_macaddr(sc, sc->sc_enaddr);
1119
1120 /* tell MAC where rings are in memory */
1121 #ifdef __LP64__
1122 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1123 #endif
1124 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1125 #ifdef __LP64__
1126 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1127 #endif
1128 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1129
1130 NFE_WRITE(sc, NFE_RING_SIZE,
1131 (NFE_RX_RING_COUNT - 1) << 16 |
1132 (NFE_TX_RING_COUNT - 1));
1133
1134 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1135
1136 /* force MAC to wakeup */
1137 tmp = NFE_READ(sc, NFE_PWR_STATE);
1138 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1139 DELAY(10);
1140 tmp = NFE_READ(sc, NFE_PWR_STATE);
1141 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1142
1143 #if 1
1144 /* configure interrupts coalescing/mitigation */
1145 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1146 #else
1147 /* no interrupt mitigation: one interrupt per packet */
1148 NFE_WRITE(sc, NFE_IMTIMER, 970);
1149 #endif
1150
1151 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1152 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1153 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1154
1155 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1156 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1157
1158 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1159 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1160
1161 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1162 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1163 DELAY(10);
1164 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1165
1166 /* set Rx filter */
1167 nfe_setmulti(sc);
1168
1169 nfe_ifmedia_upd(ifp);
1170
1171 /* enable Rx */
1172 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1173
1174 /* enable Tx */
1175 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1176
1177 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1178
1179 /* enable interrupts */
1180 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1181
1182 callout_schedule(&sc->sc_tick_ch, hz);
1183
1184 ifp->if_flags |= IFF_RUNNING;
1185 ifp->if_flags &= ~IFF_OACTIVE;
1186
1187 return 0;
1188 }
1189
1190 void
1191 nfe_stop(struct ifnet *ifp, int disable)
1192 {
1193 struct nfe_softc *sc = ifp->if_softc;
1194
1195 callout_stop(&sc->sc_tick_ch);
1196
1197 ifp->if_timer = 0;
1198 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1199
1200 mii_down(&sc->sc_mii);
1201
1202 /* abort Tx */
1203 NFE_WRITE(sc, NFE_TX_CTL, 0);
1204
1205 /* disable Rx */
1206 NFE_WRITE(sc, NFE_RX_CTL, 0);
1207
1208 /* disable interrupts */
1209 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1210
1211 /* reset Tx and Rx rings */
1212 nfe_reset_tx_ring(sc, &sc->txq);
1213 nfe_reset_rx_ring(sc, &sc->rxq);
1214 }
1215
1216 int
1217 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1218 {
1219 struct nfe_desc32 *desc32;
1220 struct nfe_desc64 *desc64;
1221 struct nfe_rx_data *data;
1222 struct nfe_jbuf *jbuf;
1223 void **desc;
1224 bus_addr_t physaddr;
1225 int i, nsegs, error, descsize;
1226
1227 if (sc->sc_flags & NFE_40BIT_ADDR) {
1228 desc = (void **)&ring->desc64;
1229 descsize = sizeof (struct nfe_desc64);
1230 } else {
1231 desc = (void **)&ring->desc32;
1232 descsize = sizeof (struct nfe_desc32);
1233 }
1234
1235 ring->cur = ring->next = 0;
1236 ring->bufsz = MCLBYTES;
1237
1238 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1239 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1240 if (error != 0) {
1241 printf("%s: could not create desc DMA map\n",
1242 sc->sc_dev.dv_xname);
1243 goto fail;
1244 }
1245
1246 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1247 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1248 if (error != 0) {
1249 printf("%s: could not allocate DMA memory\n",
1250 sc->sc_dev.dv_xname);
1251 goto fail;
1252 }
1253
1254 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1255 NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1256 if (error != 0) {
1257 printf("%s: could not map desc DMA memory\n",
1258 sc->sc_dev.dv_xname);
1259 goto fail;
1260 }
1261
1262 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1263 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1264 if (error != 0) {
1265 printf("%s: could not load desc DMA map\n",
1266 sc->sc_dev.dv_xname);
1267 goto fail;
1268 }
1269
1270 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1271 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1272
1273 if (sc->sc_flags & NFE_USE_JUMBO) {
1274 ring->bufsz = NFE_JBYTES;
1275 if ((error = nfe_jpool_alloc(sc)) != 0) {
1276 printf("%s: could not allocate jumbo frames\n",
1277 sc->sc_dev.dv_xname);
1278 goto fail;
1279 }
1280 }
1281
1282 /*
1283 * Pre-allocate Rx buffers and populate Rx ring.
1284 */
1285 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1286 data = &sc->rxq.data[i];
1287
1288 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1289 if (data->m == NULL) {
1290 printf("%s: could not allocate rx mbuf\n",
1291 sc->sc_dev.dv_xname);
1292 error = ENOMEM;
1293 goto fail;
1294 }
1295
1296 if (sc->sc_flags & NFE_USE_JUMBO) {
1297 if ((jbuf = nfe_jalloc(sc)) == NULL) {
1298 printf("%s: could not allocate jumbo buffer\n",
1299 sc->sc_dev.dv_xname);
1300 goto fail;
1301 }
1302 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1303 sc);
1304
1305 physaddr = jbuf->physaddr;
1306 } else {
1307 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1308 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1309 if (error != 0) {
1310 printf("%s: could not create DMA map\n",
1311 sc->sc_dev.dv_xname);
1312 goto fail;
1313 }
1314 MCLGET(data->m, M_DONTWAIT);
1315 if (!(data->m->m_flags & M_EXT)) {
1316 printf("%s: could not allocate mbuf cluster\n",
1317 sc->sc_dev.dv_xname);
1318 error = ENOMEM;
1319 goto fail;
1320 }
1321
1322 error = bus_dmamap_load(sc->sc_dmat, data->map,
1323 mtod(data->m, void *), MCLBYTES, NULL,
1324 BUS_DMA_READ | BUS_DMA_NOWAIT);
1325 if (error != 0) {
1326 printf("%s: could not load rx buf DMA map",
1327 sc->sc_dev.dv_xname);
1328 goto fail;
1329 }
1330 physaddr = data->map->dm_segs[0].ds_addr;
1331 }
1332
1333 if (sc->sc_flags & NFE_40BIT_ADDR) {
1334 desc64 = &sc->rxq.desc64[i];
1335 #if defined(__LP64__)
1336 desc64->physaddr[0] = htole32(physaddr >> 32);
1337 #endif
1338 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1339 desc64->length = htole16(sc->rxq.bufsz);
1340 desc64->flags = htole16(NFE_RX_READY);
1341 } else {
1342 desc32 = &sc->rxq.desc32[i];
1343 desc32->physaddr = htole32(physaddr);
1344 desc32->length = htole16(sc->rxq.bufsz);
1345 desc32->flags = htole16(NFE_RX_READY);
1346 }
1347 }
1348
1349 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1350 BUS_DMASYNC_PREWRITE);
1351
1352 return 0;
1353
1354 fail: nfe_free_rx_ring(sc, ring);
1355 return error;
1356 }
1357
1358 void
1359 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1360 {
1361 int i;
1362
1363 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1364 if (sc->sc_flags & NFE_40BIT_ADDR) {
1365 ring->desc64[i].length = htole16(ring->bufsz);
1366 ring->desc64[i].flags = htole16(NFE_RX_READY);
1367 } else {
1368 ring->desc32[i].length = htole16(ring->bufsz);
1369 ring->desc32[i].flags = htole16(NFE_RX_READY);
1370 }
1371 }
1372
1373 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1374 BUS_DMASYNC_PREWRITE);
1375
1376 ring->cur = ring->next = 0;
1377 }
1378
1379 void
1380 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1381 {
1382 struct nfe_rx_data *data;
1383 void *desc;
1384 int i, descsize;
1385
1386 if (sc->sc_flags & NFE_40BIT_ADDR) {
1387 desc = ring->desc64;
1388 descsize = sizeof (struct nfe_desc64);
1389 } else {
1390 desc = ring->desc32;
1391 descsize = sizeof (struct nfe_desc32);
1392 }
1393
1394 if (desc != NULL) {
1395 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1396 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1397 bus_dmamap_unload(sc->sc_dmat, ring->map);
1398 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1399 NFE_RX_RING_COUNT * descsize);
1400 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1401 }
1402
1403 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1404 data = &ring->data[i];
1405
1406 if (data->map != NULL) {
1407 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1408 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1409 bus_dmamap_unload(sc->sc_dmat, data->map);
1410 bus_dmamap_destroy(sc->sc_dmat, data->map);
1411 }
1412 if (data->m != NULL)
1413 m_freem(data->m);
1414 }
1415 }
1416
1417 struct nfe_jbuf *
1418 nfe_jalloc(struct nfe_softc *sc)
1419 {
1420 struct nfe_jbuf *jbuf;
1421
1422 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1423 if (jbuf == NULL)
1424 return NULL;
1425 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1426 return jbuf;
1427 }
1428
1429 /*
1430 * This is called automatically by the network stack when the mbuf is freed.
1431 * Caution must be taken that the NIC might be reset by the time the mbuf is
1432 * freed.
1433 */
1434 void
1435 nfe_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
1436 {
1437 struct nfe_softc *sc = arg;
1438 struct nfe_jbuf *jbuf;
1439 int i;
1440
1441 /* find the jbuf from the base pointer */
1442 i = (buf - sc->rxq.jpool) / NFE_JBYTES;
1443 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1444 printf("%s: request to free a buffer (%p) not managed by us\n",
1445 sc->sc_dev.dv_xname, buf);
1446 return;
1447 }
1448 jbuf = &sc->rxq.jbuf[i];
1449
1450 /* ..and put it back in the free list */
1451 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1452
1453 if (m != NULL)
1454 pool_cache_put(&mbpool_cache, m);
1455 }
1456
1457 int
1458 nfe_jpool_alloc(struct nfe_softc *sc)
1459 {
1460 struct nfe_rx_ring *ring = &sc->rxq;
1461 struct nfe_jbuf *jbuf;
1462 bus_addr_t physaddr;
1463 caddr_t buf;
1464 int i, nsegs, error;
1465
1466 /*
1467 * Allocate a big chunk of DMA'able memory.
1468 */
1469 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1470 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1471 if (error != 0) {
1472 printf("%s: could not create jumbo DMA map\n",
1473 sc->sc_dev.dv_xname);
1474 goto fail;
1475 }
1476
1477 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1478 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1479 if (error != 0) {
1480 printf("%s could not allocate jumbo DMA memory\n",
1481 sc->sc_dev.dv_xname);
1482 goto fail;
1483 }
1484
1485 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1486 &ring->jpool, BUS_DMA_NOWAIT);
1487 if (error != 0) {
1488 printf("%s: could not map jumbo DMA memory\n",
1489 sc->sc_dev.dv_xname);
1490 goto fail;
1491 }
1492
1493 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1494 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1495 if (error != 0) {
1496 printf("%s: could not load jumbo DMA map\n",
1497 sc->sc_dev.dv_xname);
1498 goto fail;
1499 }
1500
1501 /* ..and split it into 9KB chunks */
1502 SLIST_INIT(&ring->jfreelist);
1503
1504 buf = ring->jpool;
1505 physaddr = ring->jmap->dm_segs[0].ds_addr;
1506 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1507 jbuf = &ring->jbuf[i];
1508
1509 jbuf->buf = buf;
1510 jbuf->physaddr = physaddr;
1511
1512 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1513
1514 buf += NFE_JBYTES;
1515 physaddr += NFE_JBYTES;
1516 }
1517
1518 return 0;
1519
1520 fail: nfe_jpool_free(sc);
1521 return error;
1522 }
1523
1524 void
1525 nfe_jpool_free(struct nfe_softc *sc)
1526 {
1527 struct nfe_rx_ring *ring = &sc->rxq;
1528
1529 if (ring->jmap != NULL) {
1530 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1531 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1532 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1533 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1534 }
1535 if (ring->jpool != NULL) {
1536 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1537 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1538 }
1539 }
1540
1541 int
1542 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1543 {
1544 int i, nsegs, error;
1545 void **desc;
1546 int descsize;
1547
1548 if (sc->sc_flags & NFE_40BIT_ADDR) {
1549 desc = (void **)&ring->desc64;
1550 descsize = sizeof (struct nfe_desc64);
1551 } else {
1552 desc = (void **)&ring->desc32;
1553 descsize = sizeof (struct nfe_desc32);
1554 }
1555
1556 ring->queued = 0;
1557 ring->cur = ring->next = 0;
1558
1559 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1560 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1561
1562 if (error != 0) {
1563 printf("%s: could not create desc DMA map\n",
1564 sc->sc_dev.dv_xname);
1565 goto fail;
1566 }
1567
1568 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1569 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1570 if (error != 0) {
1571 printf("%s: could not allocate DMA memory\n",
1572 sc->sc_dev.dv_xname);
1573 goto fail;
1574 }
1575
1576 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1577 NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1578 if (error != 0) {
1579 printf("%s: could not map desc DMA memory\n",
1580 sc->sc_dev.dv_xname);
1581 goto fail;
1582 }
1583
1584 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1585 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1586 if (error != 0) {
1587 printf("%s: could not load desc DMA map\n",
1588 sc->sc_dev.dv_xname);
1589 goto fail;
1590 }
1591
1592 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1593 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1594
1595 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1596 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1597 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1598 &ring->data[i].map);
1599 if (error != 0) {
1600 printf("%s: could not create DMA map\n",
1601 sc->sc_dev.dv_xname);
1602 goto fail;
1603 }
1604 }
1605
1606 return 0;
1607
1608 fail: nfe_free_tx_ring(sc, ring);
1609 return error;
1610 }
1611
1612 void
1613 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1614 {
1615 struct nfe_tx_data *data;
1616 int i;
1617
1618 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1619 if (sc->sc_flags & NFE_40BIT_ADDR)
1620 ring->desc64[i].flags = 0;
1621 else
1622 ring->desc32[i].flags = 0;
1623
1624 data = &ring->data[i];
1625
1626 if (data->m != NULL) {
1627 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1628 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1629 bus_dmamap_unload(sc->sc_dmat, data->active);
1630 m_freem(data->m);
1631 data->m = NULL;
1632 }
1633 }
1634
1635 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1636 BUS_DMASYNC_PREWRITE);
1637
1638 ring->queued = 0;
1639 ring->cur = ring->next = 0;
1640 }
1641
1642 void
1643 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1644 {
1645 struct nfe_tx_data *data;
1646 void *desc;
1647 int i, descsize;
1648
1649 if (sc->sc_flags & NFE_40BIT_ADDR) {
1650 desc = ring->desc64;
1651 descsize = sizeof (struct nfe_desc64);
1652 } else {
1653 desc = ring->desc32;
1654 descsize = sizeof (struct nfe_desc32);
1655 }
1656
1657 if (desc != NULL) {
1658 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1659 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1660 bus_dmamap_unload(sc->sc_dmat, ring->map);
1661 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1662 NFE_TX_RING_COUNT * descsize);
1663 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1664 }
1665
1666 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1667 data = &ring->data[i];
1668
1669 if (data->m != NULL) {
1670 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1671 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1672 bus_dmamap_unload(sc->sc_dmat, data->active);
1673 m_freem(data->m);
1674 }
1675 }
1676
1677 /* ..and now actually destroy the DMA mappings */
1678 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1679 data = &ring->data[i];
1680 if (data->map == NULL)
1681 continue;
1682 bus_dmamap_destroy(sc->sc_dmat, data->map);
1683 }
1684 }
1685
1686 int
1687 nfe_ifmedia_upd(struct ifnet *ifp)
1688 {
1689 struct nfe_softc *sc = ifp->if_softc;
1690 struct mii_data *mii = &sc->sc_mii;
1691 struct mii_softc *miisc;
1692
1693 if (mii->mii_instance != 0) {
1694 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1695 mii_phy_reset(miisc);
1696 }
1697 return mii_mediachg(mii);
1698 }
1699
1700 void
1701 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1702 {
1703 struct nfe_softc *sc = ifp->if_softc;
1704 struct mii_data *mii = &sc->sc_mii;
1705
1706 mii_pollstat(mii);
1707 ifmr->ifm_status = mii->mii_media_status;
1708 ifmr->ifm_active = mii->mii_media_active;
1709 }
1710
1711 void
1712 nfe_setmulti(struct nfe_softc *sc)
1713 {
1714 struct ethercom *ec = &sc->sc_ethercom;
1715 struct ifnet *ifp = &ec->ec_if;
1716 struct ether_multi *enm;
1717 struct ether_multistep step;
1718 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1719 uint32_t filter = NFE_RXFILTER_MAGIC;
1720 int i;
1721
1722 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1723 bzero(addr, ETHER_ADDR_LEN);
1724 bzero(mask, ETHER_ADDR_LEN);
1725 goto done;
1726 }
1727
1728 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1729 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1730
1731 ETHER_FIRST_MULTI(step, ec, enm);
1732 while (enm != NULL) {
1733 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1734 ifp->if_flags |= IFF_ALLMULTI;
1735 bzero(addr, ETHER_ADDR_LEN);
1736 bzero(mask, ETHER_ADDR_LEN);
1737 goto done;
1738 }
1739 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1740 addr[i] &= enm->enm_addrlo[i];
1741 mask[i] &= ~enm->enm_addrlo[i];
1742 }
1743 ETHER_NEXT_MULTI(step, enm);
1744 }
1745 for (i = 0; i < ETHER_ADDR_LEN; i++)
1746 mask[i] |= addr[i];
1747
1748 done:
1749 addr[0] |= 0x01; /* make sure multicast bit is set */
1750
1751 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1752 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1753 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1754 addr[5] << 8 | addr[4]);
1755 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1756 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1757 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1758 mask[5] << 8 | mask[4]);
1759
1760 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1761 NFE_WRITE(sc, NFE_RXFILTER, filter);
1762 }
1763
1764 void
1765 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1766 {
1767 uint32_t tmp;
1768
1769 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1770 addr[0] = (tmp >> 8) & 0xff;
1771 addr[1] = (tmp & 0xff);
1772
1773 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1774 addr[2] = (tmp >> 24) & 0xff;
1775 addr[3] = (tmp >> 16) & 0xff;
1776 addr[4] = (tmp >> 8) & 0xff;
1777 addr[5] = (tmp & 0xff);
1778 }
1779
1780 void
1781 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1782 {
1783 NFE_WRITE(sc, NFE_MACADDR_LO,
1784 addr[5] << 8 | addr[4]);
1785 NFE_WRITE(sc, NFE_MACADDR_HI,
1786 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1787 }
1788
1789 void
1790 nfe_tick(void *arg)
1791 {
1792 struct nfe_softc *sc = arg;
1793 int s;
1794
1795 s = splnet();
1796 mii_tick(&sc->sc_mii);
1797 splx(s);
1798
1799 callout_schedule(&sc->sc_tick_ch, hz);
1800 }
1801