if_nfe.c revision 1.40 1 /* $NetBSD: if_nfe.c,v 1.40 2009/02/12 10:33:23 cegger Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.40 2009/02/12 10:33:23 cegger Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/mutex.h>
37 #include <sys/queue.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/callout.h>
41 #include <sys/socket.h>
42
43 #include <sys/bus.h>
44
45 #include <net/if.h>
46 #include <net/if_dl.h>
47 #include <net/if_media.h>
48 #include <net/if_ether.h>
49 #include <net/if_arp.h>
50
51 #ifdef INET
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56 #include <netinet/if_inarp.h>
57 #endif
58
59 #if NVLAN > 0
60 #include <net/if_types.h>
61 #endif
62
63 #if NBPFILTER > 0
64 #include <net/bpf.h>
65 #endif
66
67 #include <dev/mii/mii.h>
68 #include <dev/mii/miivar.h>
69
70 #include <dev/pci/pcireg.h>
71 #include <dev/pci/pcivar.h>
72 #include <dev/pci/pcidevs.h>
73
74 #include <dev/pci/if_nfereg.h>
75 #include <dev/pci/if_nfevar.h>
76
77 static int nfe_ifflags_cb(struct ethercom *);
78
79 int nfe_match(device_t, cfdata_t, void *);
80 void nfe_attach(device_t, device_t, void *);
81 void nfe_power(int, void *);
82 void nfe_miibus_statchg(device_t);
83 int nfe_miibus_readreg(device_t, int, int);
84 void nfe_miibus_writereg(device_t, int, int, int);
85 int nfe_intr(void *);
86 int nfe_ioctl(struct ifnet *, u_long, void *);
87 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
88 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
89 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
90 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
91 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
92 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
93 void nfe_rxeof(struct nfe_softc *);
94 void nfe_txeof(struct nfe_softc *);
95 int nfe_encap(struct nfe_softc *, struct mbuf *);
96 void nfe_start(struct ifnet *);
97 void nfe_watchdog(struct ifnet *);
98 int nfe_init(struct ifnet *);
99 void nfe_stop(struct ifnet *, int);
100 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
101 void nfe_jfree(struct mbuf *, void *, size_t, void *);
102 int nfe_jpool_alloc(struct nfe_softc *);
103 void nfe_jpool_free(struct nfe_softc *);
104 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
106 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
107 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
109 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
110 void nfe_setmulti(struct nfe_softc *);
111 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
112 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
113 void nfe_tick(void *);
114 void nfe_poweron(device_t);
115 bool nfe_resume(device_t PMF_FN_PROTO);
116
117 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
118 NULL, NULL);
119
120 /* #define NFE_NO_JUMBO */
121
122 #ifdef NFE_DEBUG
123 int nfedebug = 0;
124 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
125 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
126 #else
127 #define DPRINTF(x)
128 #define DPRINTFN(n,x)
129 #endif
130
131 /* deal with naming differences */
132
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
135 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
136 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
137 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
138 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
139
140 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
142 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
143 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
144
145 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
147 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
148 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
149
150 #ifdef _LP64
151 #define __LP64__ 1
152 #endif
153
154 const struct nfe_product {
155 pci_vendor_id_t vendor;
156 pci_product_id_t product;
157 } nfe_devices[] = {
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
195 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
196 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
197 };
198
199 int
200 nfe_match(device_t dev, cfdata_t match, void *aux)
201 {
202 struct pci_attach_args *pa = aux;
203 const struct nfe_product *np;
204 int i;
205
206 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
207 np = &nfe_devices[i];
208 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
209 PCI_PRODUCT(pa->pa_id) == np->product)
210 return 1;
211 }
212 return 0;
213 }
214
215 void
216 nfe_attach(device_t parent, device_t self, void *aux)
217 {
218 struct nfe_softc *sc = device_private(self);
219 struct pci_attach_args *pa = aux;
220 pci_chipset_tag_t pc = pa->pa_pc;
221 pci_intr_handle_t ih;
222 const char *intrstr;
223 struct ifnet *ifp;
224 bus_size_t memsize;
225 pcireg_t memtype;
226 char devinfo[256];
227 int mii_flags = 0;
228
229 sc->sc_dev = self;
230 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
231 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
232
233 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
234 switch (memtype) {
235 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
236 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
237 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
238 &sc->sc_memh, NULL, &memsize) == 0)
239 break;
240 /* FALLTHROUGH */
241 default:
242 aprint_error_dev(self, "could not map mem space\n");
243 return;
244 }
245
246 if (pci_intr_map(pa, &ih) != 0) {
247 aprint_error_dev(self, "could not map interrupt\n");
248 return;
249 }
250
251 intrstr = pci_intr_string(pc, ih);
252 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
253 if (sc->sc_ih == NULL) {
254 aprint_error_dev(self, "could not establish interrupt");
255 if (intrstr != NULL)
256 aprint_normal(" at %s", intrstr);
257 aprint_normal("\n");
258 return;
259 }
260 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
261
262 sc->sc_dmat = pa->pa_dmat;
263
264 sc->sc_flags = 0;
265
266 switch (PCI_PRODUCT(pa->pa_id)) {
267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
268 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
269 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
270 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
271 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
272 break;
273 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
275 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
276 break;
277 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
278 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
279 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
280 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
281 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
282 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
283 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
284 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
285 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
286 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
287 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
288 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
289 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
290 NFE_PWR_MGMT;
291 break;
292 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
293 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
294 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
295 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
296 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
297 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
298 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
299 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
300 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
301 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
302 break;
303 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
304 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
305 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
306 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
307 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
308 break;
309 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
310 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
311 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
312 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
313 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
314 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
315 mii_flags = MIIF_DOPAUSE;
316 break;
317 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
318 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
319 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
320 NFE_HW_VLAN | NFE_PWR_MGMT;
321 break;
322 }
323
324 nfe_poweron(self);
325
326 #ifndef NFE_NO_JUMBO
327 /* enable jumbo frames for adapters that support it */
328 if (sc->sc_flags & NFE_JUMBO_SUP)
329 sc->sc_flags |= NFE_USE_JUMBO;
330 #endif
331
332 /* Check for reversed ethernet address */
333 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
334 sc->sc_flags |= NFE_CORRECT_MACADDR;
335
336 nfe_get_macaddr(sc, sc->sc_enaddr);
337 aprint_normal_dev(self, "Ethernet address %s\n",
338 ether_sprintf(sc->sc_enaddr));
339
340 /*
341 * Allocate Tx and Rx rings.
342 */
343 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
344 aprint_error_dev(self, "could not allocate Tx ring\n");
345 return;
346 }
347
348 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
349
350 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
351 aprint_error_dev(self, "could not allocate Rx ring\n");
352 nfe_free_tx_ring(sc, &sc->txq);
353 return;
354 }
355
356 ifp = &sc->sc_ethercom.ec_if;
357 ifp->if_softc = sc;
358 ifp->if_mtu = ETHERMTU;
359 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
360 ifp->if_ioctl = nfe_ioctl;
361 ifp->if_start = nfe_start;
362 ifp->if_stop = nfe_stop;
363 ifp->if_watchdog = nfe_watchdog;
364 ifp->if_init = nfe_init;
365 ifp->if_baudrate = IF_Gbps(1);
366 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
367 IFQ_SET_READY(&ifp->if_snd);
368 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
369
370 if (sc->sc_flags & NFE_USE_JUMBO)
371 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
372
373 #if NVLAN > 0
374 if (sc->sc_flags & NFE_HW_VLAN)
375 sc->sc_ethercom.ec_capabilities |=
376 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
377 #endif
378 if (sc->sc_flags & NFE_HW_CSUM) {
379 ifp->if_capabilities |=
380 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
381 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
382 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
383 }
384
385 sc->sc_mii.mii_ifp = ifp;
386 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
387 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
388 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
389
390 sc->sc_ethercom.ec_mii = &sc->sc_mii;
391 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
392 ether_mediastatus);
393
394 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
395 MII_OFFSET_ANY, mii_flags);
396
397 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
398 aprint_error_dev(self, "no PHY found!\n");
399 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
400 0, NULL);
401 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
402 } else
403 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
404
405 if_attach(ifp);
406 ether_ifattach(ifp, sc->sc_enaddr);
407 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
408
409 callout_init(&sc->sc_tick_ch, 0);
410 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
411
412 if (!pmf_device_register(self, NULL, nfe_resume))
413 aprint_error_dev(self, "couldn't establish power handler\n");
414 else
415 pmf_class_network_register(self, ifp);
416 }
417
418 void
419 nfe_miibus_statchg(device_t dev)
420 {
421 struct nfe_softc *sc = device_private(dev);
422 struct mii_data *mii = &sc->sc_mii;
423 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
424
425 phy = NFE_READ(sc, NFE_PHY_IFACE);
426 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
427
428 seed = NFE_READ(sc, NFE_RNDSEED);
429 seed &= ~NFE_SEED_MASK;
430
431 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
432 phy |= NFE_PHY_HDX; /* half-duplex */
433 misc |= NFE_MISC1_HDX;
434 }
435
436 switch (IFM_SUBTYPE(mii->mii_media_active)) {
437 case IFM_1000_T: /* full-duplex only */
438 link |= NFE_MEDIA_1000T;
439 seed |= NFE_SEED_1000T;
440 phy |= NFE_PHY_1000T;
441 break;
442 case IFM_100_TX:
443 link |= NFE_MEDIA_100TX;
444 seed |= NFE_SEED_100TX;
445 phy |= NFE_PHY_100TX;
446 break;
447 case IFM_10_T:
448 link |= NFE_MEDIA_10T;
449 seed |= NFE_SEED_10T;
450 break;
451 }
452
453 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
454
455 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
456 NFE_WRITE(sc, NFE_MISC1, misc);
457 NFE_WRITE(sc, NFE_LINKSPEED, link);
458 }
459
460 int
461 nfe_miibus_readreg(device_t dev, int phy, int reg)
462 {
463 struct nfe_softc *sc = device_private(dev);
464 uint32_t val;
465 int ntries;
466
467 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
468
469 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
470 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
471 DELAY(100);
472 }
473
474 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
475
476 for (ntries = 0; ntries < 1000; ntries++) {
477 DELAY(100);
478 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
479 break;
480 }
481 if (ntries == 1000) {
482 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
483 device_xname(sc->sc_dev)));
484 return 0;
485 }
486
487 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
488 DPRINTFN(2, ("%s: could not read PHY\n",
489 device_xname(sc->sc_dev)));
490 return 0;
491 }
492
493 val = NFE_READ(sc, NFE_PHY_DATA);
494 if (val != 0xffffffff && val != 0)
495 sc->mii_phyaddr = phy;
496
497 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
498 device_xname(sc->sc_dev), phy, reg, val));
499
500 return val;
501 }
502
503 void
504 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
505 {
506 struct nfe_softc *sc = device_private(dev);
507 uint32_t ctl;
508 int ntries;
509
510 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
511
512 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
513 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
514 DELAY(100);
515 }
516
517 NFE_WRITE(sc, NFE_PHY_DATA, val);
518 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
519 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
520
521 for (ntries = 0; ntries < 1000; ntries++) {
522 DELAY(100);
523 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
524 break;
525 }
526 #ifdef NFE_DEBUG
527 if (nfedebug >= 2 && ntries == 1000)
528 printf("could not write to PHY\n");
529 #endif
530 }
531
532 int
533 nfe_intr(void *arg)
534 {
535 struct nfe_softc *sc = arg;
536 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
537 uint32_t r;
538 int handled;
539
540 if ((ifp->if_flags & IFF_UP) == 0)
541 return 0;
542
543 handled = 0;
544
545 for (;;) {
546 r = NFE_READ(sc, NFE_IRQ_STATUS);
547 if ((r & NFE_IRQ_WANTED) == 0)
548 break;
549
550 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
551 handled = 1;
552 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
553
554 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
555 /* check Rx ring */
556 nfe_rxeof(sc);
557 }
558 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
559 /* check Tx ring */
560 nfe_txeof(sc);
561 }
562 if ((r & NFE_IRQ_LINK) != 0) {
563 NFE_READ(sc, NFE_PHY_STATUS);
564 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
565 DPRINTF(("%s: link state changed\n",
566 device_xname(sc->sc_dev)));
567 }
568 }
569
570 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
571 nfe_start(ifp);
572
573 return handled;
574 }
575
576 static int
577 nfe_ifflags_cb(struct ethercom *ec)
578 {
579 struct ifnet *ifp = &ec->ec_if;
580 struct nfe_softc *sc = ifp->if_softc;
581 int change = ifp->if_flags ^ sc->sc_if_flags;
582
583 /*
584 * If only the PROMISC flag changes, then
585 * don't do a full re-init of the chip, just update
586 * the Rx filter.
587 */
588 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
589 return ENETRESET;
590 else if ((change & IFF_PROMISC) != 0)
591 nfe_setmulti(sc);
592
593 return 0;
594 }
595
596 int
597 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
598 {
599 struct nfe_softc *sc = ifp->if_softc;
600 struct ifaddr *ifa = (struct ifaddr *)data;
601 int s, error = 0;
602
603 s = splnet();
604
605 switch (cmd) {
606 case SIOCINITIFADDR:
607 ifp->if_flags |= IFF_UP;
608 nfe_init(ifp);
609 switch (ifa->ifa_addr->sa_family) {
610 #ifdef INET
611 case AF_INET:
612 arp_ifinit(ifp, ifa);
613 break;
614 #endif
615 default:
616 break;
617 }
618 break;
619 default:
620 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
621 break;
622
623 error = 0;
624
625 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
626 ;
627 else if (ifp->if_flags & IFF_RUNNING)
628 nfe_setmulti(sc);
629 break;
630 }
631 sc->sc_if_flags = ifp->if_flags;
632
633 splx(s);
634
635 return error;
636 }
637
638 void
639 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
640 {
641 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
642 (char *)desc32 - (char *)sc->txq.desc32,
643 sizeof (struct nfe_desc32), ops);
644 }
645
646 void
647 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
648 {
649 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
650 (char *)desc64 - (char *)sc->txq.desc64,
651 sizeof (struct nfe_desc64), ops);
652 }
653
654 void
655 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
656 {
657 if (end > start) {
658 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
659 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
660 (char *)&sc->txq.desc32[end] -
661 (char *)&sc->txq.desc32[start], ops);
662 return;
663 }
664 /* sync from 'start' to end of ring */
665 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
666 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
667 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
668 (char *)&sc->txq.desc32[start], ops);
669
670 /* sync from start of ring to 'end' */
671 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
672 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
673 }
674
675 void
676 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
677 {
678 if (end > start) {
679 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
680 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
681 (char *)&sc->txq.desc64[end] -
682 (char *)&sc->txq.desc64[start], ops);
683 return;
684 }
685 /* sync from 'start' to end of ring */
686 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
687 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
688 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
689 (char *)&sc->txq.desc64[start], ops);
690
691 /* sync from start of ring to 'end' */
692 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
693 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
694 }
695
696 void
697 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
698 {
699 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
700 (char *)desc32 - (char *)sc->rxq.desc32,
701 sizeof (struct nfe_desc32), ops);
702 }
703
704 void
705 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
706 {
707 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
708 (char *)desc64 - (char *)sc->rxq.desc64,
709 sizeof (struct nfe_desc64), ops);
710 }
711
712 void
713 nfe_rxeof(struct nfe_softc *sc)
714 {
715 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
716 struct nfe_desc32 *desc32;
717 struct nfe_desc64 *desc64;
718 struct nfe_rx_data *data;
719 struct nfe_jbuf *jbuf;
720 struct mbuf *m, *mnew;
721 bus_addr_t physaddr;
722 uint16_t flags;
723 int error, len, i;
724
725 desc32 = NULL;
726 desc64 = NULL;
727 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
728 data = &sc->rxq.data[i];
729
730 if (sc->sc_flags & NFE_40BIT_ADDR) {
731 desc64 = &sc->rxq.desc64[i];
732 nfe_rxdesc64_sync(sc, desc64,
733 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
734
735 flags = le16toh(desc64->flags);
736 len = le16toh(desc64->length) & 0x3fff;
737 } else {
738 desc32 = &sc->rxq.desc32[i];
739 nfe_rxdesc32_sync(sc, desc32,
740 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
741
742 flags = le16toh(desc32->flags);
743 len = le16toh(desc32->length) & 0x3fff;
744 }
745
746 if ((flags & NFE_RX_READY) != 0)
747 break;
748
749 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
750 if ((flags & NFE_RX_VALID_V1) == 0)
751 goto skip;
752
753 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
754 flags &= ~NFE_RX_ERROR;
755 len--; /* fix buffer length */
756 }
757 } else {
758 if ((flags & NFE_RX_VALID_V2) == 0)
759 goto skip;
760
761 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
762 flags &= ~NFE_RX_ERROR;
763 len--; /* fix buffer length */
764 }
765 }
766
767 if (flags & NFE_RX_ERROR) {
768 ifp->if_ierrors++;
769 goto skip;
770 }
771
772 /*
773 * Try to allocate a new mbuf for this ring element and load
774 * it before processing the current mbuf. If the ring element
775 * cannot be loaded, drop the received packet and reuse the
776 * old mbuf. In the unlikely case that the old mbuf can't be
777 * reloaded either, explicitly panic.
778 */
779 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
780 if (mnew == NULL) {
781 ifp->if_ierrors++;
782 goto skip;
783 }
784
785 if (sc->sc_flags & NFE_USE_JUMBO) {
786 physaddr =
787 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
788 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
789 if (len > MCLBYTES) {
790 m_freem(mnew);
791 ifp->if_ierrors++;
792 goto skip1;
793 }
794 MCLGET(mnew, M_DONTWAIT);
795 if ((mnew->m_flags & M_EXT) == 0) {
796 m_freem(mnew);
797 ifp->if_ierrors++;
798 goto skip1;
799 }
800
801 (void)memcpy(mtod(mnew, void *),
802 mtod(data->m, const void *), len);
803 m = mnew;
804 goto mbufcopied;
805 } else {
806 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
807 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
808 mtod(data->m, char *) - (char *)sc->rxq.jpool,
809 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
810
811 physaddr = jbuf->physaddr;
812 }
813 } else {
814 MCLGET(mnew, M_DONTWAIT);
815 if ((mnew->m_flags & M_EXT) == 0) {
816 m_freem(mnew);
817 ifp->if_ierrors++;
818 goto skip;
819 }
820
821 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
822 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
823 bus_dmamap_unload(sc->sc_dmat, data->map);
824
825 error = bus_dmamap_load(sc->sc_dmat, data->map,
826 mtod(mnew, void *), MCLBYTES, NULL,
827 BUS_DMA_READ | BUS_DMA_NOWAIT);
828 if (error != 0) {
829 m_freem(mnew);
830
831 /* try to reload the old mbuf */
832 error = bus_dmamap_load(sc->sc_dmat, data->map,
833 mtod(data->m, void *), MCLBYTES, NULL,
834 BUS_DMA_READ | BUS_DMA_NOWAIT);
835 if (error != 0) {
836 /* very unlikely that it will fail.. */
837 panic("%s: could not load old rx mbuf",
838 device_xname(sc->sc_dev));
839 }
840 ifp->if_ierrors++;
841 goto skip;
842 }
843 physaddr = data->map->dm_segs[0].ds_addr;
844 }
845
846 /*
847 * New mbuf successfully loaded, update Rx ring and continue
848 * processing.
849 */
850 m = data->m;
851 data->m = mnew;
852
853 mbufcopied:
854 /* finalize mbuf */
855 m->m_pkthdr.len = m->m_len = len;
856 m->m_pkthdr.rcvif = ifp;
857
858 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
859 /*
860 * XXX
861 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
862 */
863 if (flags & NFE_RX_IP_CSUMOK) {
864 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
865 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
866 device_xname(sc->sc_dev)));
867 }
868 /*
869 * XXX
870 * no way to check M_CSUM_TCP_UDP_BAD or
871 * other protocols?
872 */
873 if (flags & NFE_RX_UDP_CSUMOK) {
874 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
875 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
876 device_xname(sc->sc_dev)));
877 } else if (flags & NFE_RX_TCP_CSUMOK) {
878 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
879 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
880 device_xname(sc->sc_dev)));
881 }
882 }
883 #if NBPFILTER > 0
884 if (ifp->if_bpf)
885 bpf_mtap(ifp->if_bpf, m);
886 #endif
887 ifp->if_ipackets++;
888 (*ifp->if_input)(ifp, m);
889
890 skip1:
891 /* update mapping address in h/w descriptor */
892 if (sc->sc_flags & NFE_40BIT_ADDR) {
893 #if defined(__LP64__)
894 desc64->physaddr[0] = htole32(physaddr >> 32);
895 #endif
896 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
897 } else {
898 desc32->physaddr = htole32(physaddr);
899 }
900
901 skip:
902 if (sc->sc_flags & NFE_40BIT_ADDR) {
903 desc64->length = htole16(sc->rxq.bufsz);
904 desc64->flags = htole16(NFE_RX_READY);
905
906 nfe_rxdesc64_sync(sc, desc64,
907 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
908 } else {
909 desc32->length = htole16(sc->rxq.bufsz);
910 desc32->flags = htole16(NFE_RX_READY);
911
912 nfe_rxdesc32_sync(sc, desc32,
913 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
914 }
915 }
916 /* update current RX pointer */
917 sc->rxq.cur = i;
918 }
919
920 void
921 nfe_txeof(struct nfe_softc *sc)
922 {
923 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
924 struct nfe_desc32 *desc32;
925 struct nfe_desc64 *desc64;
926 struct nfe_tx_data *data = NULL;
927 int i;
928 uint16_t flags;
929 char buf[128];
930
931 for (i = sc->txq.next;
932 sc->txq.queued > 0;
933 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
934 if (sc->sc_flags & NFE_40BIT_ADDR) {
935 desc64 = &sc->txq.desc64[i];
936 nfe_txdesc64_sync(sc, desc64,
937 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
938
939 flags = le16toh(desc64->flags);
940 } else {
941 desc32 = &sc->txq.desc32[i];
942 nfe_txdesc32_sync(sc, desc32,
943 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
944
945 flags = le16toh(desc32->flags);
946 }
947
948 if ((flags & NFE_TX_VALID) != 0)
949 break;
950
951 data = &sc->txq.data[i];
952
953 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
954 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
955 data->m == NULL)
956 continue;
957
958 if ((flags & NFE_TX_ERROR_V1) != 0) {
959 snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
960 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
961 buf);
962 ifp->if_oerrors++;
963 } else
964 ifp->if_opackets++;
965 } else {
966 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
967 data->m == NULL)
968 continue;
969
970 if ((flags & NFE_TX_ERROR_V2) != 0) {
971 snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
972 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
973 buf);
974 ifp->if_oerrors++;
975 } else
976 ifp->if_opackets++;
977 }
978
979 if (data->m == NULL) { /* should not get there */
980 aprint_error_dev(sc->sc_dev,
981 "last fragment bit w/o associated mbuf!\n");
982 continue;
983 }
984
985 /* last fragment of the mbuf chain transmitted */
986 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
987 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
988 bus_dmamap_unload(sc->sc_dmat, data->active);
989 m_freem(data->m);
990 data->m = NULL;
991 }
992
993 sc->txq.next = i;
994
995 if (sc->txq.queued < NFE_TX_RING_COUNT) {
996 /* at least one slot freed */
997 ifp->if_flags &= ~IFF_OACTIVE;
998 }
999
1000 if (sc->txq.queued == 0) {
1001 /* all queued packets are sent */
1002 ifp->if_timer = 0;
1003 }
1004 }
1005
1006 int
1007 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1008 {
1009 struct nfe_desc32 *desc32;
1010 struct nfe_desc64 *desc64;
1011 struct nfe_tx_data *data;
1012 bus_dmamap_t map;
1013 uint16_t flags, csumflags;
1014 #if NVLAN > 0
1015 struct m_tag *mtag;
1016 uint32_t vtag = 0;
1017 #endif
1018 int error, i, first;
1019
1020 desc32 = NULL;
1021 desc64 = NULL;
1022 data = NULL;
1023
1024 flags = 0;
1025 csumflags = 0;
1026 first = sc->txq.cur;
1027
1028 map = sc->txq.data[first].map;
1029
1030 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1031 if (error != 0) {
1032 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1033 error);
1034 return error;
1035 }
1036
1037 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1038 bus_dmamap_unload(sc->sc_dmat, map);
1039 return ENOBUFS;
1040 }
1041
1042 #if NVLAN > 0
1043 /* setup h/w VLAN tagging */
1044 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1045 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1046 #endif
1047 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1048 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1049 csumflags |= NFE_TX_IP_CSUM;
1050 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1051 csumflags |= NFE_TX_TCP_UDP_CSUM;
1052 }
1053
1054 for (i = 0; i < map->dm_nsegs; i++) {
1055 data = &sc->txq.data[sc->txq.cur];
1056
1057 if (sc->sc_flags & NFE_40BIT_ADDR) {
1058 desc64 = &sc->txq.desc64[sc->txq.cur];
1059 #if defined(__LP64__)
1060 desc64->physaddr[0] =
1061 htole32(map->dm_segs[i].ds_addr >> 32);
1062 #endif
1063 desc64->physaddr[1] =
1064 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1065 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1066 desc64->flags = htole16(flags);
1067 desc64->vtag = 0;
1068 } else {
1069 desc32 = &sc->txq.desc32[sc->txq.cur];
1070
1071 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1072 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1073 desc32->flags = htole16(flags);
1074 }
1075
1076 /*
1077 * Setting of the valid bit in the first descriptor is
1078 * deferred until the whole chain is fully setup.
1079 */
1080 flags |= NFE_TX_VALID;
1081
1082 sc->txq.queued++;
1083 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1084 }
1085
1086 /* the whole mbuf chain has been setup */
1087 if (sc->sc_flags & NFE_40BIT_ADDR) {
1088 /* fix last descriptor */
1089 flags |= NFE_TX_LASTFRAG_V2;
1090 desc64->flags = htole16(flags);
1091
1092 /* Checksum flags and vtag belong to the first fragment only. */
1093 #if NVLAN > 0
1094 sc->txq.desc64[first].vtag = htole32(vtag);
1095 #endif
1096 sc->txq.desc64[first].flags |= htole16(csumflags);
1097
1098 /* finally, set the valid bit in the first descriptor */
1099 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1100 } else {
1101 /* fix last descriptor */
1102 if (sc->sc_flags & NFE_JUMBO_SUP)
1103 flags |= NFE_TX_LASTFRAG_V2;
1104 else
1105 flags |= NFE_TX_LASTFRAG_V1;
1106 desc32->flags = htole16(flags);
1107
1108 /* Checksum flags belong to the first fragment only. */
1109 sc->txq.desc32[first].flags |= htole16(csumflags);
1110
1111 /* finally, set the valid bit in the first descriptor */
1112 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1113 }
1114
1115 data->m = m0;
1116 data->active = map;
1117
1118 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1119 BUS_DMASYNC_PREWRITE);
1120
1121 return 0;
1122 }
1123
1124 void
1125 nfe_start(struct ifnet *ifp)
1126 {
1127 struct nfe_softc *sc = ifp->if_softc;
1128 int old = sc->txq.queued;
1129 struct mbuf *m0;
1130
1131 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1132 return;
1133
1134 for (;;) {
1135 IFQ_POLL(&ifp->if_snd, m0);
1136 if (m0 == NULL)
1137 break;
1138
1139 if (nfe_encap(sc, m0) != 0) {
1140 ifp->if_flags |= IFF_OACTIVE;
1141 break;
1142 }
1143
1144 /* packet put in h/w queue, remove from s/w queue */
1145 IFQ_DEQUEUE(&ifp->if_snd, m0);
1146
1147 #if NBPFILTER > 0
1148 if (ifp->if_bpf != NULL)
1149 bpf_mtap(ifp->if_bpf, m0);
1150 #endif
1151 }
1152
1153 if (sc->txq.queued != old) {
1154 /* packets are queued */
1155 if (sc->sc_flags & NFE_40BIT_ADDR)
1156 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1157 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1158 else
1159 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1160 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1161 /* kick Tx */
1162 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1163
1164 /*
1165 * Set a timeout in case the chip goes out to lunch.
1166 */
1167 ifp->if_timer = 5;
1168 }
1169 }
1170
1171 void
1172 nfe_watchdog(struct ifnet *ifp)
1173 {
1174 struct nfe_softc *sc = ifp->if_softc;
1175
1176 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1177
1178 ifp->if_flags &= ~IFF_RUNNING;
1179 nfe_init(ifp);
1180
1181 ifp->if_oerrors++;
1182 }
1183
1184 int
1185 nfe_init(struct ifnet *ifp)
1186 {
1187 struct nfe_softc *sc = ifp->if_softc;
1188 uint32_t tmp;
1189 int rc = 0, s;
1190
1191 if (ifp->if_flags & IFF_RUNNING)
1192 return 0;
1193
1194 nfe_stop(ifp, 0);
1195
1196 NFE_WRITE(sc, NFE_TX_UNK, 0);
1197 NFE_WRITE(sc, NFE_STATUS, 0);
1198
1199 sc->rxtxctl = NFE_RXTX_BIT2;
1200 if (sc->sc_flags & NFE_40BIT_ADDR)
1201 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1202 else if (sc->sc_flags & NFE_JUMBO_SUP)
1203 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1204 if (sc->sc_flags & NFE_HW_CSUM)
1205 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1206 #if NVLAN > 0
1207 /*
1208 * Although the adapter is capable of stripping VLAN tags from received
1209 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1210 * purpose. This will be done in software by our network stack.
1211 */
1212 if (sc->sc_flags & NFE_HW_VLAN)
1213 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1214 #endif
1215 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1216 DELAY(10);
1217 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1218
1219 #if NVLAN
1220 if (sc->sc_flags & NFE_HW_VLAN)
1221 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1222 #endif
1223
1224 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1225
1226 /* set MAC address */
1227 nfe_set_macaddr(sc, sc->sc_enaddr);
1228
1229 /* tell MAC where rings are in memory */
1230 #ifdef __LP64__
1231 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1232 #endif
1233 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1234 #ifdef __LP64__
1235 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1236 #endif
1237 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1238
1239 NFE_WRITE(sc, NFE_RING_SIZE,
1240 (NFE_RX_RING_COUNT - 1) << 16 |
1241 (NFE_TX_RING_COUNT - 1));
1242
1243 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1244
1245 /* force MAC to wakeup */
1246 tmp = NFE_READ(sc, NFE_PWR_STATE);
1247 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1248 DELAY(10);
1249 tmp = NFE_READ(sc, NFE_PWR_STATE);
1250 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1251
1252 s = splnet();
1253 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1254 nfe_intr(sc); /* XXX clear IRQ status registers */
1255 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1256 splx(s);
1257
1258 #if 1
1259 /* configure interrupts coalescing/mitigation */
1260 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1261 #else
1262 /* no interrupt mitigation: one interrupt per packet */
1263 NFE_WRITE(sc, NFE_IMTIMER, 970);
1264 #endif
1265
1266 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1267 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1268 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1269
1270 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1271 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1272
1273 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1274 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1275
1276 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1277 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1278 DELAY(10);
1279 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1280
1281 /* set Rx filter */
1282 nfe_setmulti(sc);
1283
1284 if ((rc = ether_mediachange(ifp)) != 0)
1285 goto out;
1286
1287 nfe_tick(sc);
1288
1289 /* enable Rx */
1290 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1291
1292 /* enable Tx */
1293 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1294
1295 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1296
1297 /* enable interrupts */
1298 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1299
1300 callout_schedule(&sc->sc_tick_ch, hz);
1301
1302 ifp->if_flags |= IFF_RUNNING;
1303 ifp->if_flags &= ~IFF_OACTIVE;
1304
1305 out:
1306 return rc;
1307 }
1308
1309 void
1310 nfe_stop(struct ifnet *ifp, int disable)
1311 {
1312 struct nfe_softc *sc = ifp->if_softc;
1313
1314 callout_stop(&sc->sc_tick_ch);
1315
1316 ifp->if_timer = 0;
1317 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1318
1319 mii_down(&sc->sc_mii);
1320
1321 /* abort Tx */
1322 NFE_WRITE(sc, NFE_TX_CTL, 0);
1323
1324 /* disable Rx */
1325 NFE_WRITE(sc, NFE_RX_CTL, 0);
1326
1327 /* disable interrupts */
1328 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1329
1330 /* reset Tx and Rx rings */
1331 nfe_reset_tx_ring(sc, &sc->txq);
1332 nfe_reset_rx_ring(sc, &sc->rxq);
1333 }
1334
1335 int
1336 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1337 {
1338 struct nfe_desc32 *desc32;
1339 struct nfe_desc64 *desc64;
1340 struct nfe_rx_data *data;
1341 struct nfe_jbuf *jbuf;
1342 void **desc;
1343 bus_addr_t physaddr;
1344 int i, nsegs, error, descsize;
1345
1346 if (sc->sc_flags & NFE_40BIT_ADDR) {
1347 desc = (void **)&ring->desc64;
1348 descsize = sizeof (struct nfe_desc64);
1349 } else {
1350 desc = (void **)&ring->desc32;
1351 descsize = sizeof (struct nfe_desc32);
1352 }
1353
1354 ring->cur = ring->next = 0;
1355 ring->bufsz = MCLBYTES;
1356
1357 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1358 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1359 if (error != 0) {
1360 aprint_error_dev(sc->sc_dev,
1361 "could not create desc DMA map\n");
1362 goto fail;
1363 }
1364
1365 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1366 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1367 if (error != 0) {
1368 aprint_error_dev(sc->sc_dev,
1369 "could not allocate DMA memory\n");
1370 goto fail;
1371 }
1372
1373 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1374 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1375 if (error != 0) {
1376 aprint_error_dev(sc->sc_dev,
1377 "could not map desc DMA memory\n");
1378 goto fail;
1379 }
1380
1381 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1382 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1383 if (error != 0) {
1384 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1385 goto fail;
1386 }
1387
1388 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1389 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1390
1391 if (sc->sc_flags & NFE_USE_JUMBO) {
1392 ring->bufsz = NFE_JBYTES;
1393 if ((error = nfe_jpool_alloc(sc)) != 0) {
1394 aprint_error_dev(sc->sc_dev,
1395 "could not allocate jumbo frames\n");
1396 goto fail;
1397 }
1398 }
1399
1400 /*
1401 * Pre-allocate Rx buffers and populate Rx ring.
1402 */
1403 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1404 data = &sc->rxq.data[i];
1405
1406 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1407 if (data->m == NULL) {
1408 aprint_error_dev(sc->sc_dev,
1409 "could not allocate rx mbuf\n");
1410 error = ENOMEM;
1411 goto fail;
1412 }
1413
1414 if (sc->sc_flags & NFE_USE_JUMBO) {
1415 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1416 aprint_error_dev(sc->sc_dev,
1417 "could not allocate jumbo buffer\n");
1418 goto fail;
1419 }
1420 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1421 sc);
1422
1423 physaddr = jbuf->physaddr;
1424 } else {
1425 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1426 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1427 if (error != 0) {
1428 aprint_error_dev(sc->sc_dev,
1429 "could not create DMA map\n");
1430 goto fail;
1431 }
1432 MCLGET(data->m, M_DONTWAIT);
1433 if (!(data->m->m_flags & M_EXT)) {
1434 aprint_error_dev(sc->sc_dev,
1435 "could not allocate mbuf cluster\n");
1436 error = ENOMEM;
1437 goto fail;
1438 }
1439
1440 error = bus_dmamap_load(sc->sc_dmat, data->map,
1441 mtod(data->m, void *), MCLBYTES, NULL,
1442 BUS_DMA_READ | BUS_DMA_NOWAIT);
1443 if (error != 0) {
1444 aprint_error_dev(sc->sc_dev,
1445 "could not load rx buf DMA map");
1446 goto fail;
1447 }
1448 physaddr = data->map->dm_segs[0].ds_addr;
1449 }
1450
1451 if (sc->sc_flags & NFE_40BIT_ADDR) {
1452 desc64 = &sc->rxq.desc64[i];
1453 #if defined(__LP64__)
1454 desc64->physaddr[0] = htole32(physaddr >> 32);
1455 #endif
1456 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1457 desc64->length = htole16(sc->rxq.bufsz);
1458 desc64->flags = htole16(NFE_RX_READY);
1459 } else {
1460 desc32 = &sc->rxq.desc32[i];
1461 desc32->physaddr = htole32(physaddr);
1462 desc32->length = htole16(sc->rxq.bufsz);
1463 desc32->flags = htole16(NFE_RX_READY);
1464 }
1465 }
1466
1467 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1468 BUS_DMASYNC_PREWRITE);
1469
1470 return 0;
1471
1472 fail: nfe_free_rx_ring(sc, ring);
1473 return error;
1474 }
1475
1476 void
1477 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1478 {
1479 int i;
1480
1481 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1482 if (sc->sc_flags & NFE_40BIT_ADDR) {
1483 ring->desc64[i].length = htole16(ring->bufsz);
1484 ring->desc64[i].flags = htole16(NFE_RX_READY);
1485 } else {
1486 ring->desc32[i].length = htole16(ring->bufsz);
1487 ring->desc32[i].flags = htole16(NFE_RX_READY);
1488 }
1489 }
1490
1491 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1492 BUS_DMASYNC_PREWRITE);
1493
1494 ring->cur = ring->next = 0;
1495 }
1496
1497 void
1498 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1499 {
1500 struct nfe_rx_data *data;
1501 void *desc;
1502 int i, descsize;
1503
1504 if (sc->sc_flags & NFE_40BIT_ADDR) {
1505 desc = ring->desc64;
1506 descsize = sizeof (struct nfe_desc64);
1507 } else {
1508 desc = ring->desc32;
1509 descsize = sizeof (struct nfe_desc32);
1510 }
1511
1512 if (desc != NULL) {
1513 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1514 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1515 bus_dmamap_unload(sc->sc_dmat, ring->map);
1516 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1517 NFE_RX_RING_COUNT * descsize);
1518 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1519 }
1520
1521 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1522 data = &ring->data[i];
1523
1524 if (data->map != NULL) {
1525 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1526 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1527 bus_dmamap_unload(sc->sc_dmat, data->map);
1528 bus_dmamap_destroy(sc->sc_dmat, data->map);
1529 }
1530 if (data->m != NULL)
1531 m_freem(data->m);
1532 }
1533 }
1534
1535 struct nfe_jbuf *
1536 nfe_jalloc(struct nfe_softc *sc, int i)
1537 {
1538 struct nfe_jbuf *jbuf;
1539
1540 mutex_enter(&sc->rxq.mtx);
1541 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1542 if (jbuf != NULL)
1543 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1544 mutex_exit(&sc->rxq.mtx);
1545 if (jbuf == NULL)
1546 return NULL;
1547 sc->rxq.jbufmap[i] =
1548 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1549 return jbuf;
1550 }
1551
1552 /*
1553 * This is called automatically by the network stack when the mbuf is freed.
1554 * Caution must be taken that the NIC might be reset by the time the mbuf is
1555 * freed.
1556 */
1557 void
1558 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1559 {
1560 struct nfe_softc *sc = arg;
1561 struct nfe_jbuf *jbuf;
1562 int i;
1563
1564 /* find the jbuf from the base pointer */
1565 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1566 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1567 aprint_error_dev(sc->sc_dev,
1568 "request to free a buffer (%p) not managed by us\n", buf);
1569 return;
1570 }
1571 jbuf = &sc->rxq.jbuf[i];
1572
1573 /* ..and put it back in the free list */
1574 mutex_enter(&sc->rxq.mtx);
1575 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1576 mutex_exit(&sc->rxq.mtx);
1577
1578 if (m != NULL)
1579 pool_cache_put(mb_cache, m);
1580 }
1581
1582 int
1583 nfe_jpool_alloc(struct nfe_softc *sc)
1584 {
1585 struct nfe_rx_ring *ring = &sc->rxq;
1586 struct nfe_jbuf *jbuf;
1587 bus_addr_t physaddr;
1588 char *buf;
1589 int i, nsegs, error;
1590
1591 /*
1592 * Allocate a big chunk of DMA'able memory.
1593 */
1594 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1595 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1596 if (error != 0) {
1597 aprint_error_dev(sc->sc_dev,
1598 "could not create jumbo DMA map\n");
1599 goto fail;
1600 }
1601
1602 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1603 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1604 if (error != 0) {
1605 aprint_error_dev(sc->sc_dev,
1606 "could not allocate jumbo DMA memory\n");
1607 goto fail;
1608 }
1609
1610 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1611 &ring->jpool, BUS_DMA_NOWAIT);
1612 if (error != 0) {
1613 aprint_error_dev(sc->sc_dev,
1614 "could not map jumbo DMA memory\n");
1615 goto fail;
1616 }
1617
1618 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1619 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1620 if (error != 0) {
1621 aprint_error_dev(sc->sc_dev,
1622 "could not load jumbo DMA map\n");
1623 goto fail;
1624 }
1625
1626 /* ..and split it into 9KB chunks */
1627 SLIST_INIT(&ring->jfreelist);
1628
1629 buf = ring->jpool;
1630 physaddr = ring->jmap->dm_segs[0].ds_addr;
1631 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1632 jbuf = &ring->jbuf[i];
1633
1634 jbuf->buf = buf;
1635 jbuf->physaddr = physaddr;
1636
1637 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1638
1639 buf += NFE_JBYTES;
1640 physaddr += NFE_JBYTES;
1641 }
1642
1643 return 0;
1644
1645 fail: nfe_jpool_free(sc);
1646 return error;
1647 }
1648
1649 void
1650 nfe_jpool_free(struct nfe_softc *sc)
1651 {
1652 struct nfe_rx_ring *ring = &sc->rxq;
1653
1654 if (ring->jmap != NULL) {
1655 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1656 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1657 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1658 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1659 }
1660 if (ring->jpool != NULL) {
1661 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1662 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1663 }
1664 }
1665
1666 int
1667 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1668 {
1669 int i, nsegs, error;
1670 void **desc;
1671 int descsize;
1672
1673 if (sc->sc_flags & NFE_40BIT_ADDR) {
1674 desc = (void **)&ring->desc64;
1675 descsize = sizeof (struct nfe_desc64);
1676 } else {
1677 desc = (void **)&ring->desc32;
1678 descsize = sizeof (struct nfe_desc32);
1679 }
1680
1681 ring->queued = 0;
1682 ring->cur = ring->next = 0;
1683
1684 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1685 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1686
1687 if (error != 0) {
1688 aprint_error_dev(sc->sc_dev,
1689 "could not create desc DMA map\n");
1690 goto fail;
1691 }
1692
1693 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1694 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1695 if (error != 0) {
1696 aprint_error_dev(sc->sc_dev,
1697 "could not allocate DMA memory\n");
1698 goto fail;
1699 }
1700
1701 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1702 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1703 if (error != 0) {
1704 aprint_error_dev(sc->sc_dev,
1705 "could not map desc DMA memory\n");
1706 goto fail;
1707 }
1708
1709 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1710 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1711 if (error != 0) {
1712 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1713 goto fail;
1714 }
1715
1716 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1717 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1718
1719 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1720 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1721 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1722 &ring->data[i].map);
1723 if (error != 0) {
1724 aprint_error_dev(sc->sc_dev,
1725 "could not create DMA map\n");
1726 goto fail;
1727 }
1728 }
1729
1730 return 0;
1731
1732 fail: nfe_free_tx_ring(sc, ring);
1733 return error;
1734 }
1735
1736 void
1737 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1738 {
1739 struct nfe_tx_data *data;
1740 int i;
1741
1742 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1743 if (sc->sc_flags & NFE_40BIT_ADDR)
1744 ring->desc64[i].flags = 0;
1745 else
1746 ring->desc32[i].flags = 0;
1747
1748 data = &ring->data[i];
1749
1750 if (data->m != NULL) {
1751 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1752 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1753 bus_dmamap_unload(sc->sc_dmat, data->active);
1754 m_freem(data->m);
1755 data->m = NULL;
1756 }
1757 }
1758
1759 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1760 BUS_DMASYNC_PREWRITE);
1761
1762 ring->queued = 0;
1763 ring->cur = ring->next = 0;
1764 }
1765
1766 void
1767 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1768 {
1769 struct nfe_tx_data *data;
1770 void *desc;
1771 int i, descsize;
1772
1773 if (sc->sc_flags & NFE_40BIT_ADDR) {
1774 desc = ring->desc64;
1775 descsize = sizeof (struct nfe_desc64);
1776 } else {
1777 desc = ring->desc32;
1778 descsize = sizeof (struct nfe_desc32);
1779 }
1780
1781 if (desc != NULL) {
1782 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1783 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1784 bus_dmamap_unload(sc->sc_dmat, ring->map);
1785 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1786 NFE_TX_RING_COUNT * descsize);
1787 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1788 }
1789
1790 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1791 data = &ring->data[i];
1792
1793 if (data->m != NULL) {
1794 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1795 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1796 bus_dmamap_unload(sc->sc_dmat, data->active);
1797 m_freem(data->m);
1798 }
1799 }
1800
1801 /* ..and now actually destroy the DMA mappings */
1802 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1803 data = &ring->data[i];
1804 if (data->map == NULL)
1805 continue;
1806 bus_dmamap_destroy(sc->sc_dmat, data->map);
1807 }
1808 }
1809
1810 void
1811 nfe_setmulti(struct nfe_softc *sc)
1812 {
1813 struct ethercom *ec = &sc->sc_ethercom;
1814 struct ifnet *ifp = &ec->ec_if;
1815 struct ether_multi *enm;
1816 struct ether_multistep step;
1817 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1818 uint32_t filter = NFE_RXFILTER_MAGIC;
1819 int i;
1820
1821 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1822 bzero(addr, ETHER_ADDR_LEN);
1823 bzero(mask, ETHER_ADDR_LEN);
1824 goto done;
1825 }
1826
1827 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1828 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1829
1830 ETHER_FIRST_MULTI(step, ec, enm);
1831 while (enm != NULL) {
1832 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1833 ifp->if_flags |= IFF_ALLMULTI;
1834 bzero(addr, ETHER_ADDR_LEN);
1835 bzero(mask, ETHER_ADDR_LEN);
1836 goto done;
1837 }
1838 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1839 addr[i] &= enm->enm_addrlo[i];
1840 mask[i] &= ~enm->enm_addrlo[i];
1841 }
1842 ETHER_NEXT_MULTI(step, enm);
1843 }
1844 for (i = 0; i < ETHER_ADDR_LEN; i++)
1845 mask[i] |= addr[i];
1846
1847 done:
1848 addr[0] |= 0x01; /* make sure multicast bit is set */
1849
1850 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1851 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1852 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1853 addr[5] << 8 | addr[4]);
1854 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1855 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1856 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1857 mask[5] << 8 | mask[4]);
1858
1859 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1860 NFE_WRITE(sc, NFE_RXFILTER, filter);
1861 }
1862
1863 void
1864 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1865 {
1866 uint32_t tmp;
1867
1868 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1869 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1870 addr[0] = (tmp & 0xff);
1871 addr[1] = (tmp >> 8) & 0xff;
1872 addr[2] = (tmp >> 16) & 0xff;
1873 addr[3] = (tmp >> 24) & 0xff;
1874
1875 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1876 addr[4] = (tmp & 0xff);
1877 addr[5] = (tmp >> 8) & 0xff;
1878
1879 } else {
1880 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1881 addr[0] = (tmp >> 8) & 0xff;
1882 addr[1] = (tmp & 0xff);
1883
1884 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1885 addr[2] = (tmp >> 24) & 0xff;
1886 addr[3] = (tmp >> 16) & 0xff;
1887 addr[4] = (tmp >> 8) & 0xff;
1888 addr[5] = (tmp & 0xff);
1889 }
1890 }
1891
1892 void
1893 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1894 {
1895 NFE_WRITE(sc, NFE_MACADDR_LO,
1896 addr[5] << 8 | addr[4]);
1897 NFE_WRITE(sc, NFE_MACADDR_HI,
1898 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1899 }
1900
1901 void
1902 nfe_tick(void *arg)
1903 {
1904 struct nfe_softc *sc = arg;
1905 int s;
1906
1907 s = splnet();
1908 mii_tick(&sc->sc_mii);
1909 splx(s);
1910
1911 callout_schedule(&sc->sc_tick_ch, hz);
1912 }
1913
1914 void
1915 nfe_poweron(device_t self)
1916 {
1917 struct nfe_softc *sc = device_private(self);
1918
1919 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1920 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1921 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1922 DELAY(100);
1923 NFE_WRITE(sc, NFE_MAC_RESET, 0);
1924 DELAY(100);
1925 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1926 NFE_WRITE(sc, NFE_PWR2_CTL,
1927 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1928 }
1929 }
1930
1931 bool
1932 nfe_resume(device_t dv PMF_FN_ARGS)
1933 {
1934 nfe_poweron(dv);
1935
1936 return true;
1937 }
1938