if_nfe.c revision 1.56 1 /* $NetBSD: if_nfe.c,v 1.56 2012/07/22 14:33:03 matt Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.56 2012/07/22 14:33:03 matt Exp $");
25
26 #include "opt_inet.h"
27 #include "vlan.h"
28
29 #include <sys/param.h>
30 #include <sys/endian.h>
31 #include <sys/systm.h>
32 #include <sys/types.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/mutex.h>
36 #include <sys/queue.h>
37 #include <sys/kernel.h>
38 #include <sys/device.h>
39 #include <sys/callout.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #include <net/bpf.h>
63
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_nfereg.h>
72 #include <dev/pci/if_nfevar.h>
73
74 static int nfe_ifflags_cb(struct ethercom *);
75
76 int nfe_match(device_t, cfdata_t, void *);
77 void nfe_attach(device_t, device_t, void *);
78 int nfe_detach(device_t, int);
79 void nfe_power(int, void *);
80 void nfe_miibus_statchg(struct ifnet *);
81 int nfe_miibus_readreg(device_t, int, int);
82 void nfe_miibus_writereg(device_t, int, int, int);
83 int nfe_intr(void *);
84 int nfe_ioctl(struct ifnet *, u_long, void *);
85 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91 void nfe_rxeof(struct nfe_softc *);
92 void nfe_txeof(struct nfe_softc *);
93 int nfe_encap(struct nfe_softc *, struct mbuf *);
94 void nfe_start(struct ifnet *);
95 void nfe_watchdog(struct ifnet *);
96 int nfe_init(struct ifnet *);
97 void nfe_stop(struct ifnet *, int);
98 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99 void nfe_jfree(struct mbuf *, void *, size_t, void *);
100 int nfe_jpool_alloc(struct nfe_softc *);
101 void nfe_jpool_free(struct nfe_softc *);
102 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void nfe_setmulti(struct nfe_softc *);
109 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111 void nfe_tick(void *);
112 void nfe_poweron(device_t);
113 bool nfe_resume(device_t, const pmf_qual_t *);
114
115 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
116 nfe_match, nfe_attach, nfe_detach, NULL);
117
118 /* #define NFE_NO_JUMBO */
119
120 #ifdef NFE_DEBUG
121 int nfedebug = 0;
122 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
123 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
124 #else
125 #define DPRINTF(x)
126 #define DPRINTFN(n,x)
127 #endif
128
129 /* deal with naming differences */
130
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
135 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
136 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
137
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
140 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
142
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
145 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
147
148 #ifdef _LP64
149 #define __LP64__ 1
150 #endif
151
152 const struct nfe_product {
153 pci_vendor_id_t vendor;
154 pci_product_id_t product;
155 } nfe_devices[] = {
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
195 };
196
197 int
198 nfe_match(device_t dev, cfdata_t match, void *aux)
199 {
200 struct pci_attach_args *pa = aux;
201 const struct nfe_product *np;
202 int i;
203
204 for (i = 0; i < __arraycount(nfe_devices); i++) {
205 np = &nfe_devices[i];
206 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
207 PCI_PRODUCT(pa->pa_id) == np->product)
208 return 1;
209 }
210 return 0;
211 }
212
213 void
214 nfe_attach(device_t parent, device_t self, void *aux)
215 {
216 struct nfe_softc *sc = device_private(self);
217 struct pci_attach_args *pa = aux;
218 pci_chipset_tag_t pc = pa->pa_pc;
219 pci_intr_handle_t ih;
220 const char *intrstr;
221 struct ifnet *ifp;
222 pcireg_t memtype, csr;
223 int mii_flags = 0;
224
225 sc->sc_dev = self;
226 sc->sc_pc = pa->pa_pc;
227 pci_aprint_devinfo(pa, NULL);
228
229 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
230 switch (memtype) {
231 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
232 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
233 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
234 &sc->sc_memh, NULL, &sc->sc_mems) == 0)
235 break;
236 /* FALLTHROUGH */
237 default:
238 aprint_error_dev(self, "could not map mem space\n");
239 return;
240 }
241
242 if (pci_intr_map(pa, &ih) != 0) {
243 aprint_error_dev(self, "could not map interrupt\n");
244 goto fail;
245 }
246
247 intrstr = pci_intr_string(pc, ih);
248 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
249 if (sc->sc_ih == NULL) {
250 aprint_error_dev(self, "could not establish interrupt");
251 if (intrstr != NULL)
252 aprint_error(" at %s", intrstr);
253 aprint_error("\n");
254 goto fail;
255 }
256 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
257
258 sc->sc_dmat = pa->pa_dmat;
259
260 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
261 csr |= PCI_COMMAND_MASTER_ENABLE;
262 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
263
264 sc->sc_flags = 0;
265
266 switch (PCI_PRODUCT(pa->pa_id)) {
267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
268 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
269 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
270 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
271 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
272 break;
273 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
274 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
275 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
276 break;
277 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
278 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
279 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
280 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
281 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
282 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
283 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
284 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
285 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
286 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
287 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
288 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
289 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
290 NFE_PWR_MGMT;
291 break;
292 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
293 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
294 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
295 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
296 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
297 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
298 break;
299 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
300 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
301 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
302 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
303 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
304 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
305 break;
306 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
307 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
308 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
309 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
310 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
311 break;
312 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
313 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
314 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
315 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
316 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
317 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
318 mii_flags = MIIF_DOPAUSE;
319 break;
320 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
321 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
322 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
323 NFE_HW_VLAN | NFE_PWR_MGMT;
324 break;
325 }
326
327 nfe_poweron(self);
328
329 #ifndef NFE_NO_JUMBO
330 /* enable jumbo frames for adapters that support it */
331 if (sc->sc_flags & NFE_JUMBO_SUP)
332 sc->sc_flags |= NFE_USE_JUMBO;
333 #endif
334
335 /* Check for reversed ethernet address */
336 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
337 sc->sc_flags |= NFE_CORRECT_MACADDR;
338
339 nfe_get_macaddr(sc, sc->sc_enaddr);
340 aprint_normal_dev(self, "Ethernet address %s\n",
341 ether_sprintf(sc->sc_enaddr));
342
343 /*
344 * Allocate Tx and Rx rings.
345 */
346 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
347 aprint_error_dev(self, "could not allocate Tx ring\n");
348 goto fail;
349 }
350
351 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
352
353 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
354 aprint_error_dev(self, "could not allocate Rx ring\n");
355 nfe_free_tx_ring(sc, &sc->txq);
356 goto fail;
357 }
358
359 ifp = &sc->sc_ethercom.ec_if;
360 ifp->if_softc = sc;
361 ifp->if_mtu = ETHERMTU;
362 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
363 ifp->if_ioctl = nfe_ioctl;
364 ifp->if_start = nfe_start;
365 ifp->if_stop = nfe_stop;
366 ifp->if_watchdog = nfe_watchdog;
367 ifp->if_init = nfe_init;
368 ifp->if_baudrate = IF_Gbps(1);
369 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
370 IFQ_SET_READY(&ifp->if_snd);
371 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
372
373 if (sc->sc_flags & NFE_USE_JUMBO)
374 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
375
376 #if NVLAN > 0
377 if (sc->sc_flags & NFE_HW_VLAN)
378 sc->sc_ethercom.ec_capabilities |=
379 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
380 #endif
381 if (sc->sc_flags & NFE_HW_CSUM) {
382 ifp->if_capabilities |=
383 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
384 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
385 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
386 }
387
388 sc->sc_mii.mii_ifp = ifp;
389 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
390 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
391 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
392
393 sc->sc_ethercom.ec_mii = &sc->sc_mii;
394 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
395 ether_mediastatus);
396
397 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
398
399 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
400 aprint_error_dev(self, "no PHY found!\n");
401 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
402 0, NULL);
403 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
404 } else
405 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
406
407 if_attach(ifp);
408 ether_ifattach(ifp, sc->sc_enaddr);
409 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
410
411 callout_init(&sc->sc_tick_ch, 0);
412 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
413
414 if (pmf_device_register(self, NULL, nfe_resume))
415 pmf_class_network_register(self, ifp);
416 else
417 aprint_error_dev(self, "couldn't establish power handler\n");
418
419 return;
420
421 fail:
422 if (sc->sc_ih != NULL) {
423 pci_intr_disestablish(pc, sc->sc_ih);
424 sc->sc_ih = NULL;
425 }
426 if (sc->sc_mems != 0) {
427 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
428 sc->sc_mems = 0;
429 }
430 }
431
432 int
433 nfe_detach(device_t self, int flags)
434 {
435 struct nfe_softc *sc = device_private(self);
436 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
437 int s;
438
439 s = splnet();
440
441 nfe_stop(ifp, 1);
442
443 pmf_device_deregister(self);
444 callout_destroy(&sc->sc_tick_ch);
445 ether_ifdetach(ifp);
446 if_detach(ifp);
447 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
448
449 nfe_free_rx_ring(sc, &sc->rxq);
450 mutex_destroy(&sc->rxq.mtx);
451 nfe_free_tx_ring(sc, &sc->txq);
452
453 if (sc->sc_ih != NULL) {
454 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
455 sc->sc_ih = NULL;
456 }
457
458 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
459 nfe_set_macaddr(sc, sc->sc_enaddr);
460 } else {
461 NFE_WRITE(sc, NFE_MACADDR_LO,
462 sc->sc_enaddr[0] << 8 | sc->sc_enaddr[1]);
463 NFE_WRITE(sc, NFE_MACADDR_HI,
464 sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
465 sc->sc_enaddr[4] << 8 | sc->sc_enaddr[5]);
466 }
467
468 if (sc->sc_mems != 0) {
469 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
470 sc->sc_mems = 0;
471 }
472
473 splx(s);
474
475 return 0;
476 }
477
478 void
479 nfe_miibus_statchg(struct ifnet *ifp)
480 {
481 struct nfe_softc *sc = ifp->if_softc;
482 struct mii_data *mii = &sc->sc_mii;
483 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
484
485 phy = NFE_READ(sc, NFE_PHY_IFACE);
486 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
487
488 seed = NFE_READ(sc, NFE_RNDSEED);
489 seed &= ~NFE_SEED_MASK;
490
491 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
492 phy |= NFE_PHY_HDX; /* half-duplex */
493 misc |= NFE_MISC1_HDX;
494 }
495
496 switch (IFM_SUBTYPE(mii->mii_media_active)) {
497 case IFM_1000_T: /* full-duplex only */
498 link |= NFE_MEDIA_1000T;
499 seed |= NFE_SEED_1000T;
500 phy |= NFE_PHY_1000T;
501 break;
502 case IFM_100_TX:
503 link |= NFE_MEDIA_100TX;
504 seed |= NFE_SEED_100TX;
505 phy |= NFE_PHY_100TX;
506 break;
507 case IFM_10_T:
508 link |= NFE_MEDIA_10T;
509 seed |= NFE_SEED_10T;
510 break;
511 }
512
513 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
514
515 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
516 NFE_WRITE(sc, NFE_MISC1, misc);
517 NFE_WRITE(sc, NFE_LINKSPEED, link);
518 }
519
520 int
521 nfe_miibus_readreg(device_t dev, int phy, int reg)
522 {
523 struct nfe_softc *sc = device_private(dev);
524 uint32_t val;
525 int ntries;
526
527 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
528
529 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
530 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
531 DELAY(100);
532 }
533
534 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
535
536 for (ntries = 0; ntries < 1000; ntries++) {
537 DELAY(100);
538 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
539 break;
540 }
541 if (ntries == 1000) {
542 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
543 device_xname(sc->sc_dev)));
544 return 0;
545 }
546
547 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
548 DPRINTFN(2, ("%s: could not read PHY\n",
549 device_xname(sc->sc_dev)));
550 return 0;
551 }
552
553 val = NFE_READ(sc, NFE_PHY_DATA);
554 if (val != 0xffffffff && val != 0)
555 sc->mii_phyaddr = phy;
556
557 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
558 device_xname(sc->sc_dev), phy, reg, val));
559
560 return val;
561 }
562
563 void
564 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
565 {
566 struct nfe_softc *sc = device_private(dev);
567 uint32_t ctl;
568 int ntries;
569
570 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
571
572 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
573 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
574 DELAY(100);
575 }
576
577 NFE_WRITE(sc, NFE_PHY_DATA, val);
578 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
579 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
580
581 for (ntries = 0; ntries < 1000; ntries++) {
582 DELAY(100);
583 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
584 break;
585 }
586 #ifdef NFE_DEBUG
587 if (nfedebug >= 2 && ntries == 1000)
588 printf("could not write to PHY\n");
589 #endif
590 }
591
592 int
593 nfe_intr(void *arg)
594 {
595 struct nfe_softc *sc = arg;
596 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
597 uint32_t r;
598 int handled;
599
600 if ((ifp->if_flags & IFF_UP) == 0)
601 return 0;
602
603 handled = 0;
604
605 for (;;) {
606 r = NFE_READ(sc, NFE_IRQ_STATUS);
607 if ((r & NFE_IRQ_WANTED) == 0)
608 break;
609
610 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
611 handled = 1;
612 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
613
614 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
615 /* check Rx ring */
616 nfe_rxeof(sc);
617 }
618 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
619 /* check Tx ring */
620 nfe_txeof(sc);
621 }
622 if ((r & NFE_IRQ_LINK) != 0) {
623 NFE_READ(sc, NFE_PHY_STATUS);
624 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
625 DPRINTF(("%s: link state changed\n",
626 device_xname(sc->sc_dev)));
627 }
628 }
629
630 if (handled && !IF_IS_EMPTY(&ifp->if_snd))
631 nfe_start(ifp);
632
633 return handled;
634 }
635
636 static int
637 nfe_ifflags_cb(struct ethercom *ec)
638 {
639 struct ifnet *ifp = &ec->ec_if;
640 struct nfe_softc *sc = ifp->if_softc;
641 int change = ifp->if_flags ^ sc->sc_if_flags;
642
643 /*
644 * If only the PROMISC flag changes, then
645 * don't do a full re-init of the chip, just update
646 * the Rx filter.
647 */
648 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
649 return ENETRESET;
650 else if ((change & IFF_PROMISC) != 0)
651 nfe_setmulti(sc);
652
653 return 0;
654 }
655
656 int
657 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
658 {
659 struct nfe_softc *sc = ifp->if_softc;
660 struct ifaddr *ifa = (struct ifaddr *)data;
661 int s, error = 0;
662
663 s = splnet();
664
665 switch (cmd) {
666 case SIOCINITIFADDR:
667 ifp->if_flags |= IFF_UP;
668 nfe_init(ifp);
669 switch (ifa->ifa_addr->sa_family) {
670 #ifdef INET
671 case AF_INET:
672 arp_ifinit(ifp, ifa);
673 break;
674 #endif
675 default:
676 break;
677 }
678 break;
679 default:
680 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
681 break;
682
683 error = 0;
684
685 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
686 ;
687 else if (ifp->if_flags & IFF_RUNNING)
688 nfe_setmulti(sc);
689 break;
690 }
691 sc->sc_if_flags = ifp->if_flags;
692
693 splx(s);
694
695 return error;
696 }
697
698 void
699 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
700 {
701 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
702 (char *)desc32 - (char *)sc->txq.desc32,
703 sizeof (struct nfe_desc32), ops);
704 }
705
706 void
707 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
708 {
709 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
710 (char *)desc64 - (char *)sc->txq.desc64,
711 sizeof (struct nfe_desc64), ops);
712 }
713
714 void
715 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
716 {
717 if (end > start) {
718 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
719 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
720 (char *)&sc->txq.desc32[end] -
721 (char *)&sc->txq.desc32[start], ops);
722 return;
723 }
724 /* sync from 'start' to end of ring */
725 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
726 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
727 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
728 (char *)&sc->txq.desc32[start], ops);
729
730 /* sync from start of ring to 'end' */
731 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
732 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
733 }
734
735 void
736 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
737 {
738 if (end > start) {
739 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
740 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
741 (char *)&sc->txq.desc64[end] -
742 (char *)&sc->txq.desc64[start], ops);
743 return;
744 }
745 /* sync from 'start' to end of ring */
746 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
747 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
748 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
749 (char *)&sc->txq.desc64[start], ops);
750
751 /* sync from start of ring to 'end' */
752 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
753 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
754 }
755
756 void
757 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
758 {
759 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
760 (char *)desc32 - (char *)sc->rxq.desc32,
761 sizeof (struct nfe_desc32), ops);
762 }
763
764 void
765 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
766 {
767 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
768 (char *)desc64 - (char *)sc->rxq.desc64,
769 sizeof (struct nfe_desc64), ops);
770 }
771
772 void
773 nfe_rxeof(struct nfe_softc *sc)
774 {
775 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
776 struct nfe_desc32 *desc32;
777 struct nfe_desc64 *desc64;
778 struct nfe_rx_data *data;
779 struct nfe_jbuf *jbuf;
780 struct mbuf *m, *mnew;
781 bus_addr_t physaddr;
782 uint16_t flags;
783 int error, len, i;
784
785 desc32 = NULL;
786 desc64 = NULL;
787 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
788 data = &sc->rxq.data[i];
789
790 if (sc->sc_flags & NFE_40BIT_ADDR) {
791 desc64 = &sc->rxq.desc64[i];
792 nfe_rxdesc64_sync(sc, desc64,
793 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
794
795 flags = le16toh(desc64->flags);
796 len = le16toh(desc64->length) & 0x3fff;
797 } else {
798 desc32 = &sc->rxq.desc32[i];
799 nfe_rxdesc32_sync(sc, desc32,
800 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
801
802 flags = le16toh(desc32->flags);
803 len = le16toh(desc32->length) & 0x3fff;
804 }
805
806 if ((flags & NFE_RX_READY) != 0)
807 break;
808
809 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
810 if ((flags & NFE_RX_VALID_V1) == 0)
811 goto skip;
812
813 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
814 flags &= ~NFE_RX_ERROR;
815 len--; /* fix buffer length */
816 }
817 } else {
818 if ((flags & NFE_RX_VALID_V2) == 0)
819 goto skip;
820
821 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
822 flags &= ~NFE_RX_ERROR;
823 len--; /* fix buffer length */
824 }
825 }
826
827 if (flags & NFE_RX_ERROR) {
828 ifp->if_ierrors++;
829 goto skip;
830 }
831
832 /*
833 * Try to allocate a new mbuf for this ring element and load
834 * it before processing the current mbuf. If the ring element
835 * cannot be loaded, drop the received packet and reuse the
836 * old mbuf. In the unlikely case that the old mbuf can't be
837 * reloaded either, explicitly panic.
838 */
839 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
840 if (mnew == NULL) {
841 ifp->if_ierrors++;
842 goto skip;
843 }
844
845 if (sc->sc_flags & NFE_USE_JUMBO) {
846 physaddr =
847 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
848 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
849 if (len > MCLBYTES) {
850 m_freem(mnew);
851 ifp->if_ierrors++;
852 goto skip1;
853 }
854 MCLGET(mnew, M_DONTWAIT);
855 if ((mnew->m_flags & M_EXT) == 0) {
856 m_freem(mnew);
857 ifp->if_ierrors++;
858 goto skip1;
859 }
860
861 (void)memcpy(mtod(mnew, void *),
862 mtod(data->m, const void *), len);
863 m = mnew;
864 goto mbufcopied;
865 } else {
866 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
867 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
868 mtod(data->m, char *) - (char *)sc->rxq.jpool,
869 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
870
871 physaddr = jbuf->physaddr;
872 }
873 } else {
874 MCLGET(mnew, M_DONTWAIT);
875 if ((mnew->m_flags & M_EXT) == 0) {
876 m_freem(mnew);
877 ifp->if_ierrors++;
878 goto skip;
879 }
880
881 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
882 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
883 bus_dmamap_unload(sc->sc_dmat, data->map);
884
885 error = bus_dmamap_load(sc->sc_dmat, data->map,
886 mtod(mnew, void *), MCLBYTES, NULL,
887 BUS_DMA_READ | BUS_DMA_NOWAIT);
888 if (error != 0) {
889 m_freem(mnew);
890
891 /* try to reload the old mbuf */
892 error = bus_dmamap_load(sc->sc_dmat, data->map,
893 mtod(data->m, void *), MCLBYTES, NULL,
894 BUS_DMA_READ | BUS_DMA_NOWAIT);
895 if (error != 0) {
896 /* very unlikely that it will fail.. */
897 panic("%s: could not load old rx mbuf",
898 device_xname(sc->sc_dev));
899 }
900 ifp->if_ierrors++;
901 goto skip;
902 }
903 physaddr = data->map->dm_segs[0].ds_addr;
904 }
905
906 /*
907 * New mbuf successfully loaded, update Rx ring and continue
908 * processing.
909 */
910 m = data->m;
911 data->m = mnew;
912
913 mbufcopied:
914 /* finalize mbuf */
915 m->m_pkthdr.len = m->m_len = len;
916 m->m_pkthdr.rcvif = ifp;
917
918 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
919 /*
920 * XXX
921 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
922 */
923 if (flags & NFE_RX_IP_CSUMOK) {
924 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
925 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
926 device_xname(sc->sc_dev)));
927 }
928 /*
929 * XXX
930 * no way to check M_CSUM_TCP_UDP_BAD or
931 * other protocols?
932 */
933 if (flags & NFE_RX_UDP_CSUMOK) {
934 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
935 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
936 device_xname(sc->sc_dev)));
937 } else if (flags & NFE_RX_TCP_CSUMOK) {
938 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
939 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
940 device_xname(sc->sc_dev)));
941 }
942 }
943 bpf_mtap(ifp, m);
944 ifp->if_ipackets++;
945 (*ifp->if_input)(ifp, m);
946
947 skip1:
948 /* update mapping address in h/w descriptor */
949 if (sc->sc_flags & NFE_40BIT_ADDR) {
950 #if defined(__LP64__)
951 desc64->physaddr[0] = htole32(physaddr >> 32);
952 #endif
953 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
954 } else {
955 desc32->physaddr = htole32(physaddr);
956 }
957
958 skip:
959 if (sc->sc_flags & NFE_40BIT_ADDR) {
960 desc64->length = htole16(sc->rxq.bufsz);
961 desc64->flags = htole16(NFE_RX_READY);
962
963 nfe_rxdesc64_sync(sc, desc64,
964 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
965 } else {
966 desc32->length = htole16(sc->rxq.bufsz);
967 desc32->flags = htole16(NFE_RX_READY);
968
969 nfe_rxdesc32_sync(sc, desc32,
970 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
971 }
972 }
973 /* update current RX pointer */
974 sc->rxq.cur = i;
975 }
976
977 void
978 nfe_txeof(struct nfe_softc *sc)
979 {
980 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
981 struct nfe_desc32 *desc32;
982 struct nfe_desc64 *desc64;
983 struct nfe_tx_data *data = NULL;
984 int i;
985 uint16_t flags;
986 char buf[128];
987
988 for (i = sc->txq.next;
989 sc->txq.queued > 0;
990 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
991 if (sc->sc_flags & NFE_40BIT_ADDR) {
992 desc64 = &sc->txq.desc64[i];
993 nfe_txdesc64_sync(sc, desc64,
994 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
995
996 flags = le16toh(desc64->flags);
997 } else {
998 desc32 = &sc->txq.desc32[i];
999 nfe_txdesc32_sync(sc, desc32,
1000 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1001
1002 flags = le16toh(desc32->flags);
1003 }
1004
1005 if ((flags & NFE_TX_VALID) != 0)
1006 break;
1007
1008 data = &sc->txq.data[i];
1009
1010 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1011 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
1012 data->m == NULL)
1013 continue;
1014
1015 if ((flags & NFE_TX_ERROR_V1) != 0) {
1016 snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
1017 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
1018 buf);
1019 ifp->if_oerrors++;
1020 } else
1021 ifp->if_opackets++;
1022 } else {
1023 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
1024 data->m == NULL)
1025 continue;
1026
1027 if ((flags & NFE_TX_ERROR_V2) != 0) {
1028 snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
1029 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
1030 buf);
1031 ifp->if_oerrors++;
1032 } else
1033 ifp->if_opackets++;
1034 }
1035
1036 if (data->m == NULL) { /* should not get there */
1037 aprint_error_dev(sc->sc_dev,
1038 "last fragment bit w/o associated mbuf!\n");
1039 continue;
1040 }
1041
1042 /* last fragment of the mbuf chain transmitted */
1043 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1044 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1045 bus_dmamap_unload(sc->sc_dmat, data->active);
1046 m_freem(data->m);
1047 data->m = NULL;
1048 }
1049
1050 sc->txq.next = i;
1051
1052 if (sc->txq.queued < NFE_TX_RING_COUNT) {
1053 /* at least one slot freed */
1054 ifp->if_flags &= ~IFF_OACTIVE;
1055 }
1056
1057 if (sc->txq.queued == 0) {
1058 /* all queued packets are sent */
1059 ifp->if_timer = 0;
1060 }
1061 }
1062
1063 int
1064 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1065 {
1066 struct nfe_desc32 *desc32;
1067 struct nfe_desc64 *desc64;
1068 struct nfe_tx_data *data;
1069 bus_dmamap_t map;
1070 uint16_t flags, csumflags;
1071 #if NVLAN > 0
1072 struct m_tag *mtag;
1073 uint32_t vtag = 0;
1074 #endif
1075 int error, i, first;
1076
1077 desc32 = NULL;
1078 desc64 = NULL;
1079 data = NULL;
1080
1081 flags = 0;
1082 csumflags = 0;
1083 first = sc->txq.cur;
1084
1085 map = sc->txq.data[first].map;
1086
1087 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1088 if (error != 0) {
1089 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1090 error);
1091 return error;
1092 }
1093
1094 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1095 bus_dmamap_unload(sc->sc_dmat, map);
1096 return ENOBUFS;
1097 }
1098
1099 #if NVLAN > 0
1100 /* setup h/w VLAN tagging */
1101 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1102 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1103 #endif
1104 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1105 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1106 csumflags |= NFE_TX_IP_CSUM;
1107 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1108 csumflags |= NFE_TX_TCP_UDP_CSUM;
1109 }
1110
1111 for (i = 0; i < map->dm_nsegs; i++) {
1112 data = &sc->txq.data[sc->txq.cur];
1113
1114 if (sc->sc_flags & NFE_40BIT_ADDR) {
1115 desc64 = &sc->txq.desc64[sc->txq.cur];
1116 #if defined(__LP64__)
1117 desc64->physaddr[0] =
1118 htole32(map->dm_segs[i].ds_addr >> 32);
1119 #endif
1120 desc64->physaddr[1] =
1121 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1122 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1123 desc64->flags = htole16(flags);
1124 desc64->vtag = 0;
1125 } else {
1126 desc32 = &sc->txq.desc32[sc->txq.cur];
1127
1128 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1129 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1130 desc32->flags = htole16(flags);
1131 }
1132
1133 /*
1134 * Setting of the valid bit in the first descriptor is
1135 * deferred until the whole chain is fully setup.
1136 */
1137 flags |= NFE_TX_VALID;
1138
1139 sc->txq.queued++;
1140 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1141 }
1142
1143 /* the whole mbuf chain has been setup */
1144 if (sc->sc_flags & NFE_40BIT_ADDR) {
1145 /* fix last descriptor */
1146 flags |= NFE_TX_LASTFRAG_V2;
1147 desc64->flags = htole16(flags);
1148
1149 /* Checksum flags and vtag belong to the first fragment only. */
1150 #if NVLAN > 0
1151 sc->txq.desc64[first].vtag = htole32(vtag);
1152 #endif
1153 sc->txq.desc64[first].flags |= htole16(csumflags);
1154
1155 /* finally, set the valid bit in the first descriptor */
1156 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1157 } else {
1158 /* fix last descriptor */
1159 if (sc->sc_flags & NFE_JUMBO_SUP)
1160 flags |= NFE_TX_LASTFRAG_V2;
1161 else
1162 flags |= NFE_TX_LASTFRAG_V1;
1163 desc32->flags = htole16(flags);
1164
1165 /* Checksum flags belong to the first fragment only. */
1166 sc->txq.desc32[first].flags |= htole16(csumflags);
1167
1168 /* finally, set the valid bit in the first descriptor */
1169 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1170 }
1171
1172 data->m = m0;
1173 data->active = map;
1174
1175 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1176 BUS_DMASYNC_PREWRITE);
1177
1178 return 0;
1179 }
1180
1181 void
1182 nfe_start(struct ifnet *ifp)
1183 {
1184 struct nfe_softc *sc = ifp->if_softc;
1185 int old = sc->txq.queued;
1186 struct mbuf *m0;
1187
1188 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1189 return;
1190
1191 for (;;) {
1192 IFQ_POLL(&ifp->if_snd, m0);
1193 if (m0 == NULL)
1194 break;
1195
1196 if (nfe_encap(sc, m0) != 0) {
1197 ifp->if_flags |= IFF_OACTIVE;
1198 break;
1199 }
1200
1201 /* packet put in h/w queue, remove from s/w queue */
1202 IFQ_DEQUEUE(&ifp->if_snd, m0);
1203
1204 bpf_mtap(ifp, m0);
1205 }
1206
1207 if (sc->txq.queued != old) {
1208 /* packets are queued */
1209 if (sc->sc_flags & NFE_40BIT_ADDR)
1210 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1211 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1212 else
1213 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1214 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1215 /* kick Tx */
1216 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1217
1218 /*
1219 * Set a timeout in case the chip goes out to lunch.
1220 */
1221 ifp->if_timer = 5;
1222 }
1223 }
1224
1225 void
1226 nfe_watchdog(struct ifnet *ifp)
1227 {
1228 struct nfe_softc *sc = ifp->if_softc;
1229
1230 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1231
1232 ifp->if_flags &= ~IFF_RUNNING;
1233 nfe_init(ifp);
1234
1235 ifp->if_oerrors++;
1236 }
1237
1238 int
1239 nfe_init(struct ifnet *ifp)
1240 {
1241 struct nfe_softc *sc = ifp->if_softc;
1242 uint32_t tmp;
1243 int rc = 0, s;
1244
1245 if (ifp->if_flags & IFF_RUNNING)
1246 return 0;
1247
1248 nfe_stop(ifp, 0);
1249
1250 NFE_WRITE(sc, NFE_TX_UNK, 0);
1251 NFE_WRITE(sc, NFE_STATUS, 0);
1252
1253 sc->rxtxctl = NFE_RXTX_BIT2;
1254 if (sc->sc_flags & NFE_40BIT_ADDR)
1255 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1256 else if (sc->sc_flags & NFE_JUMBO_SUP)
1257 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1258 if (sc->sc_flags & NFE_HW_CSUM)
1259 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1260 #if NVLAN > 0
1261 /*
1262 * Although the adapter is capable of stripping VLAN tags from received
1263 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1264 * purpose. This will be done in software by our network stack.
1265 */
1266 if (sc->sc_flags & NFE_HW_VLAN)
1267 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1268 #endif
1269 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1270 DELAY(10);
1271 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1272
1273 #if NVLAN
1274 if (sc->sc_flags & NFE_HW_VLAN)
1275 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1276 #endif
1277
1278 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1279
1280 /* set MAC address */
1281 nfe_set_macaddr(sc, sc->sc_enaddr);
1282
1283 /* tell MAC where rings are in memory */
1284 #ifdef __LP64__
1285 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1286 #endif
1287 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1288 #ifdef __LP64__
1289 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1290 #endif
1291 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1292
1293 NFE_WRITE(sc, NFE_RING_SIZE,
1294 (NFE_RX_RING_COUNT - 1) << 16 |
1295 (NFE_TX_RING_COUNT - 1));
1296
1297 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1298
1299 /* force MAC to wakeup */
1300 tmp = NFE_READ(sc, NFE_PWR_STATE);
1301 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1302 DELAY(10);
1303 tmp = NFE_READ(sc, NFE_PWR_STATE);
1304 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1305
1306 s = splnet();
1307 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1308 nfe_intr(sc); /* XXX clear IRQ status registers */
1309 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1310 splx(s);
1311
1312 #if 1
1313 /* configure interrupts coalescing/mitigation */
1314 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1315 #else
1316 /* no interrupt mitigation: one interrupt per packet */
1317 NFE_WRITE(sc, NFE_IMTIMER, 970);
1318 #endif
1319
1320 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1321 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1322 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1323
1324 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1325 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1326
1327 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1328 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1329
1330 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1331 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1332 DELAY(10);
1333 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1334
1335 /* set Rx filter */
1336 nfe_setmulti(sc);
1337
1338 if ((rc = ether_mediachange(ifp)) != 0)
1339 goto out;
1340
1341 nfe_tick(sc);
1342
1343 /* enable Rx */
1344 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1345
1346 /* enable Tx */
1347 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1348
1349 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1350
1351 /* enable interrupts */
1352 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1353
1354 callout_schedule(&sc->sc_tick_ch, hz);
1355
1356 ifp->if_flags |= IFF_RUNNING;
1357 ifp->if_flags &= ~IFF_OACTIVE;
1358
1359 out:
1360 return rc;
1361 }
1362
1363 void
1364 nfe_stop(struct ifnet *ifp, int disable)
1365 {
1366 struct nfe_softc *sc = ifp->if_softc;
1367
1368 callout_stop(&sc->sc_tick_ch);
1369
1370 ifp->if_timer = 0;
1371 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1372
1373 mii_down(&sc->sc_mii);
1374
1375 /* abort Tx */
1376 NFE_WRITE(sc, NFE_TX_CTL, 0);
1377
1378 /* disable Rx */
1379 NFE_WRITE(sc, NFE_RX_CTL, 0);
1380
1381 /* disable interrupts */
1382 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1383
1384 /* reset Tx and Rx rings */
1385 nfe_reset_tx_ring(sc, &sc->txq);
1386 nfe_reset_rx_ring(sc, &sc->rxq);
1387 }
1388
1389 int
1390 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1391 {
1392 struct nfe_desc32 *desc32;
1393 struct nfe_desc64 *desc64;
1394 struct nfe_rx_data *data;
1395 struct nfe_jbuf *jbuf;
1396 void **desc;
1397 bus_addr_t physaddr;
1398 int i, nsegs, error, descsize;
1399
1400 if (sc->sc_flags & NFE_40BIT_ADDR) {
1401 desc = (void **)&ring->desc64;
1402 descsize = sizeof (struct nfe_desc64);
1403 } else {
1404 desc = (void **)&ring->desc32;
1405 descsize = sizeof (struct nfe_desc32);
1406 }
1407
1408 ring->cur = ring->next = 0;
1409 ring->bufsz = MCLBYTES;
1410
1411 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1412 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1413 if (error != 0) {
1414 aprint_error_dev(sc->sc_dev,
1415 "could not create desc DMA map\n");
1416 ring->map = NULL;
1417 goto fail;
1418 }
1419
1420 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1421 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1422 if (error != 0) {
1423 aprint_error_dev(sc->sc_dev,
1424 "could not allocate DMA memory\n");
1425 goto fail;
1426 }
1427
1428 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1429 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1430 if (error != 0) {
1431 aprint_error_dev(sc->sc_dev,
1432 "could not map desc DMA memory\n");
1433 goto fail;
1434 }
1435
1436 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1437 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1438 if (error != 0) {
1439 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1440 goto fail;
1441 }
1442
1443 memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
1444 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1445
1446 if (sc->sc_flags & NFE_USE_JUMBO) {
1447 ring->bufsz = NFE_JBYTES;
1448 if ((error = nfe_jpool_alloc(sc)) != 0) {
1449 aprint_error_dev(sc->sc_dev,
1450 "could not allocate jumbo frames\n");
1451 goto fail;
1452 }
1453 }
1454
1455 /*
1456 * Pre-allocate Rx buffers and populate Rx ring.
1457 */
1458 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1459 data = &sc->rxq.data[i];
1460
1461 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1462 if (data->m == NULL) {
1463 aprint_error_dev(sc->sc_dev,
1464 "could not allocate rx mbuf\n");
1465 error = ENOMEM;
1466 goto fail;
1467 }
1468
1469 if (sc->sc_flags & NFE_USE_JUMBO) {
1470 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1471 aprint_error_dev(sc->sc_dev,
1472 "could not allocate jumbo buffer\n");
1473 goto fail;
1474 }
1475 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1476 sc);
1477
1478 physaddr = jbuf->physaddr;
1479 } else {
1480 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1481 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1482 if (error != 0) {
1483 aprint_error_dev(sc->sc_dev,
1484 "could not create DMA map\n");
1485 data->map = NULL;
1486 goto fail;
1487 }
1488 MCLGET(data->m, M_DONTWAIT);
1489 if (!(data->m->m_flags & M_EXT)) {
1490 aprint_error_dev(sc->sc_dev,
1491 "could not allocate mbuf cluster\n");
1492 error = ENOMEM;
1493 goto fail;
1494 }
1495
1496 error = bus_dmamap_load(sc->sc_dmat, data->map,
1497 mtod(data->m, void *), MCLBYTES, NULL,
1498 BUS_DMA_READ | BUS_DMA_NOWAIT);
1499 if (error != 0) {
1500 aprint_error_dev(sc->sc_dev,
1501 "could not load rx buf DMA map");
1502 goto fail;
1503 }
1504 physaddr = data->map->dm_segs[0].ds_addr;
1505 }
1506
1507 if (sc->sc_flags & NFE_40BIT_ADDR) {
1508 desc64 = &sc->rxq.desc64[i];
1509 #if defined(__LP64__)
1510 desc64->physaddr[0] = htole32(physaddr >> 32);
1511 #endif
1512 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1513 desc64->length = htole16(sc->rxq.bufsz);
1514 desc64->flags = htole16(NFE_RX_READY);
1515 } else {
1516 desc32 = &sc->rxq.desc32[i];
1517 desc32->physaddr = htole32(physaddr);
1518 desc32->length = htole16(sc->rxq.bufsz);
1519 desc32->flags = htole16(NFE_RX_READY);
1520 }
1521 }
1522
1523 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1524 BUS_DMASYNC_PREWRITE);
1525
1526 return 0;
1527
1528 fail: nfe_free_rx_ring(sc, ring);
1529 return error;
1530 }
1531
1532 void
1533 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1534 {
1535 int i;
1536
1537 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1538 if (sc->sc_flags & NFE_40BIT_ADDR) {
1539 ring->desc64[i].length = htole16(ring->bufsz);
1540 ring->desc64[i].flags = htole16(NFE_RX_READY);
1541 } else {
1542 ring->desc32[i].length = htole16(ring->bufsz);
1543 ring->desc32[i].flags = htole16(NFE_RX_READY);
1544 }
1545 }
1546
1547 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1548 BUS_DMASYNC_PREWRITE);
1549
1550 ring->cur = ring->next = 0;
1551 }
1552
1553 void
1554 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1555 {
1556 struct nfe_rx_data *data;
1557 void *desc;
1558 int i, descsize;
1559
1560 if (sc->sc_flags & NFE_40BIT_ADDR) {
1561 desc = ring->desc64;
1562 descsize = sizeof (struct nfe_desc64);
1563 } else {
1564 desc = ring->desc32;
1565 descsize = sizeof (struct nfe_desc32);
1566 }
1567
1568 if (desc != NULL) {
1569 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1570 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1571 bus_dmamap_unload(sc->sc_dmat, ring->map);
1572 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1573 NFE_RX_RING_COUNT * descsize);
1574 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1575 }
1576
1577 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1578 data = &ring->data[i];
1579
1580 if (data->map != NULL) {
1581 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1582 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1583 bus_dmamap_unload(sc->sc_dmat, data->map);
1584 bus_dmamap_destroy(sc->sc_dmat, data->map);
1585 }
1586 if (data->m != NULL)
1587 m_freem(data->m);
1588 }
1589
1590 nfe_jpool_free(sc);
1591 }
1592
1593 struct nfe_jbuf *
1594 nfe_jalloc(struct nfe_softc *sc, int i)
1595 {
1596 struct nfe_jbuf *jbuf;
1597
1598 mutex_enter(&sc->rxq.mtx);
1599 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1600 if (jbuf != NULL)
1601 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1602 mutex_exit(&sc->rxq.mtx);
1603 if (jbuf == NULL)
1604 return NULL;
1605 sc->rxq.jbufmap[i] =
1606 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1607 return jbuf;
1608 }
1609
1610 /*
1611 * This is called automatically by the network stack when the mbuf is freed.
1612 * Caution must be taken that the NIC might be reset by the time the mbuf is
1613 * freed.
1614 */
1615 void
1616 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1617 {
1618 struct nfe_softc *sc = arg;
1619 struct nfe_jbuf *jbuf;
1620 int i;
1621
1622 /* find the jbuf from the base pointer */
1623 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1624 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1625 aprint_error_dev(sc->sc_dev,
1626 "request to free a buffer (%p) not managed by us\n", buf);
1627 return;
1628 }
1629 jbuf = &sc->rxq.jbuf[i];
1630
1631 /* ..and put it back in the free list */
1632 mutex_enter(&sc->rxq.mtx);
1633 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1634 mutex_exit(&sc->rxq.mtx);
1635
1636 if (m != NULL)
1637 pool_cache_put(mb_cache, m);
1638 }
1639
1640 int
1641 nfe_jpool_alloc(struct nfe_softc *sc)
1642 {
1643 struct nfe_rx_ring *ring = &sc->rxq;
1644 struct nfe_jbuf *jbuf;
1645 bus_addr_t physaddr;
1646 char *buf;
1647 int i, nsegs, error;
1648
1649 /*
1650 * Allocate a big chunk of DMA'able memory.
1651 */
1652 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1653 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1654 if (error != 0) {
1655 aprint_error_dev(sc->sc_dev,
1656 "could not create jumbo DMA map\n");
1657 ring->jmap = NULL;
1658 goto fail;
1659 }
1660
1661 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1662 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1663 if (error != 0) {
1664 aprint_error_dev(sc->sc_dev,
1665 "could not allocate jumbo DMA memory\n");
1666 goto fail;
1667 }
1668
1669 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1670 &ring->jpool, BUS_DMA_NOWAIT);
1671 if (error != 0) {
1672 aprint_error_dev(sc->sc_dev,
1673 "could not map jumbo DMA memory\n");
1674 goto fail;
1675 }
1676
1677 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1678 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1679 if (error != 0) {
1680 aprint_error_dev(sc->sc_dev,
1681 "could not load jumbo DMA map\n");
1682 goto fail;
1683 }
1684
1685 /* ..and split it into 9KB chunks */
1686 SLIST_INIT(&ring->jfreelist);
1687
1688 buf = ring->jpool;
1689 physaddr = ring->jmap->dm_segs[0].ds_addr;
1690 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1691 jbuf = &ring->jbuf[i];
1692
1693 jbuf->buf = buf;
1694 jbuf->physaddr = physaddr;
1695
1696 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1697
1698 buf += NFE_JBYTES;
1699 physaddr += NFE_JBYTES;
1700 }
1701
1702 return 0;
1703
1704 fail: nfe_jpool_free(sc);
1705 return error;
1706 }
1707
1708 void
1709 nfe_jpool_free(struct nfe_softc *sc)
1710 {
1711 struct nfe_rx_ring *ring = &sc->rxq;
1712
1713 if (ring->jmap != NULL) {
1714 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1715 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1716 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1717 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1718 ring->jmap = NULL;
1719 }
1720 if (ring->jpool != NULL) {
1721 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1722 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1723 ring->jpool = NULL;
1724 }
1725 }
1726
1727 int
1728 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1729 {
1730 int i, nsegs, error;
1731 void **desc;
1732 int descsize;
1733
1734 if (sc->sc_flags & NFE_40BIT_ADDR) {
1735 desc = (void **)&ring->desc64;
1736 descsize = sizeof (struct nfe_desc64);
1737 } else {
1738 desc = (void **)&ring->desc32;
1739 descsize = sizeof (struct nfe_desc32);
1740 }
1741
1742 ring->queued = 0;
1743 ring->cur = ring->next = 0;
1744
1745 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1746 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1747
1748 if (error != 0) {
1749 aprint_error_dev(sc->sc_dev,
1750 "could not create desc DMA map\n");
1751 ring->map = NULL;
1752 goto fail;
1753 }
1754
1755 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1756 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1757 if (error != 0) {
1758 aprint_error_dev(sc->sc_dev,
1759 "could not allocate DMA memory\n");
1760 goto fail;
1761 }
1762
1763 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1764 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1765 if (error != 0) {
1766 aprint_error_dev(sc->sc_dev,
1767 "could not map desc DMA memory\n");
1768 goto fail;
1769 }
1770
1771 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1772 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1773 if (error != 0) {
1774 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1775 goto fail;
1776 }
1777
1778 memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
1779 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1780
1781 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1782 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1783 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1784 &ring->data[i].map);
1785 if (error != 0) {
1786 aprint_error_dev(sc->sc_dev,
1787 "could not create DMA map\n");
1788 ring->data[i].map = NULL;
1789 goto fail;
1790 }
1791 }
1792
1793 return 0;
1794
1795 fail: nfe_free_tx_ring(sc, ring);
1796 return error;
1797 }
1798
1799 void
1800 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1801 {
1802 struct nfe_tx_data *data;
1803 int i;
1804
1805 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1806 if (sc->sc_flags & NFE_40BIT_ADDR)
1807 ring->desc64[i].flags = 0;
1808 else
1809 ring->desc32[i].flags = 0;
1810
1811 data = &ring->data[i];
1812
1813 if (data->m != NULL) {
1814 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1815 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1816 bus_dmamap_unload(sc->sc_dmat, data->active);
1817 m_freem(data->m);
1818 data->m = NULL;
1819 }
1820 }
1821
1822 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1823 BUS_DMASYNC_PREWRITE);
1824
1825 ring->queued = 0;
1826 ring->cur = ring->next = 0;
1827 }
1828
1829 void
1830 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1831 {
1832 struct nfe_tx_data *data;
1833 void *desc;
1834 int i, descsize;
1835
1836 if (sc->sc_flags & NFE_40BIT_ADDR) {
1837 desc = ring->desc64;
1838 descsize = sizeof (struct nfe_desc64);
1839 } else {
1840 desc = ring->desc32;
1841 descsize = sizeof (struct nfe_desc32);
1842 }
1843
1844 if (desc != NULL) {
1845 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1846 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1847 bus_dmamap_unload(sc->sc_dmat, ring->map);
1848 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1849 NFE_TX_RING_COUNT * descsize);
1850 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1851 }
1852
1853 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1854 data = &ring->data[i];
1855
1856 if (data->m != NULL) {
1857 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1858 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1859 bus_dmamap_unload(sc->sc_dmat, data->active);
1860 m_freem(data->m);
1861 }
1862 }
1863
1864 /* ..and now actually destroy the DMA mappings */
1865 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1866 data = &ring->data[i];
1867 if (data->map == NULL)
1868 continue;
1869 bus_dmamap_destroy(sc->sc_dmat, data->map);
1870 }
1871 }
1872
1873 void
1874 nfe_setmulti(struct nfe_softc *sc)
1875 {
1876 struct ethercom *ec = &sc->sc_ethercom;
1877 struct ifnet *ifp = &ec->ec_if;
1878 struct ether_multi *enm;
1879 struct ether_multistep step;
1880 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1881 uint32_t filter = NFE_RXFILTER_MAGIC;
1882 int i;
1883
1884 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1885 memset(addr, 0, ETHER_ADDR_LEN);
1886 memset(mask, 0, ETHER_ADDR_LEN);
1887 goto done;
1888 }
1889
1890 memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
1891 memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
1892
1893 ETHER_FIRST_MULTI(step, ec, enm);
1894 while (enm != NULL) {
1895 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1896 ifp->if_flags |= IFF_ALLMULTI;
1897 memset(addr, 0, ETHER_ADDR_LEN);
1898 memset(mask, 0, ETHER_ADDR_LEN);
1899 goto done;
1900 }
1901 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1902 addr[i] &= enm->enm_addrlo[i];
1903 mask[i] &= ~enm->enm_addrlo[i];
1904 }
1905 ETHER_NEXT_MULTI(step, enm);
1906 }
1907 for (i = 0; i < ETHER_ADDR_LEN; i++)
1908 mask[i] |= addr[i];
1909
1910 done:
1911 addr[0] |= 0x01; /* make sure multicast bit is set */
1912
1913 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1914 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1915 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1916 addr[5] << 8 | addr[4]);
1917 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1918 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1919 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1920 mask[5] << 8 | mask[4]);
1921
1922 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1923 NFE_WRITE(sc, NFE_RXFILTER, filter);
1924 }
1925
1926 void
1927 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1928 {
1929 uint32_t tmp;
1930
1931 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1932 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1933 addr[0] = (tmp & 0xff);
1934 addr[1] = (tmp >> 8) & 0xff;
1935 addr[2] = (tmp >> 16) & 0xff;
1936 addr[3] = (tmp >> 24) & 0xff;
1937
1938 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1939 addr[4] = (tmp & 0xff);
1940 addr[5] = (tmp >> 8) & 0xff;
1941
1942 } else {
1943 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1944 addr[0] = (tmp >> 8) & 0xff;
1945 addr[1] = (tmp & 0xff);
1946
1947 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1948 addr[2] = (tmp >> 24) & 0xff;
1949 addr[3] = (tmp >> 16) & 0xff;
1950 addr[4] = (tmp >> 8) & 0xff;
1951 addr[5] = (tmp & 0xff);
1952 }
1953 }
1954
1955 void
1956 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1957 {
1958 NFE_WRITE(sc, NFE_MACADDR_LO,
1959 addr[5] << 8 | addr[4]);
1960 NFE_WRITE(sc, NFE_MACADDR_HI,
1961 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1962 }
1963
1964 void
1965 nfe_tick(void *arg)
1966 {
1967 struct nfe_softc *sc = arg;
1968 int s;
1969
1970 s = splnet();
1971 mii_tick(&sc->sc_mii);
1972 splx(s);
1973
1974 callout_schedule(&sc->sc_tick_ch, hz);
1975 }
1976
1977 void
1978 nfe_poweron(device_t self)
1979 {
1980 struct nfe_softc *sc = device_private(self);
1981
1982 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1983 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1984 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1985 DELAY(100);
1986 NFE_WRITE(sc, NFE_MAC_RESET, 0);
1987 DELAY(100);
1988 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1989 NFE_WRITE(sc, NFE_PWR2_CTL,
1990 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1991 }
1992 }
1993
1994 bool
1995 nfe_resume(device_t dv, const pmf_qual_t *qual)
1996 {
1997 nfe_poweron(dv);
1998
1999 return true;
2000 }
2001