if_nfe.c revision 1.62 1 /* $NetBSD: if_nfe.c,v 1.62 2016/12/08 01:12:01 ozaki-r Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.62 2016/12/08 01:12:01 ozaki-r Exp $");
25
26 #include "opt_inet.h"
27 #include "vlan.h"
28
29 #include <sys/param.h>
30 #include <sys/endian.h>
31 #include <sys/systm.h>
32 #include <sys/types.h>
33 #include <sys/sockio.h>
34 #include <sys/mbuf.h>
35 #include <sys/mutex.h>
36 #include <sys/queue.h>
37 #include <sys/kernel.h>
38 #include <sys/device.h>
39 #include <sys/callout.h>
40 #include <sys/socket.h>
41
42 #include <sys/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #include <net/bpf.h>
63
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66
67 #include <dev/pci/pcireg.h>
68 #include <dev/pci/pcivar.h>
69 #include <dev/pci/pcidevs.h>
70
71 #include <dev/pci/if_nfereg.h>
72 #include <dev/pci/if_nfevar.h>
73
74 static int nfe_ifflags_cb(struct ethercom *);
75
76 int nfe_match(device_t, cfdata_t, void *);
77 void nfe_attach(device_t, device_t, void *);
78 int nfe_detach(device_t, int);
79 void nfe_power(int, void *);
80 void nfe_miibus_statchg(struct ifnet *);
81 int nfe_miibus_readreg(device_t, int, int);
82 void nfe_miibus_writereg(device_t, int, int, int);
83 int nfe_intr(void *);
84 int nfe_ioctl(struct ifnet *, u_long, void *);
85 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
86 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
87 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
88 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
89 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
90 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
91 void nfe_rxeof(struct nfe_softc *);
92 void nfe_txeof(struct nfe_softc *);
93 int nfe_encap(struct nfe_softc *, struct mbuf *);
94 void nfe_start(struct ifnet *);
95 void nfe_watchdog(struct ifnet *);
96 int nfe_init(struct ifnet *);
97 void nfe_stop(struct ifnet *, int);
98 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
99 void nfe_jfree(struct mbuf *, void *, size_t, void *);
100 int nfe_jpool_alloc(struct nfe_softc *);
101 void nfe_jpool_free(struct nfe_softc *);
102 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
105 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
108 void nfe_setmulti(struct nfe_softc *);
109 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
110 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
111 void nfe_tick(void *);
112 void nfe_poweron(device_t);
113 bool nfe_resume(device_t, const pmf_qual_t *);
114
115 CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc),
116 nfe_match, nfe_attach, nfe_detach, NULL);
117
118 /* #define NFE_NO_JUMBO */
119
120 #ifdef NFE_DEBUG
121 int nfedebug = 0;
122 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
123 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
124 #else
125 #define DPRINTF(x)
126 #define DPRINTFN(n,x)
127 #endif
128
129 /* deal with naming differences */
130
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
134 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
135 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
136 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
137
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
140 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
141 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
142
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
145 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
146 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
147
148 #ifdef _LP64
149 #define __LP64__ 1
150 #endif
151
152 const struct nfe_product {
153 pci_vendor_id_t vendor;
154 pci_product_id_t product;
155 } nfe_devices[] = {
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
177 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
178 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
179 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
180 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
181 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
182 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
183 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
184 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
185 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
186 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
187 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
188 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
189 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
190 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
191 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
192 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
193 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
194 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
195 };
196
197 int
198 nfe_match(device_t dev, cfdata_t match, void *aux)
199 {
200 struct pci_attach_args *pa = aux;
201 const struct nfe_product *np;
202 int i;
203
204 for (i = 0; i < __arraycount(nfe_devices); i++) {
205 np = &nfe_devices[i];
206 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
207 PCI_PRODUCT(pa->pa_id) == np->product)
208 return 1;
209 }
210 return 0;
211 }
212
213 void
214 nfe_attach(device_t parent, device_t self, void *aux)
215 {
216 struct nfe_softc *sc = device_private(self);
217 struct pci_attach_args *pa = aux;
218 pci_chipset_tag_t pc = pa->pa_pc;
219 pci_intr_handle_t ih;
220 const char *intrstr;
221 struct ifnet *ifp;
222 pcireg_t memtype, csr;
223 int mii_flags = 0;
224 char intrbuf[PCI_INTRSTR_LEN];
225
226 sc->sc_dev = self;
227 sc->sc_pc = pa->pa_pc;
228 pci_aprint_devinfo(pa, NULL);
229
230 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
231 switch (memtype) {
232 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
233 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
234 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
235 &sc->sc_memh, NULL, &sc->sc_mems) == 0)
236 break;
237 /* FALLTHROUGH */
238 default:
239 aprint_error_dev(self, "could not map mem space\n");
240 return;
241 }
242
243 if (pci_intr_map(pa, &ih) != 0) {
244 aprint_error_dev(self, "could not map interrupt\n");
245 goto fail;
246 }
247
248 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
249 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
250 if (sc->sc_ih == NULL) {
251 aprint_error_dev(self, "could not establish interrupt");
252 if (intrstr != NULL)
253 aprint_error(" at %s", intrstr);
254 aprint_error("\n");
255 goto fail;
256 }
257 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
258
259 csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
260 csr |= PCI_COMMAND_MASTER_ENABLE;
261 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr);
262
263 sc->sc_flags = 0;
264
265 switch (PCI_PRODUCT(pa->pa_id)) {
266 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
267 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
268 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
269 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
270 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
271 break;
272 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
273 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
274 sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
275 break;
276 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
277 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
278 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
279 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
280 case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
281 case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
282 case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
283 case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
284 case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
285 case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
286 case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
287 case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
288 sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
289 NFE_PWR_MGMT;
290 break;
291 case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
292 case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
293 case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
294 case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
295 sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
296 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
297 break;
298 case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
299 case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
300 case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
301 case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
302 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
303 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
304 break;
305 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
306 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
307 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
308 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
309 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
310 break;
311 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
312 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
313 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
314 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
315 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
316 NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
317 mii_flags = MIIF_DOPAUSE;
318 break;
319 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
320 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
321 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
322 NFE_HW_VLAN | NFE_PWR_MGMT;
323 break;
324 }
325
326 if (pci_dma64_available(pa) && (sc->sc_flags & NFE_40BIT_ADDR) != 0)
327 sc->sc_dmat = pa->pa_dmat64;
328 else
329 sc->sc_dmat = pa->pa_dmat;
330
331 nfe_poweron(self);
332
333 #ifndef NFE_NO_JUMBO
334 /* enable jumbo frames for adapters that support it */
335 if (sc->sc_flags & NFE_JUMBO_SUP)
336 sc->sc_flags |= NFE_USE_JUMBO;
337 #endif
338
339 /* Check for reversed ethernet address */
340 if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
341 sc->sc_flags |= NFE_CORRECT_MACADDR;
342
343 nfe_get_macaddr(sc, sc->sc_enaddr);
344 aprint_normal_dev(self, "Ethernet address %s\n",
345 ether_sprintf(sc->sc_enaddr));
346
347 /*
348 * Allocate Tx and Rx rings.
349 */
350 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
351 aprint_error_dev(self, "could not allocate Tx ring\n");
352 goto fail;
353 }
354
355 mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
356
357 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
358 aprint_error_dev(self, "could not allocate Rx ring\n");
359 nfe_free_tx_ring(sc, &sc->txq);
360 goto fail;
361 }
362
363 ifp = &sc->sc_ethercom.ec_if;
364 ifp->if_softc = sc;
365 ifp->if_mtu = ETHERMTU;
366 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
367 ifp->if_ioctl = nfe_ioctl;
368 ifp->if_start = nfe_start;
369 ifp->if_stop = nfe_stop;
370 ifp->if_watchdog = nfe_watchdog;
371 ifp->if_init = nfe_init;
372 ifp->if_baudrate = IF_Gbps(1);
373 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
374 IFQ_SET_READY(&ifp->if_snd);
375 strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
376
377 if (sc->sc_flags & NFE_USE_JUMBO)
378 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
379
380 #if NVLAN > 0
381 if (sc->sc_flags & NFE_HW_VLAN)
382 sc->sc_ethercom.ec_capabilities |=
383 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
384 #endif
385 if (sc->sc_flags & NFE_HW_CSUM) {
386 ifp->if_capabilities |=
387 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
388 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
389 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
390 }
391
392 sc->sc_mii.mii_ifp = ifp;
393 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
394 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
395 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
396
397 sc->sc_ethercom.ec_mii = &sc->sc_mii;
398 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
399 ether_mediastatus);
400
401 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, 0, mii_flags);
402
403 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
404 aprint_error_dev(self, "no PHY found!\n");
405 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
406 0, NULL);
407 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
408 } else
409 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
410
411 if_attach(ifp);
412 if_deferred_start_init(ifp, NULL);
413 ether_ifattach(ifp, sc->sc_enaddr);
414 ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
415
416 callout_init(&sc->sc_tick_ch, 0);
417 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
418
419 if (pmf_device_register(self, NULL, nfe_resume))
420 pmf_class_network_register(self, ifp);
421 else
422 aprint_error_dev(self, "couldn't establish power handler\n");
423
424 return;
425
426 fail:
427 if (sc->sc_ih != NULL) {
428 pci_intr_disestablish(pc, sc->sc_ih);
429 sc->sc_ih = NULL;
430 }
431 if (sc->sc_mems != 0) {
432 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
433 sc->sc_mems = 0;
434 }
435 }
436
437 int
438 nfe_detach(device_t self, int flags)
439 {
440 struct nfe_softc *sc = device_private(self);
441 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
442 int s;
443
444 s = splnet();
445
446 nfe_stop(ifp, 1);
447
448 pmf_device_deregister(self);
449 callout_destroy(&sc->sc_tick_ch);
450 ether_ifdetach(ifp);
451 if_detach(ifp);
452 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
453
454 nfe_free_rx_ring(sc, &sc->rxq);
455 mutex_destroy(&sc->rxq.mtx);
456 nfe_free_tx_ring(sc, &sc->txq);
457
458 if (sc->sc_ih != NULL) {
459 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
460 sc->sc_ih = NULL;
461 }
462
463 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
464 nfe_set_macaddr(sc, sc->sc_enaddr);
465 } else {
466 NFE_WRITE(sc, NFE_MACADDR_LO,
467 sc->sc_enaddr[0] << 8 | sc->sc_enaddr[1]);
468 NFE_WRITE(sc, NFE_MACADDR_HI,
469 sc->sc_enaddr[2] << 24 | sc->sc_enaddr[3] << 16 |
470 sc->sc_enaddr[4] << 8 | sc->sc_enaddr[5]);
471 }
472
473 if (sc->sc_mems != 0) {
474 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_mems);
475 sc->sc_mems = 0;
476 }
477
478 splx(s);
479
480 return 0;
481 }
482
483 void
484 nfe_miibus_statchg(struct ifnet *ifp)
485 {
486 struct nfe_softc *sc = ifp->if_softc;
487 struct mii_data *mii = &sc->sc_mii;
488 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
489
490 phy = NFE_READ(sc, NFE_PHY_IFACE);
491 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
492
493 seed = NFE_READ(sc, NFE_RNDSEED);
494 seed &= ~NFE_SEED_MASK;
495
496 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
497 phy |= NFE_PHY_HDX; /* half-duplex */
498 misc |= NFE_MISC1_HDX;
499 }
500
501 switch (IFM_SUBTYPE(mii->mii_media_active)) {
502 case IFM_1000_T: /* full-duplex only */
503 link |= NFE_MEDIA_1000T;
504 seed |= NFE_SEED_1000T;
505 phy |= NFE_PHY_1000T;
506 break;
507 case IFM_100_TX:
508 link |= NFE_MEDIA_100TX;
509 seed |= NFE_SEED_100TX;
510 phy |= NFE_PHY_100TX;
511 break;
512 case IFM_10_T:
513 link |= NFE_MEDIA_10T;
514 seed |= NFE_SEED_10T;
515 break;
516 }
517
518 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
519
520 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
521 NFE_WRITE(sc, NFE_MISC1, misc);
522 NFE_WRITE(sc, NFE_LINKSPEED, link);
523 }
524
525 int
526 nfe_miibus_readreg(device_t dev, int phy, int reg)
527 {
528 struct nfe_softc *sc = device_private(dev);
529 uint32_t val;
530 int ntries;
531
532 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
533
534 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
535 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
536 DELAY(100);
537 }
538
539 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
540
541 for (ntries = 0; ntries < 1000; ntries++) {
542 DELAY(100);
543 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
544 break;
545 }
546 if (ntries == 1000) {
547 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
548 device_xname(sc->sc_dev)));
549 return 0;
550 }
551
552 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
553 DPRINTFN(2, ("%s: could not read PHY\n",
554 device_xname(sc->sc_dev)));
555 return 0;
556 }
557
558 val = NFE_READ(sc, NFE_PHY_DATA);
559 if (val != 0xffffffff && val != 0)
560 sc->mii_phyaddr = phy;
561
562 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
563 device_xname(sc->sc_dev), phy, reg, val));
564
565 return val;
566 }
567
568 void
569 nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
570 {
571 struct nfe_softc *sc = device_private(dev);
572 uint32_t ctl;
573 int ntries;
574
575 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
576
577 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
578 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
579 DELAY(100);
580 }
581
582 NFE_WRITE(sc, NFE_PHY_DATA, val);
583 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
584 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
585
586 for (ntries = 0; ntries < 1000; ntries++) {
587 DELAY(100);
588 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
589 break;
590 }
591 #ifdef NFE_DEBUG
592 if (nfedebug >= 2 && ntries == 1000)
593 printf("could not write to PHY\n");
594 #endif
595 }
596
597 int
598 nfe_intr(void *arg)
599 {
600 struct nfe_softc *sc = arg;
601 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
602 uint32_t r;
603 int handled;
604
605 if ((ifp->if_flags & IFF_UP) == 0)
606 return 0;
607
608 handled = 0;
609
610 for (;;) {
611 r = NFE_READ(sc, NFE_IRQ_STATUS);
612 if ((r & NFE_IRQ_WANTED) == 0)
613 break;
614
615 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
616 handled = 1;
617 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
618
619 if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
620 /* check Rx ring */
621 nfe_rxeof(sc);
622 }
623 if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
624 /* check Tx ring */
625 nfe_txeof(sc);
626 }
627 if ((r & NFE_IRQ_LINK) != 0) {
628 NFE_READ(sc, NFE_PHY_STATUS);
629 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
630 DPRINTF(("%s: link state changed\n",
631 device_xname(sc->sc_dev)));
632 }
633 }
634
635 if (handled)
636 if_schedule_deferred_start(ifp);
637
638 return handled;
639 }
640
641 static int
642 nfe_ifflags_cb(struct ethercom *ec)
643 {
644 struct ifnet *ifp = &ec->ec_if;
645 struct nfe_softc *sc = ifp->if_softc;
646 int change = ifp->if_flags ^ sc->sc_if_flags;
647
648 /*
649 * If only the PROMISC flag changes, then
650 * don't do a full re-init of the chip, just update
651 * the Rx filter.
652 */
653 if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
654 return ENETRESET;
655 else if ((change & IFF_PROMISC) != 0)
656 nfe_setmulti(sc);
657
658 return 0;
659 }
660
661 int
662 nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
663 {
664 struct nfe_softc *sc = ifp->if_softc;
665 struct ifaddr *ifa = (struct ifaddr *)data;
666 int s, error = 0;
667
668 s = splnet();
669
670 switch (cmd) {
671 case SIOCINITIFADDR:
672 ifp->if_flags |= IFF_UP;
673 nfe_init(ifp);
674 switch (ifa->ifa_addr->sa_family) {
675 #ifdef INET
676 case AF_INET:
677 arp_ifinit(ifp, ifa);
678 break;
679 #endif
680 default:
681 break;
682 }
683 break;
684 default:
685 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
686 break;
687
688 error = 0;
689
690 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
691 ;
692 else if (ifp->if_flags & IFF_RUNNING)
693 nfe_setmulti(sc);
694 break;
695 }
696 sc->sc_if_flags = ifp->if_flags;
697
698 splx(s);
699
700 return error;
701 }
702
703 void
704 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
705 {
706 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
707 (char *)desc32 - (char *)sc->txq.desc32,
708 sizeof (struct nfe_desc32), ops);
709 }
710
711 void
712 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
713 {
714 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
715 (char *)desc64 - (char *)sc->txq.desc64,
716 sizeof (struct nfe_desc64), ops);
717 }
718
719 void
720 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
721 {
722 if (end > start) {
723 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
724 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
725 (char *)&sc->txq.desc32[end] -
726 (char *)&sc->txq.desc32[start], ops);
727 return;
728 }
729 /* sync from 'start' to end of ring */
730 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
731 (char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
732 (char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
733 (char *)&sc->txq.desc32[start], ops);
734
735 /* sync from start of ring to 'end' */
736 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
737 (char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
738 }
739
740 void
741 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
742 {
743 if (end > start) {
744 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
745 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
746 (char *)&sc->txq.desc64[end] -
747 (char *)&sc->txq.desc64[start], ops);
748 return;
749 }
750 /* sync from 'start' to end of ring */
751 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
752 (char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
753 (char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
754 (char *)&sc->txq.desc64[start], ops);
755
756 /* sync from start of ring to 'end' */
757 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
758 (char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
759 }
760
761 void
762 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
763 {
764 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
765 (char *)desc32 - (char *)sc->rxq.desc32,
766 sizeof (struct nfe_desc32), ops);
767 }
768
769 void
770 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
771 {
772 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
773 (char *)desc64 - (char *)sc->rxq.desc64,
774 sizeof (struct nfe_desc64), ops);
775 }
776
777 void
778 nfe_rxeof(struct nfe_softc *sc)
779 {
780 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
781 struct nfe_desc32 *desc32;
782 struct nfe_desc64 *desc64;
783 struct nfe_rx_data *data;
784 struct nfe_jbuf *jbuf;
785 struct mbuf *m, *mnew;
786 bus_addr_t physaddr;
787 uint16_t flags;
788 int error, len, i;
789
790 desc32 = NULL;
791 desc64 = NULL;
792 for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
793 data = &sc->rxq.data[i];
794
795 if (sc->sc_flags & NFE_40BIT_ADDR) {
796 desc64 = &sc->rxq.desc64[i];
797 nfe_rxdesc64_sync(sc, desc64,
798 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
799
800 flags = le16toh(desc64->flags);
801 len = le16toh(desc64->length) & 0x3fff;
802 } else {
803 desc32 = &sc->rxq.desc32[i];
804 nfe_rxdesc32_sync(sc, desc32,
805 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
806
807 flags = le16toh(desc32->flags);
808 len = le16toh(desc32->length) & 0x3fff;
809 }
810
811 if ((flags & NFE_RX_READY) != 0)
812 break;
813
814 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
815 if ((flags & NFE_RX_VALID_V1) == 0)
816 goto skip;
817
818 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
819 flags &= ~NFE_RX_ERROR;
820 len--; /* fix buffer length */
821 }
822 } else {
823 if ((flags & NFE_RX_VALID_V2) == 0)
824 goto skip;
825
826 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
827 flags &= ~NFE_RX_ERROR;
828 len--; /* fix buffer length */
829 }
830 }
831
832 if (flags & NFE_RX_ERROR) {
833 ifp->if_ierrors++;
834 goto skip;
835 }
836
837 /*
838 * Try to allocate a new mbuf for this ring element and load
839 * it before processing the current mbuf. If the ring element
840 * cannot be loaded, drop the received packet and reuse the
841 * old mbuf. In the unlikely case that the old mbuf can't be
842 * reloaded either, explicitly panic.
843 */
844 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
845 if (mnew == NULL) {
846 ifp->if_ierrors++;
847 goto skip;
848 }
849
850 if (sc->sc_flags & NFE_USE_JUMBO) {
851 physaddr =
852 sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
853 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
854 if (len > MCLBYTES) {
855 m_freem(mnew);
856 ifp->if_ierrors++;
857 goto skip1;
858 }
859 MCLGET(mnew, M_DONTWAIT);
860 if ((mnew->m_flags & M_EXT) == 0) {
861 m_freem(mnew);
862 ifp->if_ierrors++;
863 goto skip1;
864 }
865
866 (void)memcpy(mtod(mnew, void *),
867 mtod(data->m, const void *), len);
868 m = mnew;
869 goto mbufcopied;
870 } else {
871 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
872 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
873 mtod(data->m, char *) - (char *)sc->rxq.jpool,
874 NFE_JBYTES, BUS_DMASYNC_POSTREAD);
875
876 physaddr = jbuf->physaddr;
877 }
878 } else {
879 MCLGET(mnew, M_DONTWAIT);
880 if ((mnew->m_flags & M_EXT) == 0) {
881 m_freem(mnew);
882 ifp->if_ierrors++;
883 goto skip;
884 }
885
886 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
887 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
888 bus_dmamap_unload(sc->sc_dmat, data->map);
889
890 error = bus_dmamap_load(sc->sc_dmat, data->map,
891 mtod(mnew, void *), MCLBYTES, NULL,
892 BUS_DMA_READ | BUS_DMA_NOWAIT);
893 if (error != 0) {
894 m_freem(mnew);
895
896 /* try to reload the old mbuf */
897 error = bus_dmamap_load(sc->sc_dmat, data->map,
898 mtod(data->m, void *), MCLBYTES, NULL,
899 BUS_DMA_READ | BUS_DMA_NOWAIT);
900 if (error != 0) {
901 /* very unlikely that it will fail.. */
902 panic("%s: could not load old rx mbuf",
903 device_xname(sc->sc_dev));
904 }
905 ifp->if_ierrors++;
906 goto skip;
907 }
908 physaddr = data->map->dm_segs[0].ds_addr;
909 }
910
911 /*
912 * New mbuf successfully loaded, update Rx ring and continue
913 * processing.
914 */
915 m = data->m;
916 data->m = mnew;
917
918 mbufcopied:
919 /* finalize mbuf */
920 m->m_pkthdr.len = m->m_len = len;
921 m_set_rcvif(m, ifp);
922
923 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
924 /*
925 * XXX
926 * no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
927 */
928 if (flags & NFE_RX_IP_CSUMOK) {
929 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
930 DPRINTFN(3, ("%s: ip4csum-rx ok\n",
931 device_xname(sc->sc_dev)));
932 }
933 /*
934 * XXX
935 * no way to check M_CSUM_TCP_UDP_BAD or
936 * other protocols?
937 */
938 if (flags & NFE_RX_UDP_CSUMOK) {
939 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
940 DPRINTFN(3, ("%s: udp4csum-rx ok\n",
941 device_xname(sc->sc_dev)));
942 } else if (flags & NFE_RX_TCP_CSUMOK) {
943 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
944 DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
945 device_xname(sc->sc_dev)));
946 }
947 }
948 bpf_mtap(ifp, m);
949 ifp->if_ipackets++;
950 if_percpuq_enqueue(ifp->if_percpuq, m);
951
952 skip1:
953 /* update mapping address in h/w descriptor */
954 if (sc->sc_flags & NFE_40BIT_ADDR) {
955 #if defined(__LP64__)
956 desc64->physaddr[0] = htole32(physaddr >> 32);
957 #endif
958 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
959 } else {
960 desc32->physaddr = htole32(physaddr);
961 }
962
963 skip:
964 if (sc->sc_flags & NFE_40BIT_ADDR) {
965 desc64->length = htole16(sc->rxq.bufsz);
966 desc64->flags = htole16(NFE_RX_READY);
967
968 nfe_rxdesc64_sync(sc, desc64,
969 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
970 } else {
971 desc32->length = htole16(sc->rxq.bufsz);
972 desc32->flags = htole16(NFE_RX_READY);
973
974 nfe_rxdesc32_sync(sc, desc32,
975 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
976 }
977 }
978 /* update current RX pointer */
979 sc->rxq.cur = i;
980 }
981
982 void
983 nfe_txeof(struct nfe_softc *sc)
984 {
985 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
986 struct nfe_desc32 *desc32;
987 struct nfe_desc64 *desc64;
988 struct nfe_tx_data *data = NULL;
989 int i;
990 uint16_t flags;
991 char buf[128];
992
993 for (i = sc->txq.next;
994 sc->txq.queued > 0;
995 i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
996 if (sc->sc_flags & NFE_40BIT_ADDR) {
997 desc64 = &sc->txq.desc64[i];
998 nfe_txdesc64_sync(sc, desc64,
999 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1000
1001 flags = le16toh(desc64->flags);
1002 } else {
1003 desc32 = &sc->txq.desc32[i];
1004 nfe_txdesc32_sync(sc, desc32,
1005 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1006
1007 flags = le16toh(desc32->flags);
1008 }
1009
1010 if ((flags & NFE_TX_VALID) != 0)
1011 break;
1012
1013 data = &sc->txq.data[i];
1014
1015 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
1016 if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
1017 data->m == NULL)
1018 continue;
1019
1020 if ((flags & NFE_TX_ERROR_V1) != 0) {
1021 snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
1022 aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
1023 buf);
1024 ifp->if_oerrors++;
1025 } else
1026 ifp->if_opackets++;
1027 } else {
1028 if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
1029 data->m == NULL)
1030 continue;
1031
1032 if ((flags & NFE_TX_ERROR_V2) != 0) {
1033 snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
1034 aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
1035 buf);
1036 ifp->if_oerrors++;
1037 } else
1038 ifp->if_opackets++;
1039 }
1040
1041 if (data->m == NULL) { /* should not get there */
1042 aprint_error_dev(sc->sc_dev,
1043 "last fragment bit w/o associated mbuf!\n");
1044 continue;
1045 }
1046
1047 /* last fragment of the mbuf chain transmitted */
1048 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1049 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1050 bus_dmamap_unload(sc->sc_dmat, data->active);
1051 m_freem(data->m);
1052 data->m = NULL;
1053 }
1054
1055 sc->txq.next = i;
1056
1057 if (sc->txq.queued < NFE_TX_RING_COUNT) {
1058 /* at least one slot freed */
1059 ifp->if_flags &= ~IFF_OACTIVE;
1060 }
1061
1062 if (sc->txq.queued == 0) {
1063 /* all queued packets are sent */
1064 ifp->if_timer = 0;
1065 }
1066 }
1067
1068 int
1069 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
1070 {
1071 struct nfe_desc32 *desc32;
1072 struct nfe_desc64 *desc64;
1073 struct nfe_tx_data *data;
1074 bus_dmamap_t map;
1075 uint16_t flags, csumflags;
1076 #if NVLAN > 0
1077 struct m_tag *mtag;
1078 uint32_t vtag = 0;
1079 #endif
1080 int error, i, first;
1081
1082 desc32 = NULL;
1083 desc64 = NULL;
1084 data = NULL;
1085
1086 flags = 0;
1087 csumflags = 0;
1088 first = sc->txq.cur;
1089
1090 map = sc->txq.data[first].map;
1091
1092 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
1093 if (error != 0) {
1094 aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
1095 error);
1096 return error;
1097 }
1098
1099 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
1100 bus_dmamap_unload(sc->sc_dmat, map);
1101 return ENOBUFS;
1102 }
1103
1104 #if NVLAN > 0
1105 /* setup h/w VLAN tagging */
1106 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
1107 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
1108 #endif
1109 if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
1110 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
1111 csumflags |= NFE_TX_IP_CSUM;
1112 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
1113 csumflags |= NFE_TX_TCP_UDP_CSUM;
1114 }
1115
1116 for (i = 0; i < map->dm_nsegs; i++) {
1117 data = &sc->txq.data[sc->txq.cur];
1118
1119 if (sc->sc_flags & NFE_40BIT_ADDR) {
1120 desc64 = &sc->txq.desc64[sc->txq.cur];
1121 #if defined(__LP64__)
1122 desc64->physaddr[0] =
1123 htole32(map->dm_segs[i].ds_addr >> 32);
1124 #endif
1125 desc64->physaddr[1] =
1126 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
1127 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
1128 desc64->flags = htole16(flags);
1129 desc64->vtag = 0;
1130 } else {
1131 desc32 = &sc->txq.desc32[sc->txq.cur];
1132
1133 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
1134 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
1135 desc32->flags = htole16(flags);
1136 }
1137
1138 /*
1139 * Setting of the valid bit in the first descriptor is
1140 * deferred until the whole chain is fully setup.
1141 */
1142 flags |= NFE_TX_VALID;
1143
1144 sc->txq.queued++;
1145 sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
1146 }
1147
1148 /* the whole mbuf chain has been setup */
1149 if (sc->sc_flags & NFE_40BIT_ADDR) {
1150 /* fix last descriptor */
1151 flags |= NFE_TX_LASTFRAG_V2;
1152 desc64->flags = htole16(flags);
1153
1154 /* Checksum flags and vtag belong to the first fragment only. */
1155 #if NVLAN > 0
1156 sc->txq.desc64[first].vtag = htole32(vtag);
1157 #endif
1158 sc->txq.desc64[first].flags |= htole16(csumflags);
1159
1160 /* finally, set the valid bit in the first descriptor */
1161 sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
1162 } else {
1163 /* fix last descriptor */
1164 if (sc->sc_flags & NFE_JUMBO_SUP)
1165 flags |= NFE_TX_LASTFRAG_V2;
1166 else
1167 flags |= NFE_TX_LASTFRAG_V1;
1168 desc32->flags = htole16(flags);
1169
1170 /* Checksum flags belong to the first fragment only. */
1171 sc->txq.desc32[first].flags |= htole16(csumflags);
1172
1173 /* finally, set the valid bit in the first descriptor */
1174 sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
1175 }
1176
1177 data->m = m0;
1178 data->active = map;
1179
1180 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1181 BUS_DMASYNC_PREWRITE);
1182
1183 return 0;
1184 }
1185
1186 void
1187 nfe_start(struct ifnet *ifp)
1188 {
1189 struct nfe_softc *sc = ifp->if_softc;
1190 int old = sc->txq.queued;
1191 struct mbuf *m0;
1192
1193 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1194 return;
1195
1196 for (;;) {
1197 IFQ_POLL(&ifp->if_snd, m0);
1198 if (m0 == NULL)
1199 break;
1200
1201 if (nfe_encap(sc, m0) != 0) {
1202 ifp->if_flags |= IFF_OACTIVE;
1203 break;
1204 }
1205
1206 /* packet put in h/w queue, remove from s/w queue */
1207 IFQ_DEQUEUE(&ifp->if_snd, m0);
1208
1209 bpf_mtap(ifp, m0);
1210 }
1211
1212 if (sc->txq.queued != old) {
1213 /* packets are queued */
1214 if (sc->sc_flags & NFE_40BIT_ADDR)
1215 nfe_txdesc64_rsync(sc, old, sc->txq.cur,
1216 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1217 else
1218 nfe_txdesc32_rsync(sc, old, sc->txq.cur,
1219 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1220 /* kick Tx */
1221 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1222
1223 /*
1224 * Set a timeout in case the chip goes out to lunch.
1225 */
1226 ifp->if_timer = 5;
1227 }
1228 }
1229
1230 void
1231 nfe_watchdog(struct ifnet *ifp)
1232 {
1233 struct nfe_softc *sc = ifp->if_softc;
1234
1235 aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
1236
1237 ifp->if_flags &= ~IFF_RUNNING;
1238 nfe_init(ifp);
1239
1240 ifp->if_oerrors++;
1241 }
1242
1243 int
1244 nfe_init(struct ifnet *ifp)
1245 {
1246 struct nfe_softc *sc = ifp->if_softc;
1247 uint32_t tmp;
1248 int rc = 0, s;
1249
1250 if (ifp->if_flags & IFF_RUNNING)
1251 return 0;
1252
1253 nfe_stop(ifp, 0);
1254
1255 NFE_WRITE(sc, NFE_TX_UNK, 0);
1256 NFE_WRITE(sc, NFE_STATUS, 0);
1257
1258 sc->rxtxctl = NFE_RXTX_BIT2;
1259 if (sc->sc_flags & NFE_40BIT_ADDR)
1260 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1261 else if (sc->sc_flags & NFE_JUMBO_SUP)
1262 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1263 if (sc->sc_flags & NFE_HW_CSUM)
1264 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1265 #if NVLAN > 0
1266 /*
1267 * Although the adapter is capable of stripping VLAN tags from received
1268 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1269 * purpose. This will be done in software by our network stack.
1270 */
1271 if (sc->sc_flags & NFE_HW_VLAN)
1272 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1273 #endif
1274 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1275 DELAY(10);
1276 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1277
1278 #if NVLAN
1279 if (sc->sc_flags & NFE_HW_VLAN)
1280 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1281 #endif
1282
1283 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1284
1285 /* set MAC address */
1286 nfe_set_macaddr(sc, sc->sc_enaddr);
1287
1288 /* tell MAC where rings are in memory */
1289 #ifdef __LP64__
1290 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1291 #endif
1292 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1293 #ifdef __LP64__
1294 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1295 #endif
1296 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1297
1298 NFE_WRITE(sc, NFE_RING_SIZE,
1299 (NFE_RX_RING_COUNT - 1) << 16 |
1300 (NFE_TX_RING_COUNT - 1));
1301
1302 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1303
1304 /* force MAC to wakeup */
1305 tmp = NFE_READ(sc, NFE_PWR_STATE);
1306 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1307 DELAY(10);
1308 tmp = NFE_READ(sc, NFE_PWR_STATE);
1309 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1310
1311 s = splnet();
1312 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1313 nfe_intr(sc); /* XXX clear IRQ status registers */
1314 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1315 splx(s);
1316
1317 #if 1
1318 /* configure interrupts coalescing/mitigation */
1319 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1320 #else
1321 /* no interrupt mitigation: one interrupt per packet */
1322 NFE_WRITE(sc, NFE_IMTIMER, 970);
1323 #endif
1324
1325 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1326 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1327 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1328
1329 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1330 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1331
1332 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1333 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
1334
1335 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1336 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1337 DELAY(10);
1338 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1339
1340 /* set Rx filter */
1341 nfe_setmulti(sc);
1342
1343 if ((rc = ether_mediachange(ifp)) != 0)
1344 goto out;
1345
1346 nfe_tick(sc);
1347
1348 /* enable Rx */
1349 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1350
1351 /* enable Tx */
1352 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1353
1354 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1355
1356 /* enable interrupts */
1357 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1358
1359 callout_schedule(&sc->sc_tick_ch, hz);
1360
1361 ifp->if_flags |= IFF_RUNNING;
1362 ifp->if_flags &= ~IFF_OACTIVE;
1363
1364 out:
1365 return rc;
1366 }
1367
1368 void
1369 nfe_stop(struct ifnet *ifp, int disable)
1370 {
1371 struct nfe_softc *sc = ifp->if_softc;
1372
1373 callout_stop(&sc->sc_tick_ch);
1374
1375 ifp->if_timer = 0;
1376 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1377
1378 mii_down(&sc->sc_mii);
1379
1380 /* abort Tx */
1381 NFE_WRITE(sc, NFE_TX_CTL, 0);
1382
1383 /* disable Rx */
1384 NFE_WRITE(sc, NFE_RX_CTL, 0);
1385
1386 /* disable interrupts */
1387 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1388
1389 /* reset Tx and Rx rings */
1390 nfe_reset_tx_ring(sc, &sc->txq);
1391 nfe_reset_rx_ring(sc, &sc->rxq);
1392 }
1393
1394 int
1395 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1396 {
1397 struct nfe_desc32 *desc32;
1398 struct nfe_desc64 *desc64;
1399 struct nfe_rx_data *data;
1400 struct nfe_jbuf *jbuf;
1401 void **desc;
1402 bus_addr_t physaddr;
1403 int i, nsegs, error, descsize;
1404
1405 if (sc->sc_flags & NFE_40BIT_ADDR) {
1406 desc = (void **)&ring->desc64;
1407 descsize = sizeof (struct nfe_desc64);
1408 } else {
1409 desc = (void **)&ring->desc32;
1410 descsize = sizeof (struct nfe_desc32);
1411 }
1412
1413 ring->cur = ring->next = 0;
1414 ring->bufsz = MCLBYTES;
1415
1416 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1417 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1418 if (error != 0) {
1419 aprint_error_dev(sc->sc_dev,
1420 "could not create desc DMA map\n");
1421 ring->map = NULL;
1422 goto fail;
1423 }
1424
1425 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1426 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1427 if (error != 0) {
1428 aprint_error_dev(sc->sc_dev,
1429 "could not allocate DMA memory\n");
1430 goto fail;
1431 }
1432
1433 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1434 NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1435 if (error != 0) {
1436 aprint_error_dev(sc->sc_dev,
1437 "could not map desc DMA memory\n");
1438 goto fail;
1439 }
1440
1441 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1442 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1443 if (error != 0) {
1444 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1445 goto fail;
1446 }
1447
1448 memset(*desc, 0, NFE_RX_RING_COUNT * descsize);
1449 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1450
1451 if (sc->sc_flags & NFE_USE_JUMBO) {
1452 ring->bufsz = NFE_JBYTES;
1453 if ((error = nfe_jpool_alloc(sc)) != 0) {
1454 aprint_error_dev(sc->sc_dev,
1455 "could not allocate jumbo frames\n");
1456 goto fail;
1457 }
1458 }
1459
1460 /*
1461 * Pre-allocate Rx buffers and populate Rx ring.
1462 */
1463 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1464 data = &sc->rxq.data[i];
1465
1466 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1467 if (data->m == NULL) {
1468 aprint_error_dev(sc->sc_dev,
1469 "could not allocate rx mbuf\n");
1470 error = ENOMEM;
1471 goto fail;
1472 }
1473
1474 if (sc->sc_flags & NFE_USE_JUMBO) {
1475 if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
1476 aprint_error_dev(sc->sc_dev,
1477 "could not allocate jumbo buffer\n");
1478 goto fail;
1479 }
1480 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1481 sc);
1482
1483 physaddr = jbuf->physaddr;
1484 } else {
1485 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1486 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1487 if (error != 0) {
1488 aprint_error_dev(sc->sc_dev,
1489 "could not create DMA map\n");
1490 data->map = NULL;
1491 goto fail;
1492 }
1493 MCLGET(data->m, M_DONTWAIT);
1494 if (!(data->m->m_flags & M_EXT)) {
1495 aprint_error_dev(sc->sc_dev,
1496 "could not allocate mbuf cluster\n");
1497 error = ENOMEM;
1498 goto fail;
1499 }
1500
1501 error = bus_dmamap_load(sc->sc_dmat, data->map,
1502 mtod(data->m, void *), MCLBYTES, NULL,
1503 BUS_DMA_READ | BUS_DMA_NOWAIT);
1504 if (error != 0) {
1505 aprint_error_dev(sc->sc_dev,
1506 "could not load rx buf DMA map");
1507 goto fail;
1508 }
1509 physaddr = data->map->dm_segs[0].ds_addr;
1510 }
1511
1512 if (sc->sc_flags & NFE_40BIT_ADDR) {
1513 desc64 = &sc->rxq.desc64[i];
1514 #if defined(__LP64__)
1515 desc64->physaddr[0] = htole32(physaddr >> 32);
1516 #endif
1517 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1518 desc64->length = htole16(sc->rxq.bufsz);
1519 desc64->flags = htole16(NFE_RX_READY);
1520 } else {
1521 desc32 = &sc->rxq.desc32[i];
1522 desc32->physaddr = htole32(physaddr);
1523 desc32->length = htole16(sc->rxq.bufsz);
1524 desc32->flags = htole16(NFE_RX_READY);
1525 }
1526 }
1527
1528 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1529 BUS_DMASYNC_PREWRITE);
1530
1531 return 0;
1532
1533 fail: nfe_free_rx_ring(sc, ring);
1534 return error;
1535 }
1536
1537 void
1538 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1539 {
1540 int i;
1541
1542 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1543 if (sc->sc_flags & NFE_40BIT_ADDR) {
1544 ring->desc64[i].length = htole16(ring->bufsz);
1545 ring->desc64[i].flags = htole16(NFE_RX_READY);
1546 } else {
1547 ring->desc32[i].length = htole16(ring->bufsz);
1548 ring->desc32[i].flags = htole16(NFE_RX_READY);
1549 }
1550 }
1551
1552 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1553 BUS_DMASYNC_PREWRITE);
1554
1555 ring->cur = ring->next = 0;
1556 }
1557
1558 void
1559 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1560 {
1561 struct nfe_rx_data *data;
1562 void *desc;
1563 int i, descsize;
1564
1565 if (sc->sc_flags & NFE_40BIT_ADDR) {
1566 desc = ring->desc64;
1567 descsize = sizeof (struct nfe_desc64);
1568 } else {
1569 desc = ring->desc32;
1570 descsize = sizeof (struct nfe_desc32);
1571 }
1572
1573 if (desc != NULL) {
1574 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1575 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1576 bus_dmamap_unload(sc->sc_dmat, ring->map);
1577 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1578 NFE_RX_RING_COUNT * descsize);
1579 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1580 }
1581
1582 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1583 data = &ring->data[i];
1584
1585 if (data->map != NULL) {
1586 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1587 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1588 bus_dmamap_unload(sc->sc_dmat, data->map);
1589 bus_dmamap_destroy(sc->sc_dmat, data->map);
1590 }
1591 if (data->m != NULL)
1592 m_freem(data->m);
1593 }
1594
1595 nfe_jpool_free(sc);
1596 }
1597
1598 struct nfe_jbuf *
1599 nfe_jalloc(struct nfe_softc *sc, int i)
1600 {
1601 struct nfe_jbuf *jbuf;
1602
1603 mutex_enter(&sc->rxq.mtx);
1604 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1605 if (jbuf != NULL)
1606 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1607 mutex_exit(&sc->rxq.mtx);
1608 if (jbuf == NULL)
1609 return NULL;
1610 sc->rxq.jbufmap[i] =
1611 ((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1612 return jbuf;
1613 }
1614
1615 /*
1616 * This is called automatically by the network stack when the mbuf is freed.
1617 * Caution must be taken that the NIC might be reset by the time the mbuf is
1618 * freed.
1619 */
1620 void
1621 nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
1622 {
1623 struct nfe_softc *sc = arg;
1624 struct nfe_jbuf *jbuf;
1625 int i;
1626
1627 /* find the jbuf from the base pointer */
1628 i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
1629 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1630 aprint_error_dev(sc->sc_dev,
1631 "request to free a buffer (%p) not managed by us\n", buf);
1632 return;
1633 }
1634 jbuf = &sc->rxq.jbuf[i];
1635
1636 /* ..and put it back in the free list */
1637 mutex_enter(&sc->rxq.mtx);
1638 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1639 mutex_exit(&sc->rxq.mtx);
1640
1641 if (m != NULL)
1642 pool_cache_put(mb_cache, m);
1643 }
1644
1645 int
1646 nfe_jpool_alloc(struct nfe_softc *sc)
1647 {
1648 struct nfe_rx_ring *ring = &sc->rxq;
1649 struct nfe_jbuf *jbuf;
1650 bus_addr_t physaddr;
1651 char *buf;
1652 int i, nsegs, error;
1653
1654 /*
1655 * Allocate a big chunk of DMA'able memory.
1656 */
1657 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1658 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1659 if (error != 0) {
1660 aprint_error_dev(sc->sc_dev,
1661 "could not create jumbo DMA map\n");
1662 ring->jmap = NULL;
1663 goto fail;
1664 }
1665
1666 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1667 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1668 if (error != 0) {
1669 aprint_error_dev(sc->sc_dev,
1670 "could not allocate jumbo DMA memory\n");
1671 goto fail;
1672 }
1673
1674 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1675 &ring->jpool, BUS_DMA_NOWAIT);
1676 if (error != 0) {
1677 aprint_error_dev(sc->sc_dev,
1678 "could not map jumbo DMA memory\n");
1679 goto fail;
1680 }
1681
1682 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1683 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1684 if (error != 0) {
1685 aprint_error_dev(sc->sc_dev,
1686 "could not load jumbo DMA map\n");
1687 goto fail;
1688 }
1689
1690 /* ..and split it into 9KB chunks */
1691 SLIST_INIT(&ring->jfreelist);
1692
1693 buf = ring->jpool;
1694 physaddr = ring->jmap->dm_segs[0].ds_addr;
1695 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1696 jbuf = &ring->jbuf[i];
1697
1698 jbuf->buf = buf;
1699 jbuf->physaddr = physaddr;
1700
1701 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1702
1703 buf += NFE_JBYTES;
1704 physaddr += NFE_JBYTES;
1705 }
1706
1707 return 0;
1708
1709 fail: nfe_jpool_free(sc);
1710 return error;
1711 }
1712
1713 void
1714 nfe_jpool_free(struct nfe_softc *sc)
1715 {
1716 struct nfe_rx_ring *ring = &sc->rxq;
1717
1718 if (ring->jmap != NULL) {
1719 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1720 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1721 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1722 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1723 ring->jmap = NULL;
1724 }
1725 if (ring->jpool != NULL) {
1726 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1727 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1728 ring->jpool = NULL;
1729 }
1730 }
1731
1732 int
1733 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1734 {
1735 int i, nsegs, error;
1736 void **desc;
1737 int descsize;
1738
1739 if (sc->sc_flags & NFE_40BIT_ADDR) {
1740 desc = (void **)&ring->desc64;
1741 descsize = sizeof (struct nfe_desc64);
1742 } else {
1743 desc = (void **)&ring->desc32;
1744 descsize = sizeof (struct nfe_desc32);
1745 }
1746
1747 ring->queued = 0;
1748 ring->cur = ring->next = 0;
1749
1750 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1751 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1752
1753 if (error != 0) {
1754 aprint_error_dev(sc->sc_dev,
1755 "could not create desc DMA map\n");
1756 ring->map = NULL;
1757 goto fail;
1758 }
1759
1760 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1761 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1762 if (error != 0) {
1763 aprint_error_dev(sc->sc_dev,
1764 "could not allocate DMA memory\n");
1765 goto fail;
1766 }
1767
1768 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1769 NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
1770 if (error != 0) {
1771 aprint_error_dev(sc->sc_dev,
1772 "could not map desc DMA memory\n");
1773 goto fail;
1774 }
1775
1776 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1777 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1778 if (error != 0) {
1779 aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
1780 goto fail;
1781 }
1782
1783 memset(*desc, 0, NFE_TX_RING_COUNT * descsize);
1784 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1785
1786 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1787 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1788 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1789 &ring->data[i].map);
1790 if (error != 0) {
1791 aprint_error_dev(sc->sc_dev,
1792 "could not create DMA map\n");
1793 ring->data[i].map = NULL;
1794 goto fail;
1795 }
1796 }
1797
1798 return 0;
1799
1800 fail: nfe_free_tx_ring(sc, ring);
1801 return error;
1802 }
1803
1804 void
1805 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1806 {
1807 struct nfe_tx_data *data;
1808 int i;
1809
1810 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1811 if (sc->sc_flags & NFE_40BIT_ADDR)
1812 ring->desc64[i].flags = 0;
1813 else
1814 ring->desc32[i].flags = 0;
1815
1816 data = &ring->data[i];
1817
1818 if (data->m != NULL) {
1819 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1820 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1821 bus_dmamap_unload(sc->sc_dmat, data->active);
1822 m_freem(data->m);
1823 data->m = NULL;
1824 }
1825 }
1826
1827 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1828 BUS_DMASYNC_PREWRITE);
1829
1830 ring->queued = 0;
1831 ring->cur = ring->next = 0;
1832 }
1833
1834 void
1835 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1836 {
1837 struct nfe_tx_data *data;
1838 void *desc;
1839 int i, descsize;
1840
1841 if (sc->sc_flags & NFE_40BIT_ADDR) {
1842 desc = ring->desc64;
1843 descsize = sizeof (struct nfe_desc64);
1844 } else {
1845 desc = ring->desc32;
1846 descsize = sizeof (struct nfe_desc32);
1847 }
1848
1849 if (desc != NULL) {
1850 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1851 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1852 bus_dmamap_unload(sc->sc_dmat, ring->map);
1853 bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
1854 NFE_TX_RING_COUNT * descsize);
1855 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1856 }
1857
1858 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1859 data = &ring->data[i];
1860
1861 if (data->m != NULL) {
1862 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1863 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1864 bus_dmamap_unload(sc->sc_dmat, data->active);
1865 m_freem(data->m);
1866 }
1867 }
1868
1869 /* ..and now actually destroy the DMA mappings */
1870 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1871 data = &ring->data[i];
1872 if (data->map == NULL)
1873 continue;
1874 bus_dmamap_destroy(sc->sc_dmat, data->map);
1875 }
1876 }
1877
1878 void
1879 nfe_setmulti(struct nfe_softc *sc)
1880 {
1881 struct ethercom *ec = &sc->sc_ethercom;
1882 struct ifnet *ifp = &ec->ec_if;
1883 struct ether_multi *enm;
1884 struct ether_multistep step;
1885 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1886 uint32_t filter = NFE_RXFILTER_MAGIC;
1887 int i;
1888
1889 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1890 memset(addr, 0, ETHER_ADDR_LEN);
1891 memset(mask, 0, ETHER_ADDR_LEN);
1892 goto done;
1893 }
1894
1895 memcpy(addr, etherbroadcastaddr, ETHER_ADDR_LEN);
1896 memcpy(mask, etherbroadcastaddr, ETHER_ADDR_LEN);
1897
1898 ETHER_FIRST_MULTI(step, ec, enm);
1899 while (enm != NULL) {
1900 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1901 ifp->if_flags |= IFF_ALLMULTI;
1902 memset(addr, 0, ETHER_ADDR_LEN);
1903 memset(mask, 0, ETHER_ADDR_LEN);
1904 goto done;
1905 }
1906 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1907 addr[i] &= enm->enm_addrlo[i];
1908 mask[i] &= ~enm->enm_addrlo[i];
1909 }
1910 ETHER_NEXT_MULTI(step, enm);
1911 }
1912 for (i = 0; i < ETHER_ADDR_LEN; i++)
1913 mask[i] |= addr[i];
1914
1915 done:
1916 addr[0] |= 0x01; /* make sure multicast bit is set */
1917
1918 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1919 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1920 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1921 addr[5] << 8 | addr[4]);
1922 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1923 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1924 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1925 mask[5] << 8 | mask[4]);
1926
1927 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1928 NFE_WRITE(sc, NFE_RXFILTER, filter);
1929 }
1930
1931 void
1932 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1933 {
1934 uint32_t tmp;
1935
1936 if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
1937 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1938 addr[0] = (tmp & 0xff);
1939 addr[1] = (tmp >> 8) & 0xff;
1940 addr[2] = (tmp >> 16) & 0xff;
1941 addr[3] = (tmp >> 24) & 0xff;
1942
1943 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1944 addr[4] = (tmp & 0xff);
1945 addr[5] = (tmp >> 8) & 0xff;
1946
1947 } else {
1948 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1949 addr[0] = (tmp >> 8) & 0xff;
1950 addr[1] = (tmp & 0xff);
1951
1952 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1953 addr[2] = (tmp >> 24) & 0xff;
1954 addr[3] = (tmp >> 16) & 0xff;
1955 addr[4] = (tmp >> 8) & 0xff;
1956 addr[5] = (tmp & 0xff);
1957 }
1958 }
1959
1960 void
1961 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1962 {
1963 NFE_WRITE(sc, NFE_MACADDR_LO,
1964 addr[5] << 8 | addr[4]);
1965 NFE_WRITE(sc, NFE_MACADDR_HI,
1966 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1967 }
1968
1969 void
1970 nfe_tick(void *arg)
1971 {
1972 struct nfe_softc *sc = arg;
1973 int s;
1974
1975 s = splnet();
1976 mii_tick(&sc->sc_mii);
1977 splx(s);
1978
1979 callout_schedule(&sc->sc_tick_ch, hz);
1980 }
1981
1982 void
1983 nfe_poweron(device_t self)
1984 {
1985 struct nfe_softc *sc = device_private(self);
1986
1987 if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
1988 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
1989 NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
1990 DELAY(100);
1991 NFE_WRITE(sc, NFE_MAC_RESET, 0);
1992 DELAY(100);
1993 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
1994 NFE_WRITE(sc, NFE_PWR2_CTL,
1995 NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
1996 }
1997 }
1998
1999 bool
2000 nfe_resume(device_t dv, const pmf_qual_t *qual)
2001 {
2002 nfe_poweron(dv);
2003
2004 return true;
2005 }
2006