if_nfe.c revision 1.9 1 /* $NetBSD: if_nfe.c,v 1.9 2006/12/27 18:36:09 alc Exp $ */
2 /* $OpenBSD: if_nfe.c,v 1.52 2006/03/02 09:04:00 jsg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2005, 2006 Jonathan Gray <jsg (at) openbsd.org>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
22
23 #include <sys/cdefs.h>
24 __KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.9 2006/12/27 18:36:09 alc Exp $");
25
26 #include "opt_inet.h"
27 #include "bpfilter.h"
28 #include "vlan.h"
29
30 #include <sys/param.h>
31 #include <sys/endian.h>
32 #include <sys/systm.h>
33 #include <sys/types.h>
34 #include <sys/sockio.h>
35 #include <sys/mbuf.h>
36 #include <sys/queue.h>
37 #include <sys/malloc.h>
38 #include <sys/kernel.h>
39 #include <sys/device.h>
40 #include <sys/socket.h>
41
42 #include <machine/bus.h>
43
44 #include <net/if.h>
45 #include <net/if_dl.h>
46 #include <net/if_media.h>
47 #include <net/if_ether.h>
48 #include <net/if_arp.h>
49
50 #ifdef INET
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/in_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/if_inarp.h>
56 #endif
57
58 #if NVLAN > 0
59 #include <net/if_types.h>
60 #endif
61
62 #if NBPFILTER > 0
63 #include <net/bpf.h>
64 #endif
65
66 #include <dev/mii/mii.h>
67 #include <dev/mii/miivar.h>
68
69 #include <dev/pci/pcireg.h>
70 #include <dev/pci/pcivar.h>
71 #include <dev/pci/pcidevs.h>
72
73 #include <dev/pci/if_nfereg.h>
74 #include <dev/pci/if_nfevar.h>
75
76 int nfe_match(struct device *, struct cfdata *, void *);
77 void nfe_attach(struct device *, struct device *, void *);
78 void nfe_power(int, void *);
79 void nfe_miibus_statchg(struct device *);
80 int nfe_miibus_readreg(struct device *, int, int);
81 void nfe_miibus_writereg(struct device *, int, int, int);
82 int nfe_intr(void *);
83 int nfe_ioctl(struct ifnet *, u_long, caddr_t);
84 void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
85 void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
86 void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
87 void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
88 void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
89 void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
90 void nfe_rxeof(struct nfe_softc *);
91 void nfe_txeof(struct nfe_softc *);
92 int nfe_encap(struct nfe_softc *, struct mbuf *);
93 void nfe_start(struct ifnet *);
94 void nfe_watchdog(struct ifnet *);
95 int nfe_init(struct ifnet *);
96 void nfe_stop(struct ifnet *, int);
97 struct nfe_jbuf *nfe_jalloc(struct nfe_softc *);
98 void nfe_jfree(struct mbuf *, caddr_t, size_t, void *);
99 int nfe_jpool_alloc(struct nfe_softc *);
100 void nfe_jpool_free(struct nfe_softc *);
101 int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
102 void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
103 void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
104 int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
105 void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
106 void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
107 int nfe_ifmedia_upd(struct ifnet *);
108 void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
109 void nfe_setmulti(struct nfe_softc *);
110 void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
111 void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
112 void nfe_tick(void *);
113
114 CFATTACH_DECL(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach, NULL, NULL);
115
116 /*#define NFE_NO_JUMBO*/
117
118 #ifdef NFE_DEBUG
119 int nfedebug = 0;
120 #define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
121 #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
122 #else
123 #define DPRINTF(x)
124 #define DPRINTFN(n,x)
125 #endif
126
127 /* deal with naming differences */
128
129 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
130 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
131 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
132 PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
133 #define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
134 PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
135
136 #define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
137 PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
138 #define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
139 PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
140
141 #define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
142 PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
143 #define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
144 PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
145
146 #ifdef _LP64
147 #define __LP64__ 1
148 #endif
149
150 const struct nfe_product {
151 pci_vendor_id_t vendor;
152 pci_product_id_t product;
153 } nfe_devices[] = {
154 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
155 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
156 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
157 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
158 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
159 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
160 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
161 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
162 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
163 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
164 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
165 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
166 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
167 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
168 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
169 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
170 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
171 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
172 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
173 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
174 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
175 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
176 { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }
177 };
178
179 int
180 nfe_match(struct device *dev, struct cfdata *match, void *aux)
181 {
182 struct pci_attach_args *pa = aux;
183 const struct nfe_product *np;
184 int i;
185
186 for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
187 np = &nfe_devices[i];
188 if (PCI_VENDOR(pa->pa_id) == np->vendor &&
189 PCI_PRODUCT(pa->pa_id) == np->product)
190 return 1;
191 }
192 return 0;
193 }
194
195 void
196 nfe_attach(struct device *parent, struct device *self, void *aux)
197 {
198 struct nfe_softc *sc = (struct nfe_softc *)self;
199 struct pci_attach_args *pa = aux;
200 pci_chipset_tag_t pc = pa->pa_pc;
201 pci_intr_handle_t ih;
202 const char *intrstr;
203 struct ifnet *ifp;
204 bus_size_t memsize;
205 pcireg_t memtype;
206
207 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
208 switch (memtype) {
209 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
210 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
211 if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
212 &sc->sc_memh, NULL, &memsize) == 0)
213 break;
214 /* FALLTHROUGH */
215 default:
216 printf(": could not map mem space\n");
217 return;
218 }
219
220 if (pci_intr_map(pa, &ih) != 0) {
221 printf(": could not map interrupt\n");
222 return;
223 }
224
225 intrstr = pci_intr_string(pc, ih);
226 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
227 if (sc->sc_ih == NULL) {
228 printf(": could not establish interrupt");
229 if (intrstr != NULL)
230 printf(" at %s", intrstr);
231 printf("\n");
232 return;
233 }
234 printf(": %s", intrstr);
235
236 sc->sc_dmat = pa->pa_dmat;
237
238 nfe_get_macaddr(sc, sc->sc_enaddr);
239 printf(", address %s\n", ether_sprintf(sc->sc_enaddr));
240
241 sc->sc_flags = 0;
242
243 switch (PCI_PRODUCT(pa->pa_id)) {
244 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
245 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
246 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
247 case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
248 sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
249 break;
250 case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
251 case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
252 case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
253 case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
254 case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
255 case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
256 sc->sc_flags |= NFE_40BIT_ADDR;
257 break;
258 case PCI_PRODUCT_NVIDIA_CK804_LAN1:
259 case PCI_PRODUCT_NVIDIA_CK804_LAN2:
260 case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
261 case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
262 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
263 break;
264 case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
265 case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
266 case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
267 case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
268 case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
269 case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
270 sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
271 NFE_HW_VLAN;
272 break;
273 }
274
275 #ifndef NFE_NO_JUMBO
276 /* enable jumbo frames for adapters that support it */
277 if (sc->sc_flags & NFE_JUMBO_SUP)
278 sc->sc_flags |= NFE_USE_JUMBO;
279 #endif
280
281 /*
282 * Allocate Tx and Rx rings.
283 */
284 if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
285 printf("%s: could not allocate Tx ring\n",
286 sc->sc_dev.dv_xname);
287 return;
288 }
289
290 if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
291 printf("%s: could not allocate Rx ring\n",
292 sc->sc_dev.dv_xname);
293 nfe_free_tx_ring(sc, &sc->txq);
294 return;
295 }
296
297 ifp = &sc->sc_ethercom.ec_if;
298 ifp->if_softc = sc;
299 ifp->if_mtu = ETHERMTU;
300 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
301 ifp->if_ioctl = nfe_ioctl;
302 ifp->if_start = nfe_start;
303 ifp->if_watchdog = nfe_watchdog;
304 ifp->if_init = nfe_init;
305 ifp->if_baudrate = IF_Gbps(1);
306 IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
307 IFQ_SET_READY(&ifp->if_snd);
308 strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
309
310 #if NVLAN > 0
311 if (sc->sc_flags & NFE_HW_VLAN)
312 sc->sc_ethercom.ec_capabilities |=
313 ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
314 #endif
315 #ifdef NFE_CSUM
316 if (sc->sc_flags & NFE_HW_CSUM) {
317 ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 |
318 IFCAP_CSUM_UDPv4;
319 }
320 #endif
321
322 sc->sc_mii.mii_ifp = ifp;
323 sc->sc_mii.mii_readreg = nfe_miibus_readreg;
324 sc->sc_mii.mii_writereg = nfe_miibus_writereg;
325 sc->sc_mii.mii_statchg = nfe_miibus_statchg;
326
327 ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd,
328 nfe_ifmedia_sts);
329 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
330 MII_OFFSET_ANY, 0);
331 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
332 printf("%s: no PHY found!\n", sc->sc_dev.dv_xname);
333 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
334 0, NULL);
335 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
336 } else
337 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
338
339 if_attach(ifp);
340 ether_ifattach(ifp, sc->sc_enaddr);
341
342 callout_init(&sc->sc_tick_ch);
343 callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
344
345 sc->sc_powerhook = powerhook_establish(sc->sc_dev.dv_xname,
346 nfe_power, sc);
347 }
348
349 void
350 nfe_power(int why, void *arg)
351 {
352 struct nfe_softc *sc = arg;
353 struct ifnet *ifp;
354
355 if (why == PWR_RESUME) {
356 ifp = &sc->sc_ethercom.ec_if;
357 if (ifp->if_flags & IFF_UP) {
358 ifp->if_flags &= ~IFF_RUNNING;
359 nfe_init(ifp);
360 if (ifp->if_flags & IFF_RUNNING)
361 nfe_start(ifp);
362 }
363 }
364 }
365
366 void
367 nfe_miibus_statchg(struct device *dev)
368 {
369 struct nfe_softc *sc = (struct nfe_softc *)dev;
370 struct mii_data *mii = &sc->sc_mii;
371 uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
372
373 phy = NFE_READ(sc, NFE_PHY_IFACE);
374 phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
375
376 seed = NFE_READ(sc, NFE_RNDSEED);
377 seed &= ~NFE_SEED_MASK;
378
379 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
380 phy |= NFE_PHY_HDX; /* half-duplex */
381 misc |= NFE_MISC1_HDX;
382 }
383
384 switch (IFM_SUBTYPE(mii->mii_media_active)) {
385 case IFM_1000_T: /* full-duplex only */
386 link |= NFE_MEDIA_1000T;
387 seed |= NFE_SEED_1000T;
388 phy |= NFE_PHY_1000T;
389 break;
390 case IFM_100_TX:
391 link |= NFE_MEDIA_100TX;
392 seed |= NFE_SEED_100TX;
393 phy |= NFE_PHY_100TX;
394 break;
395 case IFM_10_T:
396 link |= NFE_MEDIA_10T;
397 seed |= NFE_SEED_10T;
398 break;
399 }
400
401 NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
402
403 NFE_WRITE(sc, NFE_PHY_IFACE, phy);
404 NFE_WRITE(sc, NFE_MISC1, misc);
405 NFE_WRITE(sc, NFE_LINKSPEED, link);
406 }
407
408 int
409 nfe_miibus_readreg(struct device *dev, int phy, int reg)
410 {
411 struct nfe_softc *sc = (struct nfe_softc *)dev;
412 uint32_t val;
413 int ntries;
414
415 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
416
417 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
418 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
419 DELAY(100);
420 }
421
422 NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
423
424 for (ntries = 0; ntries < 1000; ntries++) {
425 DELAY(100);
426 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
427 break;
428 }
429 if (ntries == 1000) {
430 DPRINTFN(2, ("%s: timeout waiting for PHY\n",
431 sc->sc_dev.dv_xname));
432 return 0;
433 }
434
435 if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
436 DPRINTFN(2, ("%s: could not read PHY\n",
437 sc->sc_dev.dv_xname));
438 return 0;
439 }
440
441 val = NFE_READ(sc, NFE_PHY_DATA);
442 if (val != 0xffffffff && val != 0)
443 sc->mii_phyaddr = phy;
444
445 DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
446 sc->sc_dev.dv_xname, phy, reg, val));
447
448 return val;
449 }
450
451 void
452 nfe_miibus_writereg(struct device *dev, int phy, int reg, int val)
453 {
454 struct nfe_softc *sc = (struct nfe_softc *)dev;
455 uint32_t ctl;
456 int ntries;
457
458 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
459
460 if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
461 NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
462 DELAY(100);
463 }
464
465 NFE_WRITE(sc, NFE_PHY_DATA, val);
466 ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
467 NFE_WRITE(sc, NFE_PHY_CTL, ctl);
468
469 for (ntries = 0; ntries < 1000; ntries++) {
470 DELAY(100);
471 if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
472 break;
473 }
474 #ifdef NFE_DEBUG
475 if (nfedebug >= 2 && ntries == 1000)
476 printf("could not write to PHY\n");
477 #endif
478 }
479
480 int
481 nfe_intr(void *arg)
482 {
483 struct nfe_softc *sc = arg;
484 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
485 uint32_t r;
486
487 if ((r = NFE_READ(sc, NFE_IRQ_STATUS)) == 0)
488 return 0; /* not for us */
489 NFE_WRITE(sc, NFE_IRQ_STATUS, r);
490
491 DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
492
493 if (r & NFE_IRQ_LINK) {
494 NFE_READ(sc, NFE_PHY_STATUS);
495 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
496 DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname));
497 }
498
499 if (ifp->if_flags & IFF_RUNNING) {
500 /* check Rx ring */
501 nfe_rxeof(sc);
502
503 /* check Tx ring */
504 nfe_txeof(sc);
505 }
506
507 return 1;
508 }
509
510 int
511 nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
512 {
513 struct nfe_softc *sc = ifp->if_softc;
514 struct ifreq *ifr = (struct ifreq *)data;
515 struct ifaddr *ifa = (struct ifaddr *)data;
516 int s, error = 0;
517
518 s = splnet();
519
520 switch (cmd) {
521 case SIOCSIFADDR:
522 ifp->if_flags |= IFF_UP;
523 nfe_init(ifp);
524 switch (ifa->ifa_addr->sa_family) {
525 #ifdef INET
526 case AF_INET:
527 arp_ifinit(ifp, ifa);
528 break;
529 #endif
530 default:
531 break;
532 }
533 break;
534 case SIOCSIFMTU:
535 if (ifr->ifr_mtu < ETHERMIN ||
536 ((sc->sc_flags & NFE_USE_JUMBO) &&
537 ifr->ifr_mtu > ETHERMTU_JUMBO) ||
538 (!(sc->sc_flags & NFE_USE_JUMBO) &&
539 ifr->ifr_mtu > ETHERMTU))
540 error = EINVAL;
541 else if (ifp->if_mtu != ifr->ifr_mtu)
542 ifp->if_mtu = ifr->ifr_mtu;
543 break;
544 case SIOCSIFFLAGS:
545 if (ifp->if_flags & IFF_UP) {
546 /*
547 * If only the PROMISC or ALLMULTI flag changes, then
548 * don't do a full re-init of the chip, just update
549 * the Rx filter.
550 */
551 if ((ifp->if_flags & IFF_RUNNING) &&
552 ((ifp->if_flags ^ sc->sc_if_flags) &
553 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
554 nfe_setmulti(sc);
555 else
556 nfe_init(ifp);
557 } else {
558 if (ifp->if_flags & IFF_RUNNING)
559 nfe_stop(ifp, 1);
560 }
561 sc->sc_if_flags = ifp->if_flags;
562 break;
563 case SIOCADDMULTI:
564 case SIOCDELMULTI:
565 error = (cmd == SIOCADDMULTI) ?
566 ether_addmulti(ifr, &sc->sc_ethercom) :
567 ether_delmulti(ifr, &sc->sc_ethercom);
568
569 if (error == ENETRESET) {
570 if (ifp->if_flags & IFF_RUNNING)
571 nfe_setmulti(sc);
572 error = 0;
573 }
574 break;
575 case SIOCSIFMEDIA:
576 case SIOCGIFMEDIA:
577 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
578 break;
579 default:
580 error = ether_ioctl(ifp, cmd, data);
581 if (error == ENETRESET) {
582 if (ifp->if_flags & IFF_RUNNING)
583 nfe_setmulti(sc);
584 error = 0;
585 }
586 break;
587
588 }
589
590 splx(s);
591
592 return error;
593 }
594
595 void
596 nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
597 {
598 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
599 (caddr_t)desc32 - (caddr_t)sc->txq.desc32,
600 sizeof (struct nfe_desc32), ops);
601 }
602
603 void
604 nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
605 {
606 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
607 (caddr_t)desc64 - (caddr_t)sc->txq.desc64,
608 sizeof (struct nfe_desc64), ops);
609 }
610
611 void
612 nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
613 {
614 if (end > start) {
615 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
616 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
617 (caddr_t)&sc->txq.desc32[end] -
618 (caddr_t)&sc->txq.desc32[start], ops);
619 return;
620 }
621 /* sync from 'start' to end of ring */
622 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
623 (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32,
624 (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] -
625 (caddr_t)&sc->txq.desc32[start], ops);
626
627 /* sync from start of ring to 'end' */
628 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
629 (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops);
630 }
631
632 void
633 nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
634 {
635 if (end > start) {
636 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
637 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
638 (caddr_t)&sc->txq.desc64[end] -
639 (caddr_t)&sc->txq.desc64[start], ops);
640 return;
641 }
642 /* sync from 'start' to end of ring */
643 bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
644 (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64,
645 (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] -
646 (caddr_t)&sc->txq.desc64[start], ops);
647
648 /* sync from start of ring to 'end' */
649 bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
650 (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops);
651 }
652
653 void
654 nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
655 {
656 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
657 (caddr_t)desc32 - (caddr_t)sc->rxq.desc32,
658 sizeof (struct nfe_desc32), ops);
659 }
660
661 void
662 nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
663 {
664 bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
665 (caddr_t)desc64 - (caddr_t)sc->rxq.desc64,
666 sizeof (struct nfe_desc64), ops);
667 }
668
669 void
670 nfe_rxeof(struct nfe_softc *sc)
671 {
672 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
673 struct nfe_desc32 *desc32;
674 struct nfe_desc64 *desc64;
675 struct nfe_rx_data *data;
676 struct nfe_jbuf *jbuf;
677 struct mbuf *m, *mnew;
678 bus_addr_t physaddr;
679 uint16_t flags;
680 int error, len;
681
682 desc32 = NULL;
683 desc64 = NULL;
684 for (;;) {
685 data = &sc->rxq.data[sc->rxq.cur];
686
687 if (sc->sc_flags & NFE_40BIT_ADDR) {
688 desc64 = &sc->rxq.desc64[sc->rxq.cur];
689 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
690
691 flags = le16toh(desc64->flags);
692 len = le16toh(desc64->length) & 0x3fff;
693 } else {
694 desc32 = &sc->rxq.desc32[sc->rxq.cur];
695 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
696
697 flags = le16toh(desc32->flags);
698 len = le16toh(desc32->length) & 0x3fff;
699 }
700
701 if (flags & NFE_RX_READY)
702 break;
703
704 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
705 if (!(flags & NFE_RX_VALID_V1))
706 goto skip;
707
708 if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
709 flags &= ~NFE_RX_ERROR;
710 len--; /* fix buffer length */
711 }
712 } else {
713 if (!(flags & NFE_RX_VALID_V2))
714 goto skip;
715
716 if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
717 flags &= ~NFE_RX_ERROR;
718 len--; /* fix buffer length */
719 }
720 }
721
722 if (flags & NFE_RX_ERROR) {
723 ifp->if_ierrors++;
724 goto skip;
725 }
726
727 /*
728 * Try to allocate a new mbuf for this ring element and load
729 * it before processing the current mbuf. If the ring element
730 * cannot be loaded, drop the received packet and reuse the
731 * old mbuf. In the unlikely case that the old mbuf can't be
732 * reloaded either, explicitly panic.
733 */
734 MGETHDR(mnew, M_DONTWAIT, MT_DATA);
735 if (mnew == NULL) {
736 ifp->if_ierrors++;
737 goto skip;
738 }
739
740 if (sc->sc_flags & NFE_USE_JUMBO) {
741 if ((jbuf = nfe_jalloc(sc)) == NULL) {
742 m_freem(mnew);
743 ifp->if_ierrors++;
744 goto skip;
745 }
746 MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
747
748 bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
749 mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES,
750 BUS_DMASYNC_POSTREAD);
751
752 physaddr = jbuf->physaddr;
753 } else {
754 MCLGET(mnew, M_DONTWAIT);
755 if (!(mnew->m_flags & M_EXT)) {
756 m_freem(mnew);
757 ifp->if_ierrors++;
758 goto skip;
759 }
760
761 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
762 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
763 bus_dmamap_unload(sc->sc_dmat, data->map);
764
765 error = bus_dmamap_load(sc->sc_dmat, data->map,
766 mtod(mnew, void *), MCLBYTES, NULL,
767 BUS_DMA_READ | BUS_DMA_NOWAIT);
768 if (error != 0) {
769 m_freem(mnew);
770
771 /* try to reload the old mbuf */
772 error = bus_dmamap_load(sc->sc_dmat, data->map,
773 mtod(data->m, void *), MCLBYTES, NULL,
774 BUS_DMA_READ | BUS_DMA_NOWAIT);
775 if (error != 0) {
776 /* very unlikely that it will fail.. */
777 panic("%s: could not load old rx mbuf",
778 sc->sc_dev.dv_xname);
779 }
780 ifp->if_ierrors++;
781 goto skip;
782 }
783 physaddr = data->map->dm_segs[0].ds_addr;
784 }
785
786 /*
787 * New mbuf successfully loaded, update Rx ring and continue
788 * processing.
789 */
790 m = data->m;
791 data->m = mnew;
792
793 /* finalize mbuf */
794 m->m_pkthdr.len = m->m_len = len;
795 m->m_pkthdr.rcvif = ifp;
796
797 #ifdef notyet
798 if (sc->sc_flags & NFE_HW_CSUM) {
799 if (flags & NFE_RX_IP_CSUMOK)
800 m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK;
801 if (flags & NFE_RX_UDP_CSUMOK)
802 m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK;
803 if (flags & NFE_RX_TCP_CSUMOK)
804 m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK;
805 }
806 #elif defined(NFE_CSUM)
807 if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK))
808 m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK;
809 #endif
810
811 #if NBPFILTER > 0
812 if (ifp->if_bpf)
813 bpf_mtap(ifp->if_bpf, m);
814 #endif
815 ifp->if_ipackets++;
816 (*ifp->if_input)(ifp, m);
817
818 /* update mapping address in h/w descriptor */
819 if (sc->sc_flags & NFE_40BIT_ADDR) {
820 #if defined(__LP64__)
821 desc64->physaddr[0] = htole32(physaddr >> 32);
822 #endif
823 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
824 } else {
825 desc32->physaddr = htole32(physaddr);
826 }
827
828 skip: if (sc->sc_flags & NFE_40BIT_ADDR) {
829 desc64->length = htole16(sc->rxq.bufsz);
830 desc64->flags = htole16(NFE_RX_READY);
831
832 nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE);
833 } else {
834 desc32->length = htole16(sc->rxq.bufsz);
835 desc32->flags = htole16(NFE_RX_READY);
836
837 nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE);
838 }
839
840 sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT;
841 }
842 }
843
844 void
845 nfe_txeof(struct nfe_softc *sc)
846 {
847 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
848 struct nfe_desc32 *desc32;
849 struct nfe_desc64 *desc64;
850 struct nfe_tx_data *data = NULL;
851 uint16_t flags;
852
853 while (sc->txq.next != sc->txq.cur) {
854 if (sc->sc_flags & NFE_40BIT_ADDR) {
855 desc64 = &sc->txq.desc64[sc->txq.next];
856 nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD);
857
858 flags = le16toh(desc64->flags);
859 } else {
860 desc32 = &sc->txq.desc32[sc->txq.next];
861 nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD);
862
863 flags = le16toh(desc32->flags);
864 }
865
866 if (flags & NFE_TX_VALID)
867 break;
868
869 data = &sc->txq.data[sc->txq.next];
870
871 if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
872 if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL)
873 goto skip;
874
875 if ((flags & NFE_TX_ERROR_V1) != 0) {
876 printf("%s: tx v1 error 0x%04x\n",
877 sc->sc_dev.dv_xname, flags);
878 ifp->if_oerrors++;
879 } else
880 ifp->if_opackets++;
881 } else {
882 if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL)
883 goto skip;
884
885 if ((flags & NFE_TX_ERROR_V2) != 0) {
886 printf("%s: tx v2 error 0x%04x\n",
887 sc->sc_dev.dv_xname, flags);
888 ifp->if_oerrors++;
889 } else
890 ifp->if_opackets++;
891 }
892
893 if (data->m == NULL) { /* should not get there */
894 printf("%s: last fragment bit w/o associated mbuf!\n",
895 sc->sc_dev.dv_xname);
896 goto skip;
897 }
898
899 /* last fragment of the mbuf chain transmitted */
900 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
901 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
902 bus_dmamap_unload(sc->sc_dmat, data->active);
903 m_freem(data->m);
904 data->m = NULL;
905
906 ifp->if_timer = 0;
907
908 skip: sc->txq.queued--;
909 sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT;
910 }
911
912 if (data != NULL) { /* at least one slot freed */
913 ifp->if_flags &= ~IFF_OACTIVE;
914 nfe_start(ifp);
915 }
916 }
917
918 int
919 nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
920 {
921 struct nfe_desc32 *desc32;
922 struct nfe_desc64 *desc64;
923 struct nfe_tx_data *data;
924 bus_dmamap_t map;
925 uint16_t flags = NFE_TX_VALID;
926 #if NVLAN > 0
927 struct m_tag *mtag;
928 uint32_t vtag = 0;
929 #endif
930 int error, i;
931
932 desc32 = NULL;
933 desc64 = NULL;
934 data = NULL;
935 map = sc->txq.data[sc->txq.cur].map;
936
937 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
938 if (error != 0) {
939 printf("%s: could not map mbuf (error %d)\n",
940 sc->sc_dev.dv_xname, error);
941 return error;
942 }
943
944 if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
945 bus_dmamap_unload(sc->sc_dmat, map);
946 return ENOBUFS;
947 }
948
949 #if NVLAN > 0
950 /* setup h/w VLAN tagging */
951 if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
952 vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
953 #endif
954 #ifdef NFE_CSUM
955 if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT)
956 flags |= NFE_TX_IP_CSUM;
957 if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT))
958 flags |= NFE_TX_TCP_CSUM;
959 #endif
960
961 for (i = 0; i < map->dm_nsegs; i++) {
962 data = &sc->txq.data[sc->txq.cur];
963
964 if (sc->sc_flags & NFE_40BIT_ADDR) {
965 desc64 = &sc->txq.desc64[sc->txq.cur];
966 #if defined(__LP64__)
967 desc64->physaddr[0] =
968 htole32(map->dm_segs[i].ds_addr >> 32);
969 #endif
970 desc64->physaddr[1] =
971 htole32(map->dm_segs[i].ds_addr & 0xffffffff);
972 desc64->length = htole16(map->dm_segs[i].ds_len - 1);
973 desc64->flags = htole16(flags);
974 #if NVLAN > 0
975 desc64->vtag = htole32(vtag);
976 #endif
977 } else {
978 desc32 = &sc->txq.desc32[sc->txq.cur];
979
980 desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
981 desc32->length = htole16(map->dm_segs[i].ds_len - 1);
982 desc32->flags = htole16(flags);
983 }
984
985 /* csum flags and vtag belong to the first fragment only */
986 if (map->dm_nsegs > 1) {
987 flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_CSUM);
988 #if NVLAN > 0
989 vtag = 0;
990 #endif
991 }
992
993 sc->txq.queued++;
994 sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT;
995 }
996
997 /* the whole mbuf chain has been DMA mapped, fix last descriptor */
998 if (sc->sc_flags & NFE_40BIT_ADDR) {
999 flags |= NFE_TX_LASTFRAG_V2;
1000 desc64->flags = htole16(flags);
1001 } else {
1002 if (sc->sc_flags & NFE_JUMBO_SUP)
1003 flags |= NFE_TX_LASTFRAG_V2;
1004 else
1005 flags |= NFE_TX_LASTFRAG_V1;
1006 desc32->flags = htole16(flags);
1007 }
1008
1009 data->m = m0;
1010 data->active = map;
1011
1012 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1013 BUS_DMASYNC_PREWRITE);
1014
1015 return 0;
1016 }
1017
1018 void
1019 nfe_start(struct ifnet *ifp)
1020 {
1021 struct nfe_softc *sc = ifp->if_softc;
1022 int old = sc->txq.cur;
1023 struct mbuf *m0;
1024
1025 for (;;) {
1026 IFQ_POLL(&ifp->if_snd, m0);
1027 if (m0 == NULL)
1028 break;
1029
1030 if (nfe_encap(sc, m0) != 0) {
1031 ifp->if_flags |= IFF_OACTIVE;
1032 break;
1033 }
1034
1035 /* packet put in h/w queue, remove from s/w queue */
1036 IFQ_DEQUEUE(&ifp->if_snd, m0);
1037
1038 #if NBPFILTER > 0
1039 if (ifp->if_bpf != NULL)
1040 bpf_mtap(ifp->if_bpf, m0);
1041 #endif
1042 }
1043 if (sc->txq.cur == old) /* nothing sent */
1044 return;
1045
1046 if (sc->sc_flags & NFE_40BIT_ADDR)
1047 nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1048 else
1049 nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE);
1050
1051 /* kick Tx */
1052 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
1053
1054 /*
1055 * Set a timeout in case the chip goes out to lunch.
1056 */
1057 ifp->if_timer = 5;
1058 }
1059
1060 void
1061 nfe_watchdog(struct ifnet *ifp)
1062 {
1063 struct nfe_softc *sc = ifp->if_softc;
1064
1065 printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname);
1066
1067 ifp->if_flags &= ~IFF_RUNNING;
1068 nfe_init(ifp);
1069
1070 ifp->if_oerrors++;
1071 }
1072
1073 int
1074 nfe_init(struct ifnet *ifp)
1075 {
1076 struct nfe_softc *sc = ifp->if_softc;
1077 uint32_t tmp;
1078
1079 if (ifp->if_flags & IFF_RUNNING)
1080 return 0;
1081
1082 nfe_stop(ifp, 0);
1083
1084 NFE_WRITE(sc, NFE_TX_UNK, 0);
1085 NFE_WRITE(sc, NFE_STATUS, 0);
1086
1087 sc->rxtxctl = NFE_RXTX_BIT2;
1088 if (sc->sc_flags & NFE_40BIT_ADDR)
1089 sc->rxtxctl |= NFE_RXTX_V3MAGIC;
1090 else if (sc->sc_flags & NFE_JUMBO_SUP)
1091 sc->rxtxctl |= NFE_RXTX_V2MAGIC;
1092 #ifdef NFE_CSUM
1093 if (sc->sc_flags & NFE_HW_CSUM)
1094 sc->rxtxctl |= NFE_RXTX_RXCSUM;
1095 #endif
1096 #if NVLAN > 0
1097 /*
1098 * Although the adapter is capable of stripping VLAN tags from received
1099 * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
1100 * purpose. This will be done in software by our network stack.
1101 */
1102 if (sc->sc_flags & NFE_HW_VLAN)
1103 sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
1104 #endif
1105 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
1106 DELAY(10);
1107 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1108
1109 #if NVLAN
1110 if (sc->sc_flags & NFE_HW_VLAN)
1111 NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
1112 #endif
1113
1114 NFE_WRITE(sc, NFE_SETUP_R6, 0);
1115
1116 /* set MAC address */
1117 nfe_set_macaddr(sc, sc->sc_enaddr);
1118
1119 /* tell MAC where rings are in memory */
1120 #ifdef __LP64__
1121 NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
1122 #endif
1123 NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
1124 #ifdef __LP64__
1125 NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
1126 #endif
1127 NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
1128
1129 NFE_WRITE(sc, NFE_RING_SIZE,
1130 (NFE_RX_RING_COUNT - 1) << 16 |
1131 (NFE_TX_RING_COUNT - 1));
1132
1133 NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
1134
1135 /* force MAC to wakeup */
1136 tmp = NFE_READ(sc, NFE_PWR_STATE);
1137 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
1138 DELAY(10);
1139 tmp = NFE_READ(sc, NFE_PWR_STATE);
1140 NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
1141
1142 #if 1
1143 /* configure interrupts coalescing/mitigation */
1144 NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
1145 #else
1146 /* no interrupt mitigation: one interrupt per packet */
1147 NFE_WRITE(sc, NFE_IMTIMER, 970);
1148 #endif
1149
1150 NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
1151 NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
1152 NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
1153
1154 /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
1155 NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
1156
1157 NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
1158 NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC);
1159
1160 sc->rxtxctl &= ~NFE_RXTX_BIT2;
1161 NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
1162 DELAY(10);
1163 NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
1164
1165 /* set Rx filter */
1166 nfe_setmulti(sc);
1167
1168 nfe_ifmedia_upd(ifp);
1169
1170 /* enable Rx */
1171 NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
1172
1173 /* enable Tx */
1174 NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
1175
1176 NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
1177
1178 /* enable interrupts */
1179 NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
1180
1181 callout_schedule(&sc->sc_tick_ch, hz);
1182
1183 ifp->if_flags |= IFF_RUNNING;
1184 ifp->if_flags &= ~IFF_OACTIVE;
1185
1186 return 0;
1187 }
1188
1189 void
1190 nfe_stop(struct ifnet *ifp, int disable)
1191 {
1192 struct nfe_softc *sc = ifp->if_softc;
1193
1194 callout_stop(&sc->sc_tick_ch);
1195
1196 ifp->if_timer = 0;
1197 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1198
1199 mii_down(&sc->sc_mii);
1200
1201 /* abort Tx */
1202 NFE_WRITE(sc, NFE_TX_CTL, 0);
1203
1204 /* disable Rx */
1205 NFE_WRITE(sc, NFE_RX_CTL, 0);
1206
1207 /* disable interrupts */
1208 NFE_WRITE(sc, NFE_IRQ_MASK, 0);
1209
1210 /* reset Tx and Rx rings */
1211 nfe_reset_tx_ring(sc, &sc->txq);
1212 nfe_reset_rx_ring(sc, &sc->rxq);
1213 }
1214
1215 int
1216 nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1217 {
1218 struct nfe_desc32 *desc32;
1219 struct nfe_desc64 *desc64;
1220 struct nfe_rx_data *data;
1221 struct nfe_jbuf *jbuf;
1222 void **desc;
1223 bus_addr_t physaddr;
1224 int i, nsegs, error, descsize;
1225
1226 if (sc->sc_flags & NFE_40BIT_ADDR) {
1227 desc = (void **)&ring->desc64;
1228 descsize = sizeof (struct nfe_desc64);
1229 } else {
1230 desc = (void **)&ring->desc32;
1231 descsize = sizeof (struct nfe_desc32);
1232 }
1233
1234 ring->cur = ring->next = 0;
1235 ring->bufsz = MCLBYTES;
1236
1237 error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
1238 NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1239 if (error != 0) {
1240 printf("%s: could not create desc DMA map\n",
1241 sc->sc_dev.dv_xname);
1242 goto fail;
1243 }
1244
1245 error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
1246 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1247 if (error != 0) {
1248 printf("%s: could not allocate DMA memory\n",
1249 sc->sc_dev.dv_xname);
1250 goto fail;
1251 }
1252
1253 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1254 NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1255 if (error != 0) {
1256 printf("%s: could not map desc DMA memory\n",
1257 sc->sc_dev.dv_xname);
1258 goto fail;
1259 }
1260
1261 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1262 NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1263 if (error != 0) {
1264 printf("%s: could not load desc DMA map\n",
1265 sc->sc_dev.dv_xname);
1266 goto fail;
1267 }
1268
1269 bzero(*desc, NFE_RX_RING_COUNT * descsize);
1270 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1271
1272 if (sc->sc_flags & NFE_USE_JUMBO) {
1273 ring->bufsz = NFE_JBYTES;
1274 if ((error = nfe_jpool_alloc(sc)) != 0) {
1275 printf("%s: could not allocate jumbo frames\n",
1276 sc->sc_dev.dv_xname);
1277 goto fail;
1278 }
1279 }
1280
1281 /*
1282 * Pre-allocate Rx buffers and populate Rx ring.
1283 */
1284 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1285 data = &sc->rxq.data[i];
1286
1287 MGETHDR(data->m, M_DONTWAIT, MT_DATA);
1288 if (data->m == NULL) {
1289 printf("%s: could not allocate rx mbuf\n",
1290 sc->sc_dev.dv_xname);
1291 error = ENOMEM;
1292 goto fail;
1293 }
1294
1295 if (sc->sc_flags & NFE_USE_JUMBO) {
1296 if ((jbuf = nfe_jalloc(sc)) == NULL) {
1297 printf("%s: could not allocate jumbo buffer\n",
1298 sc->sc_dev.dv_xname);
1299 goto fail;
1300 }
1301 MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
1302 sc);
1303
1304 physaddr = jbuf->physaddr;
1305 } else {
1306 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
1307 MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
1308 if (error != 0) {
1309 printf("%s: could not create DMA map\n",
1310 sc->sc_dev.dv_xname);
1311 goto fail;
1312 }
1313 MCLGET(data->m, M_DONTWAIT);
1314 if (!(data->m->m_flags & M_EXT)) {
1315 printf("%s: could not allocate mbuf cluster\n",
1316 sc->sc_dev.dv_xname);
1317 error = ENOMEM;
1318 goto fail;
1319 }
1320
1321 error = bus_dmamap_load(sc->sc_dmat, data->map,
1322 mtod(data->m, void *), MCLBYTES, NULL,
1323 BUS_DMA_READ | BUS_DMA_NOWAIT);
1324 if (error != 0) {
1325 printf("%s: could not load rx buf DMA map",
1326 sc->sc_dev.dv_xname);
1327 goto fail;
1328 }
1329 physaddr = data->map->dm_segs[0].ds_addr;
1330 }
1331
1332 if (sc->sc_flags & NFE_40BIT_ADDR) {
1333 desc64 = &sc->rxq.desc64[i];
1334 #if defined(__LP64__)
1335 desc64->physaddr[0] = htole32(physaddr >> 32);
1336 #endif
1337 desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
1338 desc64->length = htole16(sc->rxq.bufsz);
1339 desc64->flags = htole16(NFE_RX_READY);
1340 } else {
1341 desc32 = &sc->rxq.desc32[i];
1342 desc32->physaddr = htole32(physaddr);
1343 desc32->length = htole16(sc->rxq.bufsz);
1344 desc32->flags = htole16(NFE_RX_READY);
1345 }
1346 }
1347
1348 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1349 BUS_DMASYNC_PREWRITE);
1350
1351 return 0;
1352
1353 fail: nfe_free_rx_ring(sc, ring);
1354 return error;
1355 }
1356
1357 void
1358 nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1359 {
1360 int i;
1361
1362 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1363 if (sc->sc_flags & NFE_40BIT_ADDR) {
1364 ring->desc64[i].length = htole16(ring->bufsz);
1365 ring->desc64[i].flags = htole16(NFE_RX_READY);
1366 } else {
1367 ring->desc32[i].length = htole16(ring->bufsz);
1368 ring->desc32[i].flags = htole16(NFE_RX_READY);
1369 }
1370 }
1371
1372 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1373 BUS_DMASYNC_PREWRITE);
1374
1375 ring->cur = ring->next = 0;
1376 }
1377
1378 void
1379 nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
1380 {
1381 struct nfe_rx_data *data;
1382 void *desc;
1383 int i, descsize;
1384
1385 if (sc->sc_flags & NFE_40BIT_ADDR) {
1386 desc = ring->desc64;
1387 descsize = sizeof (struct nfe_desc64);
1388 } else {
1389 desc = ring->desc32;
1390 descsize = sizeof (struct nfe_desc32);
1391 }
1392
1393 if (desc != NULL) {
1394 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1395 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1396 bus_dmamap_unload(sc->sc_dmat, ring->map);
1397 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1398 NFE_RX_RING_COUNT * descsize);
1399 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1400 }
1401
1402 for (i = 0; i < NFE_RX_RING_COUNT; i++) {
1403 data = &ring->data[i];
1404
1405 if (data->map != NULL) {
1406 bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1407 data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1408 bus_dmamap_unload(sc->sc_dmat, data->map);
1409 bus_dmamap_destroy(sc->sc_dmat, data->map);
1410 }
1411 if (data->m != NULL)
1412 m_freem(data->m);
1413 }
1414 }
1415
1416 struct nfe_jbuf *
1417 nfe_jalloc(struct nfe_softc *sc)
1418 {
1419 struct nfe_jbuf *jbuf;
1420
1421 jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
1422 if (jbuf == NULL)
1423 return NULL;
1424 SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
1425 return jbuf;
1426 }
1427
1428 /*
1429 * This is called automatically by the network stack when the mbuf is freed.
1430 * Caution must be taken that the NIC might be reset by the time the mbuf is
1431 * freed.
1432 */
1433 void
1434 nfe_jfree(struct mbuf *m, caddr_t buf, size_t size, void *arg)
1435 {
1436 struct nfe_softc *sc = arg;
1437 struct nfe_jbuf *jbuf;
1438 int i;
1439
1440 /* find the jbuf from the base pointer */
1441 i = (buf - sc->rxq.jpool) / NFE_JBYTES;
1442 if (i < 0 || i >= NFE_JPOOL_COUNT) {
1443 printf("%s: request to free a buffer (%p) not managed by us\n",
1444 sc->sc_dev.dv_xname, buf);
1445 return;
1446 }
1447 jbuf = &sc->rxq.jbuf[i];
1448
1449 /* ..and put it back in the free list */
1450 SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
1451
1452 if (m != NULL)
1453 pool_cache_put(&mbpool_cache, m);
1454 }
1455
1456 int
1457 nfe_jpool_alloc(struct nfe_softc *sc)
1458 {
1459 struct nfe_rx_ring *ring = &sc->rxq;
1460 struct nfe_jbuf *jbuf;
1461 bus_addr_t physaddr;
1462 caddr_t buf;
1463 int i, nsegs, error;
1464
1465 /*
1466 * Allocate a big chunk of DMA'able memory.
1467 */
1468 error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
1469 NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
1470 if (error != 0) {
1471 printf("%s: could not create jumbo DMA map\n",
1472 sc->sc_dev.dv_xname);
1473 goto fail;
1474 }
1475
1476 error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
1477 &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
1478 if (error != 0) {
1479 printf("%s could not allocate jumbo DMA memory\n",
1480 sc->sc_dev.dv_xname);
1481 goto fail;
1482 }
1483
1484 error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
1485 &ring->jpool, BUS_DMA_NOWAIT);
1486 if (error != 0) {
1487 printf("%s: could not map jumbo DMA memory\n",
1488 sc->sc_dev.dv_xname);
1489 goto fail;
1490 }
1491
1492 error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
1493 NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
1494 if (error != 0) {
1495 printf("%s: could not load jumbo DMA map\n",
1496 sc->sc_dev.dv_xname);
1497 goto fail;
1498 }
1499
1500 /* ..and split it into 9KB chunks */
1501 SLIST_INIT(&ring->jfreelist);
1502
1503 buf = ring->jpool;
1504 physaddr = ring->jmap->dm_segs[0].ds_addr;
1505 for (i = 0; i < NFE_JPOOL_COUNT; i++) {
1506 jbuf = &ring->jbuf[i];
1507
1508 jbuf->buf = buf;
1509 jbuf->physaddr = physaddr;
1510
1511 SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
1512
1513 buf += NFE_JBYTES;
1514 physaddr += NFE_JBYTES;
1515 }
1516
1517 return 0;
1518
1519 fail: nfe_jpool_free(sc);
1520 return error;
1521 }
1522
1523 void
1524 nfe_jpool_free(struct nfe_softc *sc)
1525 {
1526 struct nfe_rx_ring *ring = &sc->rxq;
1527
1528 if (ring->jmap != NULL) {
1529 bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
1530 ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1531 bus_dmamap_unload(sc->sc_dmat, ring->jmap);
1532 bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
1533 }
1534 if (ring->jpool != NULL) {
1535 bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
1536 bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
1537 }
1538 }
1539
1540 int
1541 nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1542 {
1543 int i, nsegs, error;
1544 void **desc;
1545 int descsize;
1546
1547 if (sc->sc_flags & NFE_40BIT_ADDR) {
1548 desc = (void **)&ring->desc64;
1549 descsize = sizeof (struct nfe_desc64);
1550 } else {
1551 desc = (void **)&ring->desc32;
1552 descsize = sizeof (struct nfe_desc32);
1553 }
1554
1555 ring->queued = 0;
1556 ring->cur = ring->next = 0;
1557
1558 error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
1559 NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
1560
1561 if (error != 0) {
1562 printf("%s: could not create desc DMA map\n",
1563 sc->sc_dev.dv_xname);
1564 goto fail;
1565 }
1566
1567 error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
1568 PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
1569 if (error != 0) {
1570 printf("%s: could not allocate DMA memory\n",
1571 sc->sc_dev.dv_xname);
1572 goto fail;
1573 }
1574
1575 error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
1576 NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT);
1577 if (error != 0) {
1578 printf("%s: could not map desc DMA memory\n",
1579 sc->sc_dev.dv_xname);
1580 goto fail;
1581 }
1582
1583 error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
1584 NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
1585 if (error != 0) {
1586 printf("%s: could not load desc DMA map\n",
1587 sc->sc_dev.dv_xname);
1588 goto fail;
1589 }
1590
1591 bzero(*desc, NFE_TX_RING_COUNT * descsize);
1592 ring->physaddr = ring->map->dm_segs[0].ds_addr;
1593
1594 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1595 error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
1596 NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
1597 &ring->data[i].map);
1598 if (error != 0) {
1599 printf("%s: could not create DMA map\n",
1600 sc->sc_dev.dv_xname);
1601 goto fail;
1602 }
1603 }
1604
1605 return 0;
1606
1607 fail: nfe_free_tx_ring(sc, ring);
1608 return error;
1609 }
1610
1611 void
1612 nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1613 {
1614 struct nfe_tx_data *data;
1615 int i;
1616
1617 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1618 if (sc->sc_flags & NFE_40BIT_ADDR)
1619 ring->desc64[i].flags = 0;
1620 else
1621 ring->desc32[i].flags = 0;
1622
1623 data = &ring->data[i];
1624
1625 if (data->m != NULL) {
1626 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1627 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1628 bus_dmamap_unload(sc->sc_dmat, data->active);
1629 m_freem(data->m);
1630 data->m = NULL;
1631 }
1632 }
1633
1634 bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
1635 BUS_DMASYNC_PREWRITE);
1636
1637 ring->queued = 0;
1638 ring->cur = ring->next = 0;
1639 }
1640
1641 void
1642 nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
1643 {
1644 struct nfe_tx_data *data;
1645 void *desc;
1646 int i, descsize;
1647
1648 if (sc->sc_flags & NFE_40BIT_ADDR) {
1649 desc = ring->desc64;
1650 descsize = sizeof (struct nfe_desc64);
1651 } else {
1652 desc = ring->desc32;
1653 descsize = sizeof (struct nfe_desc32);
1654 }
1655
1656 if (desc != NULL) {
1657 bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
1658 ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1659 bus_dmamap_unload(sc->sc_dmat, ring->map);
1660 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc,
1661 NFE_TX_RING_COUNT * descsize);
1662 bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
1663 }
1664
1665 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1666 data = &ring->data[i];
1667
1668 if (data->m != NULL) {
1669 bus_dmamap_sync(sc->sc_dmat, data->active, 0,
1670 data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1671 bus_dmamap_unload(sc->sc_dmat, data->active);
1672 m_freem(data->m);
1673 }
1674 }
1675
1676 /* ..and now actually destroy the DMA mappings */
1677 for (i = 0; i < NFE_TX_RING_COUNT; i++) {
1678 data = &ring->data[i];
1679 if (data->map == NULL)
1680 continue;
1681 bus_dmamap_destroy(sc->sc_dmat, data->map);
1682 }
1683 }
1684
1685 int
1686 nfe_ifmedia_upd(struct ifnet *ifp)
1687 {
1688 struct nfe_softc *sc = ifp->if_softc;
1689 struct mii_data *mii = &sc->sc_mii;
1690 struct mii_softc *miisc;
1691
1692 if (mii->mii_instance != 0) {
1693 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1694 mii_phy_reset(miisc);
1695 }
1696 return mii_mediachg(mii);
1697 }
1698
1699 void
1700 nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1701 {
1702 struct nfe_softc *sc = ifp->if_softc;
1703 struct mii_data *mii = &sc->sc_mii;
1704
1705 mii_pollstat(mii);
1706 ifmr->ifm_status = mii->mii_media_status;
1707 ifmr->ifm_active = mii->mii_media_active;
1708 }
1709
1710 void
1711 nfe_setmulti(struct nfe_softc *sc)
1712 {
1713 struct ethercom *ec = &sc->sc_ethercom;
1714 struct ifnet *ifp = &ec->ec_if;
1715 struct ether_multi *enm;
1716 struct ether_multistep step;
1717 uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
1718 uint32_t filter = NFE_RXFILTER_MAGIC;
1719 int i;
1720
1721 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
1722 bzero(addr, ETHER_ADDR_LEN);
1723 bzero(mask, ETHER_ADDR_LEN);
1724 goto done;
1725 }
1726
1727 bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
1728 bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
1729
1730 ETHER_FIRST_MULTI(step, ec, enm);
1731 while (enm != NULL) {
1732 if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1733 ifp->if_flags |= IFF_ALLMULTI;
1734 bzero(addr, ETHER_ADDR_LEN);
1735 bzero(mask, ETHER_ADDR_LEN);
1736 goto done;
1737 }
1738 for (i = 0; i < ETHER_ADDR_LEN; i++) {
1739 addr[i] &= enm->enm_addrlo[i];
1740 mask[i] &= ~enm->enm_addrlo[i];
1741 }
1742 ETHER_NEXT_MULTI(step, enm);
1743 }
1744 for (i = 0; i < ETHER_ADDR_LEN; i++)
1745 mask[i] |= addr[i];
1746
1747 done:
1748 addr[0] |= 0x01; /* make sure multicast bit is set */
1749
1750 NFE_WRITE(sc, NFE_MULTIADDR_HI,
1751 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1752 NFE_WRITE(sc, NFE_MULTIADDR_LO,
1753 addr[5] << 8 | addr[4]);
1754 NFE_WRITE(sc, NFE_MULTIMASK_HI,
1755 mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
1756 NFE_WRITE(sc, NFE_MULTIMASK_LO,
1757 mask[5] << 8 | mask[4]);
1758
1759 filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
1760 NFE_WRITE(sc, NFE_RXFILTER, filter);
1761 }
1762
1763 void
1764 nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
1765 {
1766 uint32_t tmp;
1767
1768 tmp = NFE_READ(sc, NFE_MACADDR_LO);
1769 addr[0] = (tmp >> 8) & 0xff;
1770 addr[1] = (tmp & 0xff);
1771
1772 tmp = NFE_READ(sc, NFE_MACADDR_HI);
1773 addr[2] = (tmp >> 24) & 0xff;
1774 addr[3] = (tmp >> 16) & 0xff;
1775 addr[4] = (tmp >> 8) & 0xff;
1776 addr[5] = (tmp & 0xff);
1777 }
1778
1779 void
1780 nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
1781 {
1782 NFE_WRITE(sc, NFE_MACADDR_LO,
1783 addr[5] << 8 | addr[4]);
1784 NFE_WRITE(sc, NFE_MACADDR_HI,
1785 addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
1786 }
1787
1788 void
1789 nfe_tick(void *arg)
1790 {
1791 struct nfe_softc *sc = arg;
1792 int s;
1793
1794 s = splnet();
1795 mii_tick(&sc->sc_mii);
1796 splx(s);
1797
1798 callout_schedule(&sc->sc_tick_ch, hz);
1799 }
1800