if_pcn.c revision 1.11 1 /* $NetBSD: if_pcn.c,v 1.11 2002/09/04 01:36:07 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.11 2002/09/04 01:36:07 thorpej Exp $");
69
70 #include "bpfilter.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/device.h>
82 #include <sys/queue.h>
83
84 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
85
86 #include <net/if.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_ether.h>
90
91 #if NBPFILTER > 0
92 #include <net/bpf.h>
93 #endif
94
95 #include <machine/bus.h>
96 #include <machine/intr.h>
97 #include <machine/endian.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/ic/am79900reg.h>
103 #include <dev/ic/lancereg.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_pcnreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 4 segments
114 * per packet. This MUST work out to a power of 2.
115 *
116 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
117 *
118 * So we play a little trick here. We give each packet up to 16
119 * DMA segments, but only allocate the max of 512 descriptors. The
120 * transmit logic can deal with this, we just are hoping to sneak by.
121 */
122 #define PCN_NTXSEGS 16
123
124 #define PCN_TXQUEUELEN 128
125 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
126 #define PCN_NTXDESC 512
127 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
128 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
129 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
130
131 /* Tx interrupt every N + 1 packets. */
132 #define PCN_TXINTR_MASK 7
133
134 /*
135 * Receive descriptor list size. We have one Rx buffer per incoming
136 * packet, so this logic is a little simpler.
137 */
138 #define PCN_NRXDESC 128
139 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
140 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
141
142 /*
143 * Control structures are DMA'd to the PCnet chip. We allocate them in
144 * a single clump that maps to a single DMA segment to make several things
145 * easier.
146 */
147 struct pcn_control_data {
148 /* The transmit descriptors. */
149 struct letmd pcd_txdescs[PCN_NTXDESC];
150
151 /* The receive descriptors. */
152 struct lermd pcd_rxdescs[PCN_NRXDESC];
153
154 /* The init block. */
155 struct leinit pcd_initblock;
156 };
157
158 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
159 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
160 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
161 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
162
163 /*
164 * Software state for transmit jobs.
165 */
166 struct pcn_txsoft {
167 struct mbuf *txs_mbuf; /* head of our mbuf chain */
168 bus_dmamap_t txs_dmamap; /* our DMA map */
169 int txs_firstdesc; /* first descriptor in packet */
170 int txs_lastdesc; /* last descriptor in packet */
171 };
172
173 /*
174 * Software state for receive jobs.
175 */
176 struct pcn_rxsoft {
177 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
178 bus_dmamap_t rxs_dmamap; /* our DMA map */
179 };
180
181 /*
182 * Description of Rx FIFO watermarks for various revisions.
183 */
184 const char *pcn_79c970_rcvfw[] = {
185 "16 bytes",
186 "64 bytes",
187 "128 bytes",
188 NULL,
189 };
190
191 const char *pcn_79c971_rcvfw[] = {
192 "16 bytes",
193 "64 bytes",
194 "112 bytes",
195 NULL,
196 };
197
198 /*
199 * Description of Tx start points for various revisions.
200 */
201 const char *pcn_79c970_xmtsp[] = {
202 "8 bytes",
203 "64 bytes",
204 "128 bytes",
205 "248 bytes",
206 };
207
208 const char *pcn_79c971_xmtsp[] = {
209 "20 bytes",
210 "64 bytes",
211 "128 bytes",
212 "248 bytes",
213 };
214
215 const char *pcn_79c971_xmtsp_sram[] = {
216 "44 bytes",
217 "64 bytes",
218 "128 bytes",
219 "store-and-forward",
220 };
221
222 /*
223 * Description of Tx FIFO watermarks for various revisions.
224 */
225 const char *pcn_79c970_xmtfw[] = {
226 "16 bytes",
227 "64 bytes",
228 "128 bytes",
229 NULL,
230 };
231
232 const char *pcn_79c971_xmtfw[] = {
233 "16 bytes",
234 "64 bytes",
235 "108 bytes",
236 NULL,
237 };
238
239 /*
240 * Software state per device.
241 */
242 struct pcn_softc {
243 struct device sc_dev; /* generic device information */
244 bus_space_tag_t sc_st; /* bus space tag */
245 bus_space_handle_t sc_sh; /* bus space handle */
246 bus_dma_tag_t sc_dmat; /* bus DMA tag */
247 struct ethercom sc_ethercom; /* Ethernet common data */
248 void *sc_sdhook; /* shutdown hook */
249
250 /* Points to our media routines, etc. */
251 const struct pcn_variant *sc_variant;
252
253 void *sc_ih; /* interrupt cookie */
254
255 struct mii_data sc_mii; /* MII/media information */
256
257 struct callout sc_tick_ch; /* tick callout */
258
259 bus_dmamap_t sc_cddmamap; /* control data DMA map */
260 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
261
262 /* Software state for transmit and receive descriptors. */
263 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
264 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
265
266 /* Control data structures */
267 struct pcn_control_data *sc_control_data;
268 #define sc_txdescs sc_control_data->pcd_txdescs
269 #define sc_rxdescs sc_control_data->pcd_rxdescs
270 #define sc_initblock sc_control_data->pcd_initblock
271
272 #ifdef PCN_EVENT_COUNTERS
273 /* Event counters. */
274 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
275 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
276 struct evcnt sc_ev_txintr; /* Tx interrupts */
277 struct evcnt sc_ev_rxintr; /* Rx interrupts */
278 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
279 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
280 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
281
282 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
283 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
284 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
285 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
286 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
287 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
288 struct evcnt sc_ev_txcopy; /* Tx copies required */
289 #endif /* PCN_EVENT_COUNTERS */
290
291 const char **sc_rcvfw_desc; /* Rx FIFO watermark info */
292 int sc_rcvfw;
293
294 const char **sc_xmtsp_desc; /* Tx start point info */
295 int sc_xmtsp;
296
297 const char **sc_xmtfw_desc; /* Tx FIFO watermark info */
298 int sc_xmtfw;
299
300 int sc_flags; /* misc. flags; see below */
301 int sc_swstyle; /* the software style in use */
302
303 int sc_txfree; /* number of free Tx descriptors */
304 int sc_txnext; /* next ready Tx descriptor */
305
306 int sc_txsfree; /* number of free Tx jobs */
307 int sc_txsnext; /* next free Tx job */
308 int sc_txsdirty; /* dirty Tx jobs */
309
310 int sc_rxptr; /* next ready Rx descriptor/job */
311
312 uint32_t sc_csr5; /* prototype CSR5 register */
313 uint32_t sc_mode; /* prototype MODE register */
314 int sc_phyaddr; /* PHY address */
315 };
316
317 /* sc_flags */
318 #define PCN_F_HAS_MII 0x0001 /* has MII */
319
320 #ifdef PCN_EVENT_COUNTERS
321 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
322 #else
323 #define PCN_EVCNT_INCR(ev) /* nothing */
324 #endif
325
326 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
327 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
328 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
329
330 #define PCN_CDTXSYNC(sc, x, n, ops) \
331 do { \
332 int __x, __n; \
333 \
334 __x = (x); \
335 __n = (n); \
336 \
337 /* If it will wrap around, sync to the end of the ring. */ \
338 if ((__x + __n) > PCN_NTXDESC) { \
339 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
340 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
341 (PCN_NTXDESC - __x), (ops)); \
342 __n -= (PCN_NTXDESC - __x); \
343 __x = 0; \
344 } \
345 \
346 /* Now sync whatever is left. */ \
347 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
348 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
349 } while (/*CONSTCOND*/0)
350
351 #define PCN_CDRXSYNC(sc, x, ops) \
352 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
353 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
354
355 #define PCN_CDINITSYNC(sc, ops) \
356 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
357 PCN_CDINITOFF, sizeof(struct leinit), (ops))
358
359 #define PCN_INIT_RXDESC(sc, x) \
360 do { \
361 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
362 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
363 struct mbuf *__m = __rxs->rxs_mbuf; \
364 \
365 /* \
366 * Note: We scoot the packet forward 2 bytes in the buffer \
367 * so that the payload after the Ethernet header is aligned \
368 * to a 4-byte boundary. \
369 */ \
370 __m->m_data = __m->m_ext.ext_buf + 2; \
371 \
372 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
373 __rmd->rmd2 = \
374 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
375 __rmd->rmd0 = 0; \
376 } else { \
377 __rmd->rmd2 = 0; \
378 __rmd->rmd0 = \
379 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
380 } \
381 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
382 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
383 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
384 } while(/*CONSTCOND*/0)
385
386 void pcn_start(struct ifnet *);
387 void pcn_watchdog(struct ifnet *);
388 int pcn_ioctl(struct ifnet *, u_long, caddr_t);
389 int pcn_init(struct ifnet *);
390 void pcn_stop(struct ifnet *, int);
391
392 void pcn_shutdown(void *);
393
394 void pcn_reset(struct pcn_softc *);
395 void pcn_rxdrain(struct pcn_softc *);
396 int pcn_add_rxbuf(struct pcn_softc *, int);
397 void pcn_tick(void *);
398
399 void pcn_spnd(struct pcn_softc *);
400
401 void pcn_set_filter(struct pcn_softc *);
402
403 int pcn_intr(void *);
404 void pcn_txintr(struct pcn_softc *);
405 int pcn_rxintr(struct pcn_softc *);
406
407 int pcn_mii_readreg(struct device *, int, int);
408 void pcn_mii_writereg(struct device *, int, int, int);
409 void pcn_mii_statchg(struct device *);
410
411 void pcn_79c970_mediainit(struct pcn_softc *);
412 int pcn_79c970_mediachange(struct ifnet *);
413 void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
414
415 void pcn_79c971_mediainit(struct pcn_softc *);
416 int pcn_79c971_mediachange(struct ifnet *);
417 void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
418
419 /*
420 * Description of a PCnet-PCI variant. Used to select media access
421 * method, mostly, and to print a nice description of the chip.
422 */
423 const struct pcn_variant {
424 const char *pcv_desc;
425 void (*pcv_mediainit)(struct pcn_softc *);
426 uint16_t pcv_chipid;
427 } pcn_variants[] = {
428 { "Am79c970 PCnet-PCI",
429 pcn_79c970_mediainit,
430 PARTID_Am79c970 },
431
432 { "Am79c970A PCnet-PCI II",
433 pcn_79c970_mediainit,
434 PARTID_Am79c970A },
435
436 { "Am79c971 PCnet-FAST",
437 pcn_79c971_mediainit,
438 PARTID_Am79c971 },
439
440 { "Am79c972 PCnet-FAST+",
441 pcn_79c971_mediainit,
442 PARTID_Am79c972 },
443
444 { "Am79c973 PCnet-FAST III",
445 pcn_79c971_mediainit,
446 PARTID_Am79c973 },
447
448 { "Am79c975 PCnet-FAST III",
449 pcn_79c971_mediainit,
450 PARTID_Am79c975 },
451
452 { "Unknown PCnet-PCI variant",
453 pcn_79c971_mediainit,
454 0 },
455 };
456
457 int pcn_copy_small = 0;
458
459 int pcn_match(struct device *, struct cfdata *, void *);
460 void pcn_attach(struct device *, struct device *, void *);
461
462 struct cfattach pcn_ca = {
463 sizeof(struct pcn_softc), pcn_match, pcn_attach,
464 };
465
466 /*
467 * Routines to read and write the PCnet-PCI CSR/BCR space.
468 */
469
470 static __inline uint32_t
471 pcn_csr_read(struct pcn_softc *sc, int reg)
472 {
473
474 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
475 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
476 }
477
478 static __inline void
479 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
480 {
481
482 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
483 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
484 }
485
486 static __inline uint32_t
487 pcn_bcr_read(struct pcn_softc *sc, int reg)
488 {
489
490 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
491 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
492 }
493
494 static __inline void
495 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
496 {
497
498 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
499 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
500 }
501
502 static const struct pcn_variant *
503 pcn_lookup_variant(uint16_t chipid)
504 {
505 const struct pcn_variant *pcv;
506
507 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
508 if (chipid == pcv->pcv_chipid)
509 return (pcv);
510 }
511
512 /*
513 * This covers unknown chips, which we simply treat like
514 * a generic PCnet-FAST.
515 */
516 return (pcv);
517 }
518
519 int
520 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
521 {
522 struct pci_attach_args *pa = aux;
523
524 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
525 return (0);
526
527 switch (PCI_PRODUCT(pa->pa_id)) {
528 case PCI_PRODUCT_AMD_PCNET_PCI:
529 /* Beat if_le_pci.c */
530 return (10);
531 }
532
533 return (0);
534 }
535
536 void
537 pcn_attach(struct device *parent, struct device *self, void *aux)
538 {
539 struct pcn_softc *sc = (struct pcn_softc *) self;
540 struct pci_attach_args *pa = aux;
541 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
542 pci_chipset_tag_t pc = pa->pa_pc;
543 pci_intr_handle_t ih;
544 const char *intrstr = NULL;
545 bus_space_tag_t iot, memt;
546 bus_space_handle_t ioh, memh;
547 bus_dma_segment_t seg;
548 int ioh_valid, memh_valid;
549 int i, rseg, error;
550 pcireg_t pmode;
551 uint32_t chipid, reg;
552 uint8_t enaddr[ETHER_ADDR_LEN];
553 int pmreg;
554
555 callout_init(&sc->sc_tick_ch);
556
557 printf(": AMD PCnet-PCI Ethernet\n");
558
559 /*
560 * Map the device.
561 */
562 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
563 &iot, &ioh, NULL, NULL) == 0);
564 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
565 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
566 &memt, &memh, NULL, NULL) == 0);
567
568 if (memh_valid) {
569 sc->sc_st = memt;
570 sc->sc_sh = memh;
571 } else if (ioh_valid) {
572 sc->sc_st = iot;
573 sc->sc_sh = ioh;
574 } else {
575 printf("%s: unable to map device registers\n",
576 sc->sc_dev.dv_xname);
577 return;
578 }
579
580 sc->sc_dmat = pa->pa_dmat;
581
582 /* Make sure bus mastering is enabled. */
583 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
584 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
585 PCI_COMMAND_MASTER_ENABLE);
586
587 /* Get it out of power save mode, if needed. */
588 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
589 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
590 if (pmode == 3) {
591 /*
592 * The card has lost all configuration data in
593 * this state, so punt.
594 */
595 printf("%s: unable to wake from power state D3\n",
596 sc->sc_dev.dv_xname);
597 return;
598 }
599 if (pmode != 0) {
600 printf("%s: waking up from power date D%d\n",
601 sc->sc_dev.dv_xname, pmode);
602 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
603 }
604 }
605
606 /*
607 * Reset the chip to a known state. This also puts the
608 * chip into 32-bit mode.
609 */
610 pcn_reset(sc);
611
612 /*
613 * Read the Ethernet address from the EEPROM.
614 */
615 for (i = 0; i < ETHER_ADDR_LEN; i++)
616 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
617 PCN32_APROM + i);
618
619 /*
620 * Now that the device is mapped, attempt to figure out what
621 * kind of chip we have. Note that IDL has all 32 bits of
622 * the chip ID when we're in 32-bit mode.
623 */
624 chipid = pcn_csr_read(sc, LE_CSR88);
625 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
626
627 printf("%s: %s rev %d, Ethernet address %s\n",
628 sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
629 ether_sprintf(enaddr));
630
631 /*
632 * Map and establish our interrupt.
633 */
634 if (pci_intr_map(pa, &ih)) {
635 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
636 return;
637 }
638 intrstr = pci_intr_string(pc, ih);
639 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
640 if (sc->sc_ih == NULL) {
641 printf("%s: unable to establish interrupt",
642 sc->sc_dev.dv_xname);
643 if (intrstr != NULL)
644 printf(" at %s", intrstr);
645 printf("\n");
646 return;
647 }
648 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
649
650 /*
651 * Allocate the control data structures, and create and load the
652 * DMA map for it.
653 */
654 if ((error = bus_dmamem_alloc(sc->sc_dmat,
655 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
656 0)) != 0) {
657 printf("%s: unable to allocate control data, error = %d\n",
658 sc->sc_dev.dv_xname, error);
659 goto fail_0;
660 }
661
662 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
663 sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
664 BUS_DMA_COHERENT)) != 0) {
665 printf("%s: unable to map control data, error = %d\n",
666 sc->sc_dev.dv_xname, error);
667 goto fail_1;
668 }
669
670 if ((error = bus_dmamap_create(sc->sc_dmat,
671 sizeof(struct pcn_control_data), 1,
672 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
673 printf("%s: unable to create control data DMA map, "
674 "error = %d\n", sc->sc_dev.dv_xname, error);
675 goto fail_2;
676 }
677
678 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
679 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
680 0)) != 0) {
681 printf("%s: unable to load control data DMA map, error = %d\n",
682 sc->sc_dev.dv_xname, error);
683 goto fail_3;
684 }
685
686 /* Create the transmit buffer DMA maps. */
687 for (i = 0; i < PCN_TXQUEUELEN; i++) {
688 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
689 PCN_NTXSEGS, MCLBYTES, 0, 0,
690 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
691 printf("%s: unable to create tx DMA map %d, "
692 "error = %d\n", sc->sc_dev.dv_xname, i, error);
693 goto fail_4;
694 }
695 }
696
697 /* Create the receive buffer DMA maps. */
698 for (i = 0; i < PCN_NRXDESC; i++) {
699 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
700 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
701 printf("%s: unable to create rx DMA map %d, "
702 "error = %d\n", sc->sc_dev.dv_xname, i, error);
703 goto fail_5;
704 }
705 sc->sc_rxsoft[i].rxs_mbuf = NULL;
706 }
707
708 /* Initialize our media structures. */
709 (*sc->sc_variant->pcv_mediainit)(sc);
710
711 /*
712 * Initialize FIFO watermark info.
713 */
714 switch (sc->sc_variant->pcv_chipid) {
715 case PARTID_Am79c970:
716 case PARTID_Am79c970A:
717 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
718 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
719 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
720 break;
721
722 default:
723 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
724 /*
725 * Read BCR25 to determine how much SRAM is
726 * on the board. If > 0, then we the chip
727 * uses different Start Point thresholds.
728 *
729 * Note BCR25 and BCR26 are loaded from the
730 * EEPROM on RST, and unaffected by S_RESET,
731 * so we don't really have to worry about
732 * them except for this.
733 */
734 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
735 if (reg != 0)
736 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
737 else
738 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
739 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
740 break;
741 }
742
743 /*
744 * Set up defaults -- see the tables above for what these
745 * values mean.
746 *
747 * XXX How should we tune RCVFW and XMTFW?
748 */
749 sc->sc_rcvfw = 1; /* minimum for full-duplex */
750 sc->sc_xmtsp = 1;
751 sc->sc_xmtfw = 0;
752
753 ifp = &sc->sc_ethercom.ec_if;
754 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
755 ifp->if_softc = sc;
756 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
757 ifp->if_ioctl = pcn_ioctl;
758 ifp->if_start = pcn_start;
759 ifp->if_watchdog = pcn_watchdog;
760 ifp->if_init = pcn_init;
761 ifp->if_stop = pcn_stop;
762 IFQ_SET_READY(&ifp->if_snd);
763
764 /* Attach the interface. */
765 if_attach(ifp);
766 ether_ifattach(ifp, enaddr);
767
768 #ifdef PCN_EVENT_COUNTERS
769 /* Attach event counters. */
770 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
771 NULL, sc->sc_dev.dv_xname, "txsstall");
772 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
773 NULL, sc->sc_dev.dv_xname, "txdstall");
774 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
775 NULL, sc->sc_dev.dv_xname, "txintr");
776 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
777 NULL, sc->sc_dev.dv_xname, "rxintr");
778 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
779 NULL, sc->sc_dev.dv_xname, "babl");
780 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
781 NULL, sc->sc_dev.dv_xname, "miss");
782 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
783 NULL, sc->sc_dev.dv_xname, "merr");
784
785 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
786 NULL, sc->sc_dev.dv_xname, "txseg1");
787 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
788 NULL, sc->sc_dev.dv_xname, "txseg2");
789 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
790 NULL, sc->sc_dev.dv_xname, "txseg3");
791 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
792 NULL, sc->sc_dev.dv_xname, "txseg4");
793 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
794 NULL, sc->sc_dev.dv_xname, "txseg5");
795 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
796 NULL, sc->sc_dev.dv_xname, "txsegmore");
797 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
798 NULL, sc->sc_dev.dv_xname, "txcopy");
799 #endif /* PCN_EVENT_COUNTERS */
800
801 /* Make sure the interface is shutdown during reboot. */
802 sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
803 if (sc->sc_sdhook == NULL)
804 printf("%s: WARNING: unable to establish shutdown hook\n",
805 sc->sc_dev.dv_xname);
806 return;
807
808 /*
809 * Free any resources we've allocated during the failed attach
810 * attempt. Do this in reverse order and fall through.
811 */
812 fail_5:
813 for (i = 0; i < PCN_NRXDESC; i++) {
814 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
815 bus_dmamap_destroy(sc->sc_dmat,
816 sc->sc_rxsoft[i].rxs_dmamap);
817 }
818 fail_4:
819 for (i = 0; i < PCN_TXQUEUELEN; i++) {
820 if (sc->sc_txsoft[i].txs_dmamap != NULL)
821 bus_dmamap_destroy(sc->sc_dmat,
822 sc->sc_txsoft[i].txs_dmamap);
823 }
824 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
825 fail_3:
826 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
827 fail_2:
828 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
829 sizeof(struct pcn_control_data));
830 fail_1:
831 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
832 fail_0:
833 return;
834 }
835
836 /*
837 * pcn_shutdown:
838 *
839 * Make sure the interface is stopped at reboot time.
840 */
841 void
842 pcn_shutdown(void *arg)
843 {
844 struct pcn_softc *sc = arg;
845
846 pcn_stop(&sc->sc_ethercom.ec_if, 1);
847 }
848
849 /*
850 * pcn_start: [ifnet interface function]
851 *
852 * Start packet transmission on the interface.
853 */
854 void
855 pcn_start(struct ifnet *ifp)
856 {
857 struct pcn_softc *sc = ifp->if_softc;
858 struct mbuf *m0, *m;
859 struct pcn_txsoft *txs;
860 bus_dmamap_t dmamap;
861 int error, nexttx, lasttx, ofree, seg;
862
863 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
864 return;
865
866 /*
867 * Remember the previous number of free descriptors and
868 * the first descriptor we'll use.
869 */
870 ofree = sc->sc_txfree;
871
872 /*
873 * Loop through the send queue, setting up transmit descriptors
874 * until we drain the queue, or use up all available transmit
875 * descriptors.
876 */
877 for (;;) {
878 /* Grab a packet off the queue. */
879 IFQ_POLL(&ifp->if_snd, m0);
880 if (m0 == NULL)
881 break;
882 m = NULL;
883
884 /* Get a work queue entry. */
885 if (sc->sc_txsfree == 0) {
886 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
887 break;
888 }
889
890 txs = &sc->sc_txsoft[sc->sc_txsnext];
891 dmamap = txs->txs_dmamap;
892
893 /*
894 * Load the DMA map. If this fails, the packet either
895 * didn't fit in the alloted number of segments, or we
896 * were short on resources. In this case, we'll copy
897 * and try again.
898 */
899 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
900 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
901 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
902 MGETHDR(m, M_DONTWAIT, MT_DATA);
903 if (m == NULL) {
904 printf("%s: unable to allocate Tx mbuf\n",
905 sc->sc_dev.dv_xname);
906 break;
907 }
908 if (m0->m_pkthdr.len > MHLEN) {
909 MCLGET(m, M_DONTWAIT);
910 if ((m->m_flags & M_EXT) == 0) {
911 printf("%s: unable to allocate Tx "
912 "cluster\n", sc->sc_dev.dv_xname);
913 m_freem(m);
914 break;
915 }
916 }
917 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
918 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
919 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
920 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
921 if (error) {
922 printf("%s: unable to load Tx buffer, "
923 "error = %d\n", sc->sc_dev.dv_xname, error);
924 break;
925 }
926 }
927
928 /*
929 * Ensure we have enough descriptors free to describe
930 * the packet. Note, we always reserve one descriptor
931 * at the end of the ring as a termination point, to
932 * prevent wrap-around.
933 */
934 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
935 /*
936 * Not enough free descriptors to transmit this
937 * packet. We haven't committed anything yet,
938 * so just unload the DMA map, put the packet
939 * back on the queue, and punt. Notify the upper
940 * layer that there are not more slots left.
941 *
942 * XXX We could allocate an mbuf and copy, but
943 * XXX is it worth it?
944 */
945 ifp->if_flags |= IFF_OACTIVE;
946 bus_dmamap_unload(sc->sc_dmat, dmamap);
947 if (m != NULL)
948 m_freem(m);
949 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
950 break;
951 }
952
953 IFQ_DEQUEUE(&ifp->if_snd, m0);
954 if (m != NULL) {
955 m_freem(m0);
956 m0 = m;
957 }
958
959 /*
960 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
961 */
962
963 /* Sync the DMA map. */
964 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
965 BUS_DMASYNC_PREWRITE);
966
967 #ifdef PCN_EVENT_COUNTERS
968 switch (dmamap->dm_nsegs) {
969 case 1:
970 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
971 break;
972 case 2:
973 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
974 break;
975 case 3:
976 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
977 break;
978 case 4:
979 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
980 break;
981 case 5:
982 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
983 break;
984 default:
985 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
986 break;
987 }
988 #endif /* PCN_EVENT_COUNTERS */
989
990 /*
991 * Initialize the transmit descriptors.
992 */
993 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
994 for (nexttx = sc->sc_txnext, seg = 0;
995 seg < dmamap->dm_nsegs;
996 seg++, nexttx = PCN_NEXTTX(nexttx)) {
997 /*
998 * If this is the first descriptor we're
999 * enqueueing, don't set the OWN bit just
1000 * yet. That could cause a race condition.
1001 * We'll do it below.
1002 */
1003 sc->sc_txdescs[nexttx].tmd0 = 0;
1004 sc->sc_txdescs[nexttx].tmd2 =
1005 htole32(dmamap->dm_segs[seg].ds_addr);
1006 sc->sc_txdescs[nexttx].tmd1 =
1007 htole32(LE_T1_ONES |
1008 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1009 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1010 LE_T1_BCNT_MASK));
1011 lasttx = nexttx;
1012 }
1013 } else {
1014 for (nexttx = sc->sc_txnext, seg = 0;
1015 seg < dmamap->dm_nsegs;
1016 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1017 /*
1018 * If this is the first descriptor we're
1019 * enqueueing, don't set the OWN bit just
1020 * yet. That could cause a race condition.
1021 * We'll do it below.
1022 */
1023 sc->sc_txdescs[nexttx].tmd0 =
1024 htole32(dmamap->dm_segs[seg].ds_addr);
1025 sc->sc_txdescs[nexttx].tmd2 = 0;
1026 sc->sc_txdescs[nexttx].tmd1 =
1027 htole32(LE_T1_ONES |
1028 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1029 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1030 LE_T1_BCNT_MASK));
1031 lasttx = nexttx;
1032 }
1033 }
1034
1035 /* Interrupt on the packet, if appropriate. */
1036 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1037 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1038
1039 /* Set `start of packet' and `end of packet' appropriately. */
1040 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1041 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1042 htole32(LE_T1_OWN|LE_T1_STP);
1043
1044 /* Sync the descriptors we're using. */
1045 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1046 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1047
1048 /* Kick the transmitter. */
1049 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1050
1051 /*
1052 * Store a pointer to the packet so we can free it later,
1053 * and remember what txdirty will be once the packet is
1054 * done.
1055 */
1056 txs->txs_mbuf = m0;
1057 txs->txs_firstdesc = sc->sc_txnext;
1058 txs->txs_lastdesc = lasttx;
1059
1060 /* Advance the tx pointer. */
1061 sc->sc_txfree -= dmamap->dm_nsegs;
1062 sc->sc_txnext = nexttx;
1063
1064 sc->sc_txsfree--;
1065 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1066
1067 #if NBPFILTER > 0
1068 /* Pass the packet to any BPF listeners. */
1069 if (ifp->if_bpf)
1070 bpf_mtap(ifp->if_bpf, m0);
1071 #endif /* NBPFILTER > 0 */
1072 }
1073
1074 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1075 /* No more slots left; notify upper layer. */
1076 ifp->if_flags |= IFF_OACTIVE;
1077 }
1078
1079 if (sc->sc_txfree != ofree) {
1080 /* Set a watchdog timer in case the chip flakes out. */
1081 ifp->if_timer = 5;
1082 }
1083 }
1084
1085 /*
1086 * pcn_watchdog: [ifnet interface function]
1087 *
1088 * Watchdog timer handler.
1089 */
1090 void
1091 pcn_watchdog(struct ifnet *ifp)
1092 {
1093 struct pcn_softc *sc = ifp->if_softc;
1094
1095 /*
1096 * Since we're not interrupting every packet, sweep
1097 * up before we report an error.
1098 */
1099 pcn_txintr(sc);
1100
1101 if (sc->sc_txfree != PCN_NTXDESC) {
1102 printf("%s: device timeout (txfree %d txsfree %d)\n",
1103 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1104 ifp->if_oerrors++;
1105
1106 /* Reset the interface. */
1107 (void) pcn_init(ifp);
1108 }
1109
1110 /* Try to get more packets going. */
1111 pcn_start(ifp);
1112 }
1113
1114 /*
1115 * pcn_ioctl: [ifnet interface function]
1116 *
1117 * Handle control requests from the operator.
1118 */
1119 int
1120 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1121 {
1122 struct pcn_softc *sc = ifp->if_softc;
1123 struct ifreq *ifr = (struct ifreq *) data;
1124 int s, error;
1125
1126 s = splnet();
1127
1128 switch (cmd) {
1129 case SIOCSIFMEDIA:
1130 case SIOCGIFMEDIA:
1131 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1132 break;
1133
1134 default:
1135 error = ether_ioctl(ifp, cmd, data);
1136 if (error == ENETRESET) {
1137 /*
1138 * Multicast list has changed; set the hardware filter
1139 * accordingly.
1140 */
1141 error = pcn_init(ifp);
1142 }
1143 break;
1144 }
1145
1146 /* Try to get more packets going. */
1147 pcn_start(ifp);
1148
1149 splx(s);
1150 return (error);
1151 }
1152
1153 /*
1154 * pcn_intr:
1155 *
1156 * Interrupt service routine.
1157 */
1158 int
1159 pcn_intr(void *arg)
1160 {
1161 struct pcn_softc *sc = arg;
1162 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1163 uint32_t csr0;
1164 int wantinit, handled = 0;
1165
1166 for (wantinit = 0; wantinit == 0;) {
1167 csr0 = pcn_csr_read(sc, LE_CSR0);
1168 if ((csr0 & LE_C0_INTR) == 0)
1169 break;
1170
1171 /* ACK the bits and re-enable interrupts. */
1172 pcn_csr_write(sc, LE_CSR0, csr0 &
1173 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1174 LE_C0_TINT|LE_C0_IDON));
1175
1176 handled = 1;
1177
1178 if (csr0 & LE_C0_RINT) {
1179 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1180 wantinit = pcn_rxintr(sc);
1181 }
1182
1183 if (csr0 & LE_C0_TINT) {
1184 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1185 pcn_txintr(sc);
1186 }
1187
1188 if (csr0 & LE_C0_ERR) {
1189 if (csr0 & LE_C0_BABL) {
1190 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1191 ifp->if_oerrors++;
1192 }
1193 if (csr0 & LE_C0_MISS) {
1194 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1195 ifp->if_ierrors++;
1196 }
1197 if (csr0 & LE_C0_MERR) {
1198 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1199 printf("%s: memory error\n",
1200 sc->sc_dev.dv_xname);
1201 wantinit = 1;
1202 break;
1203 }
1204 }
1205
1206 if ((csr0 & LE_C0_RXON) == 0) {
1207 printf("%s: receiver disabled\n",
1208 sc->sc_dev.dv_xname);
1209 ifp->if_ierrors++;
1210 wantinit = 1;
1211 }
1212
1213 if ((csr0 & LE_C0_TXON) == 0) {
1214 printf("%s: transmitter disabled\n",
1215 sc->sc_dev.dv_xname);
1216 ifp->if_oerrors++;
1217 wantinit = 1;
1218 }
1219 }
1220
1221 if (handled) {
1222 if (wantinit)
1223 pcn_init(ifp);
1224
1225 /* Try to get more packets going. */
1226 pcn_start(ifp);
1227 }
1228
1229 return (handled);
1230 }
1231
1232 /*
1233 * pcn_spnd:
1234 *
1235 * Suspend the chip.
1236 */
1237 void
1238 pcn_spnd(struct pcn_softc *sc)
1239 {
1240 int i;
1241
1242 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1243
1244 for (i = 0; i < 10000; i++) {
1245 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1246 return;
1247 delay(5);
1248 }
1249
1250 printf("%s: WARNING: chip failed to enter suspended state\n",
1251 sc->sc_dev.dv_xname);
1252 }
1253
1254 /*
1255 * pcn_txintr:
1256 *
1257 * Helper; handle transmit interrupts.
1258 */
1259 void
1260 pcn_txintr(struct pcn_softc *sc)
1261 {
1262 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1263 struct pcn_txsoft *txs;
1264 uint32_t tmd1, tmd2, tmd;
1265 int i, j;
1266
1267 ifp->if_flags &= ~IFF_OACTIVE;
1268
1269 /*
1270 * Go through our Tx list and free mbufs for those
1271 * frames which have been transmitted.
1272 */
1273 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1274 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1275 txs = &sc->sc_txsoft[i];
1276
1277 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1278 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1279
1280 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1281 if (tmd1 & LE_T1_OWN)
1282 break;
1283
1284 /*
1285 * Slightly annoying -- we have to loop through the
1286 * descriptors we've used looking for ERR, since it
1287 * can appear on any descriptor in the chain.
1288 */
1289 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1290 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1291 if (tmd & LE_T1_ERR) {
1292 ifp->if_oerrors++;
1293 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1294 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1295 else
1296 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1297 if (tmd2 & LE_T2_UFLO) {
1298 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1299 sc->sc_xmtsp++;
1300 printf("%s: transmit "
1301 "underrun; new threshold: "
1302 "%s\n",
1303 sc->sc_dev.dv_xname,
1304 sc->sc_xmtsp_desc[
1305 sc->sc_xmtsp]);
1306 pcn_spnd(sc);
1307 pcn_csr_write(sc, LE_CSR80,
1308 LE_C80_RCVFW(sc->sc_rcvfw) |
1309 LE_C80_XMTSP(sc->sc_xmtsp) |
1310 LE_C80_XMTFW(sc->sc_xmtfw));
1311 pcn_csr_write(sc, LE_CSR5,
1312 sc->sc_csr5);
1313 } else {
1314 printf("%s: transmit "
1315 "underrun\n",
1316 sc->sc_dev.dv_xname);
1317 }
1318 } else if (tmd2 & LE_T2_BUFF) {
1319 printf("%s: transmit buffer error\n",
1320 sc->sc_dev.dv_xname);
1321 }
1322 if (tmd2 & LE_T2_LCOL)
1323 ifp->if_collisions++;
1324 if (tmd2 & LE_T2_RTRY)
1325 ifp->if_collisions += 16;
1326 goto next_packet;
1327 }
1328 if (j == txs->txs_lastdesc)
1329 break;
1330 }
1331 if (tmd1 & LE_T1_ONE)
1332 ifp->if_collisions++;
1333 else if (tmd & LE_T1_MORE) {
1334 /* Real number is unknown. */
1335 ifp->if_collisions += 2;
1336 }
1337 ifp->if_opackets++;
1338 next_packet:
1339 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1340 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1341 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1342 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1343 m_freem(txs->txs_mbuf);
1344 txs->txs_mbuf = NULL;
1345 }
1346
1347 /* Update the dirty transmit buffer pointer. */
1348 sc->sc_txsdirty = i;
1349
1350 /*
1351 * If there are no more pending transmissions, cancel the watchdog
1352 * timer.
1353 */
1354 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1355 ifp->if_timer = 0;
1356 }
1357
1358 /*
1359 * pcn_rxintr:
1360 *
1361 * Helper; handle receive interrupts.
1362 */
1363 int
1364 pcn_rxintr(struct pcn_softc *sc)
1365 {
1366 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1367 struct pcn_rxsoft *rxs;
1368 struct mbuf *m;
1369 uint32_t rmd1;
1370 int i, len;
1371
1372 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1373 rxs = &sc->sc_rxsoft[i];
1374
1375 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1376
1377 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1378
1379 if (rmd1 & LE_R1_OWN)
1380 break;
1381
1382 /*
1383 * Check for errors and make sure the packet fit into
1384 * a single buffer. We have structured this block of
1385 * code the way it is in order to compress it into
1386 * one test in the common case (no error).
1387 */
1388 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1389 (LE_R1_STP|LE_R1_ENP))) {
1390 /* Make sure the packet is in a single buffer. */
1391 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1392 (LE_R1_STP|LE_R1_ENP)) {
1393 printf("%s: packet spilled into next buffer\n",
1394 sc->sc_dev.dv_xname);
1395 return (1); /* pcn_intr() will re-init */
1396 }
1397
1398 /*
1399 * If the packet had an error, simple recycle the
1400 * buffer.
1401 */
1402 if (rmd1 & LE_R1_ERR) {
1403 ifp->if_ierrors++;
1404 /*
1405 * If we got an overflow error, chances
1406 * are there will be a CRC error. In
1407 * this case, just print the overflow
1408 * error, and skip the others.
1409 */
1410 if (rmd1 & LE_R1_OFLO)
1411 printf("%s: overflow error\n",
1412 sc->sc_dev.dv_xname);
1413 else {
1414 #define PRINTIT(x, s) \
1415 if (rmd1 & (x)) \
1416 printf("%s: %s\n", \
1417 sc->sc_dev.dv_xname, s);
1418 PRINTIT(LE_R1_FRAM, "framing error");
1419 PRINTIT(LE_R1_CRC, "CRC error");
1420 PRINTIT(LE_R1_BUFF, "buffer error");
1421 }
1422 #undef PRINTIT
1423 PCN_INIT_RXDESC(sc, i);
1424 continue;
1425 }
1426 }
1427
1428 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1429 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1430
1431 /*
1432 * No errors; receive the packet.
1433 */
1434 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1435 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1436 else
1437 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1438
1439 /*
1440 * The LANCE family includes the CRC with every packet;
1441 * trim it off here.
1442 */
1443 len -= ETHER_CRC_LEN;
1444
1445 /*
1446 * If the packet is small enough to fit in a
1447 * single header mbuf, allocate one and copy
1448 * the data into it. This greatly reduces
1449 * memory consumption when we receive lots
1450 * of small packets.
1451 *
1452 * Otherwise, we add a new buffer to the receive
1453 * chain. If this fails, we drop the packet and
1454 * recycle the old buffer.
1455 */
1456 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1457 MGETHDR(m, M_DONTWAIT, MT_DATA);
1458 if (m == NULL)
1459 goto dropit;
1460 m->m_data += 2;
1461 memcpy(mtod(m, caddr_t),
1462 mtod(rxs->rxs_mbuf, caddr_t), len);
1463 PCN_INIT_RXDESC(sc, i);
1464 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1465 rxs->rxs_dmamap->dm_mapsize,
1466 BUS_DMASYNC_PREREAD);
1467 } else {
1468 m = rxs->rxs_mbuf;
1469 if (pcn_add_rxbuf(sc, i) != 0) {
1470 dropit:
1471 ifp->if_ierrors++;
1472 PCN_INIT_RXDESC(sc, i);
1473 bus_dmamap_sync(sc->sc_dmat,
1474 rxs->rxs_dmamap, 0,
1475 rxs->rxs_dmamap->dm_mapsize,
1476 BUS_DMASYNC_PREREAD);
1477 continue;
1478 }
1479 }
1480
1481 m->m_pkthdr.rcvif = ifp;
1482 m->m_pkthdr.len = m->m_len = len;
1483
1484 #if NBPFILTER > 0
1485 /* Pass this up to any BPF listeners. */
1486 if (ifp->if_bpf)
1487 bpf_mtap(ifp->if_bpf, m);
1488 #endif /* NBPFILTER > 0 */
1489
1490 /* Pass it on. */
1491 (*ifp->if_input)(ifp, m);
1492 ifp->if_ipackets++;
1493 }
1494
1495 /* Update the receive pointer. */
1496 sc->sc_rxptr = i;
1497 return (0);
1498 }
1499
1500 /*
1501 * pcn_tick:
1502 *
1503 * One second timer, used to tick the MII.
1504 */
1505 void
1506 pcn_tick(void *arg)
1507 {
1508 struct pcn_softc *sc = arg;
1509 int s;
1510
1511 s = splnet();
1512 mii_tick(&sc->sc_mii);
1513 splx(s);
1514
1515 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1516 }
1517
1518 /*
1519 * pcn_reset:
1520 *
1521 * Perform a soft reset on the PCnet-PCI.
1522 */
1523 void
1524 pcn_reset(struct pcn_softc *sc)
1525 {
1526
1527 /*
1528 * The PCnet-PCI chip is reset by reading from the
1529 * RESET register. Note that while the NE2100 LANCE
1530 * boards require a write after the read, the PCnet-PCI
1531 * chips do not require this.
1532 *
1533 * Since we don't know if we're in 16-bit or 32-bit
1534 * mode right now, issue both (it's safe) in the
1535 * hopes that one will succeed.
1536 */
1537 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1538 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1539
1540 /* Wait 1ms for it to finish. */
1541 delay(1000);
1542
1543 /*
1544 * Select 32-bit I/O mode by issuing a 32-bit write to the
1545 * RDP. Since the RAP is 0 after a reset, writing a 0
1546 * to RDP is safe (since it simply clears CSR0).
1547 */
1548 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1549 }
1550
1551 /*
1552 * pcn_init: [ifnet interface function]
1553 *
1554 * Initialize the interface. Must be called at splnet().
1555 */
1556 int
1557 pcn_init(struct ifnet *ifp)
1558 {
1559 struct pcn_softc *sc = ifp->if_softc;
1560 struct pcn_rxsoft *rxs;
1561 uint8_t *enaddr = LLADDR(ifp->if_sadl);
1562 int i, error = 0;
1563 uint32_t reg;
1564
1565 /* Cancel any pending I/O. */
1566 pcn_stop(ifp, 0);
1567
1568 /* Reset the chip to a known state. */
1569 pcn_reset(sc);
1570
1571 /*
1572 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1573 * else.
1574 *
1575 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1576 * because the structure layout is compatible with ILACC,
1577 * but the burst mode is only available in SSTYLE 3, and
1578 * burst mode should provide some performance enhancement.
1579 */
1580 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1581 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1582 else
1583 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1584 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1585
1586 /* Initialize the transmit descriptor ring. */
1587 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1588 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1589 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1590 sc->sc_txfree = PCN_NTXDESC;
1591 sc->sc_txnext = 0;
1592
1593 /* Initialize the transmit job descriptors. */
1594 for (i = 0; i < PCN_TXQUEUELEN; i++)
1595 sc->sc_txsoft[i].txs_mbuf = NULL;
1596 sc->sc_txsfree = PCN_TXQUEUELEN;
1597 sc->sc_txsnext = 0;
1598 sc->sc_txsdirty = 0;
1599
1600 /*
1601 * Initialize the receive descriptor and receive job
1602 * descriptor rings.
1603 */
1604 for (i = 0; i < PCN_NRXDESC; i++) {
1605 rxs = &sc->sc_rxsoft[i];
1606 if (rxs->rxs_mbuf == NULL) {
1607 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1608 printf("%s: unable to allocate or map rx "
1609 "buffer %d, error = %d\n",
1610 sc->sc_dev.dv_xname, i, error);
1611 /*
1612 * XXX Should attempt to run with fewer receive
1613 * XXX buffers instead of just failing.
1614 */
1615 pcn_rxdrain(sc);
1616 goto out;
1617 }
1618 } else
1619 PCN_INIT_RXDESC(sc, i);
1620 }
1621 sc->sc_rxptr = 0;
1622
1623 /* Initialize MODE for the initialization block. */
1624 sc->sc_mode = 0;
1625 if (ifp->if_flags & IFF_PROMISC)
1626 sc->sc_mode |= LE_C15_PROM;
1627 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1628 sc->sc_mode |= LE_C15_DRCVBC;
1629
1630 /*
1631 * If we have MII, simply select MII in the MODE register,
1632 * and clear ASEL. Otherwise, let ASEL stand (for now),
1633 * and leave PORTSEL alone (it is ignored with ASEL is set).
1634 */
1635 if (sc->sc_flags & PCN_F_HAS_MII) {
1636 pcn_bcr_write(sc, LE_BCR2,
1637 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1638 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1639
1640 /*
1641 * Disable MII auto-negotiation. We handle that in
1642 * our own MII layer.
1643 */
1644 pcn_bcr_write(sc, LE_BCR32,
1645 pcn_csr_read(sc, LE_BCR32) | LE_B32_DANAS);
1646 }
1647
1648 /*
1649 * Set the Tx and Rx descriptor ring addresses in the init
1650 * block, the TLEN and RLEN other fields of the init block
1651 * MODE register.
1652 */
1653 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1654 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1655 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1656 ((ffs(PCN_NTXDESC) - 1) << 28) |
1657 ((ffs(PCN_NRXDESC) - 1) << 20));
1658
1659 /* Set the station address in the init block. */
1660 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1661 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1662 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1663 (enaddr[5] << 8));
1664
1665 /* Set the multicast filter in the init block. */
1666 pcn_set_filter(sc);
1667
1668 /* Initialize CSR3. */
1669 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1670
1671 /* Initialize CSR4. */
1672 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1673 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1674
1675 /* Initialize CSR5. */
1676 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1677 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1678
1679 /*
1680 * If we have an Am79c971 or greater, initialize CSR7.
1681 *
1682 * XXX Might be nice to use the MII auto-poll interrupt someday.
1683 */
1684 switch (sc->sc_variant->pcv_chipid) {
1685 case PARTID_Am79c970:
1686 case PARTID_Am79c970A:
1687 /* Not available on these chips. */
1688 break;
1689
1690 default:
1691 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1692 break;
1693 }
1694
1695 /*
1696 * On the Am79c970A and greater, initialize BCR18 to
1697 * enable burst mode.
1698 *
1699 * Also enable the "no underflow" option on the Am79c971 and
1700 * higher, which prevents the chip from generating transmit
1701 * underflows, yet sill provides decent performance. Note if
1702 * chip is not connected to external SRAM, then we still have
1703 * to handle underflow errors (the NOUFLO bit is ignored in
1704 * that case).
1705 */
1706 reg = pcn_bcr_read(sc, LE_BCR18);
1707 switch (sc->sc_variant->pcv_chipid) {
1708 case PARTID_Am79c970:
1709 break;
1710
1711 case PARTID_Am79c970A:
1712 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1713 break;
1714
1715 default:
1716 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1717 break;
1718 }
1719 pcn_bcr_write(sc, LE_BCR18, reg);
1720
1721 /*
1722 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1723 */
1724 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1725 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1726
1727 /*
1728 * Send the init block to the chip, and wait for it
1729 * to be processed.
1730 */
1731 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1732 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1733 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1734 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1735 delay(100);
1736 for (i = 0; i < 10000; i++) {
1737 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1738 break;
1739 delay(10);
1740 }
1741 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1742 if (i == 10000) {
1743 printf("%s: timeout processing init block\n",
1744 sc->sc_dev.dv_xname);
1745 error = EIO;
1746 goto out;
1747 }
1748
1749 /* Set the media. */
1750 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1751
1752 /* Enable interrupts and external activity (and ACK IDON). */
1753 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1754
1755 if (sc->sc_flags & PCN_F_HAS_MII) {
1756 /* Start the one second MII clock. */
1757 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1758 }
1759
1760 /* ...all done! */
1761 ifp->if_flags |= IFF_RUNNING;
1762 ifp->if_flags &= ~IFF_OACTIVE;
1763
1764 out:
1765 if (error)
1766 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1767 return (error);
1768 }
1769
1770 /*
1771 * pcn_rxdrain:
1772 *
1773 * Drain the receive queue.
1774 */
1775 void
1776 pcn_rxdrain(struct pcn_softc *sc)
1777 {
1778 struct pcn_rxsoft *rxs;
1779 int i;
1780
1781 for (i = 0; i < PCN_NRXDESC; i++) {
1782 rxs = &sc->sc_rxsoft[i];
1783 if (rxs->rxs_mbuf != NULL) {
1784 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1785 m_freem(rxs->rxs_mbuf);
1786 rxs->rxs_mbuf = NULL;
1787 }
1788 }
1789 }
1790
1791 /*
1792 * pcn_stop: [ifnet interface function]
1793 *
1794 * Stop transmission on the interface.
1795 */
1796 void
1797 pcn_stop(struct ifnet *ifp, int disable)
1798 {
1799 struct pcn_softc *sc = ifp->if_softc;
1800 struct pcn_txsoft *txs;
1801 int i;
1802
1803 if (sc->sc_flags & PCN_F_HAS_MII) {
1804 /* Stop the one second clock. */
1805 callout_stop(&sc->sc_tick_ch);
1806
1807 /* Down the MII. */
1808 mii_down(&sc->sc_mii);
1809 }
1810
1811 /* Stop the chip. */
1812 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1813
1814 /* Release any queued transmit buffers. */
1815 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1816 txs = &sc->sc_txsoft[i];
1817 if (txs->txs_mbuf != NULL) {
1818 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1819 m_freem(txs->txs_mbuf);
1820 txs->txs_mbuf = NULL;
1821 }
1822 }
1823
1824 if (disable)
1825 pcn_rxdrain(sc);
1826
1827 /* Mark the interface as down and cancel the watchdog timer. */
1828 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1829 ifp->if_timer = 0;
1830 }
1831
1832 /*
1833 * pcn_add_rxbuf:
1834 *
1835 * Add a receive buffer to the indicated descriptor.
1836 */
1837 int
1838 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1839 {
1840 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1841 struct mbuf *m;
1842 int error;
1843
1844 MGETHDR(m, M_DONTWAIT, MT_DATA);
1845 if (m == NULL)
1846 return (ENOBUFS);
1847
1848 MCLGET(m, M_DONTWAIT);
1849 if ((m->m_flags & M_EXT) == 0) {
1850 m_freem(m);
1851 return (ENOBUFS);
1852 }
1853
1854 if (rxs->rxs_mbuf != NULL)
1855 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1856
1857 rxs->rxs_mbuf = m;
1858
1859 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1860 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1861 BUS_DMA_READ|BUS_DMA_NOWAIT);
1862 if (error) {
1863 printf("%s: can't load rx DMA map %d, error = %d\n",
1864 sc->sc_dev.dv_xname, idx, error);
1865 panic("pcn_add_rxbuf");
1866 }
1867
1868 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1869 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1870
1871 PCN_INIT_RXDESC(sc, idx);
1872
1873 return (0);
1874 }
1875
1876 /*
1877 * pcn_set_filter:
1878 *
1879 * Set up the receive filter.
1880 */
1881 void
1882 pcn_set_filter(struct pcn_softc *sc)
1883 {
1884 struct ethercom *ec = &sc->sc_ethercom;
1885 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1886 struct ether_multi *enm;
1887 struct ether_multistep step;
1888 uint32_t crc;
1889
1890 /*
1891 * Set up the multicast address filter by passing all multicast
1892 * addresses through a CRC generator, and then using the high
1893 * order 6 bits as an index into the 64-bit logical address
1894 * filter. The high order bits select the word, while the rest
1895 * of the bits select the bit within the word.
1896 */
1897
1898 if (ifp->if_flags & IFF_PROMISC)
1899 goto allmulti;
1900
1901 sc->sc_initblock.init_ladrf[0] =
1902 sc->sc_initblock.init_ladrf[1] =
1903 sc->sc_initblock.init_ladrf[2] =
1904 sc->sc_initblock.init_ladrf[3] = 0;
1905
1906 ETHER_FIRST_MULTI(step, ec, enm);
1907 while (enm != NULL) {
1908 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1909 /*
1910 * We must listen to a range of multicast addresses.
1911 * For now, just accept all multicasts, rather than
1912 * trying to set only those filter bits needed to match
1913 * the range. (At this time, the only use of address
1914 * ranges is for IP multicast routing, for which the
1915 * range is big enough to require all bits set.)
1916 */
1917 goto allmulti;
1918 }
1919
1920 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1921
1922 /* Just want the 6 most significant bits. */
1923 crc >>= 26;
1924
1925 /* Set the corresponding bit in the filter. */
1926 sc->sc_initblock.init_ladrf[crc >> 4] |=
1927 htole16(1 << (crc & 0xf));
1928
1929 ETHER_NEXT_MULTI(step, enm);
1930 }
1931
1932 ifp->if_flags &= ~IFF_ALLMULTI;
1933 return;
1934
1935 allmulti:
1936 ifp->if_flags |= IFF_ALLMULTI;
1937 sc->sc_initblock.init_ladrf[0] =
1938 sc->sc_initblock.init_ladrf[1] =
1939 sc->sc_initblock.init_ladrf[2] =
1940 sc->sc_initblock.init_ladrf[3] = 0xffff;
1941 }
1942
1943 /*
1944 * pcn_79c970_mediainit:
1945 *
1946 * Initialize media for the Am79c970.
1947 */
1948 void
1949 pcn_79c970_mediainit(struct pcn_softc *sc)
1950 {
1951 const char *sep = "";
1952
1953 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c970_mediachange,
1954 pcn_79c970_mediastatus);
1955
1956 #define ADD(s, m, d) \
1957 do { \
1958 printf("%s%s", sep, s); \
1959 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
1960 sep = ", "; \
1961 } while (/*CONSTCOND*/0)
1962
1963 printf("%s: ", sc->sc_dev.dv_xname);
1964 ADD("10base5", IFM_10_5, PORTSEL_AUI);
1965 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1966 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
1967 ADD("10baseT", IFM_10_T, PORTSEL_10T);
1968 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1969 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
1970 ADD("auto", IFM_AUTO, 0);
1971 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1972 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
1973 printf("\n");
1974
1975 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1976 }
1977
1978 /*
1979 * pcn_79c970_mediastatus: [ifmedia interface function]
1980 *
1981 * Get the current interface media status (Am79c970 version).
1982 */
1983 void
1984 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1985 {
1986 struct pcn_softc *sc = ifp->if_softc;
1987
1988 /*
1989 * The currently selected media is always the active media.
1990 * Note: We have no way to determine what media the AUTO
1991 * process picked.
1992 */
1993 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1994 }
1995
1996 /*
1997 * pcn_79c970_mediachange: [ifmedia interface function]
1998 *
1999 * Set hardware to newly-selected media (Am79c970 version).
2000 */
2001 int
2002 pcn_79c970_mediachange(struct ifnet *ifp)
2003 {
2004 struct pcn_softc *sc = ifp->if_softc;
2005 uint32_t reg;
2006
2007 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2008 /*
2009 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2010 */
2011 reg = pcn_bcr_read(sc, LE_BCR2);
2012 reg |= LE_B2_ASEL;
2013 pcn_bcr_write(sc, LE_BCR2, reg);
2014 } else {
2015 /*
2016 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2017 */
2018 reg = pcn_bcr_read(sc, LE_BCR2);
2019 reg &= ~LE_B2_ASEL;
2020 pcn_bcr_write(sc, LE_BCR2, reg);
2021
2022 reg = pcn_csr_read(sc, LE_CSR15);
2023 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2024 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2025 pcn_csr_write(sc, LE_CSR15, reg);
2026 }
2027
2028 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2029 reg = LE_B9_FDEN;
2030 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2031 reg |= LE_B9_AUIFD;
2032 pcn_bcr_write(sc, LE_BCR9, reg);
2033 } else
2034 pcn_bcr_write(sc, LE_BCR0, 0);
2035
2036 return (0);
2037 }
2038
2039 /*
2040 * pcn_79c971_mediainit:
2041 *
2042 * Initialize media for the Am79c971.
2043 */
2044 void
2045 pcn_79c971_mediainit(struct pcn_softc *sc)
2046 {
2047 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2048
2049 /* We have MII. */
2050 sc->sc_flags |= PCN_F_HAS_MII;
2051
2052 /*
2053 * The built-in 10BASE-T interface is mapped to the MII
2054 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2055 * word that tells us which PHY to use. Since the 10BASE-T
2056 * interface is always at PHY 31, we make a note of the
2057 * first PHY that responds, and disallow any PHYs after
2058 * it. This is all handled in the MII read routine.
2059 */
2060 sc->sc_phyaddr = -1;
2061
2062 /* Initialize our media structures and probe the MII. */
2063 sc->sc_mii.mii_ifp = ifp;
2064 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2065 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2066 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2067 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2068 pcn_79c971_mediastatus);
2069
2070 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2071 MII_OFFSET_ANY, 0);
2072 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2073 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2074 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2075 } else
2076 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2077 }
2078
2079 /*
2080 * pcn_79c971_mediastatus: [ifmedia interface function]
2081 *
2082 * Get the current interface media status (Am79c971 version).
2083 */
2084 void
2085 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2086 {
2087 struct pcn_softc *sc = ifp->if_softc;
2088
2089 mii_pollstat(&sc->sc_mii);
2090 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2091 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2092 }
2093
2094 /*
2095 * pcn_79c971_mediachange: [ifmedia interface function]
2096 *
2097 * Set hardware to newly-selected media (Am79c971 version).
2098 */
2099 int
2100 pcn_79c971_mediachange(struct ifnet *ifp)
2101 {
2102 struct pcn_softc *sc = ifp->if_softc;
2103
2104 if (ifp->if_flags & IFF_UP)
2105 mii_mediachg(&sc->sc_mii);
2106 return (0);
2107 }
2108
2109 /*
2110 * pcn_mii_readreg: [mii interface function]
2111 *
2112 * Read a PHY register on the MII.
2113 */
2114 int
2115 pcn_mii_readreg(struct device *self, int phy, int reg)
2116 {
2117 struct pcn_softc *sc = (void *) self;
2118 uint32_t rv;
2119
2120 if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
2121 return (0);
2122
2123 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2124 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2125 if (rv == 0xffff)
2126 return (0);
2127
2128 if (sc->sc_phyaddr == -1)
2129 sc->sc_phyaddr = phy;
2130
2131 return (rv);
2132 }
2133
2134 /*
2135 * pcn_mii_writereg: [mii interface function]
2136 *
2137 * Write a PHY register on the MII.
2138 */
2139 void
2140 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2141 {
2142 struct pcn_softc *sc = (void *) self;
2143
2144 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2145 pcn_bcr_write(sc, LE_BCR34, val);
2146 }
2147
2148 /*
2149 * pcn_mii_statchg: [mii interface function]
2150 *
2151 * Callback from MII layer when media changes.
2152 */
2153 void
2154 pcn_mii_statchg(struct device *self)
2155 {
2156 struct pcn_softc *sc = (void *) self;
2157
2158 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2159 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2160 else
2161 pcn_bcr_write(sc, LE_BCR9, 0);
2162 }
2163