if_pcn.c revision 1.14 1 /* $NetBSD: if_pcn.c,v 1.14 2002/10/02 16:51:27 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.14 2002/10/02 16:51:27 thorpej Exp $");
69
70 #include "bpfilter.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/device.h>
82 #include <sys/queue.h>
83
84 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
85
86 #include <net/if.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_ether.h>
90
91 #if NBPFILTER > 0
92 #include <net/bpf.h>
93 #endif
94
95 #include <machine/bus.h>
96 #include <machine/intr.h>
97 #include <machine/endian.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/ic/am79900reg.h>
103 #include <dev/ic/lancereg.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_pcnreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 4 segments
114 * per packet. This MUST work out to a power of 2.
115 *
116 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
117 *
118 * So we play a little trick here. We give each packet up to 16
119 * DMA segments, but only allocate the max of 512 descriptors. The
120 * transmit logic can deal with this, we just are hoping to sneak by.
121 */
122 #define PCN_NTXSEGS 16
123
124 #define PCN_TXQUEUELEN 128
125 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
126 #define PCN_NTXDESC 512
127 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
128 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
129 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
130
131 /* Tx interrupt every N + 1 packets. */
132 #define PCN_TXINTR_MASK 7
133
134 /*
135 * Receive descriptor list size. We have one Rx buffer per incoming
136 * packet, so this logic is a little simpler.
137 */
138 #define PCN_NRXDESC 128
139 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
140 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
141
142 /*
143 * Control structures are DMA'd to the PCnet chip. We allocate them in
144 * a single clump that maps to a single DMA segment to make several things
145 * easier.
146 */
147 struct pcn_control_data {
148 /* The transmit descriptors. */
149 struct letmd pcd_txdescs[PCN_NTXDESC];
150
151 /* The receive descriptors. */
152 struct lermd pcd_rxdescs[PCN_NRXDESC];
153
154 /* The init block. */
155 struct leinit pcd_initblock;
156 };
157
158 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
159 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
160 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
161 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
162
163 /*
164 * Software state for transmit jobs.
165 */
166 struct pcn_txsoft {
167 struct mbuf *txs_mbuf; /* head of our mbuf chain */
168 bus_dmamap_t txs_dmamap; /* our DMA map */
169 int txs_firstdesc; /* first descriptor in packet */
170 int txs_lastdesc; /* last descriptor in packet */
171 };
172
173 /*
174 * Software state for receive jobs.
175 */
176 struct pcn_rxsoft {
177 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
178 bus_dmamap_t rxs_dmamap; /* our DMA map */
179 };
180
181 /*
182 * Description of Rx FIFO watermarks for various revisions.
183 */
184 const char *pcn_79c970_rcvfw[] = {
185 "16 bytes",
186 "64 bytes",
187 "128 bytes",
188 NULL,
189 };
190
191 const char *pcn_79c971_rcvfw[] = {
192 "16 bytes",
193 "64 bytes",
194 "112 bytes",
195 NULL,
196 };
197
198 /*
199 * Description of Tx start points for various revisions.
200 */
201 const char *pcn_79c970_xmtsp[] = {
202 "8 bytes",
203 "64 bytes",
204 "128 bytes",
205 "248 bytes",
206 };
207
208 const char *pcn_79c971_xmtsp[] = {
209 "20 bytes",
210 "64 bytes",
211 "128 bytes",
212 "248 bytes",
213 };
214
215 const char *pcn_79c971_xmtsp_sram[] = {
216 "44 bytes",
217 "64 bytes",
218 "128 bytes",
219 "store-and-forward",
220 };
221
222 /*
223 * Description of Tx FIFO watermarks for various revisions.
224 */
225 const char *pcn_79c970_xmtfw[] = {
226 "16 bytes",
227 "64 bytes",
228 "128 bytes",
229 NULL,
230 };
231
232 const char *pcn_79c971_xmtfw[] = {
233 "16 bytes",
234 "64 bytes",
235 "108 bytes",
236 NULL,
237 };
238
239 /*
240 * Software state per device.
241 */
242 struct pcn_softc {
243 struct device sc_dev; /* generic device information */
244 bus_space_tag_t sc_st; /* bus space tag */
245 bus_space_handle_t sc_sh; /* bus space handle */
246 bus_dma_tag_t sc_dmat; /* bus DMA tag */
247 struct ethercom sc_ethercom; /* Ethernet common data */
248 void *sc_sdhook; /* shutdown hook */
249
250 /* Points to our media routines, etc. */
251 const struct pcn_variant *sc_variant;
252
253 void *sc_ih; /* interrupt cookie */
254
255 struct mii_data sc_mii; /* MII/media information */
256
257 struct callout sc_tick_ch; /* tick callout */
258
259 bus_dmamap_t sc_cddmamap; /* control data DMA map */
260 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
261
262 /* Software state for transmit and receive descriptors. */
263 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
264 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
265
266 /* Control data structures */
267 struct pcn_control_data *sc_control_data;
268 #define sc_txdescs sc_control_data->pcd_txdescs
269 #define sc_rxdescs sc_control_data->pcd_rxdescs
270 #define sc_initblock sc_control_data->pcd_initblock
271
272 #ifdef PCN_EVENT_COUNTERS
273 /* Event counters. */
274 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
275 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
276 struct evcnt sc_ev_txintr; /* Tx interrupts */
277 struct evcnt sc_ev_rxintr; /* Rx interrupts */
278 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
279 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
280 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
281
282 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
283 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
284 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
285 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
286 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
287 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
288 struct evcnt sc_ev_txcopy; /* Tx copies required */
289 #endif /* PCN_EVENT_COUNTERS */
290
291 const char **sc_rcvfw_desc; /* Rx FIFO watermark info */
292 int sc_rcvfw;
293
294 const char **sc_xmtsp_desc; /* Tx start point info */
295 int sc_xmtsp;
296
297 const char **sc_xmtfw_desc; /* Tx FIFO watermark info */
298 int sc_xmtfw;
299
300 int sc_flags; /* misc. flags; see below */
301 int sc_swstyle; /* the software style in use */
302
303 int sc_txfree; /* number of free Tx descriptors */
304 int sc_txnext; /* next ready Tx descriptor */
305
306 int sc_txsfree; /* number of free Tx jobs */
307 int sc_txsnext; /* next free Tx job */
308 int sc_txsdirty; /* dirty Tx jobs */
309
310 int sc_rxptr; /* next ready Rx descriptor/job */
311
312 uint32_t sc_csr5; /* prototype CSR5 register */
313 uint32_t sc_mode; /* prototype MODE register */
314 int sc_phyaddr; /* PHY address */
315 };
316
317 /* sc_flags */
318 #define PCN_F_HAS_MII 0x0001 /* has MII */
319
320 #ifdef PCN_EVENT_COUNTERS
321 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
322 #else
323 #define PCN_EVCNT_INCR(ev) /* nothing */
324 #endif
325
326 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
327 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
328 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
329
330 #define PCN_CDTXSYNC(sc, x, n, ops) \
331 do { \
332 int __x, __n; \
333 \
334 __x = (x); \
335 __n = (n); \
336 \
337 /* If it will wrap around, sync to the end of the ring. */ \
338 if ((__x + __n) > PCN_NTXDESC) { \
339 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
340 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
341 (PCN_NTXDESC - __x), (ops)); \
342 __n -= (PCN_NTXDESC - __x); \
343 __x = 0; \
344 } \
345 \
346 /* Now sync whatever is left. */ \
347 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
348 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
349 } while (/*CONSTCOND*/0)
350
351 #define PCN_CDRXSYNC(sc, x, ops) \
352 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
353 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
354
355 #define PCN_CDINITSYNC(sc, ops) \
356 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
357 PCN_CDINITOFF, sizeof(struct leinit), (ops))
358
359 #define PCN_INIT_RXDESC(sc, x) \
360 do { \
361 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
362 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
363 struct mbuf *__m = __rxs->rxs_mbuf; \
364 \
365 /* \
366 * Note: We scoot the packet forward 2 bytes in the buffer \
367 * so that the payload after the Ethernet header is aligned \
368 * to a 4-byte boundary. \
369 */ \
370 __m->m_data = __m->m_ext.ext_buf + 2; \
371 \
372 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
373 __rmd->rmd2 = \
374 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
375 __rmd->rmd0 = 0; \
376 } else { \
377 __rmd->rmd2 = 0; \
378 __rmd->rmd0 = \
379 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
380 } \
381 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
382 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
383 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
384 } while(/*CONSTCOND*/0)
385
386 void pcn_start(struct ifnet *);
387 void pcn_watchdog(struct ifnet *);
388 int pcn_ioctl(struct ifnet *, u_long, caddr_t);
389 int pcn_init(struct ifnet *);
390 void pcn_stop(struct ifnet *, int);
391
392 void pcn_shutdown(void *);
393
394 void pcn_reset(struct pcn_softc *);
395 void pcn_rxdrain(struct pcn_softc *);
396 int pcn_add_rxbuf(struct pcn_softc *, int);
397 void pcn_tick(void *);
398
399 void pcn_spnd(struct pcn_softc *);
400
401 void pcn_set_filter(struct pcn_softc *);
402
403 int pcn_intr(void *);
404 void pcn_txintr(struct pcn_softc *);
405 int pcn_rxintr(struct pcn_softc *);
406
407 int pcn_mii_readreg(struct device *, int, int);
408 void pcn_mii_writereg(struct device *, int, int, int);
409 void pcn_mii_statchg(struct device *);
410
411 void pcn_79c970_mediainit(struct pcn_softc *);
412 int pcn_79c970_mediachange(struct ifnet *);
413 void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
414
415 void pcn_79c971_mediainit(struct pcn_softc *);
416 int pcn_79c971_mediachange(struct ifnet *);
417 void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
418
419 /*
420 * Description of a PCnet-PCI variant. Used to select media access
421 * method, mostly, and to print a nice description of the chip.
422 */
423 const struct pcn_variant {
424 const char *pcv_desc;
425 void (*pcv_mediainit)(struct pcn_softc *);
426 uint16_t pcv_chipid;
427 } pcn_variants[] = {
428 { "Am79c970 PCnet-PCI",
429 pcn_79c970_mediainit,
430 PARTID_Am79c970 },
431
432 { "Am79c970A PCnet-PCI II",
433 pcn_79c970_mediainit,
434 PARTID_Am79c970A },
435
436 { "Am79c971 PCnet-FAST",
437 pcn_79c971_mediainit,
438 PARTID_Am79c971 },
439
440 { "Am79c972 PCnet-FAST+",
441 pcn_79c971_mediainit,
442 PARTID_Am79c972 },
443
444 { "Am79c973 PCnet-FAST III",
445 pcn_79c971_mediainit,
446 PARTID_Am79c973 },
447
448 { "Am79c975 PCnet-FAST III",
449 pcn_79c971_mediainit,
450 PARTID_Am79c975 },
451
452 { "Unknown PCnet-PCI variant",
453 pcn_79c971_mediainit,
454 0 },
455 };
456
457 int pcn_copy_small = 0;
458
459 int pcn_match(struct device *, struct cfdata *, void *);
460 void pcn_attach(struct device *, struct device *, void *);
461
462 CFATTACH_DECL(pcn, sizeof(struct pcn_softc),
463 pcn_match, pcn_attach, NULL, NULL);
464
465 /*
466 * Routines to read and write the PCnet-PCI CSR/BCR space.
467 */
468
469 static __inline uint32_t
470 pcn_csr_read(struct pcn_softc *sc, int reg)
471 {
472
473 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
474 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
475 }
476
477 static __inline void
478 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
479 {
480
481 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
482 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
483 }
484
485 static __inline uint32_t
486 pcn_bcr_read(struct pcn_softc *sc, int reg)
487 {
488
489 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
490 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
491 }
492
493 static __inline void
494 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
495 {
496
497 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
498 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
499 }
500
501 static const struct pcn_variant *
502 pcn_lookup_variant(uint16_t chipid)
503 {
504 const struct pcn_variant *pcv;
505
506 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
507 if (chipid == pcv->pcv_chipid)
508 return (pcv);
509 }
510
511 /*
512 * This covers unknown chips, which we simply treat like
513 * a generic PCnet-FAST.
514 */
515 return (pcv);
516 }
517
518 int
519 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
520 {
521 struct pci_attach_args *pa = aux;
522
523 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
524 return (0);
525
526 switch (PCI_PRODUCT(pa->pa_id)) {
527 case PCI_PRODUCT_AMD_PCNET_PCI:
528 /* Beat if_le_pci.c */
529 return (10);
530 }
531
532 return (0);
533 }
534
535 void
536 pcn_attach(struct device *parent, struct device *self, void *aux)
537 {
538 struct pcn_softc *sc = (struct pcn_softc *) self;
539 struct pci_attach_args *pa = aux;
540 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
541 pci_chipset_tag_t pc = pa->pa_pc;
542 pci_intr_handle_t ih;
543 const char *intrstr = NULL;
544 bus_space_tag_t iot, memt;
545 bus_space_handle_t ioh, memh;
546 bus_dma_segment_t seg;
547 int ioh_valid, memh_valid;
548 int i, rseg, error;
549 pcireg_t pmode;
550 uint32_t chipid, reg;
551 uint8_t enaddr[ETHER_ADDR_LEN];
552 int pmreg;
553
554 callout_init(&sc->sc_tick_ch);
555
556 printf(": AMD PCnet-PCI Ethernet\n");
557
558 /*
559 * Map the device.
560 */
561 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
562 &iot, &ioh, NULL, NULL) == 0);
563 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
564 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
565 &memt, &memh, NULL, NULL) == 0);
566
567 if (memh_valid) {
568 sc->sc_st = memt;
569 sc->sc_sh = memh;
570 } else if (ioh_valid) {
571 sc->sc_st = iot;
572 sc->sc_sh = ioh;
573 } else {
574 printf("%s: unable to map device registers\n",
575 sc->sc_dev.dv_xname);
576 return;
577 }
578
579 sc->sc_dmat = pa->pa_dmat;
580
581 /* Make sure bus mastering is enabled. */
582 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
583 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
584 PCI_COMMAND_MASTER_ENABLE);
585
586 /* Get it out of power save mode, if needed. */
587 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
588 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
589 if (pmode == 3) {
590 /*
591 * The card has lost all configuration data in
592 * this state, so punt.
593 */
594 printf("%s: unable to wake from power state D3\n",
595 sc->sc_dev.dv_xname);
596 return;
597 }
598 if (pmode != 0) {
599 printf("%s: waking up from power date D%d\n",
600 sc->sc_dev.dv_xname, pmode);
601 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
602 }
603 }
604
605 /*
606 * Reset the chip to a known state. This also puts the
607 * chip into 32-bit mode.
608 */
609 pcn_reset(sc);
610
611 /*
612 * Read the Ethernet address from the EEPROM.
613 */
614 for (i = 0; i < ETHER_ADDR_LEN; i++)
615 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
616 PCN32_APROM + i);
617
618 /*
619 * Now that the device is mapped, attempt to figure out what
620 * kind of chip we have. Note that IDL has all 32 bits of
621 * the chip ID when we're in 32-bit mode.
622 */
623 chipid = pcn_csr_read(sc, LE_CSR88);
624 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
625
626 printf("%s: %s rev %d, Ethernet address %s\n",
627 sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
628 ether_sprintf(enaddr));
629
630 /*
631 * Map and establish our interrupt.
632 */
633 if (pci_intr_map(pa, &ih)) {
634 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
635 return;
636 }
637 intrstr = pci_intr_string(pc, ih);
638 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
639 if (sc->sc_ih == NULL) {
640 printf("%s: unable to establish interrupt",
641 sc->sc_dev.dv_xname);
642 if (intrstr != NULL)
643 printf(" at %s", intrstr);
644 printf("\n");
645 return;
646 }
647 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
648
649 /*
650 * Allocate the control data structures, and create and load the
651 * DMA map for it.
652 */
653 if ((error = bus_dmamem_alloc(sc->sc_dmat,
654 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
655 0)) != 0) {
656 printf("%s: unable to allocate control data, error = %d\n",
657 sc->sc_dev.dv_xname, error);
658 goto fail_0;
659 }
660
661 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
662 sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
663 BUS_DMA_COHERENT)) != 0) {
664 printf("%s: unable to map control data, error = %d\n",
665 sc->sc_dev.dv_xname, error);
666 goto fail_1;
667 }
668
669 if ((error = bus_dmamap_create(sc->sc_dmat,
670 sizeof(struct pcn_control_data), 1,
671 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
672 printf("%s: unable to create control data DMA map, "
673 "error = %d\n", sc->sc_dev.dv_xname, error);
674 goto fail_2;
675 }
676
677 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
678 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
679 0)) != 0) {
680 printf("%s: unable to load control data DMA map, error = %d\n",
681 sc->sc_dev.dv_xname, error);
682 goto fail_3;
683 }
684
685 /* Create the transmit buffer DMA maps. */
686 for (i = 0; i < PCN_TXQUEUELEN; i++) {
687 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
688 PCN_NTXSEGS, MCLBYTES, 0, 0,
689 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
690 printf("%s: unable to create tx DMA map %d, "
691 "error = %d\n", sc->sc_dev.dv_xname, i, error);
692 goto fail_4;
693 }
694 }
695
696 /* Create the receive buffer DMA maps. */
697 for (i = 0; i < PCN_NRXDESC; i++) {
698 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
699 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
700 printf("%s: unable to create rx DMA map %d, "
701 "error = %d\n", sc->sc_dev.dv_xname, i, error);
702 goto fail_5;
703 }
704 sc->sc_rxsoft[i].rxs_mbuf = NULL;
705 }
706
707 /* Initialize our media structures. */
708 (*sc->sc_variant->pcv_mediainit)(sc);
709
710 /*
711 * Initialize FIFO watermark info.
712 */
713 switch (sc->sc_variant->pcv_chipid) {
714 case PARTID_Am79c970:
715 case PARTID_Am79c970A:
716 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
717 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
718 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
719 break;
720
721 default:
722 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
723 /*
724 * Read BCR25 to determine how much SRAM is
725 * on the board. If > 0, then we the chip
726 * uses different Start Point thresholds.
727 *
728 * Note BCR25 and BCR26 are loaded from the
729 * EEPROM on RST, and unaffected by S_RESET,
730 * so we don't really have to worry about
731 * them except for this.
732 */
733 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
734 if (reg != 0)
735 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
736 else
737 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
738 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
739 break;
740 }
741
742 /*
743 * Set up defaults -- see the tables above for what these
744 * values mean.
745 *
746 * XXX How should we tune RCVFW and XMTFW?
747 */
748 sc->sc_rcvfw = 1; /* minimum for full-duplex */
749 sc->sc_xmtsp = 1;
750 sc->sc_xmtfw = 0;
751
752 ifp = &sc->sc_ethercom.ec_if;
753 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
754 ifp->if_softc = sc;
755 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
756 ifp->if_ioctl = pcn_ioctl;
757 ifp->if_start = pcn_start;
758 ifp->if_watchdog = pcn_watchdog;
759 ifp->if_init = pcn_init;
760 ifp->if_stop = pcn_stop;
761 IFQ_SET_READY(&ifp->if_snd);
762
763 /* Attach the interface. */
764 if_attach(ifp);
765 ether_ifattach(ifp, enaddr);
766
767 #ifdef PCN_EVENT_COUNTERS
768 /* Attach event counters. */
769 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
770 NULL, sc->sc_dev.dv_xname, "txsstall");
771 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
772 NULL, sc->sc_dev.dv_xname, "txdstall");
773 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
774 NULL, sc->sc_dev.dv_xname, "txintr");
775 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
776 NULL, sc->sc_dev.dv_xname, "rxintr");
777 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
778 NULL, sc->sc_dev.dv_xname, "babl");
779 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
780 NULL, sc->sc_dev.dv_xname, "miss");
781 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
782 NULL, sc->sc_dev.dv_xname, "merr");
783
784 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
785 NULL, sc->sc_dev.dv_xname, "txseg1");
786 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
787 NULL, sc->sc_dev.dv_xname, "txseg2");
788 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
789 NULL, sc->sc_dev.dv_xname, "txseg3");
790 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
791 NULL, sc->sc_dev.dv_xname, "txseg4");
792 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
793 NULL, sc->sc_dev.dv_xname, "txseg5");
794 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
795 NULL, sc->sc_dev.dv_xname, "txsegmore");
796 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
797 NULL, sc->sc_dev.dv_xname, "txcopy");
798 #endif /* PCN_EVENT_COUNTERS */
799
800 /* Make sure the interface is shutdown during reboot. */
801 sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
802 if (sc->sc_sdhook == NULL)
803 printf("%s: WARNING: unable to establish shutdown hook\n",
804 sc->sc_dev.dv_xname);
805 return;
806
807 /*
808 * Free any resources we've allocated during the failed attach
809 * attempt. Do this in reverse order and fall through.
810 */
811 fail_5:
812 for (i = 0; i < PCN_NRXDESC; i++) {
813 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
814 bus_dmamap_destroy(sc->sc_dmat,
815 sc->sc_rxsoft[i].rxs_dmamap);
816 }
817 fail_4:
818 for (i = 0; i < PCN_TXQUEUELEN; i++) {
819 if (sc->sc_txsoft[i].txs_dmamap != NULL)
820 bus_dmamap_destroy(sc->sc_dmat,
821 sc->sc_txsoft[i].txs_dmamap);
822 }
823 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
824 fail_3:
825 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
826 fail_2:
827 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
828 sizeof(struct pcn_control_data));
829 fail_1:
830 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
831 fail_0:
832 return;
833 }
834
835 /*
836 * pcn_shutdown:
837 *
838 * Make sure the interface is stopped at reboot time.
839 */
840 void
841 pcn_shutdown(void *arg)
842 {
843 struct pcn_softc *sc = arg;
844
845 pcn_stop(&sc->sc_ethercom.ec_if, 1);
846 }
847
848 /*
849 * pcn_start: [ifnet interface function]
850 *
851 * Start packet transmission on the interface.
852 */
853 void
854 pcn_start(struct ifnet *ifp)
855 {
856 struct pcn_softc *sc = ifp->if_softc;
857 struct mbuf *m0, *m;
858 struct pcn_txsoft *txs;
859 bus_dmamap_t dmamap;
860 int error, nexttx, lasttx, ofree, seg;
861
862 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
863 return;
864
865 /*
866 * Remember the previous number of free descriptors and
867 * the first descriptor we'll use.
868 */
869 ofree = sc->sc_txfree;
870
871 /*
872 * Loop through the send queue, setting up transmit descriptors
873 * until we drain the queue, or use up all available transmit
874 * descriptors.
875 */
876 for (;;) {
877 /* Grab a packet off the queue. */
878 IFQ_POLL(&ifp->if_snd, m0);
879 if (m0 == NULL)
880 break;
881 m = NULL;
882
883 /* Get a work queue entry. */
884 if (sc->sc_txsfree == 0) {
885 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
886 break;
887 }
888
889 txs = &sc->sc_txsoft[sc->sc_txsnext];
890 dmamap = txs->txs_dmamap;
891
892 /*
893 * Load the DMA map. If this fails, the packet either
894 * didn't fit in the alloted number of segments, or we
895 * were short on resources. In this case, we'll copy
896 * and try again.
897 */
898 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
899 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
900 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
901 MGETHDR(m, M_DONTWAIT, MT_DATA);
902 if (m == NULL) {
903 printf("%s: unable to allocate Tx mbuf\n",
904 sc->sc_dev.dv_xname);
905 break;
906 }
907 if (m0->m_pkthdr.len > MHLEN) {
908 MCLGET(m, M_DONTWAIT);
909 if ((m->m_flags & M_EXT) == 0) {
910 printf("%s: unable to allocate Tx "
911 "cluster\n", sc->sc_dev.dv_xname);
912 m_freem(m);
913 break;
914 }
915 }
916 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
917 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
918 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
919 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
920 if (error) {
921 printf("%s: unable to load Tx buffer, "
922 "error = %d\n", sc->sc_dev.dv_xname, error);
923 break;
924 }
925 }
926
927 /*
928 * Ensure we have enough descriptors free to describe
929 * the packet. Note, we always reserve one descriptor
930 * at the end of the ring as a termination point, to
931 * prevent wrap-around.
932 */
933 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
934 /*
935 * Not enough free descriptors to transmit this
936 * packet. We haven't committed anything yet,
937 * so just unload the DMA map, put the packet
938 * back on the queue, and punt. Notify the upper
939 * layer that there are not more slots left.
940 *
941 * XXX We could allocate an mbuf and copy, but
942 * XXX is it worth it?
943 */
944 ifp->if_flags |= IFF_OACTIVE;
945 bus_dmamap_unload(sc->sc_dmat, dmamap);
946 if (m != NULL)
947 m_freem(m);
948 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
949 break;
950 }
951
952 IFQ_DEQUEUE(&ifp->if_snd, m0);
953 if (m != NULL) {
954 m_freem(m0);
955 m0 = m;
956 }
957
958 /*
959 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
960 */
961
962 /* Sync the DMA map. */
963 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
964 BUS_DMASYNC_PREWRITE);
965
966 #ifdef PCN_EVENT_COUNTERS
967 switch (dmamap->dm_nsegs) {
968 case 1:
969 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
970 break;
971 case 2:
972 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
973 break;
974 case 3:
975 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
976 break;
977 case 4:
978 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
979 break;
980 case 5:
981 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
982 break;
983 default:
984 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
985 break;
986 }
987 #endif /* PCN_EVENT_COUNTERS */
988
989 /*
990 * Initialize the transmit descriptors.
991 */
992 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
993 for (nexttx = sc->sc_txnext, seg = 0;
994 seg < dmamap->dm_nsegs;
995 seg++, nexttx = PCN_NEXTTX(nexttx)) {
996 /*
997 * If this is the first descriptor we're
998 * enqueueing, don't set the OWN bit just
999 * yet. That could cause a race condition.
1000 * We'll do it below.
1001 */
1002 sc->sc_txdescs[nexttx].tmd0 = 0;
1003 sc->sc_txdescs[nexttx].tmd2 =
1004 htole32(dmamap->dm_segs[seg].ds_addr);
1005 sc->sc_txdescs[nexttx].tmd1 =
1006 htole32(LE_T1_ONES |
1007 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1008 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1009 LE_T1_BCNT_MASK));
1010 lasttx = nexttx;
1011 }
1012 } else {
1013 for (nexttx = sc->sc_txnext, seg = 0;
1014 seg < dmamap->dm_nsegs;
1015 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1016 /*
1017 * If this is the first descriptor we're
1018 * enqueueing, don't set the OWN bit just
1019 * yet. That could cause a race condition.
1020 * We'll do it below.
1021 */
1022 sc->sc_txdescs[nexttx].tmd0 =
1023 htole32(dmamap->dm_segs[seg].ds_addr);
1024 sc->sc_txdescs[nexttx].tmd2 = 0;
1025 sc->sc_txdescs[nexttx].tmd1 =
1026 htole32(LE_T1_ONES |
1027 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1028 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1029 LE_T1_BCNT_MASK));
1030 lasttx = nexttx;
1031 }
1032 }
1033
1034 /* Interrupt on the packet, if appropriate. */
1035 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1036 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1037
1038 /* Set `start of packet' and `end of packet' appropriately. */
1039 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1040 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1041 htole32(LE_T1_OWN|LE_T1_STP);
1042
1043 /* Sync the descriptors we're using. */
1044 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1045 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1046
1047 /* Kick the transmitter. */
1048 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1049
1050 /*
1051 * Store a pointer to the packet so we can free it later,
1052 * and remember what txdirty will be once the packet is
1053 * done.
1054 */
1055 txs->txs_mbuf = m0;
1056 txs->txs_firstdesc = sc->sc_txnext;
1057 txs->txs_lastdesc = lasttx;
1058
1059 /* Advance the tx pointer. */
1060 sc->sc_txfree -= dmamap->dm_nsegs;
1061 sc->sc_txnext = nexttx;
1062
1063 sc->sc_txsfree--;
1064 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1065
1066 #if NBPFILTER > 0
1067 /* Pass the packet to any BPF listeners. */
1068 if (ifp->if_bpf)
1069 bpf_mtap(ifp->if_bpf, m0);
1070 #endif /* NBPFILTER > 0 */
1071 }
1072
1073 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1074 /* No more slots left; notify upper layer. */
1075 ifp->if_flags |= IFF_OACTIVE;
1076 }
1077
1078 if (sc->sc_txfree != ofree) {
1079 /* Set a watchdog timer in case the chip flakes out. */
1080 ifp->if_timer = 5;
1081 }
1082 }
1083
1084 /*
1085 * pcn_watchdog: [ifnet interface function]
1086 *
1087 * Watchdog timer handler.
1088 */
1089 void
1090 pcn_watchdog(struct ifnet *ifp)
1091 {
1092 struct pcn_softc *sc = ifp->if_softc;
1093
1094 /*
1095 * Since we're not interrupting every packet, sweep
1096 * up before we report an error.
1097 */
1098 pcn_txintr(sc);
1099
1100 if (sc->sc_txfree != PCN_NTXDESC) {
1101 printf("%s: device timeout (txfree %d txsfree %d)\n",
1102 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1103 ifp->if_oerrors++;
1104
1105 /* Reset the interface. */
1106 (void) pcn_init(ifp);
1107 }
1108
1109 /* Try to get more packets going. */
1110 pcn_start(ifp);
1111 }
1112
1113 /*
1114 * pcn_ioctl: [ifnet interface function]
1115 *
1116 * Handle control requests from the operator.
1117 */
1118 int
1119 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1120 {
1121 struct pcn_softc *sc = ifp->if_softc;
1122 struct ifreq *ifr = (struct ifreq *) data;
1123 int s, error;
1124
1125 s = splnet();
1126
1127 switch (cmd) {
1128 case SIOCSIFMEDIA:
1129 case SIOCGIFMEDIA:
1130 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1131 break;
1132
1133 default:
1134 error = ether_ioctl(ifp, cmd, data);
1135 if (error == ENETRESET) {
1136 /*
1137 * Multicast list has changed; set the hardware filter
1138 * accordingly.
1139 */
1140 error = pcn_init(ifp);
1141 }
1142 break;
1143 }
1144
1145 /* Try to get more packets going. */
1146 pcn_start(ifp);
1147
1148 splx(s);
1149 return (error);
1150 }
1151
1152 /*
1153 * pcn_intr:
1154 *
1155 * Interrupt service routine.
1156 */
1157 int
1158 pcn_intr(void *arg)
1159 {
1160 struct pcn_softc *sc = arg;
1161 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1162 uint32_t csr0;
1163 int wantinit, handled = 0;
1164
1165 for (wantinit = 0; wantinit == 0;) {
1166 csr0 = pcn_csr_read(sc, LE_CSR0);
1167 if ((csr0 & LE_C0_INTR) == 0)
1168 break;
1169
1170 /* ACK the bits and re-enable interrupts. */
1171 pcn_csr_write(sc, LE_CSR0, csr0 &
1172 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1173 LE_C0_TINT|LE_C0_IDON));
1174
1175 handled = 1;
1176
1177 if (csr0 & LE_C0_RINT) {
1178 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1179 wantinit = pcn_rxintr(sc);
1180 }
1181
1182 if (csr0 & LE_C0_TINT) {
1183 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1184 pcn_txintr(sc);
1185 }
1186
1187 if (csr0 & LE_C0_ERR) {
1188 if (csr0 & LE_C0_BABL) {
1189 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1190 ifp->if_oerrors++;
1191 }
1192 if (csr0 & LE_C0_MISS) {
1193 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1194 ifp->if_ierrors++;
1195 }
1196 if (csr0 & LE_C0_MERR) {
1197 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1198 printf("%s: memory error\n",
1199 sc->sc_dev.dv_xname);
1200 wantinit = 1;
1201 break;
1202 }
1203 }
1204
1205 if ((csr0 & LE_C0_RXON) == 0) {
1206 printf("%s: receiver disabled\n",
1207 sc->sc_dev.dv_xname);
1208 ifp->if_ierrors++;
1209 wantinit = 1;
1210 }
1211
1212 if ((csr0 & LE_C0_TXON) == 0) {
1213 printf("%s: transmitter disabled\n",
1214 sc->sc_dev.dv_xname);
1215 ifp->if_oerrors++;
1216 wantinit = 1;
1217 }
1218 }
1219
1220 if (handled) {
1221 if (wantinit)
1222 pcn_init(ifp);
1223
1224 /* Try to get more packets going. */
1225 pcn_start(ifp);
1226 }
1227
1228 return (handled);
1229 }
1230
1231 /*
1232 * pcn_spnd:
1233 *
1234 * Suspend the chip.
1235 */
1236 void
1237 pcn_spnd(struct pcn_softc *sc)
1238 {
1239 int i;
1240
1241 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1242
1243 for (i = 0; i < 10000; i++) {
1244 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1245 return;
1246 delay(5);
1247 }
1248
1249 printf("%s: WARNING: chip failed to enter suspended state\n",
1250 sc->sc_dev.dv_xname);
1251 }
1252
1253 /*
1254 * pcn_txintr:
1255 *
1256 * Helper; handle transmit interrupts.
1257 */
1258 void
1259 pcn_txintr(struct pcn_softc *sc)
1260 {
1261 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 struct pcn_txsoft *txs;
1263 uint32_t tmd1, tmd2, tmd;
1264 int i, j;
1265
1266 ifp->if_flags &= ~IFF_OACTIVE;
1267
1268 /*
1269 * Go through our Tx list and free mbufs for those
1270 * frames which have been transmitted.
1271 */
1272 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1273 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1274 txs = &sc->sc_txsoft[i];
1275
1276 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1277 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1278
1279 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1280 if (tmd1 & LE_T1_OWN)
1281 break;
1282
1283 /*
1284 * Slightly annoying -- we have to loop through the
1285 * descriptors we've used looking for ERR, since it
1286 * can appear on any descriptor in the chain.
1287 */
1288 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1289 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1290 if (tmd & LE_T1_ERR) {
1291 ifp->if_oerrors++;
1292 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1293 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1294 else
1295 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1296 if (tmd2 & LE_T2_UFLO) {
1297 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1298 sc->sc_xmtsp++;
1299 printf("%s: transmit "
1300 "underrun; new threshold: "
1301 "%s\n",
1302 sc->sc_dev.dv_xname,
1303 sc->sc_xmtsp_desc[
1304 sc->sc_xmtsp]);
1305 pcn_spnd(sc);
1306 pcn_csr_write(sc, LE_CSR80,
1307 LE_C80_RCVFW(sc->sc_rcvfw) |
1308 LE_C80_XMTSP(sc->sc_xmtsp) |
1309 LE_C80_XMTFW(sc->sc_xmtfw));
1310 pcn_csr_write(sc, LE_CSR5,
1311 sc->sc_csr5);
1312 } else {
1313 printf("%s: transmit "
1314 "underrun\n",
1315 sc->sc_dev.dv_xname);
1316 }
1317 } else if (tmd2 & LE_T2_BUFF) {
1318 printf("%s: transmit buffer error\n",
1319 sc->sc_dev.dv_xname);
1320 }
1321 if (tmd2 & LE_T2_LCOL)
1322 ifp->if_collisions++;
1323 if (tmd2 & LE_T2_RTRY)
1324 ifp->if_collisions += 16;
1325 goto next_packet;
1326 }
1327 if (j == txs->txs_lastdesc)
1328 break;
1329 }
1330 if (tmd1 & LE_T1_ONE)
1331 ifp->if_collisions++;
1332 else if (tmd & LE_T1_MORE) {
1333 /* Real number is unknown. */
1334 ifp->if_collisions += 2;
1335 }
1336 ifp->if_opackets++;
1337 next_packet:
1338 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1339 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1340 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1341 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1342 m_freem(txs->txs_mbuf);
1343 txs->txs_mbuf = NULL;
1344 }
1345
1346 /* Update the dirty transmit buffer pointer. */
1347 sc->sc_txsdirty = i;
1348
1349 /*
1350 * If there are no more pending transmissions, cancel the watchdog
1351 * timer.
1352 */
1353 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1354 ifp->if_timer = 0;
1355 }
1356
1357 /*
1358 * pcn_rxintr:
1359 *
1360 * Helper; handle receive interrupts.
1361 */
1362 int
1363 pcn_rxintr(struct pcn_softc *sc)
1364 {
1365 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1366 struct pcn_rxsoft *rxs;
1367 struct mbuf *m;
1368 uint32_t rmd1;
1369 int i, len;
1370
1371 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1372 rxs = &sc->sc_rxsoft[i];
1373
1374 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1375
1376 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1377
1378 if (rmd1 & LE_R1_OWN)
1379 break;
1380
1381 /*
1382 * Check for errors and make sure the packet fit into
1383 * a single buffer. We have structured this block of
1384 * code the way it is in order to compress it into
1385 * one test in the common case (no error).
1386 */
1387 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1388 (LE_R1_STP|LE_R1_ENP))) {
1389 /* Make sure the packet is in a single buffer. */
1390 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1391 (LE_R1_STP|LE_R1_ENP)) {
1392 printf("%s: packet spilled into next buffer\n",
1393 sc->sc_dev.dv_xname);
1394 return (1); /* pcn_intr() will re-init */
1395 }
1396
1397 /*
1398 * If the packet had an error, simple recycle the
1399 * buffer.
1400 */
1401 if (rmd1 & LE_R1_ERR) {
1402 ifp->if_ierrors++;
1403 /*
1404 * If we got an overflow error, chances
1405 * are there will be a CRC error. In
1406 * this case, just print the overflow
1407 * error, and skip the others.
1408 */
1409 if (rmd1 & LE_R1_OFLO)
1410 printf("%s: overflow error\n",
1411 sc->sc_dev.dv_xname);
1412 else {
1413 #define PRINTIT(x, s) \
1414 if (rmd1 & (x)) \
1415 printf("%s: %s\n", \
1416 sc->sc_dev.dv_xname, s);
1417 PRINTIT(LE_R1_FRAM, "framing error");
1418 PRINTIT(LE_R1_CRC, "CRC error");
1419 PRINTIT(LE_R1_BUFF, "buffer error");
1420 }
1421 #undef PRINTIT
1422 PCN_INIT_RXDESC(sc, i);
1423 continue;
1424 }
1425 }
1426
1427 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1428 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1429
1430 /*
1431 * No errors; receive the packet.
1432 */
1433 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1434 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1435 else
1436 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1437
1438 /*
1439 * The LANCE family includes the CRC with every packet;
1440 * trim it off here.
1441 */
1442 len -= ETHER_CRC_LEN;
1443
1444 /*
1445 * If the packet is small enough to fit in a
1446 * single header mbuf, allocate one and copy
1447 * the data into it. This greatly reduces
1448 * memory consumption when we receive lots
1449 * of small packets.
1450 *
1451 * Otherwise, we add a new buffer to the receive
1452 * chain. If this fails, we drop the packet and
1453 * recycle the old buffer.
1454 */
1455 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1456 MGETHDR(m, M_DONTWAIT, MT_DATA);
1457 if (m == NULL)
1458 goto dropit;
1459 m->m_data += 2;
1460 memcpy(mtod(m, caddr_t),
1461 mtod(rxs->rxs_mbuf, caddr_t), len);
1462 PCN_INIT_RXDESC(sc, i);
1463 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1464 rxs->rxs_dmamap->dm_mapsize,
1465 BUS_DMASYNC_PREREAD);
1466 } else {
1467 m = rxs->rxs_mbuf;
1468 if (pcn_add_rxbuf(sc, i) != 0) {
1469 dropit:
1470 ifp->if_ierrors++;
1471 PCN_INIT_RXDESC(sc, i);
1472 bus_dmamap_sync(sc->sc_dmat,
1473 rxs->rxs_dmamap, 0,
1474 rxs->rxs_dmamap->dm_mapsize,
1475 BUS_DMASYNC_PREREAD);
1476 continue;
1477 }
1478 }
1479
1480 m->m_pkthdr.rcvif = ifp;
1481 m->m_pkthdr.len = m->m_len = len;
1482
1483 #if NBPFILTER > 0
1484 /* Pass this up to any BPF listeners. */
1485 if (ifp->if_bpf)
1486 bpf_mtap(ifp->if_bpf, m);
1487 #endif /* NBPFILTER > 0 */
1488
1489 /* Pass it on. */
1490 (*ifp->if_input)(ifp, m);
1491 ifp->if_ipackets++;
1492 }
1493
1494 /* Update the receive pointer. */
1495 sc->sc_rxptr = i;
1496 return (0);
1497 }
1498
1499 /*
1500 * pcn_tick:
1501 *
1502 * One second timer, used to tick the MII.
1503 */
1504 void
1505 pcn_tick(void *arg)
1506 {
1507 struct pcn_softc *sc = arg;
1508 int s;
1509
1510 s = splnet();
1511 mii_tick(&sc->sc_mii);
1512 splx(s);
1513
1514 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1515 }
1516
1517 /*
1518 * pcn_reset:
1519 *
1520 * Perform a soft reset on the PCnet-PCI.
1521 */
1522 void
1523 pcn_reset(struct pcn_softc *sc)
1524 {
1525
1526 /*
1527 * The PCnet-PCI chip is reset by reading from the
1528 * RESET register. Note that while the NE2100 LANCE
1529 * boards require a write after the read, the PCnet-PCI
1530 * chips do not require this.
1531 *
1532 * Since we don't know if we're in 16-bit or 32-bit
1533 * mode right now, issue both (it's safe) in the
1534 * hopes that one will succeed.
1535 */
1536 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1537 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1538
1539 /* Wait 1ms for it to finish. */
1540 delay(1000);
1541
1542 /*
1543 * Select 32-bit I/O mode by issuing a 32-bit write to the
1544 * RDP. Since the RAP is 0 after a reset, writing a 0
1545 * to RDP is safe (since it simply clears CSR0).
1546 */
1547 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1548 }
1549
1550 /*
1551 * pcn_init: [ifnet interface function]
1552 *
1553 * Initialize the interface. Must be called at splnet().
1554 */
1555 int
1556 pcn_init(struct ifnet *ifp)
1557 {
1558 struct pcn_softc *sc = ifp->if_softc;
1559 struct pcn_rxsoft *rxs;
1560 uint8_t *enaddr = LLADDR(ifp->if_sadl);
1561 int i, error = 0;
1562 uint32_t reg;
1563
1564 /* Cancel any pending I/O. */
1565 pcn_stop(ifp, 0);
1566
1567 /* Reset the chip to a known state. */
1568 pcn_reset(sc);
1569
1570 /*
1571 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1572 * else.
1573 *
1574 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1575 * because the structure layout is compatible with ILACC,
1576 * but the burst mode is only available in SSTYLE 3, and
1577 * burst mode should provide some performance enhancement.
1578 */
1579 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1580 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1581 else
1582 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1583 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1584
1585 /* Initialize the transmit descriptor ring. */
1586 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1587 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1588 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1589 sc->sc_txfree = PCN_NTXDESC;
1590 sc->sc_txnext = 0;
1591
1592 /* Initialize the transmit job descriptors. */
1593 for (i = 0; i < PCN_TXQUEUELEN; i++)
1594 sc->sc_txsoft[i].txs_mbuf = NULL;
1595 sc->sc_txsfree = PCN_TXQUEUELEN;
1596 sc->sc_txsnext = 0;
1597 sc->sc_txsdirty = 0;
1598
1599 /*
1600 * Initialize the receive descriptor and receive job
1601 * descriptor rings.
1602 */
1603 for (i = 0; i < PCN_NRXDESC; i++) {
1604 rxs = &sc->sc_rxsoft[i];
1605 if (rxs->rxs_mbuf == NULL) {
1606 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1607 printf("%s: unable to allocate or map rx "
1608 "buffer %d, error = %d\n",
1609 sc->sc_dev.dv_xname, i, error);
1610 /*
1611 * XXX Should attempt to run with fewer receive
1612 * XXX buffers instead of just failing.
1613 */
1614 pcn_rxdrain(sc);
1615 goto out;
1616 }
1617 } else
1618 PCN_INIT_RXDESC(sc, i);
1619 }
1620 sc->sc_rxptr = 0;
1621
1622 /* Initialize MODE for the initialization block. */
1623 sc->sc_mode = 0;
1624 if (ifp->if_flags & IFF_PROMISC)
1625 sc->sc_mode |= LE_C15_PROM;
1626 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1627 sc->sc_mode |= LE_C15_DRCVBC;
1628
1629 /*
1630 * If we have MII, simply select MII in the MODE register,
1631 * and clear ASEL. Otherwise, let ASEL stand (for now),
1632 * and leave PORTSEL alone (it is ignored with ASEL is set).
1633 */
1634 if (sc->sc_flags & PCN_F_HAS_MII) {
1635 pcn_bcr_write(sc, LE_BCR2,
1636 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1637 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1638
1639 /*
1640 * Disable MII auto-negotiation. We handle that in
1641 * our own MII layer.
1642 */
1643 pcn_bcr_write(sc, LE_BCR32,
1644 pcn_csr_read(sc, LE_BCR32) | LE_B32_DANAS);
1645 }
1646
1647 /*
1648 * Set the Tx and Rx descriptor ring addresses in the init
1649 * block, the TLEN and RLEN other fields of the init block
1650 * MODE register.
1651 */
1652 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1653 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1654 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1655 ((ffs(PCN_NTXDESC) - 1) << 28) |
1656 ((ffs(PCN_NRXDESC) - 1) << 20));
1657
1658 /* Set the station address in the init block. */
1659 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1660 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1661 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1662 (enaddr[5] << 8));
1663
1664 /* Set the multicast filter in the init block. */
1665 pcn_set_filter(sc);
1666
1667 /* Initialize CSR3. */
1668 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1669
1670 /* Initialize CSR4. */
1671 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1672 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1673
1674 /* Initialize CSR5. */
1675 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1676 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1677
1678 /*
1679 * If we have an Am79c971 or greater, initialize CSR7.
1680 *
1681 * XXX Might be nice to use the MII auto-poll interrupt someday.
1682 */
1683 switch (sc->sc_variant->pcv_chipid) {
1684 case PARTID_Am79c970:
1685 case PARTID_Am79c970A:
1686 /* Not available on these chips. */
1687 break;
1688
1689 default:
1690 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1691 break;
1692 }
1693
1694 /*
1695 * On the Am79c970A and greater, initialize BCR18 to
1696 * enable burst mode.
1697 *
1698 * Also enable the "no underflow" option on the Am79c971 and
1699 * higher, which prevents the chip from generating transmit
1700 * underflows, yet sill provides decent performance. Note if
1701 * chip is not connected to external SRAM, then we still have
1702 * to handle underflow errors (the NOUFLO bit is ignored in
1703 * that case).
1704 */
1705 reg = pcn_bcr_read(sc, LE_BCR18);
1706 switch (sc->sc_variant->pcv_chipid) {
1707 case PARTID_Am79c970:
1708 break;
1709
1710 case PARTID_Am79c970A:
1711 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1712 break;
1713
1714 default:
1715 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1716 break;
1717 }
1718 pcn_bcr_write(sc, LE_BCR18, reg);
1719
1720 /*
1721 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1722 */
1723 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1724 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1725
1726 /*
1727 * Send the init block to the chip, and wait for it
1728 * to be processed.
1729 */
1730 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1731 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1732 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1733 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1734 delay(100);
1735 for (i = 0; i < 10000; i++) {
1736 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1737 break;
1738 delay(10);
1739 }
1740 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1741 if (i == 10000) {
1742 printf("%s: timeout processing init block\n",
1743 sc->sc_dev.dv_xname);
1744 error = EIO;
1745 goto out;
1746 }
1747
1748 /* Set the media. */
1749 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1750
1751 /* Enable interrupts and external activity (and ACK IDON). */
1752 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1753
1754 if (sc->sc_flags & PCN_F_HAS_MII) {
1755 /* Start the one second MII clock. */
1756 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1757 }
1758
1759 /* ...all done! */
1760 ifp->if_flags |= IFF_RUNNING;
1761 ifp->if_flags &= ~IFF_OACTIVE;
1762
1763 out:
1764 if (error)
1765 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1766 return (error);
1767 }
1768
1769 /*
1770 * pcn_rxdrain:
1771 *
1772 * Drain the receive queue.
1773 */
1774 void
1775 pcn_rxdrain(struct pcn_softc *sc)
1776 {
1777 struct pcn_rxsoft *rxs;
1778 int i;
1779
1780 for (i = 0; i < PCN_NRXDESC; i++) {
1781 rxs = &sc->sc_rxsoft[i];
1782 if (rxs->rxs_mbuf != NULL) {
1783 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1784 m_freem(rxs->rxs_mbuf);
1785 rxs->rxs_mbuf = NULL;
1786 }
1787 }
1788 }
1789
1790 /*
1791 * pcn_stop: [ifnet interface function]
1792 *
1793 * Stop transmission on the interface.
1794 */
1795 void
1796 pcn_stop(struct ifnet *ifp, int disable)
1797 {
1798 struct pcn_softc *sc = ifp->if_softc;
1799 struct pcn_txsoft *txs;
1800 int i;
1801
1802 if (sc->sc_flags & PCN_F_HAS_MII) {
1803 /* Stop the one second clock. */
1804 callout_stop(&sc->sc_tick_ch);
1805
1806 /* Down the MII. */
1807 mii_down(&sc->sc_mii);
1808 }
1809
1810 /* Stop the chip. */
1811 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1812
1813 /* Release any queued transmit buffers. */
1814 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1815 txs = &sc->sc_txsoft[i];
1816 if (txs->txs_mbuf != NULL) {
1817 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1818 m_freem(txs->txs_mbuf);
1819 txs->txs_mbuf = NULL;
1820 }
1821 }
1822
1823 if (disable)
1824 pcn_rxdrain(sc);
1825
1826 /* Mark the interface as down and cancel the watchdog timer. */
1827 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1828 ifp->if_timer = 0;
1829 }
1830
1831 /*
1832 * pcn_add_rxbuf:
1833 *
1834 * Add a receive buffer to the indicated descriptor.
1835 */
1836 int
1837 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1838 {
1839 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1840 struct mbuf *m;
1841 int error;
1842
1843 MGETHDR(m, M_DONTWAIT, MT_DATA);
1844 if (m == NULL)
1845 return (ENOBUFS);
1846
1847 MCLGET(m, M_DONTWAIT);
1848 if ((m->m_flags & M_EXT) == 0) {
1849 m_freem(m);
1850 return (ENOBUFS);
1851 }
1852
1853 if (rxs->rxs_mbuf != NULL)
1854 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1855
1856 rxs->rxs_mbuf = m;
1857
1858 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1859 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1860 BUS_DMA_READ|BUS_DMA_NOWAIT);
1861 if (error) {
1862 printf("%s: can't load rx DMA map %d, error = %d\n",
1863 sc->sc_dev.dv_xname, idx, error);
1864 panic("pcn_add_rxbuf");
1865 }
1866
1867 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1868 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1869
1870 PCN_INIT_RXDESC(sc, idx);
1871
1872 return (0);
1873 }
1874
1875 /*
1876 * pcn_set_filter:
1877 *
1878 * Set up the receive filter.
1879 */
1880 void
1881 pcn_set_filter(struct pcn_softc *sc)
1882 {
1883 struct ethercom *ec = &sc->sc_ethercom;
1884 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1885 struct ether_multi *enm;
1886 struct ether_multistep step;
1887 uint32_t crc;
1888
1889 /*
1890 * Set up the multicast address filter by passing all multicast
1891 * addresses through a CRC generator, and then using the high
1892 * order 6 bits as an index into the 64-bit logical address
1893 * filter. The high order bits select the word, while the rest
1894 * of the bits select the bit within the word.
1895 */
1896
1897 if (ifp->if_flags & IFF_PROMISC)
1898 goto allmulti;
1899
1900 sc->sc_initblock.init_ladrf[0] =
1901 sc->sc_initblock.init_ladrf[1] =
1902 sc->sc_initblock.init_ladrf[2] =
1903 sc->sc_initblock.init_ladrf[3] = 0;
1904
1905 ETHER_FIRST_MULTI(step, ec, enm);
1906 while (enm != NULL) {
1907 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1908 /*
1909 * We must listen to a range of multicast addresses.
1910 * For now, just accept all multicasts, rather than
1911 * trying to set only those filter bits needed to match
1912 * the range. (At this time, the only use of address
1913 * ranges is for IP multicast routing, for which the
1914 * range is big enough to require all bits set.)
1915 */
1916 goto allmulti;
1917 }
1918
1919 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1920
1921 /* Just want the 6 most significant bits. */
1922 crc >>= 26;
1923
1924 /* Set the corresponding bit in the filter. */
1925 sc->sc_initblock.init_ladrf[crc >> 4] |=
1926 htole16(1 << (crc & 0xf));
1927
1928 ETHER_NEXT_MULTI(step, enm);
1929 }
1930
1931 ifp->if_flags &= ~IFF_ALLMULTI;
1932 return;
1933
1934 allmulti:
1935 ifp->if_flags |= IFF_ALLMULTI;
1936 sc->sc_initblock.init_ladrf[0] =
1937 sc->sc_initblock.init_ladrf[1] =
1938 sc->sc_initblock.init_ladrf[2] =
1939 sc->sc_initblock.init_ladrf[3] = 0xffff;
1940 }
1941
1942 /*
1943 * pcn_79c970_mediainit:
1944 *
1945 * Initialize media for the Am79c970.
1946 */
1947 void
1948 pcn_79c970_mediainit(struct pcn_softc *sc)
1949 {
1950 const char *sep = "";
1951
1952 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c970_mediachange,
1953 pcn_79c970_mediastatus);
1954
1955 #define ADD(s, m, d) \
1956 do { \
1957 printf("%s%s", sep, s); \
1958 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
1959 sep = ", "; \
1960 } while (/*CONSTCOND*/0)
1961
1962 printf("%s: ", sc->sc_dev.dv_xname);
1963 ADD("10base5", IFM_10_5, PORTSEL_AUI);
1964 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1965 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
1966 ADD("10baseT", IFM_10_T, PORTSEL_10T);
1967 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1968 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
1969 ADD("auto", IFM_AUTO, 0);
1970 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1971 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
1972 printf("\n");
1973
1974 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1975 }
1976
1977 /*
1978 * pcn_79c970_mediastatus: [ifmedia interface function]
1979 *
1980 * Get the current interface media status (Am79c970 version).
1981 */
1982 void
1983 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1984 {
1985 struct pcn_softc *sc = ifp->if_softc;
1986
1987 /*
1988 * The currently selected media is always the active media.
1989 * Note: We have no way to determine what media the AUTO
1990 * process picked.
1991 */
1992 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1993 }
1994
1995 /*
1996 * pcn_79c970_mediachange: [ifmedia interface function]
1997 *
1998 * Set hardware to newly-selected media (Am79c970 version).
1999 */
2000 int
2001 pcn_79c970_mediachange(struct ifnet *ifp)
2002 {
2003 struct pcn_softc *sc = ifp->if_softc;
2004 uint32_t reg;
2005
2006 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2007 /*
2008 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2009 */
2010 reg = pcn_bcr_read(sc, LE_BCR2);
2011 reg |= LE_B2_ASEL;
2012 pcn_bcr_write(sc, LE_BCR2, reg);
2013 } else {
2014 /*
2015 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2016 */
2017 reg = pcn_bcr_read(sc, LE_BCR2);
2018 reg &= ~LE_B2_ASEL;
2019 pcn_bcr_write(sc, LE_BCR2, reg);
2020
2021 reg = pcn_csr_read(sc, LE_CSR15);
2022 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2023 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2024 pcn_csr_write(sc, LE_CSR15, reg);
2025 }
2026
2027 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2028 reg = LE_B9_FDEN;
2029 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2030 reg |= LE_B9_AUIFD;
2031 pcn_bcr_write(sc, LE_BCR9, reg);
2032 } else
2033 pcn_bcr_write(sc, LE_BCR0, 0);
2034
2035 return (0);
2036 }
2037
2038 /*
2039 * pcn_79c971_mediainit:
2040 *
2041 * Initialize media for the Am79c971.
2042 */
2043 void
2044 pcn_79c971_mediainit(struct pcn_softc *sc)
2045 {
2046 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2047
2048 /* We have MII. */
2049 sc->sc_flags |= PCN_F_HAS_MII;
2050
2051 /*
2052 * The built-in 10BASE-T interface is mapped to the MII
2053 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2054 * word that tells us which PHY to use. Since the 10BASE-T
2055 * interface is always at PHY 31, we make a note of the
2056 * first PHY that responds, and disallow any PHYs after
2057 * it. This is all handled in the MII read routine.
2058 */
2059 sc->sc_phyaddr = -1;
2060
2061 /* Initialize our media structures and probe the MII. */
2062 sc->sc_mii.mii_ifp = ifp;
2063 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2064 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2065 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2066 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2067 pcn_79c971_mediastatus);
2068
2069 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2070 MII_OFFSET_ANY, 0);
2071 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2072 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2073 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2074 } else
2075 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2076 }
2077
2078 /*
2079 * pcn_79c971_mediastatus: [ifmedia interface function]
2080 *
2081 * Get the current interface media status (Am79c971 version).
2082 */
2083 void
2084 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2085 {
2086 struct pcn_softc *sc = ifp->if_softc;
2087
2088 mii_pollstat(&sc->sc_mii);
2089 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2090 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2091 }
2092
2093 /*
2094 * pcn_79c971_mediachange: [ifmedia interface function]
2095 *
2096 * Set hardware to newly-selected media (Am79c971 version).
2097 */
2098 int
2099 pcn_79c971_mediachange(struct ifnet *ifp)
2100 {
2101 struct pcn_softc *sc = ifp->if_softc;
2102
2103 if (ifp->if_flags & IFF_UP)
2104 mii_mediachg(&sc->sc_mii);
2105 return (0);
2106 }
2107
2108 /*
2109 * pcn_mii_readreg: [mii interface function]
2110 *
2111 * Read a PHY register on the MII.
2112 */
2113 int
2114 pcn_mii_readreg(struct device *self, int phy, int reg)
2115 {
2116 struct pcn_softc *sc = (void *) self;
2117 uint32_t rv;
2118
2119 if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
2120 return (0);
2121
2122 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2123 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2124 if (rv == 0xffff)
2125 return (0);
2126
2127 if (sc->sc_phyaddr == -1)
2128 sc->sc_phyaddr = phy;
2129
2130 return (rv);
2131 }
2132
2133 /*
2134 * pcn_mii_writereg: [mii interface function]
2135 *
2136 * Write a PHY register on the MII.
2137 */
2138 void
2139 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2140 {
2141 struct pcn_softc *sc = (void *) self;
2142
2143 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2144 pcn_bcr_write(sc, LE_BCR34, val);
2145 }
2146
2147 /*
2148 * pcn_mii_statchg: [mii interface function]
2149 *
2150 * Callback from MII layer when media changes.
2151 */
2152 void
2153 pcn_mii_statchg(struct device *self)
2154 {
2155 struct pcn_softc *sc = (void *) self;
2156
2157 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2158 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2159 else
2160 pcn_bcr_write(sc, LE_BCR9, 0);
2161 }
2162