if_pcn.c revision 1.18 1 /* $NetBSD: if_pcn.c,v 1.18 2002/12/23 02:58:37 tsutsui Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.18 2002/12/23 02:58:37 tsutsui Exp $");
69
70 #include "bpfilter.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/device.h>
82 #include <sys/queue.h>
83
84 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
85
86 #include <net/if.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_ether.h>
90
91 #if NBPFILTER > 0
92 #include <net/bpf.h>
93 #endif
94
95 #include <machine/bus.h>
96 #include <machine/intr.h>
97 #include <machine/endian.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/ic/am79900reg.h>
103 #include <dev/ic/lancereg.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_pcnreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 4 segments
114 * per packet. This MUST work out to a power of 2.
115 *
116 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
117 *
118 * So we play a little trick here. We give each packet up to 16
119 * DMA segments, but only allocate the max of 512 descriptors. The
120 * transmit logic can deal with this, we just are hoping to sneak by.
121 */
122 #define PCN_NTXSEGS 16
123
124 #define PCN_TXQUEUELEN 128
125 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
126 #define PCN_NTXDESC 512
127 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
128 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
129 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
130
131 /* Tx interrupt every N + 1 packets. */
132 #define PCN_TXINTR_MASK 7
133
134 /*
135 * Receive descriptor list size. We have one Rx buffer per incoming
136 * packet, so this logic is a little simpler.
137 */
138 #define PCN_NRXDESC 128
139 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
140 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
141
142 /*
143 * Control structures are DMA'd to the PCnet chip. We allocate them in
144 * a single clump that maps to a single DMA segment to make several things
145 * easier.
146 */
147 struct pcn_control_data {
148 /* The transmit descriptors. */
149 struct letmd pcd_txdescs[PCN_NTXDESC];
150
151 /* The receive descriptors. */
152 struct lermd pcd_rxdescs[PCN_NRXDESC];
153
154 /* The init block. */
155 struct leinit pcd_initblock;
156 };
157
158 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
159 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
160 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
161 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
162
163 /*
164 * Software state for transmit jobs.
165 */
166 struct pcn_txsoft {
167 struct mbuf *txs_mbuf; /* head of our mbuf chain */
168 bus_dmamap_t txs_dmamap; /* our DMA map */
169 int txs_firstdesc; /* first descriptor in packet */
170 int txs_lastdesc; /* last descriptor in packet */
171 };
172
173 /*
174 * Software state for receive jobs.
175 */
176 struct pcn_rxsoft {
177 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
178 bus_dmamap_t rxs_dmamap; /* our DMA map */
179 };
180
181 /*
182 * Description of Rx FIFO watermarks for various revisions.
183 */
184 const char *pcn_79c970_rcvfw[] = {
185 "16 bytes",
186 "64 bytes",
187 "128 bytes",
188 NULL,
189 };
190
191 const char *pcn_79c971_rcvfw[] = {
192 "16 bytes",
193 "64 bytes",
194 "112 bytes",
195 NULL,
196 };
197
198 /*
199 * Description of Tx start points for various revisions.
200 */
201 const char *pcn_79c970_xmtsp[] = {
202 "8 bytes",
203 "64 bytes",
204 "128 bytes",
205 "248 bytes",
206 };
207
208 const char *pcn_79c971_xmtsp[] = {
209 "20 bytes",
210 "64 bytes",
211 "128 bytes",
212 "248 bytes",
213 };
214
215 const char *pcn_79c971_xmtsp_sram[] = {
216 "44 bytes",
217 "64 bytes",
218 "128 bytes",
219 "store-and-forward",
220 };
221
222 /*
223 * Description of Tx FIFO watermarks for various revisions.
224 */
225 const char *pcn_79c970_xmtfw[] = {
226 "16 bytes",
227 "64 bytes",
228 "128 bytes",
229 NULL,
230 };
231
232 const char *pcn_79c971_xmtfw[] = {
233 "16 bytes",
234 "64 bytes",
235 "108 bytes",
236 NULL,
237 };
238
239 /*
240 * Software state per device.
241 */
242 struct pcn_softc {
243 struct device sc_dev; /* generic device information */
244 bus_space_tag_t sc_st; /* bus space tag */
245 bus_space_handle_t sc_sh; /* bus space handle */
246 bus_dma_tag_t sc_dmat; /* bus DMA tag */
247 struct ethercom sc_ethercom; /* Ethernet common data */
248 void *sc_sdhook; /* shutdown hook */
249
250 /* Points to our media routines, etc. */
251 const struct pcn_variant *sc_variant;
252
253 void *sc_ih; /* interrupt cookie */
254
255 struct mii_data sc_mii; /* MII/media information */
256
257 struct callout sc_tick_ch; /* tick callout */
258
259 bus_dmamap_t sc_cddmamap; /* control data DMA map */
260 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
261
262 /* Software state for transmit and receive descriptors. */
263 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
264 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
265
266 /* Control data structures */
267 struct pcn_control_data *sc_control_data;
268 #define sc_txdescs sc_control_data->pcd_txdescs
269 #define sc_rxdescs sc_control_data->pcd_rxdescs
270 #define sc_initblock sc_control_data->pcd_initblock
271
272 #ifdef PCN_EVENT_COUNTERS
273 /* Event counters. */
274 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
275 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
276 struct evcnt sc_ev_txintr; /* Tx interrupts */
277 struct evcnt sc_ev_rxintr; /* Rx interrupts */
278 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
279 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
280 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
281
282 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
283 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
284 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
285 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
286 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
287 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
288 struct evcnt sc_ev_txcopy; /* Tx copies required */
289 #endif /* PCN_EVENT_COUNTERS */
290
291 const char **sc_rcvfw_desc; /* Rx FIFO watermark info */
292 int sc_rcvfw;
293
294 const char **sc_xmtsp_desc; /* Tx start point info */
295 int sc_xmtsp;
296
297 const char **sc_xmtfw_desc; /* Tx FIFO watermark info */
298 int sc_xmtfw;
299
300 int sc_flags; /* misc. flags; see below */
301 int sc_swstyle; /* the software style in use */
302
303 int sc_txfree; /* number of free Tx descriptors */
304 int sc_txnext; /* next ready Tx descriptor */
305
306 int sc_txsfree; /* number of free Tx jobs */
307 int sc_txsnext; /* next free Tx job */
308 int sc_txsdirty; /* dirty Tx jobs */
309
310 int sc_rxptr; /* next ready Rx descriptor/job */
311
312 uint32_t sc_csr5; /* prototype CSR5 register */
313 uint32_t sc_mode; /* prototype MODE register */
314 int sc_phyaddr; /* PHY address */
315 };
316
317 /* sc_flags */
318 #define PCN_F_HAS_MII 0x0001 /* has MII */
319
320 #ifdef PCN_EVENT_COUNTERS
321 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
322 #else
323 #define PCN_EVCNT_INCR(ev) /* nothing */
324 #endif
325
326 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
327 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
328 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
329
330 #define PCN_CDTXSYNC(sc, x, n, ops) \
331 do { \
332 int __x, __n; \
333 \
334 __x = (x); \
335 __n = (n); \
336 \
337 /* If it will wrap around, sync to the end of the ring. */ \
338 if ((__x + __n) > PCN_NTXDESC) { \
339 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
340 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
341 (PCN_NTXDESC - __x), (ops)); \
342 __n -= (PCN_NTXDESC - __x); \
343 __x = 0; \
344 } \
345 \
346 /* Now sync whatever is left. */ \
347 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
348 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
349 } while (/*CONSTCOND*/0)
350
351 #define PCN_CDRXSYNC(sc, x, ops) \
352 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
353 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
354
355 #define PCN_CDINITSYNC(sc, ops) \
356 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
357 PCN_CDINITOFF, sizeof(struct leinit), (ops))
358
359 #define PCN_INIT_RXDESC(sc, x) \
360 do { \
361 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
362 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
363 struct mbuf *__m = __rxs->rxs_mbuf; \
364 \
365 /* \
366 * Note: We scoot the packet forward 2 bytes in the buffer \
367 * so that the payload after the Ethernet header is aligned \
368 * to a 4-byte boundary. \
369 */ \
370 __m->m_data = __m->m_ext.ext_buf + 2; \
371 \
372 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
373 __rmd->rmd2 = \
374 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
375 __rmd->rmd0 = 0; \
376 } else { \
377 __rmd->rmd2 = 0; \
378 __rmd->rmd0 = \
379 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
380 } \
381 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
382 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
383 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
384 } while(/*CONSTCOND*/0)
385
386 void pcn_start(struct ifnet *);
387 void pcn_watchdog(struct ifnet *);
388 int pcn_ioctl(struct ifnet *, u_long, caddr_t);
389 int pcn_init(struct ifnet *);
390 void pcn_stop(struct ifnet *, int);
391
392 void pcn_shutdown(void *);
393
394 void pcn_reset(struct pcn_softc *);
395 void pcn_rxdrain(struct pcn_softc *);
396 int pcn_add_rxbuf(struct pcn_softc *, int);
397 void pcn_tick(void *);
398
399 void pcn_spnd(struct pcn_softc *);
400
401 void pcn_set_filter(struct pcn_softc *);
402
403 int pcn_intr(void *);
404 void pcn_txintr(struct pcn_softc *);
405 int pcn_rxintr(struct pcn_softc *);
406
407 int pcn_mii_readreg(struct device *, int, int);
408 void pcn_mii_writereg(struct device *, int, int, int);
409 void pcn_mii_statchg(struct device *);
410
411 void pcn_79c970_mediainit(struct pcn_softc *);
412 int pcn_79c970_mediachange(struct ifnet *);
413 void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
414
415 void pcn_79c971_mediainit(struct pcn_softc *);
416 int pcn_79c971_mediachange(struct ifnet *);
417 void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
418
419 /*
420 * Description of a PCnet-PCI variant. Used to select media access
421 * method, mostly, and to print a nice description of the chip.
422 */
423 const struct pcn_variant {
424 const char *pcv_desc;
425 void (*pcv_mediainit)(struct pcn_softc *);
426 uint16_t pcv_chipid;
427 } pcn_variants[] = {
428 { "Am79c970 PCnet-PCI",
429 pcn_79c970_mediainit,
430 PARTID_Am79c970 },
431
432 { "Am79c970A PCnet-PCI II",
433 pcn_79c970_mediainit,
434 PARTID_Am79c970A },
435
436 { "Am79c971 PCnet-FAST",
437 pcn_79c971_mediainit,
438 PARTID_Am79c971 },
439
440 { "Am79c972 PCnet-FAST+",
441 pcn_79c971_mediainit,
442 PARTID_Am79c972 },
443
444 { "Am79c973 PCnet-FAST III",
445 pcn_79c971_mediainit,
446 PARTID_Am79c973 },
447
448 { "Am79c975 PCnet-FAST III",
449 pcn_79c971_mediainit,
450 PARTID_Am79c975 },
451
452 { "Unknown PCnet-PCI variant",
453 pcn_79c971_mediainit,
454 0 },
455 };
456
457 int pcn_copy_small = 0;
458
459 int pcn_match(struct device *, struct cfdata *, void *);
460 void pcn_attach(struct device *, struct device *, void *);
461
462 CFATTACH_DECL(pcn, sizeof(struct pcn_softc),
463 pcn_match, pcn_attach, NULL, NULL);
464
465 /*
466 * Routines to read and write the PCnet-PCI CSR/BCR space.
467 */
468
469 static __inline uint32_t
470 pcn_csr_read(struct pcn_softc *sc, int reg)
471 {
472
473 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
474 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
475 }
476
477 static __inline void
478 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
479 {
480
481 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
482 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
483 }
484
485 static __inline uint32_t
486 pcn_bcr_read(struct pcn_softc *sc, int reg)
487 {
488
489 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
490 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
491 }
492
493 static __inline void
494 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
495 {
496
497 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
498 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
499 }
500
501 static const struct pcn_variant *
502 pcn_lookup_variant(uint16_t chipid)
503 {
504 const struct pcn_variant *pcv;
505
506 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
507 if (chipid == pcv->pcv_chipid)
508 return (pcv);
509 }
510
511 /*
512 * This covers unknown chips, which we simply treat like
513 * a generic PCnet-FAST.
514 */
515 return (pcv);
516 }
517
518 int
519 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
520 {
521 struct pci_attach_args *pa = aux;
522
523 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
524 return (0);
525
526 switch (PCI_PRODUCT(pa->pa_id)) {
527 case PCI_PRODUCT_AMD_PCNET_PCI:
528 /* Beat if_le_pci.c */
529 return (10);
530 }
531
532 return (0);
533 }
534
535 void
536 pcn_attach(struct device *parent, struct device *self, void *aux)
537 {
538 struct pcn_softc *sc = (struct pcn_softc *) self;
539 struct pci_attach_args *pa = aux;
540 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
541 pci_chipset_tag_t pc = pa->pa_pc;
542 pci_intr_handle_t ih;
543 const char *intrstr = NULL;
544 bus_space_tag_t iot, memt;
545 bus_space_handle_t ioh, memh;
546 bus_dma_segment_t seg;
547 int ioh_valid, memh_valid;
548 int i, rseg, error;
549 pcireg_t pmode;
550 uint32_t chipid, reg;
551 uint8_t enaddr[ETHER_ADDR_LEN];
552 int pmreg;
553
554 callout_init(&sc->sc_tick_ch);
555
556 printf(": AMD PCnet-PCI Ethernet\n");
557
558 /*
559 * Map the device.
560 */
561 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
562 &iot, &ioh, NULL, NULL) == 0);
563 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
564 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
565 &memt, &memh, NULL, NULL) == 0);
566
567 if (memh_valid) {
568 sc->sc_st = memt;
569 sc->sc_sh = memh;
570 } else if (ioh_valid) {
571 sc->sc_st = iot;
572 sc->sc_sh = ioh;
573 } else {
574 printf("%s: unable to map device registers\n",
575 sc->sc_dev.dv_xname);
576 return;
577 }
578
579 sc->sc_dmat = pa->pa_dmat;
580
581 /* Make sure bus mastering is enabled. */
582 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
583 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
584 PCI_COMMAND_MASTER_ENABLE);
585
586 /* Get it out of power save mode, if needed. */
587 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
588 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
589 PCI_PMCSR_STATE_MASK;
590 if (pmode == PCI_PMCSR_STATE_D3) {
591 /*
592 * The card has lost all configuration data in
593 * this state, so punt.
594 */
595 printf("%s: unable to wake from power state D3\n",
596 sc->sc_dev.dv_xname);
597 return;
598 }
599 if (pmode != PCI_PMCSR_STATE_D0) {
600 printf("%s: waking up from power date D%d\n",
601 sc->sc_dev.dv_xname, pmode);
602 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
603 PCI_PMCSR_STATE_D0);
604 }
605 }
606
607 /*
608 * Reset the chip to a known state. This also puts the
609 * chip into 32-bit mode.
610 */
611 pcn_reset(sc);
612
613 /*
614 * Read the Ethernet address from the EEPROM.
615 */
616 for (i = 0; i < ETHER_ADDR_LEN; i++)
617 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
618 PCN32_APROM + i);
619
620 /*
621 * Now that the device is mapped, attempt to figure out what
622 * kind of chip we have. Note that IDL has all 32 bits of
623 * the chip ID when we're in 32-bit mode.
624 */
625 chipid = pcn_csr_read(sc, LE_CSR88);
626 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
627
628 printf("%s: %s rev %d, Ethernet address %s\n",
629 sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
630 ether_sprintf(enaddr));
631
632 /*
633 * Map and establish our interrupt.
634 */
635 if (pci_intr_map(pa, &ih)) {
636 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
637 return;
638 }
639 intrstr = pci_intr_string(pc, ih);
640 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
641 if (sc->sc_ih == NULL) {
642 printf("%s: unable to establish interrupt",
643 sc->sc_dev.dv_xname);
644 if (intrstr != NULL)
645 printf(" at %s", intrstr);
646 printf("\n");
647 return;
648 }
649 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
650
651 /*
652 * Allocate the control data structures, and create and load the
653 * DMA map for it.
654 */
655 if ((error = bus_dmamem_alloc(sc->sc_dmat,
656 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
657 0)) != 0) {
658 printf("%s: unable to allocate control data, error = %d\n",
659 sc->sc_dev.dv_xname, error);
660 goto fail_0;
661 }
662
663 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
664 sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
665 BUS_DMA_COHERENT)) != 0) {
666 printf("%s: unable to map control data, error = %d\n",
667 sc->sc_dev.dv_xname, error);
668 goto fail_1;
669 }
670
671 if ((error = bus_dmamap_create(sc->sc_dmat,
672 sizeof(struct pcn_control_data), 1,
673 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
674 printf("%s: unable to create control data DMA map, "
675 "error = %d\n", sc->sc_dev.dv_xname, error);
676 goto fail_2;
677 }
678
679 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
680 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
681 0)) != 0) {
682 printf("%s: unable to load control data DMA map, error = %d\n",
683 sc->sc_dev.dv_xname, error);
684 goto fail_3;
685 }
686
687 /* Create the transmit buffer DMA maps. */
688 for (i = 0; i < PCN_TXQUEUELEN; i++) {
689 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
690 PCN_NTXSEGS, MCLBYTES, 0, 0,
691 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
692 printf("%s: unable to create tx DMA map %d, "
693 "error = %d\n", sc->sc_dev.dv_xname, i, error);
694 goto fail_4;
695 }
696 }
697
698 /* Create the receive buffer DMA maps. */
699 for (i = 0; i < PCN_NRXDESC; i++) {
700 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
701 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
702 printf("%s: unable to create rx DMA map %d, "
703 "error = %d\n", sc->sc_dev.dv_xname, i, error);
704 goto fail_5;
705 }
706 sc->sc_rxsoft[i].rxs_mbuf = NULL;
707 }
708
709 /* Initialize our media structures. */
710 (*sc->sc_variant->pcv_mediainit)(sc);
711
712 /*
713 * Initialize FIFO watermark info.
714 */
715 switch (sc->sc_variant->pcv_chipid) {
716 case PARTID_Am79c970:
717 case PARTID_Am79c970A:
718 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
719 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
720 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
721 break;
722
723 default:
724 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
725 /*
726 * Read BCR25 to determine how much SRAM is
727 * on the board. If > 0, then we the chip
728 * uses different Start Point thresholds.
729 *
730 * Note BCR25 and BCR26 are loaded from the
731 * EEPROM on RST, and unaffected by S_RESET,
732 * so we don't really have to worry about
733 * them except for this.
734 */
735 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
736 if (reg != 0)
737 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
738 else
739 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
740 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
741 break;
742 }
743
744 /*
745 * Set up defaults -- see the tables above for what these
746 * values mean.
747 *
748 * XXX How should we tune RCVFW and XMTFW?
749 */
750 sc->sc_rcvfw = 1; /* minimum for full-duplex */
751 sc->sc_xmtsp = 1;
752 sc->sc_xmtfw = 0;
753
754 ifp = &sc->sc_ethercom.ec_if;
755 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
756 ifp->if_softc = sc;
757 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
758 ifp->if_ioctl = pcn_ioctl;
759 ifp->if_start = pcn_start;
760 ifp->if_watchdog = pcn_watchdog;
761 ifp->if_init = pcn_init;
762 ifp->if_stop = pcn_stop;
763 IFQ_SET_READY(&ifp->if_snd);
764
765 /* Attach the interface. */
766 if_attach(ifp);
767 ether_ifattach(ifp, enaddr);
768
769 #ifdef PCN_EVENT_COUNTERS
770 /* Attach event counters. */
771 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
772 NULL, sc->sc_dev.dv_xname, "txsstall");
773 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
774 NULL, sc->sc_dev.dv_xname, "txdstall");
775 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
776 NULL, sc->sc_dev.dv_xname, "txintr");
777 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
778 NULL, sc->sc_dev.dv_xname, "rxintr");
779 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
780 NULL, sc->sc_dev.dv_xname, "babl");
781 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
782 NULL, sc->sc_dev.dv_xname, "miss");
783 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
784 NULL, sc->sc_dev.dv_xname, "merr");
785
786 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
787 NULL, sc->sc_dev.dv_xname, "txseg1");
788 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
789 NULL, sc->sc_dev.dv_xname, "txseg2");
790 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
791 NULL, sc->sc_dev.dv_xname, "txseg3");
792 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
793 NULL, sc->sc_dev.dv_xname, "txseg4");
794 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
795 NULL, sc->sc_dev.dv_xname, "txseg5");
796 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
797 NULL, sc->sc_dev.dv_xname, "txsegmore");
798 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
799 NULL, sc->sc_dev.dv_xname, "txcopy");
800 #endif /* PCN_EVENT_COUNTERS */
801
802 /* Make sure the interface is shutdown during reboot. */
803 sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
804 if (sc->sc_sdhook == NULL)
805 printf("%s: WARNING: unable to establish shutdown hook\n",
806 sc->sc_dev.dv_xname);
807 return;
808
809 /*
810 * Free any resources we've allocated during the failed attach
811 * attempt. Do this in reverse order and fall through.
812 */
813 fail_5:
814 for (i = 0; i < PCN_NRXDESC; i++) {
815 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
816 bus_dmamap_destroy(sc->sc_dmat,
817 sc->sc_rxsoft[i].rxs_dmamap);
818 }
819 fail_4:
820 for (i = 0; i < PCN_TXQUEUELEN; i++) {
821 if (sc->sc_txsoft[i].txs_dmamap != NULL)
822 bus_dmamap_destroy(sc->sc_dmat,
823 sc->sc_txsoft[i].txs_dmamap);
824 }
825 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
826 fail_3:
827 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
828 fail_2:
829 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
830 sizeof(struct pcn_control_data));
831 fail_1:
832 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
833 fail_0:
834 return;
835 }
836
837 /*
838 * pcn_shutdown:
839 *
840 * Make sure the interface is stopped at reboot time.
841 */
842 void
843 pcn_shutdown(void *arg)
844 {
845 struct pcn_softc *sc = arg;
846
847 pcn_stop(&sc->sc_ethercom.ec_if, 1);
848 }
849
850 /*
851 * pcn_start: [ifnet interface function]
852 *
853 * Start packet transmission on the interface.
854 */
855 void
856 pcn_start(struct ifnet *ifp)
857 {
858 struct pcn_softc *sc = ifp->if_softc;
859 struct mbuf *m0, *m;
860 struct pcn_txsoft *txs;
861 bus_dmamap_t dmamap;
862 int error, nexttx, lasttx, ofree, seg;
863
864 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
865 return;
866
867 /*
868 * Remember the previous number of free descriptors and
869 * the first descriptor we'll use.
870 */
871 ofree = sc->sc_txfree;
872
873 /*
874 * Loop through the send queue, setting up transmit descriptors
875 * until we drain the queue, or use up all available transmit
876 * descriptors.
877 */
878 for (;;) {
879 /* Grab a packet off the queue. */
880 IFQ_POLL(&ifp->if_snd, m0);
881 if (m0 == NULL)
882 break;
883 m = NULL;
884
885 /* Get a work queue entry. */
886 if (sc->sc_txsfree == 0) {
887 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
888 break;
889 }
890
891 txs = &sc->sc_txsoft[sc->sc_txsnext];
892 dmamap = txs->txs_dmamap;
893
894 /*
895 * Load the DMA map. If this fails, the packet either
896 * didn't fit in the alloted number of segments, or we
897 * were short on resources. In this case, we'll copy
898 * and try again.
899 */
900 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
901 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
902 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
903 MGETHDR(m, M_DONTWAIT, MT_DATA);
904 if (m == NULL) {
905 printf("%s: unable to allocate Tx mbuf\n",
906 sc->sc_dev.dv_xname);
907 break;
908 }
909 if (m0->m_pkthdr.len > MHLEN) {
910 MCLGET(m, M_DONTWAIT);
911 if ((m->m_flags & M_EXT) == 0) {
912 printf("%s: unable to allocate Tx "
913 "cluster\n", sc->sc_dev.dv_xname);
914 m_freem(m);
915 break;
916 }
917 }
918 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
919 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
920 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
921 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
922 if (error) {
923 printf("%s: unable to load Tx buffer, "
924 "error = %d\n", sc->sc_dev.dv_xname, error);
925 break;
926 }
927 }
928
929 /*
930 * Ensure we have enough descriptors free to describe
931 * the packet. Note, we always reserve one descriptor
932 * at the end of the ring as a termination point, to
933 * prevent wrap-around.
934 */
935 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
936 /*
937 * Not enough free descriptors to transmit this
938 * packet. We haven't committed anything yet,
939 * so just unload the DMA map, put the packet
940 * back on the queue, and punt. Notify the upper
941 * layer that there are not more slots left.
942 *
943 * XXX We could allocate an mbuf and copy, but
944 * XXX is it worth it?
945 */
946 ifp->if_flags |= IFF_OACTIVE;
947 bus_dmamap_unload(sc->sc_dmat, dmamap);
948 if (m != NULL)
949 m_freem(m);
950 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
951 break;
952 }
953
954 IFQ_DEQUEUE(&ifp->if_snd, m0);
955 if (m != NULL) {
956 m_freem(m0);
957 m0 = m;
958 }
959
960 /*
961 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
962 */
963
964 /* Sync the DMA map. */
965 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
966 BUS_DMASYNC_PREWRITE);
967
968 #ifdef PCN_EVENT_COUNTERS
969 switch (dmamap->dm_nsegs) {
970 case 1:
971 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
972 break;
973 case 2:
974 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
975 break;
976 case 3:
977 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
978 break;
979 case 4:
980 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
981 break;
982 case 5:
983 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
984 break;
985 default:
986 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
987 break;
988 }
989 #endif /* PCN_EVENT_COUNTERS */
990
991 /*
992 * Initialize the transmit descriptors.
993 */
994 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
995 for (nexttx = sc->sc_txnext, seg = 0;
996 seg < dmamap->dm_nsegs;
997 seg++, nexttx = PCN_NEXTTX(nexttx)) {
998 /*
999 * If this is the first descriptor we're
1000 * enqueueing, don't set the OWN bit just
1001 * yet. That could cause a race condition.
1002 * We'll do it below.
1003 */
1004 sc->sc_txdescs[nexttx].tmd0 = 0;
1005 sc->sc_txdescs[nexttx].tmd2 =
1006 htole32(dmamap->dm_segs[seg].ds_addr);
1007 sc->sc_txdescs[nexttx].tmd1 =
1008 htole32(LE_T1_ONES |
1009 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1010 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1011 LE_T1_BCNT_MASK));
1012 lasttx = nexttx;
1013 }
1014 } else {
1015 for (nexttx = sc->sc_txnext, seg = 0;
1016 seg < dmamap->dm_nsegs;
1017 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1018 /*
1019 * If this is the first descriptor we're
1020 * enqueueing, don't set the OWN bit just
1021 * yet. That could cause a race condition.
1022 * We'll do it below.
1023 */
1024 sc->sc_txdescs[nexttx].tmd0 =
1025 htole32(dmamap->dm_segs[seg].ds_addr);
1026 sc->sc_txdescs[nexttx].tmd2 = 0;
1027 sc->sc_txdescs[nexttx].tmd1 =
1028 htole32(LE_T1_ONES |
1029 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1030 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1031 LE_T1_BCNT_MASK));
1032 lasttx = nexttx;
1033 }
1034 }
1035
1036 /* Interrupt on the packet, if appropriate. */
1037 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1038 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1039
1040 /* Set `start of packet' and `end of packet' appropriately. */
1041 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1042 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1043 htole32(LE_T1_OWN|LE_T1_STP);
1044
1045 /* Sync the descriptors we're using. */
1046 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1047 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1048
1049 /* Kick the transmitter. */
1050 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1051
1052 /*
1053 * Store a pointer to the packet so we can free it later,
1054 * and remember what txdirty will be once the packet is
1055 * done.
1056 */
1057 txs->txs_mbuf = m0;
1058 txs->txs_firstdesc = sc->sc_txnext;
1059 txs->txs_lastdesc = lasttx;
1060
1061 /* Advance the tx pointer. */
1062 sc->sc_txfree -= dmamap->dm_nsegs;
1063 sc->sc_txnext = nexttx;
1064
1065 sc->sc_txsfree--;
1066 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1067
1068 #if NBPFILTER > 0
1069 /* Pass the packet to any BPF listeners. */
1070 if (ifp->if_bpf)
1071 bpf_mtap(ifp->if_bpf, m0);
1072 #endif /* NBPFILTER > 0 */
1073 }
1074
1075 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1076 /* No more slots left; notify upper layer. */
1077 ifp->if_flags |= IFF_OACTIVE;
1078 }
1079
1080 if (sc->sc_txfree != ofree) {
1081 /* Set a watchdog timer in case the chip flakes out. */
1082 ifp->if_timer = 5;
1083 }
1084 }
1085
1086 /*
1087 * pcn_watchdog: [ifnet interface function]
1088 *
1089 * Watchdog timer handler.
1090 */
1091 void
1092 pcn_watchdog(struct ifnet *ifp)
1093 {
1094 struct pcn_softc *sc = ifp->if_softc;
1095
1096 /*
1097 * Since we're not interrupting every packet, sweep
1098 * up before we report an error.
1099 */
1100 pcn_txintr(sc);
1101
1102 if (sc->sc_txfree != PCN_NTXDESC) {
1103 printf("%s: device timeout (txfree %d txsfree %d)\n",
1104 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1105 ifp->if_oerrors++;
1106
1107 /* Reset the interface. */
1108 (void) pcn_init(ifp);
1109 }
1110
1111 /* Try to get more packets going. */
1112 pcn_start(ifp);
1113 }
1114
1115 /*
1116 * pcn_ioctl: [ifnet interface function]
1117 *
1118 * Handle control requests from the operator.
1119 */
1120 int
1121 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1122 {
1123 struct pcn_softc *sc = ifp->if_softc;
1124 struct ifreq *ifr = (struct ifreq *) data;
1125 int s, error;
1126
1127 s = splnet();
1128
1129 switch (cmd) {
1130 case SIOCSIFMEDIA:
1131 case SIOCGIFMEDIA:
1132 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1133 break;
1134
1135 default:
1136 error = ether_ioctl(ifp, cmd, data);
1137 if (error == ENETRESET) {
1138 /*
1139 * Multicast list has changed; set the hardware filter
1140 * accordingly.
1141 */
1142 error = pcn_init(ifp);
1143 }
1144 break;
1145 }
1146
1147 /* Try to get more packets going. */
1148 pcn_start(ifp);
1149
1150 splx(s);
1151 return (error);
1152 }
1153
1154 /*
1155 * pcn_intr:
1156 *
1157 * Interrupt service routine.
1158 */
1159 int
1160 pcn_intr(void *arg)
1161 {
1162 struct pcn_softc *sc = arg;
1163 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1164 uint32_t csr0;
1165 int wantinit, handled = 0;
1166
1167 for (wantinit = 0; wantinit == 0;) {
1168 csr0 = pcn_csr_read(sc, LE_CSR0);
1169 if ((csr0 & LE_C0_INTR) == 0)
1170 break;
1171
1172 /* ACK the bits and re-enable interrupts. */
1173 pcn_csr_write(sc, LE_CSR0, csr0 &
1174 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1175 LE_C0_TINT|LE_C0_IDON));
1176
1177 handled = 1;
1178
1179 if (csr0 & LE_C0_RINT) {
1180 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1181 wantinit = pcn_rxintr(sc);
1182 }
1183
1184 if (csr0 & LE_C0_TINT) {
1185 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1186 pcn_txintr(sc);
1187 }
1188
1189 if (csr0 & LE_C0_ERR) {
1190 if (csr0 & LE_C0_BABL) {
1191 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1192 ifp->if_oerrors++;
1193 }
1194 if (csr0 & LE_C0_MISS) {
1195 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1196 ifp->if_ierrors++;
1197 }
1198 if (csr0 & LE_C0_MERR) {
1199 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1200 printf("%s: memory error\n",
1201 sc->sc_dev.dv_xname);
1202 wantinit = 1;
1203 break;
1204 }
1205 }
1206
1207 if ((csr0 & LE_C0_RXON) == 0) {
1208 printf("%s: receiver disabled\n",
1209 sc->sc_dev.dv_xname);
1210 ifp->if_ierrors++;
1211 wantinit = 1;
1212 }
1213
1214 if ((csr0 & LE_C0_TXON) == 0) {
1215 printf("%s: transmitter disabled\n",
1216 sc->sc_dev.dv_xname);
1217 ifp->if_oerrors++;
1218 wantinit = 1;
1219 }
1220 }
1221
1222 if (handled) {
1223 if (wantinit)
1224 pcn_init(ifp);
1225
1226 /* Try to get more packets going. */
1227 pcn_start(ifp);
1228 }
1229
1230 return (handled);
1231 }
1232
1233 /*
1234 * pcn_spnd:
1235 *
1236 * Suspend the chip.
1237 */
1238 void
1239 pcn_spnd(struct pcn_softc *sc)
1240 {
1241 int i;
1242
1243 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1244
1245 for (i = 0; i < 10000; i++) {
1246 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1247 return;
1248 delay(5);
1249 }
1250
1251 printf("%s: WARNING: chip failed to enter suspended state\n",
1252 sc->sc_dev.dv_xname);
1253 }
1254
1255 /*
1256 * pcn_txintr:
1257 *
1258 * Helper; handle transmit interrupts.
1259 */
1260 void
1261 pcn_txintr(struct pcn_softc *sc)
1262 {
1263 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1264 struct pcn_txsoft *txs;
1265 uint32_t tmd1, tmd2, tmd;
1266 int i, j;
1267
1268 ifp->if_flags &= ~IFF_OACTIVE;
1269
1270 /*
1271 * Go through our Tx list and free mbufs for those
1272 * frames which have been transmitted.
1273 */
1274 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1275 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1276 txs = &sc->sc_txsoft[i];
1277
1278 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1279 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1280
1281 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1282 if (tmd1 & LE_T1_OWN)
1283 break;
1284
1285 /*
1286 * Slightly annoying -- we have to loop through the
1287 * descriptors we've used looking for ERR, since it
1288 * can appear on any descriptor in the chain.
1289 */
1290 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1291 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1292 if (tmd & LE_T1_ERR) {
1293 ifp->if_oerrors++;
1294 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1295 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1296 else
1297 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1298 if (tmd2 & LE_T2_UFLO) {
1299 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1300 sc->sc_xmtsp++;
1301 printf("%s: transmit "
1302 "underrun; new threshold: "
1303 "%s\n",
1304 sc->sc_dev.dv_xname,
1305 sc->sc_xmtsp_desc[
1306 sc->sc_xmtsp]);
1307 pcn_spnd(sc);
1308 pcn_csr_write(sc, LE_CSR80,
1309 LE_C80_RCVFW(sc->sc_rcvfw) |
1310 LE_C80_XMTSP(sc->sc_xmtsp) |
1311 LE_C80_XMTFW(sc->sc_xmtfw));
1312 pcn_csr_write(sc, LE_CSR5,
1313 sc->sc_csr5);
1314 } else {
1315 printf("%s: transmit "
1316 "underrun\n",
1317 sc->sc_dev.dv_xname);
1318 }
1319 } else if (tmd2 & LE_T2_BUFF) {
1320 printf("%s: transmit buffer error\n",
1321 sc->sc_dev.dv_xname);
1322 }
1323 if (tmd2 & LE_T2_LCOL)
1324 ifp->if_collisions++;
1325 if (tmd2 & LE_T2_RTRY)
1326 ifp->if_collisions += 16;
1327 goto next_packet;
1328 }
1329 if (j == txs->txs_lastdesc)
1330 break;
1331 }
1332 if (tmd1 & LE_T1_ONE)
1333 ifp->if_collisions++;
1334 else if (tmd & LE_T1_MORE) {
1335 /* Real number is unknown. */
1336 ifp->if_collisions += 2;
1337 }
1338 ifp->if_opackets++;
1339 next_packet:
1340 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1341 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1342 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1343 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1344 m_freem(txs->txs_mbuf);
1345 txs->txs_mbuf = NULL;
1346 }
1347
1348 /* Update the dirty transmit buffer pointer. */
1349 sc->sc_txsdirty = i;
1350
1351 /*
1352 * If there are no more pending transmissions, cancel the watchdog
1353 * timer.
1354 */
1355 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1356 ifp->if_timer = 0;
1357 }
1358
1359 /*
1360 * pcn_rxintr:
1361 *
1362 * Helper; handle receive interrupts.
1363 */
1364 int
1365 pcn_rxintr(struct pcn_softc *sc)
1366 {
1367 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1368 struct pcn_rxsoft *rxs;
1369 struct mbuf *m;
1370 uint32_t rmd1;
1371 int i, len;
1372
1373 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1374 rxs = &sc->sc_rxsoft[i];
1375
1376 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1377
1378 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1379
1380 if (rmd1 & LE_R1_OWN)
1381 break;
1382
1383 /*
1384 * Check for errors and make sure the packet fit into
1385 * a single buffer. We have structured this block of
1386 * code the way it is in order to compress it into
1387 * one test in the common case (no error).
1388 */
1389 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1390 (LE_R1_STP|LE_R1_ENP))) {
1391 /* Make sure the packet is in a single buffer. */
1392 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1393 (LE_R1_STP|LE_R1_ENP)) {
1394 printf("%s: packet spilled into next buffer\n",
1395 sc->sc_dev.dv_xname);
1396 return (1); /* pcn_intr() will re-init */
1397 }
1398
1399 /*
1400 * If the packet had an error, simple recycle the
1401 * buffer.
1402 */
1403 if (rmd1 & LE_R1_ERR) {
1404 ifp->if_ierrors++;
1405 /*
1406 * If we got an overflow error, chances
1407 * are there will be a CRC error. In
1408 * this case, just print the overflow
1409 * error, and skip the others.
1410 */
1411 if (rmd1 & LE_R1_OFLO)
1412 printf("%s: overflow error\n",
1413 sc->sc_dev.dv_xname);
1414 else {
1415 #define PRINTIT(x, str) \
1416 if (rmd1 & (x)) \
1417 printf("%s: %s\n", \
1418 sc->sc_dev.dv_xname, str);
1419 PRINTIT(LE_R1_FRAM, "framing error");
1420 PRINTIT(LE_R1_CRC, "CRC error");
1421 PRINTIT(LE_R1_BUFF, "buffer error");
1422 }
1423 #undef PRINTIT
1424 PCN_INIT_RXDESC(sc, i);
1425 continue;
1426 }
1427 }
1428
1429 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1430 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1431
1432 /*
1433 * No errors; receive the packet.
1434 */
1435 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1436 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1437 else
1438 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1439
1440 /*
1441 * The LANCE family includes the CRC with every packet;
1442 * trim it off here.
1443 */
1444 len -= ETHER_CRC_LEN;
1445
1446 /*
1447 * If the packet is small enough to fit in a
1448 * single header mbuf, allocate one and copy
1449 * the data into it. This greatly reduces
1450 * memory consumption when we receive lots
1451 * of small packets.
1452 *
1453 * Otherwise, we add a new buffer to the receive
1454 * chain. If this fails, we drop the packet and
1455 * recycle the old buffer.
1456 */
1457 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1458 MGETHDR(m, M_DONTWAIT, MT_DATA);
1459 if (m == NULL)
1460 goto dropit;
1461 m->m_data += 2;
1462 memcpy(mtod(m, caddr_t),
1463 mtod(rxs->rxs_mbuf, caddr_t), len);
1464 PCN_INIT_RXDESC(sc, i);
1465 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1466 rxs->rxs_dmamap->dm_mapsize,
1467 BUS_DMASYNC_PREREAD);
1468 } else {
1469 m = rxs->rxs_mbuf;
1470 if (pcn_add_rxbuf(sc, i) != 0) {
1471 dropit:
1472 ifp->if_ierrors++;
1473 PCN_INIT_RXDESC(sc, i);
1474 bus_dmamap_sync(sc->sc_dmat,
1475 rxs->rxs_dmamap, 0,
1476 rxs->rxs_dmamap->dm_mapsize,
1477 BUS_DMASYNC_PREREAD);
1478 continue;
1479 }
1480 }
1481
1482 m->m_pkthdr.rcvif = ifp;
1483 m->m_pkthdr.len = m->m_len = len;
1484
1485 #if NBPFILTER > 0
1486 /* Pass this up to any BPF listeners. */
1487 if (ifp->if_bpf)
1488 bpf_mtap(ifp->if_bpf, m);
1489 #endif /* NBPFILTER > 0 */
1490
1491 /* Pass it on. */
1492 (*ifp->if_input)(ifp, m);
1493 ifp->if_ipackets++;
1494 }
1495
1496 /* Update the receive pointer. */
1497 sc->sc_rxptr = i;
1498 return (0);
1499 }
1500
1501 /*
1502 * pcn_tick:
1503 *
1504 * One second timer, used to tick the MII.
1505 */
1506 void
1507 pcn_tick(void *arg)
1508 {
1509 struct pcn_softc *sc = arg;
1510 int s;
1511
1512 s = splnet();
1513 mii_tick(&sc->sc_mii);
1514 splx(s);
1515
1516 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1517 }
1518
1519 /*
1520 * pcn_reset:
1521 *
1522 * Perform a soft reset on the PCnet-PCI.
1523 */
1524 void
1525 pcn_reset(struct pcn_softc *sc)
1526 {
1527
1528 /*
1529 * The PCnet-PCI chip is reset by reading from the
1530 * RESET register. Note that while the NE2100 LANCE
1531 * boards require a write after the read, the PCnet-PCI
1532 * chips do not require this.
1533 *
1534 * Since we don't know if we're in 16-bit or 32-bit
1535 * mode right now, issue both (it's safe) in the
1536 * hopes that one will succeed.
1537 */
1538 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1539 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1540
1541 /* Wait 1ms for it to finish. */
1542 delay(1000);
1543
1544 /*
1545 * Select 32-bit I/O mode by issuing a 32-bit write to the
1546 * RDP. Since the RAP is 0 after a reset, writing a 0
1547 * to RDP is safe (since it simply clears CSR0).
1548 */
1549 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1550 }
1551
1552 /*
1553 * pcn_init: [ifnet interface function]
1554 *
1555 * Initialize the interface. Must be called at splnet().
1556 */
1557 int
1558 pcn_init(struct ifnet *ifp)
1559 {
1560 struct pcn_softc *sc = ifp->if_softc;
1561 struct pcn_rxsoft *rxs;
1562 uint8_t *enaddr = LLADDR(ifp->if_sadl);
1563 int i, error = 0;
1564 uint32_t reg;
1565
1566 /* Cancel any pending I/O. */
1567 pcn_stop(ifp, 0);
1568
1569 /* Reset the chip to a known state. */
1570 pcn_reset(sc);
1571
1572 /*
1573 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1574 * else.
1575 *
1576 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1577 * because the structure layout is compatible with ILACC,
1578 * but the burst mode is only available in SSTYLE 3, and
1579 * burst mode should provide some performance enhancement.
1580 */
1581 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1582 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1583 else
1584 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1585 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1586
1587 /* Initialize the transmit descriptor ring. */
1588 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1589 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1590 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1591 sc->sc_txfree = PCN_NTXDESC;
1592 sc->sc_txnext = 0;
1593
1594 /* Initialize the transmit job descriptors. */
1595 for (i = 0; i < PCN_TXQUEUELEN; i++)
1596 sc->sc_txsoft[i].txs_mbuf = NULL;
1597 sc->sc_txsfree = PCN_TXQUEUELEN;
1598 sc->sc_txsnext = 0;
1599 sc->sc_txsdirty = 0;
1600
1601 /*
1602 * Initialize the receive descriptor and receive job
1603 * descriptor rings.
1604 */
1605 for (i = 0; i < PCN_NRXDESC; i++) {
1606 rxs = &sc->sc_rxsoft[i];
1607 if (rxs->rxs_mbuf == NULL) {
1608 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1609 printf("%s: unable to allocate or map rx "
1610 "buffer %d, error = %d\n",
1611 sc->sc_dev.dv_xname, i, error);
1612 /*
1613 * XXX Should attempt to run with fewer receive
1614 * XXX buffers instead of just failing.
1615 */
1616 pcn_rxdrain(sc);
1617 goto out;
1618 }
1619 } else
1620 PCN_INIT_RXDESC(sc, i);
1621 }
1622 sc->sc_rxptr = 0;
1623
1624 /* Initialize MODE for the initialization block. */
1625 sc->sc_mode = 0;
1626 if (ifp->if_flags & IFF_PROMISC)
1627 sc->sc_mode |= LE_C15_PROM;
1628 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1629 sc->sc_mode |= LE_C15_DRCVBC;
1630
1631 /*
1632 * If we have MII, simply select MII in the MODE register,
1633 * and clear ASEL. Otherwise, let ASEL stand (for now),
1634 * and leave PORTSEL alone (it is ignored with ASEL is set).
1635 */
1636 if (sc->sc_flags & PCN_F_HAS_MII) {
1637 pcn_bcr_write(sc, LE_BCR2,
1638 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1639 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1640
1641 /*
1642 * Disable MII auto-negotiation. We handle that in
1643 * our own MII layer.
1644 */
1645 pcn_bcr_write(sc, LE_BCR32,
1646 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1647 }
1648
1649 /*
1650 * Set the Tx and Rx descriptor ring addresses in the init
1651 * block, the TLEN and RLEN other fields of the init block
1652 * MODE register.
1653 */
1654 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1655 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1656 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1657 ((ffs(PCN_NTXDESC) - 1) << 28) |
1658 ((ffs(PCN_NRXDESC) - 1) << 20));
1659
1660 /* Set the station address in the init block. */
1661 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1662 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1663 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1664 (enaddr[5] << 8));
1665
1666 /* Set the multicast filter in the init block. */
1667 pcn_set_filter(sc);
1668
1669 /* Initialize CSR3. */
1670 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1671
1672 /* Initialize CSR4. */
1673 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1674 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1675
1676 /* Initialize CSR5. */
1677 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1678 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1679
1680 /*
1681 * If we have an Am79c971 or greater, initialize CSR7.
1682 *
1683 * XXX Might be nice to use the MII auto-poll interrupt someday.
1684 */
1685 switch (sc->sc_variant->pcv_chipid) {
1686 case PARTID_Am79c970:
1687 case PARTID_Am79c970A:
1688 /* Not available on these chips. */
1689 break;
1690
1691 default:
1692 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1693 break;
1694 }
1695
1696 /*
1697 * On the Am79c970A and greater, initialize BCR18 to
1698 * enable burst mode.
1699 *
1700 * Also enable the "no underflow" option on the Am79c971 and
1701 * higher, which prevents the chip from generating transmit
1702 * underflows, yet sill provides decent performance. Note if
1703 * chip is not connected to external SRAM, then we still have
1704 * to handle underflow errors (the NOUFLO bit is ignored in
1705 * that case).
1706 */
1707 reg = pcn_bcr_read(sc, LE_BCR18);
1708 switch (sc->sc_variant->pcv_chipid) {
1709 case PARTID_Am79c970:
1710 break;
1711
1712 case PARTID_Am79c970A:
1713 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1714 break;
1715
1716 default:
1717 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1718 break;
1719 }
1720 pcn_bcr_write(sc, LE_BCR18, reg);
1721
1722 /*
1723 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1724 */
1725 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1726 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1727
1728 /*
1729 * Send the init block to the chip, and wait for it
1730 * to be processed.
1731 */
1732 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1733 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1734 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1735 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1736 delay(100);
1737 for (i = 0; i < 10000; i++) {
1738 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1739 break;
1740 delay(10);
1741 }
1742 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1743 if (i == 10000) {
1744 printf("%s: timeout processing init block\n",
1745 sc->sc_dev.dv_xname);
1746 error = EIO;
1747 goto out;
1748 }
1749
1750 /* Set the media. */
1751 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1752
1753 /* Enable interrupts and external activity (and ACK IDON). */
1754 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1755
1756 if (sc->sc_flags & PCN_F_HAS_MII) {
1757 /* Start the one second MII clock. */
1758 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1759 }
1760
1761 /* ...all done! */
1762 ifp->if_flags |= IFF_RUNNING;
1763 ifp->if_flags &= ~IFF_OACTIVE;
1764
1765 out:
1766 if (error)
1767 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1768 return (error);
1769 }
1770
1771 /*
1772 * pcn_rxdrain:
1773 *
1774 * Drain the receive queue.
1775 */
1776 void
1777 pcn_rxdrain(struct pcn_softc *sc)
1778 {
1779 struct pcn_rxsoft *rxs;
1780 int i;
1781
1782 for (i = 0; i < PCN_NRXDESC; i++) {
1783 rxs = &sc->sc_rxsoft[i];
1784 if (rxs->rxs_mbuf != NULL) {
1785 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1786 m_freem(rxs->rxs_mbuf);
1787 rxs->rxs_mbuf = NULL;
1788 }
1789 }
1790 }
1791
1792 /*
1793 * pcn_stop: [ifnet interface function]
1794 *
1795 * Stop transmission on the interface.
1796 */
1797 void
1798 pcn_stop(struct ifnet *ifp, int disable)
1799 {
1800 struct pcn_softc *sc = ifp->if_softc;
1801 struct pcn_txsoft *txs;
1802 int i;
1803
1804 if (sc->sc_flags & PCN_F_HAS_MII) {
1805 /* Stop the one second clock. */
1806 callout_stop(&sc->sc_tick_ch);
1807
1808 /* Down the MII. */
1809 mii_down(&sc->sc_mii);
1810 }
1811
1812 /* Stop the chip. */
1813 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1814
1815 /* Release any queued transmit buffers. */
1816 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1817 txs = &sc->sc_txsoft[i];
1818 if (txs->txs_mbuf != NULL) {
1819 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1820 m_freem(txs->txs_mbuf);
1821 txs->txs_mbuf = NULL;
1822 }
1823 }
1824
1825 if (disable)
1826 pcn_rxdrain(sc);
1827
1828 /* Mark the interface as down and cancel the watchdog timer. */
1829 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1830 ifp->if_timer = 0;
1831 }
1832
1833 /*
1834 * pcn_add_rxbuf:
1835 *
1836 * Add a receive buffer to the indicated descriptor.
1837 */
1838 int
1839 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1840 {
1841 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1842 struct mbuf *m;
1843 int error;
1844
1845 MGETHDR(m, M_DONTWAIT, MT_DATA);
1846 if (m == NULL)
1847 return (ENOBUFS);
1848
1849 MCLGET(m, M_DONTWAIT);
1850 if ((m->m_flags & M_EXT) == 0) {
1851 m_freem(m);
1852 return (ENOBUFS);
1853 }
1854
1855 if (rxs->rxs_mbuf != NULL)
1856 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1857
1858 rxs->rxs_mbuf = m;
1859
1860 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1861 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1862 BUS_DMA_READ|BUS_DMA_NOWAIT);
1863 if (error) {
1864 printf("%s: can't load rx DMA map %d, error = %d\n",
1865 sc->sc_dev.dv_xname, idx, error);
1866 panic("pcn_add_rxbuf");
1867 }
1868
1869 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1870 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1871
1872 PCN_INIT_RXDESC(sc, idx);
1873
1874 return (0);
1875 }
1876
1877 /*
1878 * pcn_set_filter:
1879 *
1880 * Set up the receive filter.
1881 */
1882 void
1883 pcn_set_filter(struct pcn_softc *sc)
1884 {
1885 struct ethercom *ec = &sc->sc_ethercom;
1886 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1887 struct ether_multi *enm;
1888 struct ether_multistep step;
1889 uint32_t crc;
1890
1891 /*
1892 * Set up the multicast address filter by passing all multicast
1893 * addresses through a CRC generator, and then using the high
1894 * order 6 bits as an index into the 64-bit logical address
1895 * filter. The high order bits select the word, while the rest
1896 * of the bits select the bit within the word.
1897 */
1898
1899 if (ifp->if_flags & IFF_PROMISC)
1900 goto allmulti;
1901
1902 sc->sc_initblock.init_ladrf[0] =
1903 sc->sc_initblock.init_ladrf[1] =
1904 sc->sc_initblock.init_ladrf[2] =
1905 sc->sc_initblock.init_ladrf[3] = 0;
1906
1907 ETHER_FIRST_MULTI(step, ec, enm);
1908 while (enm != NULL) {
1909 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1910 /*
1911 * We must listen to a range of multicast addresses.
1912 * For now, just accept all multicasts, rather than
1913 * trying to set only those filter bits needed to match
1914 * the range. (At this time, the only use of address
1915 * ranges is for IP multicast routing, for which the
1916 * range is big enough to require all bits set.)
1917 */
1918 goto allmulti;
1919 }
1920
1921 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1922
1923 /* Just want the 6 most significant bits. */
1924 crc >>= 26;
1925
1926 /* Set the corresponding bit in the filter. */
1927 sc->sc_initblock.init_ladrf[crc >> 4] |=
1928 htole16(1 << (crc & 0xf));
1929
1930 ETHER_NEXT_MULTI(step, enm);
1931 }
1932
1933 ifp->if_flags &= ~IFF_ALLMULTI;
1934 return;
1935
1936 allmulti:
1937 ifp->if_flags |= IFF_ALLMULTI;
1938 sc->sc_initblock.init_ladrf[0] =
1939 sc->sc_initblock.init_ladrf[1] =
1940 sc->sc_initblock.init_ladrf[2] =
1941 sc->sc_initblock.init_ladrf[3] = 0xffff;
1942 }
1943
1944 /*
1945 * pcn_79c970_mediainit:
1946 *
1947 * Initialize media for the Am79c970.
1948 */
1949 void
1950 pcn_79c970_mediainit(struct pcn_softc *sc)
1951 {
1952 const char *sep = "";
1953
1954 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
1955 pcn_79c970_mediastatus);
1956
1957 #define ADD(str, m, d) \
1958 do { \
1959 printf("%s%s", sep, str); \
1960 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
1961 sep = ", "; \
1962 } while (/*CONSTCOND*/0)
1963
1964 printf("%s: ", sc->sc_dev.dv_xname);
1965 ADD("10base5", IFM_10_5, PORTSEL_AUI);
1966 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1967 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
1968 ADD("10baseT", IFM_10_T, PORTSEL_10T);
1969 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1970 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
1971 ADD("auto", IFM_AUTO, 0);
1972 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1973 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
1974 printf("\n");
1975
1976 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1977 }
1978
1979 /*
1980 * pcn_79c970_mediastatus: [ifmedia interface function]
1981 *
1982 * Get the current interface media status (Am79c970 version).
1983 */
1984 void
1985 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1986 {
1987 struct pcn_softc *sc = ifp->if_softc;
1988
1989 /*
1990 * The currently selected media is always the active media.
1991 * Note: We have no way to determine what media the AUTO
1992 * process picked.
1993 */
1994 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1995 }
1996
1997 /*
1998 * pcn_79c970_mediachange: [ifmedia interface function]
1999 *
2000 * Set hardware to newly-selected media (Am79c970 version).
2001 */
2002 int
2003 pcn_79c970_mediachange(struct ifnet *ifp)
2004 {
2005 struct pcn_softc *sc = ifp->if_softc;
2006 uint32_t reg;
2007
2008 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2009 /*
2010 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2011 */
2012 reg = pcn_bcr_read(sc, LE_BCR2);
2013 reg |= LE_B2_ASEL;
2014 pcn_bcr_write(sc, LE_BCR2, reg);
2015 } else {
2016 /*
2017 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2018 */
2019 reg = pcn_bcr_read(sc, LE_BCR2);
2020 reg &= ~LE_B2_ASEL;
2021 pcn_bcr_write(sc, LE_BCR2, reg);
2022
2023 reg = pcn_csr_read(sc, LE_CSR15);
2024 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2025 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2026 pcn_csr_write(sc, LE_CSR15, reg);
2027 }
2028
2029 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2030 reg = LE_B9_FDEN;
2031 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2032 reg |= LE_B9_AUIFD;
2033 pcn_bcr_write(sc, LE_BCR9, reg);
2034 } else
2035 pcn_bcr_write(sc, LE_BCR9, 0);
2036
2037 return (0);
2038 }
2039
2040 /*
2041 * pcn_79c971_mediainit:
2042 *
2043 * Initialize media for the Am79c971.
2044 */
2045 void
2046 pcn_79c971_mediainit(struct pcn_softc *sc)
2047 {
2048 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2049
2050 /* We have MII. */
2051 sc->sc_flags |= PCN_F_HAS_MII;
2052
2053 /*
2054 * The built-in 10BASE-T interface is mapped to the MII
2055 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2056 * word that tells us which PHY to use. Since the 10BASE-T
2057 * interface is always at PHY 31, we make a note of the
2058 * first PHY that responds, and disallow any PHYs after
2059 * it. This is all handled in the MII read routine.
2060 */
2061 sc->sc_phyaddr = -1;
2062
2063 /* Initialize our media structures and probe the MII. */
2064 sc->sc_mii.mii_ifp = ifp;
2065 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2066 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2067 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2068 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2069 pcn_79c971_mediastatus);
2070
2071 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2072 MII_OFFSET_ANY, 0);
2073 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2074 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2075 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2076 } else
2077 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2078 }
2079
2080 /*
2081 * pcn_79c971_mediastatus: [ifmedia interface function]
2082 *
2083 * Get the current interface media status (Am79c971 version).
2084 */
2085 void
2086 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2087 {
2088 struct pcn_softc *sc = ifp->if_softc;
2089
2090 mii_pollstat(&sc->sc_mii);
2091 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2092 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2093 }
2094
2095 /*
2096 * pcn_79c971_mediachange: [ifmedia interface function]
2097 *
2098 * Set hardware to newly-selected media (Am79c971 version).
2099 */
2100 int
2101 pcn_79c971_mediachange(struct ifnet *ifp)
2102 {
2103 struct pcn_softc *sc = ifp->if_softc;
2104
2105 if (ifp->if_flags & IFF_UP)
2106 mii_mediachg(&sc->sc_mii);
2107 return (0);
2108 }
2109
2110 /*
2111 * pcn_mii_readreg: [mii interface function]
2112 *
2113 * Read a PHY register on the MII.
2114 */
2115 int
2116 pcn_mii_readreg(struct device *self, int phy, int reg)
2117 {
2118 struct pcn_softc *sc = (void *) self;
2119 uint32_t rv;
2120
2121 if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
2122 return (0);
2123
2124 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2125 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2126 if (rv == 0xffff)
2127 return (0);
2128
2129 if (sc->sc_phyaddr == -1)
2130 sc->sc_phyaddr = phy;
2131
2132 return (rv);
2133 }
2134
2135 /*
2136 * pcn_mii_writereg: [mii interface function]
2137 *
2138 * Write a PHY register on the MII.
2139 */
2140 void
2141 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2142 {
2143 struct pcn_softc *sc = (void *) self;
2144
2145 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2146 pcn_bcr_write(sc, LE_BCR34, val);
2147 }
2148
2149 /*
2150 * pcn_mii_statchg: [mii interface function]
2151 *
2152 * Callback from MII layer when media changes.
2153 */
2154 void
2155 pcn_mii_statchg(struct device *self)
2156 {
2157 struct pcn_softc *sc = (void *) self;
2158
2159 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2160 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2161 else
2162 pcn_bcr_write(sc, LE_BCR9, 0);
2163 }
2164