if_pcn.c revision 1.29 1 /* $NetBSD: if_pcn.c,v 1.29 2006/02/22 02:57:26 garbled Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include "opt_pcn.h"
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.29 2006/02/22 02:57:26 garbled Exp $");
71
72 #include "bpfilter.h"
73 #include "rnd.h"
74
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/callout.h>
78 #include <sys/mbuf.h>
79 #include <sys/malloc.h>
80 #include <sys/kernel.h>
81 #include <sys/socket.h>
82 #include <sys/ioctl.h>
83 #include <sys/errno.h>
84 #include <sys/device.h>
85 #include <sys/queue.h>
86
87 #if NRND > 0
88 #include <sys/rnd.h>
89 #endif
90
91 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
92
93 #include <net/if.h>
94 #include <net/if_dl.h>
95 #include <net/if_media.h>
96 #include <net/if_ether.h>
97
98 #if NBPFILTER > 0
99 #include <net/bpf.h>
100 #endif
101
102 #include <machine/bus.h>
103 #include <machine/intr.h>
104 #include <machine/endian.h>
105
106 #include <dev/mii/mii.h>
107 #include <dev/mii/miivar.h>
108
109 #include <dev/ic/am79900reg.h>
110 #include <dev/ic/lancereg.h>
111
112 #include <dev/pci/pcireg.h>
113 #include <dev/pci/pcivar.h>
114 #include <dev/pci/pcidevs.h>
115
116 #include <dev/pci/if_pcnreg.h>
117
118 /*
119 * Transmit descriptor list size. This is arbitrary, but allocate
120 * enough descriptors for 128 pending transmissions, and 4 segments
121 * per packet. This MUST work out to a power of 2.
122 *
123 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
124 *
125 * So we play a little trick here. We give each packet up to 16
126 * DMA segments, but only allocate the max of 512 descriptors. The
127 * transmit logic can deal with this, we just are hoping to sneak by.
128 */
129 #define PCN_NTXSEGS 16
130
131 #define PCN_TXQUEUELEN 128
132 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
133 #define PCN_NTXDESC 512
134 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
135 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
136 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
137
138 /* Tx interrupt every N + 1 packets. */
139 #define PCN_TXINTR_MASK 7
140
141 /*
142 * Receive descriptor list size. We have one Rx buffer per incoming
143 * packet, so this logic is a little simpler.
144 */
145 #define PCN_NRXDESC 128
146 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
147 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
148
149 /*
150 * Control structures are DMA'd to the PCnet chip. We allocate them in
151 * a single clump that maps to a single DMA segment to make several things
152 * easier.
153 */
154 struct pcn_control_data {
155 /* The transmit descriptors. */
156 struct letmd pcd_txdescs[PCN_NTXDESC];
157
158 /* The receive descriptors. */
159 struct lermd pcd_rxdescs[PCN_NRXDESC];
160
161 /* The init block. */
162 struct leinit pcd_initblock;
163 };
164
165 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
166 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
167 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
168 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
169
170 /*
171 * Software state for transmit jobs.
172 */
173 struct pcn_txsoft {
174 struct mbuf *txs_mbuf; /* head of our mbuf chain */
175 bus_dmamap_t txs_dmamap; /* our DMA map */
176 int txs_firstdesc; /* first descriptor in packet */
177 int txs_lastdesc; /* last descriptor in packet */
178 };
179
180 /*
181 * Software state for receive jobs.
182 */
183 struct pcn_rxsoft {
184 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
185 bus_dmamap_t rxs_dmamap; /* our DMA map */
186 };
187
188 /*
189 * Description of Rx FIFO watermarks for various revisions.
190 */
191 static const char * const pcn_79c970_rcvfw[] = {
192 "16 bytes",
193 "64 bytes",
194 "128 bytes",
195 NULL,
196 };
197
198 static const char * const pcn_79c971_rcvfw[] = {
199 "16 bytes",
200 "64 bytes",
201 "112 bytes",
202 NULL,
203 };
204
205 /*
206 * Description of Tx start points for various revisions.
207 */
208 static const char * const pcn_79c970_xmtsp[] = {
209 "8 bytes",
210 "64 bytes",
211 "128 bytes",
212 "248 bytes",
213 };
214
215 static const char * const pcn_79c971_xmtsp[] = {
216 "20 bytes",
217 "64 bytes",
218 "128 bytes",
219 "248 bytes",
220 };
221
222 static const char * const pcn_79c971_xmtsp_sram[] = {
223 "44 bytes",
224 "64 bytes",
225 "128 bytes",
226 "store-and-forward",
227 };
228
229 /*
230 * Description of Tx FIFO watermarks for various revisions.
231 */
232 static const char * const pcn_79c970_xmtfw[] = {
233 "16 bytes",
234 "64 bytes",
235 "128 bytes",
236 NULL,
237 };
238
239 static const char * const pcn_79c971_xmtfw[] = {
240 "16 bytes",
241 "64 bytes",
242 "108 bytes",
243 NULL,
244 };
245
246 /*
247 * Software state per device.
248 */
249 struct pcn_softc {
250 struct device sc_dev; /* generic device information */
251 bus_space_tag_t sc_st; /* bus space tag */
252 bus_space_handle_t sc_sh; /* bus space handle */
253 bus_dma_tag_t sc_dmat; /* bus DMA tag */
254 struct ethercom sc_ethercom; /* Ethernet common data */
255 void *sc_sdhook; /* shutdown hook */
256
257 /* Points to our media routines, etc. */
258 const struct pcn_variant *sc_variant;
259
260 void *sc_ih; /* interrupt cookie */
261
262 struct mii_data sc_mii; /* MII/media information */
263
264 struct callout sc_tick_ch; /* tick callout */
265
266 bus_dmamap_t sc_cddmamap; /* control data DMA map */
267 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
268
269 /* Software state for transmit and receive descriptors. */
270 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
271 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
272
273 /* Control data structures */
274 struct pcn_control_data *sc_control_data;
275 #define sc_txdescs sc_control_data->pcd_txdescs
276 #define sc_rxdescs sc_control_data->pcd_rxdescs
277 #define sc_initblock sc_control_data->pcd_initblock
278
279 #ifdef PCN_EVENT_COUNTERS
280 /* Event counters. */
281 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
282 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
283 struct evcnt sc_ev_txintr; /* Tx interrupts */
284 struct evcnt sc_ev_rxintr; /* Rx interrupts */
285 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
286 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
287 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
288
289 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
290 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
291 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
292 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
293 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
294 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
295 struct evcnt sc_ev_txcopy; /* Tx copies required */
296 #endif /* PCN_EVENT_COUNTERS */
297
298 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */
299 int sc_rcvfw;
300
301 const char * const *sc_xmtsp_desc; /* Tx start point info */
302 int sc_xmtsp;
303
304 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */
305 int sc_xmtfw;
306
307 int sc_flags; /* misc. flags; see below */
308 int sc_swstyle; /* the software style in use */
309
310 int sc_txfree; /* number of free Tx descriptors */
311 int sc_txnext; /* next ready Tx descriptor */
312
313 int sc_txsfree; /* number of free Tx jobs */
314 int sc_txsnext; /* next free Tx job */
315 int sc_txsdirty; /* dirty Tx jobs */
316
317 int sc_rxptr; /* next ready Rx descriptor/job */
318
319 uint32_t sc_csr5; /* prototype CSR5 register */
320 uint32_t sc_mode; /* prototype MODE register */
321
322 #if NRND > 0
323 rndsource_element_t rnd_source; /* random source */
324 #endif
325 };
326
327 /* sc_flags */
328 #define PCN_F_HAS_MII 0x0001 /* has MII */
329
330 #ifdef PCN_EVENT_COUNTERS
331 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
332 #else
333 #define PCN_EVCNT_INCR(ev) /* nothing */
334 #endif
335
336 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
337 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
338 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
339
340 #define PCN_CDTXSYNC(sc, x, n, ops) \
341 do { \
342 int __x, __n; \
343 \
344 __x = (x); \
345 __n = (n); \
346 \
347 /* If it will wrap around, sync to the end of the ring. */ \
348 if ((__x + __n) > PCN_NTXDESC) { \
349 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
350 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
351 (PCN_NTXDESC - __x), (ops)); \
352 __n -= (PCN_NTXDESC - __x); \
353 __x = 0; \
354 } \
355 \
356 /* Now sync whatever is left. */ \
357 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
358 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
359 } while (/*CONSTCOND*/0)
360
361 #define PCN_CDRXSYNC(sc, x, ops) \
362 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
363 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
364
365 #define PCN_CDINITSYNC(sc, ops) \
366 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
367 PCN_CDINITOFF, sizeof(struct leinit), (ops))
368
369 #define PCN_INIT_RXDESC(sc, x) \
370 do { \
371 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
372 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
373 struct mbuf *__m = __rxs->rxs_mbuf; \
374 \
375 /* \
376 * Note: We scoot the packet forward 2 bytes in the buffer \
377 * so that the payload after the Ethernet header is aligned \
378 * to a 4-byte boundary. \
379 */ \
380 __m->m_data = __m->m_ext.ext_buf + 2; \
381 \
382 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
383 __rmd->rmd2 = \
384 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
385 __rmd->rmd0 = 0; \
386 } else { \
387 __rmd->rmd2 = 0; \
388 __rmd->rmd0 = \
389 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
390 } \
391 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
392 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
393 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
394 } while(/*CONSTCOND*/0)
395
396 static void pcn_start(struct ifnet *);
397 static void pcn_watchdog(struct ifnet *);
398 static int pcn_ioctl(struct ifnet *, u_long, caddr_t);
399 static int pcn_init(struct ifnet *);
400 static void pcn_stop(struct ifnet *, int);
401
402 static void pcn_shutdown(void *);
403
404 static void pcn_reset(struct pcn_softc *);
405 static void pcn_rxdrain(struct pcn_softc *);
406 static int pcn_add_rxbuf(struct pcn_softc *, int);
407 static void pcn_tick(void *);
408
409 static void pcn_spnd(struct pcn_softc *);
410
411 static void pcn_set_filter(struct pcn_softc *);
412
413 static int pcn_intr(void *);
414 static void pcn_txintr(struct pcn_softc *);
415 static int pcn_rxintr(struct pcn_softc *);
416
417 static int pcn_mii_readreg(struct device *, int, int);
418 static void pcn_mii_writereg(struct device *, int, int, int);
419 static void pcn_mii_statchg(struct device *);
420
421 static void pcn_79c970_mediainit(struct pcn_softc *);
422 static int pcn_79c970_mediachange(struct ifnet *);
423 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
424
425 static void pcn_79c971_mediainit(struct pcn_softc *);
426 static int pcn_79c971_mediachange(struct ifnet *);
427 static void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
428
429 /*
430 * Description of a PCnet-PCI variant. Used to select media access
431 * method, mostly, and to print a nice description of the chip.
432 */
433 static const struct pcn_variant {
434 const char *pcv_desc;
435 void (*pcv_mediainit)(struct pcn_softc *);
436 uint16_t pcv_chipid;
437 } pcn_variants[] = {
438 { "Am79c970 PCnet-PCI",
439 pcn_79c970_mediainit,
440 PARTID_Am79c970 },
441
442 { "Am79c970A PCnet-PCI II",
443 pcn_79c970_mediainit,
444 PARTID_Am79c970A },
445
446 { "Am79c971 PCnet-FAST",
447 pcn_79c971_mediainit,
448 PARTID_Am79c971 },
449
450 { "Am79c972 PCnet-FAST+",
451 pcn_79c971_mediainit,
452 PARTID_Am79c972 },
453
454 { "Am79c973 PCnet-FAST III",
455 pcn_79c971_mediainit,
456 PARTID_Am79c973 },
457
458 { "Am79c975 PCnet-FAST III",
459 pcn_79c971_mediainit,
460 PARTID_Am79c975 },
461
462 { "Unknown PCnet-PCI variant",
463 pcn_79c971_mediainit,
464 0 },
465 };
466
467 int pcn_copy_small = 0;
468
469 static int pcn_match(struct device *, struct cfdata *, void *);
470 static void pcn_attach(struct device *, struct device *, void *);
471
472 CFATTACH_DECL(pcn, sizeof(struct pcn_softc),
473 pcn_match, pcn_attach, NULL, NULL);
474
475 /*
476 * Routines to read and write the PCnet-PCI CSR/BCR space.
477 */
478
479 static inline uint32_t
480 pcn_csr_read(struct pcn_softc *sc, int reg)
481 {
482
483 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
484 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
485 }
486
487 static inline void
488 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
489 {
490
491 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
492 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
493 }
494
495 static inline uint32_t
496 pcn_bcr_read(struct pcn_softc *sc, int reg)
497 {
498
499 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
500 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
501 }
502
503 static inline void
504 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
505 {
506
507 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
508 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
509 }
510
511 static const struct pcn_variant *
512 pcn_lookup_variant(uint16_t chipid)
513 {
514 const struct pcn_variant *pcv;
515
516 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
517 if (chipid == pcv->pcv_chipid)
518 return (pcv);
519 }
520
521 /*
522 * This covers unknown chips, which we simply treat like
523 * a generic PCnet-FAST.
524 */
525 return (pcv);
526 }
527
528 static int
529 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
530 {
531 struct pci_attach_args *pa = aux;
532
533 /*
534 * IBM Makes a PCI variant of this card which shows up as a
535 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
536 * this card is truly a pcn card, so we have a special case match for
537 * it
538 */
539
540 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
541 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
542 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
543 return(1);
544
545 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
546 return (0);
547
548 switch (PCI_PRODUCT(pa->pa_id)) {
549 case PCI_PRODUCT_AMD_PCNET_PCI:
550 /* Beat if_le_pci.c */
551 return (10);
552 }
553
554 return (0);
555 }
556
557 static void
558 pcn_attach(struct device *parent, struct device *self, void *aux)
559 {
560 struct pcn_softc *sc = (struct pcn_softc *) self;
561 struct pci_attach_args *pa = aux;
562 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
563 pci_chipset_tag_t pc = pa->pa_pc;
564 pci_intr_handle_t ih;
565 const char *intrstr = NULL;
566 bus_space_tag_t iot, memt;
567 bus_space_handle_t ioh, memh;
568 bus_dma_segment_t seg;
569 int ioh_valid, memh_valid;
570 int i, rseg, error;
571 pcireg_t pmode;
572 uint32_t chipid, reg;
573 uint8_t enaddr[ETHER_ADDR_LEN];
574 int pmreg;
575
576 callout_init(&sc->sc_tick_ch);
577
578 printf(": AMD PCnet-PCI Ethernet\n");
579
580 /*
581 * Map the device.
582 */
583 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
584 &iot, &ioh, NULL, NULL) == 0);
585 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
586 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
587 &memt, &memh, NULL, NULL) == 0);
588
589 if (memh_valid) {
590 sc->sc_st = memt;
591 sc->sc_sh = memh;
592 } else if (ioh_valid) {
593 sc->sc_st = iot;
594 sc->sc_sh = ioh;
595 } else {
596 printf("%s: unable to map device registers\n",
597 sc->sc_dev.dv_xname);
598 return;
599 }
600
601 sc->sc_dmat = pa->pa_dmat;
602
603 /* Make sure bus mastering is enabled. */
604 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
605 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
606 PCI_COMMAND_MASTER_ENABLE);
607
608 /* Get it out of power save mode, if needed. */
609 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
610 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + PCI_PMCSR) &
611 PCI_PMCSR_STATE_MASK;
612 if (pmode == PCI_PMCSR_STATE_D3) {
613 /*
614 * The card has lost all configuration data in
615 * this state, so punt.
616 */
617 printf("%s: unable to wake from power state D3\n",
618 sc->sc_dev.dv_xname);
619 return;
620 }
621 if (pmode != PCI_PMCSR_STATE_D0) {
622 printf("%s: waking up from power date D%d\n",
623 sc->sc_dev.dv_xname, pmode);
624 pci_conf_write(pc, pa->pa_tag, pmreg + PCI_PMCSR,
625 PCI_PMCSR_STATE_D0);
626 }
627 }
628
629 /*
630 * Reset the chip to a known state. This also puts the
631 * chip into 32-bit mode.
632 */
633 pcn_reset(sc);
634
635 #if !defined(PCN_NO_PROM)
636
637 /*
638 * Read the Ethernet address from the EEPROM.
639 */
640 for (i = 0; i < ETHER_ADDR_LEN; i++)
641 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
642 PCN32_APROM + i);
643 #else
644 /*
645 * The PROM is not used; instead we assume that the MAC address
646 * has been programmed into the device's physical address
647 * registers by the boot firmware
648 */
649
650 for (i=0; i < 3; i++) {
651 uint32_t val;
652 val = pcn_csr_read(sc, LE_CSR12 + i);
653 enaddr[2*i] = val & 0x0ff;
654 enaddr[2*i+1] = (val >> 8) & 0x0ff;
655 }
656 #endif
657
658 /*
659 * Now that the device is mapped, attempt to figure out what
660 * kind of chip we have. Note that IDL has all 32 bits of
661 * the chip ID when we're in 32-bit mode.
662 */
663 chipid = pcn_csr_read(sc, LE_CSR88);
664 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
665
666 printf("%s: %s rev %d, Ethernet address %s\n",
667 sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
668 ether_sprintf(enaddr));
669
670 /*
671 * Map and establish our interrupt.
672 */
673 if (pci_intr_map(pa, &ih)) {
674 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
675 return;
676 }
677 intrstr = pci_intr_string(pc, ih);
678 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
679 if (sc->sc_ih == NULL) {
680 printf("%s: unable to establish interrupt",
681 sc->sc_dev.dv_xname);
682 if (intrstr != NULL)
683 printf(" at %s", intrstr);
684 printf("\n");
685 return;
686 }
687 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
688
689 /*
690 * Allocate the control data structures, and create and load the
691 * DMA map for it.
692 */
693 if ((error = bus_dmamem_alloc(sc->sc_dmat,
694 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
695 0)) != 0) {
696 printf("%s: unable to allocate control data, error = %d\n",
697 sc->sc_dev.dv_xname, error);
698 goto fail_0;
699 }
700
701 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
702 sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
703 BUS_DMA_COHERENT)) != 0) {
704 printf("%s: unable to map control data, error = %d\n",
705 sc->sc_dev.dv_xname, error);
706 goto fail_1;
707 }
708
709 if ((error = bus_dmamap_create(sc->sc_dmat,
710 sizeof(struct pcn_control_data), 1,
711 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
712 printf("%s: unable to create control data DMA map, "
713 "error = %d\n", sc->sc_dev.dv_xname, error);
714 goto fail_2;
715 }
716
717 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
718 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
719 0)) != 0) {
720 printf("%s: unable to load control data DMA map, error = %d\n",
721 sc->sc_dev.dv_xname, error);
722 goto fail_3;
723 }
724
725 /* Create the transmit buffer DMA maps. */
726 for (i = 0; i < PCN_TXQUEUELEN; i++) {
727 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
728 PCN_NTXSEGS, MCLBYTES, 0, 0,
729 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
730 printf("%s: unable to create tx DMA map %d, "
731 "error = %d\n", sc->sc_dev.dv_xname, i, error);
732 goto fail_4;
733 }
734 }
735
736 /* Create the receive buffer DMA maps. */
737 for (i = 0; i < PCN_NRXDESC; i++) {
738 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
739 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
740 printf("%s: unable to create rx DMA map %d, "
741 "error = %d\n", sc->sc_dev.dv_xname, i, error);
742 goto fail_5;
743 }
744 sc->sc_rxsoft[i].rxs_mbuf = NULL;
745 }
746
747 /* Initialize our media structures. */
748 (*sc->sc_variant->pcv_mediainit)(sc);
749
750 /*
751 * Initialize FIFO watermark info.
752 */
753 switch (sc->sc_variant->pcv_chipid) {
754 case PARTID_Am79c970:
755 case PARTID_Am79c970A:
756 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
757 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
758 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
759 break;
760
761 default:
762 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
763 /*
764 * Read BCR25 to determine how much SRAM is
765 * on the board. If > 0, then we the chip
766 * uses different Start Point thresholds.
767 *
768 * Note BCR25 and BCR26 are loaded from the
769 * EEPROM on RST, and unaffected by S_RESET,
770 * so we don't really have to worry about
771 * them except for this.
772 */
773 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
774 if (reg != 0)
775 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
776 else
777 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
778 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
779 break;
780 }
781
782 /*
783 * Set up defaults -- see the tables above for what these
784 * values mean.
785 *
786 * XXX How should we tune RCVFW and XMTFW?
787 */
788 sc->sc_rcvfw = 1; /* minimum for full-duplex */
789 sc->sc_xmtsp = 1;
790 sc->sc_xmtfw = 0;
791
792 ifp = &sc->sc_ethercom.ec_if;
793 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
794 ifp->if_softc = sc;
795 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
796 ifp->if_ioctl = pcn_ioctl;
797 ifp->if_start = pcn_start;
798 ifp->if_watchdog = pcn_watchdog;
799 ifp->if_init = pcn_init;
800 ifp->if_stop = pcn_stop;
801 IFQ_SET_READY(&ifp->if_snd);
802
803 /* Attach the interface. */
804 if_attach(ifp);
805 ether_ifattach(ifp, enaddr);
806 #if NRND > 0
807 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
808 RND_TYPE_NET, 0);
809 #endif
810
811 #ifdef PCN_EVENT_COUNTERS
812 /* Attach event counters. */
813 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
814 NULL, sc->sc_dev.dv_xname, "txsstall");
815 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
816 NULL, sc->sc_dev.dv_xname, "txdstall");
817 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
818 NULL, sc->sc_dev.dv_xname, "txintr");
819 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
820 NULL, sc->sc_dev.dv_xname, "rxintr");
821 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
822 NULL, sc->sc_dev.dv_xname, "babl");
823 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
824 NULL, sc->sc_dev.dv_xname, "miss");
825 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
826 NULL, sc->sc_dev.dv_xname, "merr");
827
828 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
829 NULL, sc->sc_dev.dv_xname, "txseg1");
830 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
831 NULL, sc->sc_dev.dv_xname, "txseg2");
832 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
833 NULL, sc->sc_dev.dv_xname, "txseg3");
834 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
835 NULL, sc->sc_dev.dv_xname, "txseg4");
836 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
837 NULL, sc->sc_dev.dv_xname, "txseg5");
838 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
839 NULL, sc->sc_dev.dv_xname, "txsegmore");
840 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
841 NULL, sc->sc_dev.dv_xname, "txcopy");
842 #endif /* PCN_EVENT_COUNTERS */
843
844 /* Make sure the interface is shutdown during reboot. */
845 sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
846 if (sc->sc_sdhook == NULL)
847 printf("%s: WARNING: unable to establish shutdown hook\n",
848 sc->sc_dev.dv_xname);
849 return;
850
851 /*
852 * Free any resources we've allocated during the failed attach
853 * attempt. Do this in reverse order and fall through.
854 */
855 fail_5:
856 for (i = 0; i < PCN_NRXDESC; i++) {
857 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
858 bus_dmamap_destroy(sc->sc_dmat,
859 sc->sc_rxsoft[i].rxs_dmamap);
860 }
861 fail_4:
862 for (i = 0; i < PCN_TXQUEUELEN; i++) {
863 if (sc->sc_txsoft[i].txs_dmamap != NULL)
864 bus_dmamap_destroy(sc->sc_dmat,
865 sc->sc_txsoft[i].txs_dmamap);
866 }
867 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
868 fail_3:
869 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
870 fail_2:
871 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
872 sizeof(struct pcn_control_data));
873 fail_1:
874 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
875 fail_0:
876 return;
877 }
878
879 /*
880 * pcn_shutdown:
881 *
882 * Make sure the interface is stopped at reboot time.
883 */
884 static void
885 pcn_shutdown(void *arg)
886 {
887 struct pcn_softc *sc = arg;
888
889 pcn_stop(&sc->sc_ethercom.ec_if, 1);
890 }
891
892 /*
893 * pcn_start: [ifnet interface function]
894 *
895 * Start packet transmission on the interface.
896 */
897 static void
898 pcn_start(struct ifnet *ifp)
899 {
900 struct pcn_softc *sc = ifp->if_softc;
901 struct mbuf *m0, *m;
902 struct pcn_txsoft *txs;
903 bus_dmamap_t dmamap;
904 int error, nexttx, lasttx = -1, ofree, seg;
905
906 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
907 return;
908
909 /*
910 * Remember the previous number of free descriptors and
911 * the first descriptor we'll use.
912 */
913 ofree = sc->sc_txfree;
914
915 /*
916 * Loop through the send queue, setting up transmit descriptors
917 * until we drain the queue, or use up all available transmit
918 * descriptors.
919 */
920 for (;;) {
921 /* Grab a packet off the queue. */
922 IFQ_POLL(&ifp->if_snd, m0);
923 if (m0 == NULL)
924 break;
925 m = NULL;
926
927 /* Get a work queue entry. */
928 if (sc->sc_txsfree == 0) {
929 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
930 break;
931 }
932
933 txs = &sc->sc_txsoft[sc->sc_txsnext];
934 dmamap = txs->txs_dmamap;
935
936 /*
937 * Load the DMA map. If this fails, the packet either
938 * didn't fit in the alloted number of segments, or we
939 * were short on resources. In this case, we'll copy
940 * and try again.
941 */
942 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
943 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
944 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
945 MGETHDR(m, M_DONTWAIT, MT_DATA);
946 if (m == NULL) {
947 printf("%s: unable to allocate Tx mbuf\n",
948 sc->sc_dev.dv_xname);
949 break;
950 }
951 if (m0->m_pkthdr.len > MHLEN) {
952 MCLGET(m, M_DONTWAIT);
953 if ((m->m_flags & M_EXT) == 0) {
954 printf("%s: unable to allocate Tx "
955 "cluster\n", sc->sc_dev.dv_xname);
956 m_freem(m);
957 break;
958 }
959 }
960 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
961 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
962 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
963 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
964 if (error) {
965 printf("%s: unable to load Tx buffer, "
966 "error = %d\n", sc->sc_dev.dv_xname, error);
967 break;
968 }
969 }
970
971 /*
972 * Ensure we have enough descriptors free to describe
973 * the packet. Note, we always reserve one descriptor
974 * at the end of the ring as a termination point, to
975 * prevent wrap-around.
976 */
977 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
978 /*
979 * Not enough free descriptors to transmit this
980 * packet. We haven't committed anything yet,
981 * so just unload the DMA map, put the packet
982 * back on the queue, and punt. Notify the upper
983 * layer that there are not more slots left.
984 *
985 * XXX We could allocate an mbuf and copy, but
986 * XXX is it worth it?
987 */
988 ifp->if_flags |= IFF_OACTIVE;
989 bus_dmamap_unload(sc->sc_dmat, dmamap);
990 if (m != NULL)
991 m_freem(m);
992 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
993 break;
994 }
995
996 IFQ_DEQUEUE(&ifp->if_snd, m0);
997 if (m != NULL) {
998 m_freem(m0);
999 m0 = m;
1000 }
1001
1002 /*
1003 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1004 */
1005
1006 /* Sync the DMA map. */
1007 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1008 BUS_DMASYNC_PREWRITE);
1009
1010 #ifdef PCN_EVENT_COUNTERS
1011 switch (dmamap->dm_nsegs) {
1012 case 1:
1013 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1014 break;
1015 case 2:
1016 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1017 break;
1018 case 3:
1019 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1020 break;
1021 case 4:
1022 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1023 break;
1024 case 5:
1025 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1026 break;
1027 default:
1028 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1029 break;
1030 }
1031 #endif /* PCN_EVENT_COUNTERS */
1032
1033 /*
1034 * Initialize the transmit descriptors.
1035 */
1036 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1037 for (nexttx = sc->sc_txnext, seg = 0;
1038 seg < dmamap->dm_nsegs;
1039 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1040 /*
1041 * If this is the first descriptor we're
1042 * enqueueing, don't set the OWN bit just
1043 * yet. That could cause a race condition.
1044 * We'll do it below.
1045 */
1046 sc->sc_txdescs[nexttx].tmd0 = 0;
1047 sc->sc_txdescs[nexttx].tmd2 =
1048 htole32(dmamap->dm_segs[seg].ds_addr);
1049 sc->sc_txdescs[nexttx].tmd1 =
1050 htole32(LE_T1_ONES |
1051 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1052 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1053 LE_T1_BCNT_MASK));
1054 lasttx = nexttx;
1055 }
1056 } else {
1057 for (nexttx = sc->sc_txnext, seg = 0;
1058 seg < dmamap->dm_nsegs;
1059 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1060 /*
1061 * If this is the first descriptor we're
1062 * enqueueing, don't set the OWN bit just
1063 * yet. That could cause a race condition.
1064 * We'll do it below.
1065 */
1066 sc->sc_txdescs[nexttx].tmd0 =
1067 htole32(dmamap->dm_segs[seg].ds_addr);
1068 sc->sc_txdescs[nexttx].tmd2 = 0;
1069 sc->sc_txdescs[nexttx].tmd1 =
1070 htole32(LE_T1_ONES |
1071 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1072 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1073 LE_T1_BCNT_MASK));
1074 lasttx = nexttx;
1075 }
1076 }
1077
1078 KASSERT(lasttx != -1);
1079 /* Interrupt on the packet, if appropriate. */
1080 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1081 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1082
1083 /* Set `start of packet' and `end of packet' appropriately. */
1084 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1085 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1086 htole32(LE_T1_OWN|LE_T1_STP);
1087
1088 /* Sync the descriptors we're using. */
1089 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1090 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1091
1092 /* Kick the transmitter. */
1093 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1094
1095 /*
1096 * Store a pointer to the packet so we can free it later,
1097 * and remember what txdirty will be once the packet is
1098 * done.
1099 */
1100 txs->txs_mbuf = m0;
1101 txs->txs_firstdesc = sc->sc_txnext;
1102 txs->txs_lastdesc = lasttx;
1103
1104 /* Advance the tx pointer. */
1105 sc->sc_txfree -= dmamap->dm_nsegs;
1106 sc->sc_txnext = nexttx;
1107
1108 sc->sc_txsfree--;
1109 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1110
1111 #if NBPFILTER > 0
1112 /* Pass the packet to any BPF listeners. */
1113 if (ifp->if_bpf)
1114 bpf_mtap(ifp->if_bpf, m0);
1115 #endif /* NBPFILTER > 0 */
1116 }
1117
1118 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1119 /* No more slots left; notify upper layer. */
1120 ifp->if_flags |= IFF_OACTIVE;
1121 }
1122
1123 if (sc->sc_txfree != ofree) {
1124 /* Set a watchdog timer in case the chip flakes out. */
1125 ifp->if_timer = 5;
1126 }
1127 }
1128
1129 /*
1130 * pcn_watchdog: [ifnet interface function]
1131 *
1132 * Watchdog timer handler.
1133 */
1134 static void
1135 pcn_watchdog(struct ifnet *ifp)
1136 {
1137 struct pcn_softc *sc = ifp->if_softc;
1138
1139 /*
1140 * Since we're not interrupting every packet, sweep
1141 * up before we report an error.
1142 */
1143 pcn_txintr(sc);
1144
1145 if (sc->sc_txfree != PCN_NTXDESC) {
1146 printf("%s: device timeout (txfree %d txsfree %d)\n",
1147 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1148 ifp->if_oerrors++;
1149
1150 /* Reset the interface. */
1151 (void) pcn_init(ifp);
1152 }
1153
1154 /* Try to get more packets going. */
1155 pcn_start(ifp);
1156 }
1157
1158 /*
1159 * pcn_ioctl: [ifnet interface function]
1160 *
1161 * Handle control requests from the operator.
1162 */
1163 static int
1164 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1165 {
1166 struct pcn_softc *sc = ifp->if_softc;
1167 struct ifreq *ifr = (struct ifreq *) data;
1168 int s, error;
1169
1170 s = splnet();
1171
1172 switch (cmd) {
1173 case SIOCSIFMEDIA:
1174 case SIOCGIFMEDIA:
1175 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1176 break;
1177
1178 default:
1179 error = ether_ioctl(ifp, cmd, data);
1180 if (error == ENETRESET) {
1181 /*
1182 * Multicast list has changed; set the hardware filter
1183 * accordingly.
1184 */
1185 if (ifp->if_flags & IFF_RUNNING)
1186 error = pcn_init(ifp);
1187 else
1188 error = 0;
1189 }
1190 break;
1191 }
1192
1193 /* Try to get more packets going. */
1194 pcn_start(ifp);
1195
1196 splx(s);
1197 return (error);
1198 }
1199
1200 /*
1201 * pcn_intr:
1202 *
1203 * Interrupt service routine.
1204 */
1205 static int
1206 pcn_intr(void *arg)
1207 {
1208 struct pcn_softc *sc = arg;
1209 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1210 uint32_t csr0;
1211 int wantinit, handled = 0;
1212
1213 for (wantinit = 0; wantinit == 0;) {
1214 csr0 = pcn_csr_read(sc, LE_CSR0);
1215 if ((csr0 & LE_C0_INTR) == 0)
1216 break;
1217
1218 #if NRND > 0
1219 if (RND_ENABLED(&sc->rnd_source))
1220 rnd_add_uint32(&sc->rnd_source, csr0);
1221 #endif
1222
1223 /* ACK the bits and re-enable interrupts. */
1224 pcn_csr_write(sc, LE_CSR0, csr0 &
1225 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1226 LE_C0_TINT|LE_C0_IDON));
1227
1228 handled = 1;
1229
1230 if (csr0 & LE_C0_RINT) {
1231 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1232 wantinit = pcn_rxintr(sc);
1233 }
1234
1235 if (csr0 & LE_C0_TINT) {
1236 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1237 pcn_txintr(sc);
1238 }
1239
1240 if (csr0 & LE_C0_ERR) {
1241 if (csr0 & LE_C0_BABL) {
1242 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1243 ifp->if_oerrors++;
1244 }
1245 if (csr0 & LE_C0_MISS) {
1246 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1247 ifp->if_ierrors++;
1248 }
1249 if (csr0 & LE_C0_MERR) {
1250 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1251 printf("%s: memory error\n",
1252 sc->sc_dev.dv_xname);
1253 wantinit = 1;
1254 break;
1255 }
1256 }
1257
1258 if ((csr0 & LE_C0_RXON) == 0) {
1259 printf("%s: receiver disabled\n",
1260 sc->sc_dev.dv_xname);
1261 ifp->if_ierrors++;
1262 wantinit = 1;
1263 }
1264
1265 if ((csr0 & LE_C0_TXON) == 0) {
1266 printf("%s: transmitter disabled\n",
1267 sc->sc_dev.dv_xname);
1268 ifp->if_oerrors++;
1269 wantinit = 1;
1270 }
1271 }
1272
1273 if (handled) {
1274 if (wantinit)
1275 pcn_init(ifp);
1276
1277 /* Try to get more packets going. */
1278 pcn_start(ifp);
1279 }
1280
1281 return (handled);
1282 }
1283
1284 /*
1285 * pcn_spnd:
1286 *
1287 * Suspend the chip.
1288 */
1289 static void
1290 pcn_spnd(struct pcn_softc *sc)
1291 {
1292 int i;
1293
1294 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1295
1296 for (i = 0; i < 10000; i++) {
1297 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1298 return;
1299 delay(5);
1300 }
1301
1302 printf("%s: WARNING: chip failed to enter suspended state\n",
1303 sc->sc_dev.dv_xname);
1304 }
1305
1306 /*
1307 * pcn_txintr:
1308 *
1309 * Helper; handle transmit interrupts.
1310 */
1311 static void
1312 pcn_txintr(struct pcn_softc *sc)
1313 {
1314 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1315 struct pcn_txsoft *txs;
1316 uint32_t tmd1, tmd2, tmd;
1317 int i, j;
1318
1319 ifp->if_flags &= ~IFF_OACTIVE;
1320
1321 /*
1322 * Go through our Tx list and free mbufs for those
1323 * frames which have been transmitted.
1324 */
1325 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1326 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1327 txs = &sc->sc_txsoft[i];
1328
1329 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1330 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1331
1332 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1333 if (tmd1 & LE_T1_OWN)
1334 break;
1335
1336 /*
1337 * Slightly annoying -- we have to loop through the
1338 * descriptors we've used looking for ERR, since it
1339 * can appear on any descriptor in the chain.
1340 */
1341 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1342 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1343 if (tmd & LE_T1_ERR) {
1344 ifp->if_oerrors++;
1345 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1346 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1347 else
1348 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1349 if (tmd2 & LE_T2_UFLO) {
1350 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1351 sc->sc_xmtsp++;
1352 printf("%s: transmit "
1353 "underrun; new threshold: "
1354 "%s\n",
1355 sc->sc_dev.dv_xname,
1356 sc->sc_xmtsp_desc[
1357 sc->sc_xmtsp]);
1358 pcn_spnd(sc);
1359 pcn_csr_write(sc, LE_CSR80,
1360 LE_C80_RCVFW(sc->sc_rcvfw) |
1361 LE_C80_XMTSP(sc->sc_xmtsp) |
1362 LE_C80_XMTFW(sc->sc_xmtfw));
1363 pcn_csr_write(sc, LE_CSR5,
1364 sc->sc_csr5);
1365 } else {
1366 printf("%s: transmit "
1367 "underrun\n",
1368 sc->sc_dev.dv_xname);
1369 }
1370 } else if (tmd2 & LE_T2_BUFF) {
1371 printf("%s: transmit buffer error\n",
1372 sc->sc_dev.dv_xname);
1373 }
1374 if (tmd2 & LE_T2_LCOL)
1375 ifp->if_collisions++;
1376 if (tmd2 & LE_T2_RTRY)
1377 ifp->if_collisions += 16;
1378 goto next_packet;
1379 }
1380 if (j == txs->txs_lastdesc)
1381 break;
1382 }
1383 if (tmd1 & LE_T1_ONE)
1384 ifp->if_collisions++;
1385 else if (tmd & LE_T1_MORE) {
1386 /* Real number is unknown. */
1387 ifp->if_collisions += 2;
1388 }
1389 ifp->if_opackets++;
1390 next_packet:
1391 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1392 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1393 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1394 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1395 m_freem(txs->txs_mbuf);
1396 txs->txs_mbuf = NULL;
1397 }
1398
1399 /* Update the dirty transmit buffer pointer. */
1400 sc->sc_txsdirty = i;
1401
1402 /*
1403 * If there are no more pending transmissions, cancel the watchdog
1404 * timer.
1405 */
1406 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1407 ifp->if_timer = 0;
1408 }
1409
1410 /*
1411 * pcn_rxintr:
1412 *
1413 * Helper; handle receive interrupts.
1414 */
1415 static int
1416 pcn_rxintr(struct pcn_softc *sc)
1417 {
1418 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1419 struct pcn_rxsoft *rxs;
1420 struct mbuf *m;
1421 uint32_t rmd1;
1422 int i, len;
1423
1424 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1425 rxs = &sc->sc_rxsoft[i];
1426
1427 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1428
1429 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1430
1431 if (rmd1 & LE_R1_OWN)
1432 break;
1433
1434 /*
1435 * Check for errors and make sure the packet fit into
1436 * a single buffer. We have structured this block of
1437 * code the way it is in order to compress it into
1438 * one test in the common case (no error).
1439 */
1440 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1441 (LE_R1_STP|LE_R1_ENP))) {
1442 /* Make sure the packet is in a single buffer. */
1443 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1444 (LE_R1_STP|LE_R1_ENP)) {
1445 printf("%s: packet spilled into next buffer\n",
1446 sc->sc_dev.dv_xname);
1447 return (1); /* pcn_intr() will re-init */
1448 }
1449
1450 /*
1451 * If the packet had an error, simple recycle the
1452 * buffer.
1453 */
1454 if (rmd1 & LE_R1_ERR) {
1455 ifp->if_ierrors++;
1456 /*
1457 * If we got an overflow error, chances
1458 * are there will be a CRC error. In
1459 * this case, just print the overflow
1460 * error, and skip the others.
1461 */
1462 if (rmd1 & LE_R1_OFLO)
1463 printf("%s: overflow error\n",
1464 sc->sc_dev.dv_xname);
1465 else {
1466 #define PRINTIT(x, str) \
1467 if (rmd1 & (x)) \
1468 printf("%s: %s\n", \
1469 sc->sc_dev.dv_xname, str);
1470 PRINTIT(LE_R1_FRAM, "framing error");
1471 PRINTIT(LE_R1_CRC, "CRC error");
1472 PRINTIT(LE_R1_BUFF, "buffer error");
1473 }
1474 #undef PRINTIT
1475 PCN_INIT_RXDESC(sc, i);
1476 continue;
1477 }
1478 }
1479
1480 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1481 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1482
1483 /*
1484 * No errors; receive the packet.
1485 */
1486 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1487 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1488 else
1489 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1490
1491 /*
1492 * The LANCE family includes the CRC with every packet;
1493 * trim it off here.
1494 */
1495 len -= ETHER_CRC_LEN;
1496
1497 /*
1498 * If the packet is small enough to fit in a
1499 * single header mbuf, allocate one and copy
1500 * the data into it. This greatly reduces
1501 * memory consumption when we receive lots
1502 * of small packets.
1503 *
1504 * Otherwise, we add a new buffer to the receive
1505 * chain. If this fails, we drop the packet and
1506 * recycle the old buffer.
1507 */
1508 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1509 MGETHDR(m, M_DONTWAIT, MT_DATA);
1510 if (m == NULL)
1511 goto dropit;
1512 m->m_data += 2;
1513 memcpy(mtod(m, caddr_t),
1514 mtod(rxs->rxs_mbuf, caddr_t), len);
1515 PCN_INIT_RXDESC(sc, i);
1516 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1517 rxs->rxs_dmamap->dm_mapsize,
1518 BUS_DMASYNC_PREREAD);
1519 } else {
1520 m = rxs->rxs_mbuf;
1521 if (pcn_add_rxbuf(sc, i) != 0) {
1522 dropit:
1523 ifp->if_ierrors++;
1524 PCN_INIT_RXDESC(sc, i);
1525 bus_dmamap_sync(sc->sc_dmat,
1526 rxs->rxs_dmamap, 0,
1527 rxs->rxs_dmamap->dm_mapsize,
1528 BUS_DMASYNC_PREREAD);
1529 continue;
1530 }
1531 }
1532
1533 m->m_pkthdr.rcvif = ifp;
1534 m->m_pkthdr.len = m->m_len = len;
1535
1536 #if NBPFILTER > 0
1537 /* Pass this up to any BPF listeners. */
1538 if (ifp->if_bpf)
1539 bpf_mtap(ifp->if_bpf, m);
1540 #endif /* NBPFILTER > 0 */
1541
1542 /* Pass it on. */
1543 (*ifp->if_input)(ifp, m);
1544 ifp->if_ipackets++;
1545 }
1546
1547 /* Update the receive pointer. */
1548 sc->sc_rxptr = i;
1549 return (0);
1550 }
1551
1552 /*
1553 * pcn_tick:
1554 *
1555 * One second timer, used to tick the MII.
1556 */
1557 static void
1558 pcn_tick(void *arg)
1559 {
1560 struct pcn_softc *sc = arg;
1561 int s;
1562
1563 s = splnet();
1564 mii_tick(&sc->sc_mii);
1565 splx(s);
1566
1567 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1568 }
1569
1570 /*
1571 * pcn_reset:
1572 *
1573 * Perform a soft reset on the PCnet-PCI.
1574 */
1575 static void
1576 pcn_reset(struct pcn_softc *sc)
1577 {
1578
1579 /*
1580 * The PCnet-PCI chip is reset by reading from the
1581 * RESET register. Note that while the NE2100 LANCE
1582 * boards require a write after the read, the PCnet-PCI
1583 * chips do not require this.
1584 *
1585 * Since we don't know if we're in 16-bit or 32-bit
1586 * mode right now, issue both (it's safe) in the
1587 * hopes that one will succeed.
1588 */
1589 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1590 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1591
1592 /* Wait 1ms for it to finish. */
1593 delay(1000);
1594
1595 /*
1596 * Select 32-bit I/O mode by issuing a 32-bit write to the
1597 * RDP. Since the RAP is 0 after a reset, writing a 0
1598 * to RDP is safe (since it simply clears CSR0).
1599 */
1600 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1601 }
1602
1603 /*
1604 * pcn_init: [ifnet interface function]
1605 *
1606 * Initialize the interface. Must be called at splnet().
1607 */
1608 static int
1609 pcn_init(struct ifnet *ifp)
1610 {
1611 struct pcn_softc *sc = ifp->if_softc;
1612 struct pcn_rxsoft *rxs;
1613 uint8_t *enaddr = LLADDR(ifp->if_sadl);
1614 int i, error = 0;
1615 uint32_t reg;
1616
1617 /* Cancel any pending I/O. */
1618 pcn_stop(ifp, 0);
1619
1620 /* Reset the chip to a known state. */
1621 pcn_reset(sc);
1622
1623 /*
1624 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1625 * else.
1626 *
1627 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1628 * because the structure layout is compatible with ILACC,
1629 * but the burst mode is only available in SSTYLE 3, and
1630 * burst mode should provide some performance enhancement.
1631 */
1632 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1633 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1634 else
1635 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1636 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1637
1638 /* Initialize the transmit descriptor ring. */
1639 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1640 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1641 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1642 sc->sc_txfree = PCN_NTXDESC;
1643 sc->sc_txnext = 0;
1644
1645 /* Initialize the transmit job descriptors. */
1646 for (i = 0; i < PCN_TXQUEUELEN; i++)
1647 sc->sc_txsoft[i].txs_mbuf = NULL;
1648 sc->sc_txsfree = PCN_TXQUEUELEN;
1649 sc->sc_txsnext = 0;
1650 sc->sc_txsdirty = 0;
1651
1652 /*
1653 * Initialize the receive descriptor and receive job
1654 * descriptor rings.
1655 */
1656 for (i = 0; i < PCN_NRXDESC; i++) {
1657 rxs = &sc->sc_rxsoft[i];
1658 if (rxs->rxs_mbuf == NULL) {
1659 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1660 printf("%s: unable to allocate or map rx "
1661 "buffer %d, error = %d\n",
1662 sc->sc_dev.dv_xname, i, error);
1663 /*
1664 * XXX Should attempt to run with fewer receive
1665 * XXX buffers instead of just failing.
1666 */
1667 pcn_rxdrain(sc);
1668 goto out;
1669 }
1670 } else
1671 PCN_INIT_RXDESC(sc, i);
1672 }
1673 sc->sc_rxptr = 0;
1674
1675 /* Initialize MODE for the initialization block. */
1676 sc->sc_mode = 0;
1677 if (ifp->if_flags & IFF_PROMISC)
1678 sc->sc_mode |= LE_C15_PROM;
1679 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1680 sc->sc_mode |= LE_C15_DRCVBC;
1681
1682 /*
1683 * If we have MII, simply select MII in the MODE register,
1684 * and clear ASEL. Otherwise, let ASEL stand (for now),
1685 * and leave PORTSEL alone (it is ignored with ASEL is set).
1686 */
1687 if (sc->sc_flags & PCN_F_HAS_MII) {
1688 pcn_bcr_write(sc, LE_BCR2,
1689 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1690 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1691
1692 /*
1693 * Disable MII auto-negotiation. We handle that in
1694 * our own MII layer.
1695 */
1696 pcn_bcr_write(sc, LE_BCR32,
1697 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1698 }
1699
1700 /*
1701 * Set the Tx and Rx descriptor ring addresses in the init
1702 * block, the TLEN and RLEN other fields of the init block
1703 * MODE register.
1704 */
1705 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1706 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1707 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1708 ((ffs(PCN_NTXDESC) - 1) << 28) |
1709 ((ffs(PCN_NRXDESC) - 1) << 20));
1710
1711 /* Set the station address in the init block. */
1712 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1713 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1714 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1715 (enaddr[5] << 8));
1716
1717 /* Set the multicast filter in the init block. */
1718 pcn_set_filter(sc);
1719
1720 /* Initialize CSR3. */
1721 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1722
1723 /* Initialize CSR4. */
1724 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1725 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1726
1727 /* Initialize CSR5. */
1728 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1729 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1730
1731 /*
1732 * If we have an Am79c971 or greater, initialize CSR7.
1733 *
1734 * XXX Might be nice to use the MII auto-poll interrupt someday.
1735 */
1736 switch (sc->sc_variant->pcv_chipid) {
1737 case PARTID_Am79c970:
1738 case PARTID_Am79c970A:
1739 /* Not available on these chips. */
1740 break;
1741
1742 default:
1743 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1744 break;
1745 }
1746
1747 /*
1748 * On the Am79c970A and greater, initialize BCR18 to
1749 * enable burst mode.
1750 *
1751 * Also enable the "no underflow" option on the Am79c971 and
1752 * higher, which prevents the chip from generating transmit
1753 * underflows, yet sill provides decent performance. Note if
1754 * chip is not connected to external SRAM, then we still have
1755 * to handle underflow errors (the NOUFLO bit is ignored in
1756 * that case).
1757 */
1758 reg = pcn_bcr_read(sc, LE_BCR18);
1759 switch (sc->sc_variant->pcv_chipid) {
1760 case PARTID_Am79c970:
1761 break;
1762
1763 case PARTID_Am79c970A:
1764 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1765 break;
1766
1767 default:
1768 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1769 break;
1770 }
1771 pcn_bcr_write(sc, LE_BCR18, reg);
1772
1773 /*
1774 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1775 */
1776 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1777 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1778
1779 /*
1780 * Send the init block to the chip, and wait for it
1781 * to be processed.
1782 */
1783 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1784 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1785 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1786 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1787 delay(100);
1788 for (i = 0; i < 10000; i++) {
1789 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1790 break;
1791 delay(10);
1792 }
1793 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1794 if (i == 10000) {
1795 printf("%s: timeout processing init block\n",
1796 sc->sc_dev.dv_xname);
1797 error = EIO;
1798 goto out;
1799 }
1800
1801 /* Set the media. */
1802 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1803
1804 /* Enable interrupts and external activity (and ACK IDON). */
1805 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1806
1807 if (sc->sc_flags & PCN_F_HAS_MII) {
1808 /* Start the one second MII clock. */
1809 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1810 }
1811
1812 /* ...all done! */
1813 ifp->if_flags |= IFF_RUNNING;
1814 ifp->if_flags &= ~IFF_OACTIVE;
1815
1816 out:
1817 if (error)
1818 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1819 return (error);
1820 }
1821
1822 /*
1823 * pcn_rxdrain:
1824 *
1825 * Drain the receive queue.
1826 */
1827 static void
1828 pcn_rxdrain(struct pcn_softc *sc)
1829 {
1830 struct pcn_rxsoft *rxs;
1831 int i;
1832
1833 for (i = 0; i < PCN_NRXDESC; i++) {
1834 rxs = &sc->sc_rxsoft[i];
1835 if (rxs->rxs_mbuf != NULL) {
1836 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1837 m_freem(rxs->rxs_mbuf);
1838 rxs->rxs_mbuf = NULL;
1839 }
1840 }
1841 }
1842
1843 /*
1844 * pcn_stop: [ifnet interface function]
1845 *
1846 * Stop transmission on the interface.
1847 */
1848 static void
1849 pcn_stop(struct ifnet *ifp, int disable)
1850 {
1851 struct pcn_softc *sc = ifp->if_softc;
1852 struct pcn_txsoft *txs;
1853 int i;
1854
1855 if (sc->sc_flags & PCN_F_HAS_MII) {
1856 /* Stop the one second clock. */
1857 callout_stop(&sc->sc_tick_ch);
1858
1859 /* Down the MII. */
1860 mii_down(&sc->sc_mii);
1861 }
1862
1863 /* Stop the chip. */
1864 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1865
1866 /* Release any queued transmit buffers. */
1867 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1868 txs = &sc->sc_txsoft[i];
1869 if (txs->txs_mbuf != NULL) {
1870 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1871 m_freem(txs->txs_mbuf);
1872 txs->txs_mbuf = NULL;
1873 }
1874 }
1875
1876 if (disable)
1877 pcn_rxdrain(sc);
1878
1879 /* Mark the interface as down and cancel the watchdog timer. */
1880 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1881 ifp->if_timer = 0;
1882 }
1883
1884 /*
1885 * pcn_add_rxbuf:
1886 *
1887 * Add a receive buffer to the indicated descriptor.
1888 */
1889 static int
1890 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1891 {
1892 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1893 struct mbuf *m;
1894 int error;
1895
1896 MGETHDR(m, M_DONTWAIT, MT_DATA);
1897 if (m == NULL)
1898 return (ENOBUFS);
1899
1900 MCLGET(m, M_DONTWAIT);
1901 if ((m->m_flags & M_EXT) == 0) {
1902 m_freem(m);
1903 return (ENOBUFS);
1904 }
1905
1906 if (rxs->rxs_mbuf != NULL)
1907 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1908
1909 rxs->rxs_mbuf = m;
1910
1911 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1912 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1913 BUS_DMA_READ|BUS_DMA_NOWAIT);
1914 if (error) {
1915 printf("%s: can't load rx DMA map %d, error = %d\n",
1916 sc->sc_dev.dv_xname, idx, error);
1917 panic("pcn_add_rxbuf");
1918 }
1919
1920 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1921 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1922
1923 PCN_INIT_RXDESC(sc, idx);
1924
1925 return (0);
1926 }
1927
1928 /*
1929 * pcn_set_filter:
1930 *
1931 * Set up the receive filter.
1932 */
1933 static void
1934 pcn_set_filter(struct pcn_softc *sc)
1935 {
1936 struct ethercom *ec = &sc->sc_ethercom;
1937 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1938 struct ether_multi *enm;
1939 struct ether_multistep step;
1940 uint32_t crc;
1941
1942 /*
1943 * Set up the multicast address filter by passing all multicast
1944 * addresses through a CRC generator, and then using the high
1945 * order 6 bits as an index into the 64-bit logical address
1946 * filter. The high order bits select the word, while the rest
1947 * of the bits select the bit within the word.
1948 */
1949
1950 if (ifp->if_flags & IFF_PROMISC)
1951 goto allmulti;
1952
1953 sc->sc_initblock.init_ladrf[0] =
1954 sc->sc_initblock.init_ladrf[1] =
1955 sc->sc_initblock.init_ladrf[2] =
1956 sc->sc_initblock.init_ladrf[3] = 0;
1957
1958 ETHER_FIRST_MULTI(step, ec, enm);
1959 while (enm != NULL) {
1960 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1961 /*
1962 * We must listen to a range of multicast addresses.
1963 * For now, just accept all multicasts, rather than
1964 * trying to set only those filter bits needed to match
1965 * the range. (At this time, the only use of address
1966 * ranges is for IP multicast routing, for which the
1967 * range is big enough to require all bits set.)
1968 */
1969 goto allmulti;
1970 }
1971
1972 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1973
1974 /* Just want the 6 most significant bits. */
1975 crc >>= 26;
1976
1977 /* Set the corresponding bit in the filter. */
1978 sc->sc_initblock.init_ladrf[crc >> 4] |=
1979 htole16(1 << (crc & 0xf));
1980
1981 ETHER_NEXT_MULTI(step, enm);
1982 }
1983
1984 ifp->if_flags &= ~IFF_ALLMULTI;
1985 return;
1986
1987 allmulti:
1988 ifp->if_flags |= IFF_ALLMULTI;
1989 sc->sc_initblock.init_ladrf[0] =
1990 sc->sc_initblock.init_ladrf[1] =
1991 sc->sc_initblock.init_ladrf[2] =
1992 sc->sc_initblock.init_ladrf[3] = 0xffff;
1993 }
1994
1995 /*
1996 * pcn_79c970_mediainit:
1997 *
1998 * Initialize media for the Am79c970.
1999 */
2000 static void
2001 pcn_79c970_mediainit(struct pcn_softc *sc)
2002 {
2003 const char *sep = "";
2004
2005 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
2006 pcn_79c970_mediastatus);
2007
2008 #define ADD(str, m, d) \
2009 do { \
2010 printf("%s%s", sep, str); \
2011 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
2012 sep = ", "; \
2013 } while (/*CONSTCOND*/0)
2014
2015 printf("%s: ", sc->sc_dev.dv_xname);
2016 ADD("10base5", IFM_10_5, PORTSEL_AUI);
2017 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2018 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
2019 ADD("10baseT", IFM_10_T, PORTSEL_10T);
2020 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2021 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
2022 ADD("auto", IFM_AUTO, 0);
2023 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2024 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
2025 printf("\n");
2026
2027 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2028 }
2029
2030 /*
2031 * pcn_79c970_mediastatus: [ifmedia interface function]
2032 *
2033 * Get the current interface media status (Am79c970 version).
2034 */
2035 static void
2036 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2037 {
2038 struct pcn_softc *sc = ifp->if_softc;
2039
2040 /*
2041 * The currently selected media is always the active media.
2042 * Note: We have no way to determine what media the AUTO
2043 * process picked.
2044 */
2045 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2046 }
2047
2048 /*
2049 * pcn_79c970_mediachange: [ifmedia interface function]
2050 *
2051 * Set hardware to newly-selected media (Am79c970 version).
2052 */
2053 static int
2054 pcn_79c970_mediachange(struct ifnet *ifp)
2055 {
2056 struct pcn_softc *sc = ifp->if_softc;
2057 uint32_t reg;
2058
2059 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2060 /*
2061 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2062 */
2063 reg = pcn_bcr_read(sc, LE_BCR2);
2064 reg |= LE_B2_ASEL;
2065 pcn_bcr_write(sc, LE_BCR2, reg);
2066 } else {
2067 /*
2068 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2069 */
2070 reg = pcn_bcr_read(sc, LE_BCR2);
2071 reg &= ~LE_B2_ASEL;
2072 pcn_bcr_write(sc, LE_BCR2, reg);
2073
2074 reg = pcn_csr_read(sc, LE_CSR15);
2075 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2076 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2077 pcn_csr_write(sc, LE_CSR15, reg);
2078 }
2079
2080 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2081 reg = LE_B9_FDEN;
2082 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2083 reg |= LE_B9_AUIFD;
2084 pcn_bcr_write(sc, LE_BCR9, reg);
2085 } else
2086 pcn_bcr_write(sc, LE_BCR9, 0);
2087
2088 return (0);
2089 }
2090
2091 /*
2092 * pcn_79c971_mediainit:
2093 *
2094 * Initialize media for the Am79c971.
2095 */
2096 static void
2097 pcn_79c971_mediainit(struct pcn_softc *sc)
2098 {
2099 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2100
2101 /* We have MII. */
2102 sc->sc_flags |= PCN_F_HAS_MII;
2103
2104 /*
2105 * The built-in 10BASE-T interface is mapped to the MII
2106 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2107 * word that tells us which PHY to use.
2108 * This driver used to ignore all but the first PHY to
2109 * answer, but this code was removed to support multiple
2110 * external PHYs. As the default instance will be the first
2111 * one to answer, no harm is done by letting the possibly
2112 * non-connected internal PHY show up.
2113 */
2114
2115 /* Initialize our media structures and probe the MII. */
2116 sc->sc_mii.mii_ifp = ifp;
2117 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2118 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2119 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2120 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2121 pcn_79c971_mediastatus);
2122
2123 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2124 MII_OFFSET_ANY, 0);
2125 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2126 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2127 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2128 } else
2129 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2130 }
2131
2132 /*
2133 * pcn_79c971_mediastatus: [ifmedia interface function]
2134 *
2135 * Get the current interface media status (Am79c971 version).
2136 */
2137 static void
2138 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2139 {
2140 struct pcn_softc *sc = ifp->if_softc;
2141
2142 mii_pollstat(&sc->sc_mii);
2143 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2144 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2145 }
2146
2147 /*
2148 * pcn_79c971_mediachange: [ifmedia interface function]
2149 *
2150 * Set hardware to newly-selected media (Am79c971 version).
2151 */
2152 static int
2153 pcn_79c971_mediachange(struct ifnet *ifp)
2154 {
2155 struct pcn_softc *sc = ifp->if_softc;
2156
2157 if (ifp->if_flags & IFF_UP)
2158 mii_mediachg(&sc->sc_mii);
2159 return (0);
2160 }
2161
2162 /*
2163 * pcn_mii_readreg: [mii interface function]
2164 *
2165 * Read a PHY register on the MII.
2166 */
2167 static int
2168 pcn_mii_readreg(struct device *self, int phy, int reg)
2169 {
2170 struct pcn_softc *sc = (void *) self;
2171 uint32_t rv;
2172
2173 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2174 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2175 if (rv == 0xffff)
2176 return (0);
2177
2178 return (rv);
2179 }
2180
2181 /*
2182 * pcn_mii_writereg: [mii interface function]
2183 *
2184 * Write a PHY register on the MII.
2185 */
2186 static void
2187 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2188 {
2189 struct pcn_softc *sc = (void *) self;
2190
2191 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2192 pcn_bcr_write(sc, LE_BCR34, val);
2193 }
2194
2195 /*
2196 * pcn_mii_statchg: [mii interface function]
2197 *
2198 * Callback from MII layer when media changes.
2199 */
2200 static void
2201 pcn_mii_statchg(struct device *self)
2202 {
2203 struct pcn_softc *sc = (void *) self;
2204
2205 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2206 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2207 else
2208 pcn_bcr_write(sc, LE_BCR9, 0);
2209 }
2210