if_pcn.c revision 1.41 1 /* $NetBSD: if_pcn.c,v 1.41 2007/10/19 12:00:47 ad Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.41 2007/10/19 12:00:47 ad Exp $");
69
70 #include "bpfilter.h"
71 #include "rnd.h"
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/callout.h>
76 #include <sys/mbuf.h>
77 #include <sys/malloc.h>
78 #include <sys/kernel.h>
79 #include <sys/socket.h>
80 #include <sys/ioctl.h>
81 #include <sys/errno.h>
82 #include <sys/device.h>
83 #include <sys/queue.h>
84
85 #if NRND > 0
86 #include <sys/rnd.h>
87 #endif
88
89 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_media.h>
94 #include <net/if_ether.h>
95
96 #if NBPFILTER > 0
97 #include <net/bpf.h>
98 #endif
99
100 #include <sys/bus.h>
101 #include <sys/intr.h>
102 #include <machine/endian.h>
103
104 #include <dev/mii/mii.h>
105 #include <dev/mii/miivar.h>
106
107 #include <dev/ic/am79900reg.h>
108 #include <dev/ic/lancereg.h>
109
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113
114 #include <dev/pci/if_pcnreg.h>
115
116 /*
117 * Transmit descriptor list size. This is arbitrary, but allocate
118 * enough descriptors for 128 pending transmissions, and 4 segments
119 * per packet. This MUST work out to a power of 2.
120 *
121 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
122 *
123 * So we play a little trick here. We give each packet up to 16
124 * DMA segments, but only allocate the max of 512 descriptors. The
125 * transmit logic can deal with this, we just are hoping to sneak by.
126 */
127 #define PCN_NTXSEGS 16
128 #define PCN_NTXSEGS_VMWARE 8 /* bug in VMware's emulation */
129
130 #define PCN_TXQUEUELEN 128
131 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
132 #define PCN_NTXDESC 512
133 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
134 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
135 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
136
137 /* Tx interrupt every N + 1 packets. */
138 #define PCN_TXINTR_MASK 7
139
140 /*
141 * Receive descriptor list size. We have one Rx buffer per incoming
142 * packet, so this logic is a little simpler.
143 */
144 #define PCN_NRXDESC 128
145 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
146 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
147
148 /*
149 * Control structures are DMA'd to the PCnet chip. We allocate them in
150 * a single clump that maps to a single DMA segment to make several things
151 * easier.
152 */
153 struct pcn_control_data {
154 /* The transmit descriptors. */
155 struct letmd pcd_txdescs[PCN_NTXDESC];
156
157 /* The receive descriptors. */
158 struct lermd pcd_rxdescs[PCN_NRXDESC];
159
160 /* The init block. */
161 struct leinit pcd_initblock;
162 };
163
164 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
165 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
166 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
167 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
168
169 /*
170 * Software state for transmit jobs.
171 */
172 struct pcn_txsoft {
173 struct mbuf *txs_mbuf; /* head of our mbuf chain */
174 bus_dmamap_t txs_dmamap; /* our DMA map */
175 int txs_firstdesc; /* first descriptor in packet */
176 int txs_lastdesc; /* last descriptor in packet */
177 };
178
179 /*
180 * Software state for receive jobs.
181 */
182 struct pcn_rxsoft {
183 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
184 bus_dmamap_t rxs_dmamap; /* our DMA map */
185 };
186
187 /*
188 * Description of Rx FIFO watermarks for various revisions.
189 */
190 static const char * const pcn_79c970_rcvfw[] = {
191 "16 bytes",
192 "64 bytes",
193 "128 bytes",
194 NULL,
195 };
196
197 static const char * const pcn_79c971_rcvfw[] = {
198 "16 bytes",
199 "64 bytes",
200 "112 bytes",
201 NULL,
202 };
203
204 /*
205 * Description of Tx start points for various revisions.
206 */
207 static const char * const pcn_79c970_xmtsp[] = {
208 "8 bytes",
209 "64 bytes",
210 "128 bytes",
211 "248 bytes",
212 };
213
214 static const char * const pcn_79c971_xmtsp[] = {
215 "20 bytes",
216 "64 bytes",
217 "128 bytes",
218 "248 bytes",
219 };
220
221 static const char * const pcn_79c971_xmtsp_sram[] = {
222 "44 bytes",
223 "64 bytes",
224 "128 bytes",
225 "store-and-forward",
226 };
227
228 /*
229 * Description of Tx FIFO watermarks for various revisions.
230 */
231 static const char * const pcn_79c970_xmtfw[] = {
232 "16 bytes",
233 "64 bytes",
234 "128 bytes",
235 NULL,
236 };
237
238 static const char * const pcn_79c971_xmtfw[] = {
239 "16 bytes",
240 "64 bytes",
241 "108 bytes",
242 NULL,
243 };
244
245 /*
246 * Software state per device.
247 */
248 struct pcn_softc {
249 struct device sc_dev; /* generic device information */
250 bus_space_tag_t sc_st; /* bus space tag */
251 bus_space_handle_t sc_sh; /* bus space handle */
252 bus_dma_tag_t sc_dmat; /* bus DMA tag */
253 struct ethercom sc_ethercom; /* Ethernet common data */
254 void *sc_sdhook; /* shutdown hook */
255
256 /* Points to our media routines, etc. */
257 const struct pcn_variant *sc_variant;
258
259 void *sc_ih; /* interrupt cookie */
260
261 struct mii_data sc_mii; /* MII/media information */
262
263 callout_t sc_tick_ch; /* tick callout */
264
265 bus_dmamap_t sc_cddmamap; /* control data DMA map */
266 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
267
268 /* Software state for transmit and receive descriptors. */
269 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
270 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
271
272 /* Control data structures */
273 struct pcn_control_data *sc_control_data;
274 #define sc_txdescs sc_control_data->pcd_txdescs
275 #define sc_rxdescs sc_control_data->pcd_rxdescs
276 #define sc_initblock sc_control_data->pcd_initblock
277
278 #ifdef PCN_EVENT_COUNTERS
279 /* Event counters. */
280 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
281 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
282 struct evcnt sc_ev_txintr; /* Tx interrupts */
283 struct evcnt sc_ev_rxintr; /* Rx interrupts */
284 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
285 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
286 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
287
288 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
289 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
290 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
291 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
292 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
293 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
294 struct evcnt sc_ev_txcopy; /* Tx copies required */
295 #endif /* PCN_EVENT_COUNTERS */
296
297 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */
298 int sc_rcvfw;
299
300 const char * const *sc_xmtsp_desc; /* Tx start point info */
301 int sc_xmtsp;
302
303 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */
304 int sc_xmtfw;
305
306 int sc_flags; /* misc. flags; see below */
307 int sc_swstyle; /* the software style in use */
308
309 int sc_txfree; /* number of free Tx descriptors */
310 int sc_txnext; /* next ready Tx descriptor */
311
312 int sc_txsfree; /* number of free Tx jobs */
313 int sc_txsnext; /* next free Tx job */
314 int sc_txsdirty; /* dirty Tx jobs */
315
316 int sc_rxptr; /* next ready Rx descriptor/job */
317
318 uint32_t sc_csr5; /* prototype CSR5 register */
319 uint32_t sc_mode; /* prototype MODE register */
320
321 #if NRND > 0
322 rndsource_element_t rnd_source; /* random source */
323 #endif
324 };
325
326 /* sc_flags */
327 #define PCN_F_HAS_MII 0x0001 /* has MII */
328
329 #ifdef PCN_EVENT_COUNTERS
330 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
331 #else
332 #define PCN_EVCNT_INCR(ev) /* nothing */
333 #endif
334
335 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
336 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
337 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
338
339 #define PCN_CDTXSYNC(sc, x, n, ops) \
340 do { \
341 int __x, __n; \
342 \
343 __x = (x); \
344 __n = (n); \
345 \
346 /* If it will wrap around, sync to the end of the ring. */ \
347 if ((__x + __n) > PCN_NTXDESC) { \
348 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
349 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
350 (PCN_NTXDESC - __x), (ops)); \
351 __n -= (PCN_NTXDESC - __x); \
352 __x = 0; \
353 } \
354 \
355 /* Now sync whatever is left. */ \
356 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
357 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
358 } while (/*CONSTCOND*/0)
359
360 #define PCN_CDRXSYNC(sc, x, ops) \
361 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
362 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
363
364 #define PCN_CDINITSYNC(sc, ops) \
365 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
366 PCN_CDINITOFF, sizeof(struct leinit), (ops))
367
368 #define PCN_INIT_RXDESC(sc, x) \
369 do { \
370 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
371 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
372 struct mbuf *__m = __rxs->rxs_mbuf; \
373 \
374 /* \
375 * Note: We scoot the packet forward 2 bytes in the buffer \
376 * so that the payload after the Ethernet header is aligned \
377 * to a 4-byte boundary. \
378 */ \
379 __m->m_data = __m->m_ext.ext_buf + 2; \
380 \
381 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
382 __rmd->rmd2 = \
383 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
384 __rmd->rmd0 = 0; \
385 } else { \
386 __rmd->rmd2 = 0; \
387 __rmd->rmd0 = \
388 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
389 } \
390 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
391 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
392 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
393 } while(/*CONSTCOND*/0)
394
395 static void pcn_start(struct ifnet *);
396 static void pcn_watchdog(struct ifnet *);
397 static int pcn_ioctl(struct ifnet *, u_long, void *);
398 static int pcn_init(struct ifnet *);
399 static void pcn_stop(struct ifnet *, int);
400
401 static void pcn_shutdown(void *);
402
403 static void pcn_reset(struct pcn_softc *);
404 static void pcn_rxdrain(struct pcn_softc *);
405 static int pcn_add_rxbuf(struct pcn_softc *, int);
406 static void pcn_tick(void *);
407
408 static void pcn_spnd(struct pcn_softc *);
409
410 static void pcn_set_filter(struct pcn_softc *);
411
412 static int pcn_intr(void *);
413 static void pcn_txintr(struct pcn_softc *);
414 static int pcn_rxintr(struct pcn_softc *);
415
416 static int pcn_mii_readreg(struct device *, int, int);
417 static void pcn_mii_writereg(struct device *, int, int, int);
418 static void pcn_mii_statchg(struct device *);
419
420 static void pcn_79c970_mediainit(struct pcn_softc *);
421 static int pcn_79c970_mediachange(struct ifnet *);
422 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
423
424 static void pcn_79c971_mediainit(struct pcn_softc *);
425 static int pcn_79c971_mediachange(struct ifnet *);
426 static void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
427
428 /*
429 * Description of a PCnet-PCI variant. Used to select media access
430 * method, mostly, and to print a nice description of the chip.
431 */
432 static const struct pcn_variant {
433 const char *pcv_desc;
434 void (*pcv_mediainit)(struct pcn_softc *);
435 uint16_t pcv_chipid;
436 } pcn_variants[] = {
437 { "Am79c970 PCnet-PCI",
438 pcn_79c970_mediainit,
439 PARTID_Am79c970 },
440
441 { "Am79c970A PCnet-PCI II",
442 pcn_79c970_mediainit,
443 PARTID_Am79c970A },
444
445 { "Am79c971 PCnet-FAST",
446 pcn_79c971_mediainit,
447 PARTID_Am79c971 },
448
449 { "Am79c972 PCnet-FAST+",
450 pcn_79c971_mediainit,
451 PARTID_Am79c972 },
452
453 { "Am79c973 PCnet-FAST III",
454 pcn_79c971_mediainit,
455 PARTID_Am79c973 },
456
457 { "Am79c975 PCnet-FAST III",
458 pcn_79c971_mediainit,
459 PARTID_Am79c975 },
460
461 { "Unknown PCnet-PCI variant",
462 pcn_79c971_mediainit,
463 0 },
464 };
465
466 int pcn_copy_small = 0;
467
468 static int pcn_match(struct device *, struct cfdata *, void *);
469 static void pcn_attach(struct device *, struct device *, void *);
470
471 CFATTACH_DECL(pcn, sizeof(struct pcn_softc),
472 pcn_match, pcn_attach, NULL, NULL);
473
474 /*
475 * Routines to read and write the PCnet-PCI CSR/BCR space.
476 */
477
478 static inline uint32_t
479 pcn_csr_read(struct pcn_softc *sc, int reg)
480 {
481
482 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
483 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
484 }
485
486 static inline void
487 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
488 {
489
490 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
491 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
492 }
493
494 static inline uint32_t
495 pcn_bcr_read(struct pcn_softc *sc, int reg)
496 {
497
498 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
499 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
500 }
501
502 static inline void
503 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
504 {
505
506 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
507 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
508 }
509
510 static bool
511 pcn_is_vmware(const char *enaddr)
512 {
513
514 /*
515 * VMware uses the OUI 00:0c:29 for auto-generated MAC
516 * addresses.
517 */
518 if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29)
519 return (TRUE);
520
521 /*
522 * VMware uses the OUI 00:50:56 for manually-set MAC
523 * addresses (and some auto-generated ones).
524 */
525 if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56)
526 return (TRUE);
527
528 return (FALSE);
529 }
530
531 static const struct pcn_variant *
532 pcn_lookup_variant(uint16_t chipid)
533 {
534 const struct pcn_variant *pcv;
535
536 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
537 if (chipid == pcv->pcv_chipid)
538 return (pcv);
539 }
540
541 /*
542 * This covers unknown chips, which we simply treat like
543 * a generic PCnet-FAST.
544 */
545 return (pcv);
546 }
547
548 static int
549 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
550 {
551 struct pci_attach_args *pa = aux;
552
553 /*
554 * IBM Makes a PCI variant of this card which shows up as a
555 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
556 * this card is truly a pcn card, so we have a special case match for
557 * it
558 */
559
560 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
561 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
562 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
563 return(1);
564
565 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
566 return (0);
567
568 switch (PCI_PRODUCT(pa->pa_id)) {
569 case PCI_PRODUCT_AMD_PCNET_PCI:
570 /* Beat if_le_pci.c */
571 return (10);
572 }
573
574 return (0);
575 }
576
577 static void
578 pcn_attach(struct device *parent, struct device *self, void *aux)
579 {
580 struct pcn_softc *sc = (struct pcn_softc *) self;
581 struct pci_attach_args *pa = aux;
582 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
583 pci_chipset_tag_t pc = pa->pa_pc;
584 pci_intr_handle_t ih;
585 const char *intrstr = NULL;
586 bus_space_tag_t iot, memt;
587 bus_space_handle_t ioh, memh;
588 bus_dma_segment_t seg;
589 int ioh_valid, memh_valid;
590 int ntxsegs, i, rseg, error;
591 uint32_t chipid, reg;
592 uint8_t enaddr[ETHER_ADDR_LEN];
593 prop_object_t obj;
594 bool is_vmware;
595
596 callout_init(&sc->sc_tick_ch, 0);
597
598 printf(": AMD PCnet-PCI Ethernet\n");
599
600 /*
601 * Map the device.
602 */
603 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
604 &iot, &ioh, NULL, NULL) == 0);
605 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
606 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
607 &memt, &memh, NULL, NULL) == 0);
608
609 if (memh_valid) {
610 sc->sc_st = memt;
611 sc->sc_sh = memh;
612 } else if (ioh_valid) {
613 sc->sc_st = iot;
614 sc->sc_sh = ioh;
615 } else {
616 printf("%s: unable to map device registers\n",
617 sc->sc_dev.dv_xname);
618 return;
619 }
620
621 sc->sc_dmat = pa->pa_dmat;
622
623 /* Make sure bus mastering is enabled. */
624 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
625 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
626 PCI_COMMAND_MASTER_ENABLE);
627
628 /* power up chip */
629 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, sc,
630 NULL)) && error != EOPNOTSUPP) {
631 aprint_error("%s: cannot activate %d\n", sc->sc_dev.dv_xname,
632 error);
633 return;
634 }
635
636 /*
637 * Reset the chip to a known state. This also puts the
638 * chip into 32-bit mode.
639 */
640 pcn_reset(sc);
641
642 /*
643 * On some systems with the chip is an on-board device, the
644 * EEPROM is not used. Handle this by reading the MAC address
645 * from the CSRs (assuming that boot firmware has written
646 * it there).
647 */
648 obj = prop_dictionary_get(device_properties(&sc->sc_dev),
649 "am79c970-no-eeprom");
650 if (prop_bool_true(obj)) {
651 for (i = 0; i < 3; i++) {
652 uint32_t val;
653 val = pcn_csr_read(sc, LE_CSR12 + i);
654 enaddr[2*i] = val & 0x0ff;
655 enaddr[2*i+1] = (val >> 8) & 0x0ff;
656 }
657 } else {
658 for (i = 0; i < ETHER_ADDR_LEN; i++) {
659 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
660 PCN32_APROM + i);
661 }
662 }
663
664 /* Check to see if this is a VMware emulated network interface. */
665 is_vmware = pcn_is_vmware(enaddr);
666
667 /*
668 * Now that the device is mapped, attempt to figure out what
669 * kind of chip we have. Note that IDL has all 32 bits of
670 * the chip ID when we're in 32-bit mode.
671 */
672 chipid = pcn_csr_read(sc, LE_CSR88);
673 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
674
675 printf("%s: %s rev %d, Ethernet address %s\n",
676 sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
677 ether_sprintf(enaddr));
678
679 /*
680 * VMware has a bug in its network interface emulation; we must
681 * limit the number of Tx segments.
682 */
683 if (is_vmware) {
684 ntxsegs = PCN_NTXSEGS_VMWARE;
685 prop_dictionary_set_bool(device_properties(&sc->sc_dev),
686 "am79c970-vmware-tx-bug", TRUE);
687 aprint_verbose("%s: VMware Tx segment count bug detected\n",
688 sc->sc_dev.dv_xname);
689 } else {
690 ntxsegs = PCN_NTXSEGS;
691 }
692
693 /*
694 * Map and establish our interrupt.
695 */
696 if (pci_intr_map(pa, &ih)) {
697 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
698 return;
699 }
700 intrstr = pci_intr_string(pc, ih);
701 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
702 if (sc->sc_ih == NULL) {
703 printf("%s: unable to establish interrupt",
704 sc->sc_dev.dv_xname);
705 if (intrstr != NULL)
706 printf(" at %s", intrstr);
707 printf("\n");
708 return;
709 }
710 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
711
712 /*
713 * Allocate the control data structures, and create and load the
714 * DMA map for it.
715 */
716 if ((error = bus_dmamem_alloc(sc->sc_dmat,
717 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
718 0)) != 0) {
719 printf("%s: unable to allocate control data, error = %d\n",
720 sc->sc_dev.dv_xname, error);
721 goto fail_0;
722 }
723
724 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
725 sizeof(struct pcn_control_data), (void **)&sc->sc_control_data,
726 BUS_DMA_COHERENT)) != 0) {
727 printf("%s: unable to map control data, error = %d\n",
728 sc->sc_dev.dv_xname, error);
729 goto fail_1;
730 }
731
732 if ((error = bus_dmamap_create(sc->sc_dmat,
733 sizeof(struct pcn_control_data), 1,
734 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
735 printf("%s: unable to create control data DMA map, "
736 "error = %d\n", sc->sc_dev.dv_xname, error);
737 goto fail_2;
738 }
739
740 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
741 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
742 0)) != 0) {
743 printf("%s: unable to load control data DMA map, error = %d\n",
744 sc->sc_dev.dv_xname, error);
745 goto fail_3;
746 }
747
748 /* Create the transmit buffer DMA maps. */
749 for (i = 0; i < PCN_TXQUEUELEN; i++) {
750 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
751 ntxsegs, MCLBYTES, 0, 0,
752 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
753 printf("%s: unable to create tx DMA map %d, "
754 "error = %d\n", sc->sc_dev.dv_xname, i, error);
755 goto fail_4;
756 }
757 }
758
759 /* Create the receive buffer DMA maps. */
760 for (i = 0; i < PCN_NRXDESC; i++) {
761 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
762 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
763 printf("%s: unable to create rx DMA map %d, "
764 "error = %d\n", sc->sc_dev.dv_xname, i, error);
765 goto fail_5;
766 }
767 sc->sc_rxsoft[i].rxs_mbuf = NULL;
768 }
769
770 /* Initialize our media structures. */
771 (*sc->sc_variant->pcv_mediainit)(sc);
772
773 /*
774 * Initialize FIFO watermark info.
775 */
776 switch (sc->sc_variant->pcv_chipid) {
777 case PARTID_Am79c970:
778 case PARTID_Am79c970A:
779 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
780 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
781 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
782 break;
783
784 default:
785 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
786 /*
787 * Read BCR25 to determine how much SRAM is
788 * on the board. If > 0, then we the chip
789 * uses different Start Point thresholds.
790 *
791 * Note BCR25 and BCR26 are loaded from the
792 * EEPROM on RST, and unaffected by S_RESET,
793 * so we don't really have to worry about
794 * them except for this.
795 */
796 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
797 if (reg != 0)
798 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
799 else
800 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
801 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
802 break;
803 }
804
805 /*
806 * Set up defaults -- see the tables above for what these
807 * values mean.
808 *
809 * XXX How should we tune RCVFW and XMTFW?
810 */
811 sc->sc_rcvfw = 1; /* minimum for full-duplex */
812 sc->sc_xmtsp = 1;
813 sc->sc_xmtfw = 0;
814
815 ifp = &sc->sc_ethercom.ec_if;
816 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
817 ifp->if_softc = sc;
818 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
819 ifp->if_ioctl = pcn_ioctl;
820 ifp->if_start = pcn_start;
821 ifp->if_watchdog = pcn_watchdog;
822 ifp->if_init = pcn_init;
823 ifp->if_stop = pcn_stop;
824 IFQ_SET_READY(&ifp->if_snd);
825
826 /* Attach the interface. */
827 if_attach(ifp);
828 ether_ifattach(ifp, enaddr);
829 #if NRND > 0
830 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
831 RND_TYPE_NET, 0);
832 #endif
833
834 #ifdef PCN_EVENT_COUNTERS
835 /* Attach event counters. */
836 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
837 NULL, sc->sc_dev.dv_xname, "txsstall");
838 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
839 NULL, sc->sc_dev.dv_xname, "txdstall");
840 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
841 NULL, sc->sc_dev.dv_xname, "txintr");
842 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
843 NULL, sc->sc_dev.dv_xname, "rxintr");
844 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
845 NULL, sc->sc_dev.dv_xname, "babl");
846 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
847 NULL, sc->sc_dev.dv_xname, "miss");
848 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
849 NULL, sc->sc_dev.dv_xname, "merr");
850
851 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
852 NULL, sc->sc_dev.dv_xname, "txseg1");
853 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
854 NULL, sc->sc_dev.dv_xname, "txseg2");
855 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
856 NULL, sc->sc_dev.dv_xname, "txseg3");
857 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
858 NULL, sc->sc_dev.dv_xname, "txseg4");
859 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
860 NULL, sc->sc_dev.dv_xname, "txseg5");
861 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
862 NULL, sc->sc_dev.dv_xname, "txsegmore");
863 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
864 NULL, sc->sc_dev.dv_xname, "txcopy");
865 #endif /* PCN_EVENT_COUNTERS */
866
867 /* Make sure the interface is shutdown during reboot. */
868 sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
869 if (sc->sc_sdhook == NULL)
870 printf("%s: WARNING: unable to establish shutdown hook\n",
871 sc->sc_dev.dv_xname);
872 return;
873
874 /*
875 * Free any resources we've allocated during the failed attach
876 * attempt. Do this in reverse order and fall through.
877 */
878 fail_5:
879 for (i = 0; i < PCN_NRXDESC; i++) {
880 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
881 bus_dmamap_destroy(sc->sc_dmat,
882 sc->sc_rxsoft[i].rxs_dmamap);
883 }
884 fail_4:
885 for (i = 0; i < PCN_TXQUEUELEN; i++) {
886 if (sc->sc_txsoft[i].txs_dmamap != NULL)
887 bus_dmamap_destroy(sc->sc_dmat,
888 sc->sc_txsoft[i].txs_dmamap);
889 }
890 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
891 fail_3:
892 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
893 fail_2:
894 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
895 sizeof(struct pcn_control_data));
896 fail_1:
897 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
898 fail_0:
899 return;
900 }
901
902 /*
903 * pcn_shutdown:
904 *
905 * Make sure the interface is stopped at reboot time.
906 */
907 static void
908 pcn_shutdown(void *arg)
909 {
910 struct pcn_softc *sc = arg;
911
912 pcn_stop(&sc->sc_ethercom.ec_if, 1);
913 /* explicitly reset the chip for some onboard one with lazy firmware */
914 pcn_reset(sc);
915 }
916
917 /*
918 * pcn_start: [ifnet interface function]
919 *
920 * Start packet transmission on the interface.
921 */
922 static void
923 pcn_start(struct ifnet *ifp)
924 {
925 struct pcn_softc *sc = ifp->if_softc;
926 struct mbuf *m0, *m;
927 struct pcn_txsoft *txs;
928 bus_dmamap_t dmamap;
929 int error, nexttx, lasttx = -1, ofree, seg;
930
931 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
932 return;
933
934 /*
935 * Remember the previous number of free descriptors and
936 * the first descriptor we'll use.
937 */
938 ofree = sc->sc_txfree;
939
940 /*
941 * Loop through the send queue, setting up transmit descriptors
942 * until we drain the queue, or use up all available transmit
943 * descriptors.
944 */
945 for (;;) {
946 /* Grab a packet off the queue. */
947 IFQ_POLL(&ifp->if_snd, m0);
948 if (m0 == NULL)
949 break;
950 m = NULL;
951
952 /* Get a work queue entry. */
953 if (sc->sc_txsfree == 0) {
954 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
955 break;
956 }
957
958 txs = &sc->sc_txsoft[sc->sc_txsnext];
959 dmamap = txs->txs_dmamap;
960
961 /*
962 * Load the DMA map. If this fails, the packet either
963 * didn't fit in the alloted number of segments, or we
964 * were short on resources. In this case, we'll copy
965 * and try again.
966 */
967 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
968 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
969 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
970 MGETHDR(m, M_DONTWAIT, MT_DATA);
971 if (m == NULL) {
972 printf("%s: unable to allocate Tx mbuf\n",
973 sc->sc_dev.dv_xname);
974 break;
975 }
976 if (m0->m_pkthdr.len > MHLEN) {
977 MCLGET(m, M_DONTWAIT);
978 if ((m->m_flags & M_EXT) == 0) {
979 printf("%s: unable to allocate Tx "
980 "cluster\n", sc->sc_dev.dv_xname);
981 m_freem(m);
982 break;
983 }
984 }
985 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
986 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
987 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
988 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
989 if (error) {
990 printf("%s: unable to load Tx buffer, "
991 "error = %d\n", sc->sc_dev.dv_xname, error);
992 break;
993 }
994 }
995
996 /*
997 * Ensure we have enough descriptors free to describe
998 * the packet. Note, we always reserve one descriptor
999 * at the end of the ring as a termination point, to
1000 * prevent wrap-around.
1001 */
1002 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
1003 /*
1004 * Not enough free descriptors to transmit this
1005 * packet. We haven't committed anything yet,
1006 * so just unload the DMA map, put the packet
1007 * back on the queue, and punt. Notify the upper
1008 * layer that there are not more slots left.
1009 *
1010 * XXX We could allocate an mbuf and copy, but
1011 * XXX is it worth it?
1012 */
1013 ifp->if_flags |= IFF_OACTIVE;
1014 bus_dmamap_unload(sc->sc_dmat, dmamap);
1015 if (m != NULL)
1016 m_freem(m);
1017 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
1018 break;
1019 }
1020
1021 IFQ_DEQUEUE(&ifp->if_snd, m0);
1022 if (m != NULL) {
1023 m_freem(m0);
1024 m0 = m;
1025 }
1026
1027 /*
1028 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1029 */
1030
1031 /* Sync the DMA map. */
1032 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1033 BUS_DMASYNC_PREWRITE);
1034
1035 #ifdef PCN_EVENT_COUNTERS
1036 switch (dmamap->dm_nsegs) {
1037 case 1:
1038 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1039 break;
1040 case 2:
1041 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1042 break;
1043 case 3:
1044 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1045 break;
1046 case 4:
1047 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1048 break;
1049 case 5:
1050 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1051 break;
1052 default:
1053 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1054 break;
1055 }
1056 #endif /* PCN_EVENT_COUNTERS */
1057
1058 /*
1059 * Initialize the transmit descriptors.
1060 */
1061 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1062 for (nexttx = sc->sc_txnext, seg = 0;
1063 seg < dmamap->dm_nsegs;
1064 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1065 /*
1066 * If this is the first descriptor we're
1067 * enqueueing, don't set the OWN bit just
1068 * yet. That could cause a race condition.
1069 * We'll do it below.
1070 */
1071 sc->sc_txdescs[nexttx].tmd0 = 0;
1072 sc->sc_txdescs[nexttx].tmd2 =
1073 htole32(dmamap->dm_segs[seg].ds_addr);
1074 sc->sc_txdescs[nexttx].tmd1 =
1075 htole32(LE_T1_ONES |
1076 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1077 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1078 LE_T1_BCNT_MASK));
1079 lasttx = nexttx;
1080 }
1081 } else {
1082 for (nexttx = sc->sc_txnext, seg = 0;
1083 seg < dmamap->dm_nsegs;
1084 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1085 /*
1086 * If this is the first descriptor we're
1087 * enqueueing, don't set the OWN bit just
1088 * yet. That could cause a race condition.
1089 * We'll do it below.
1090 */
1091 sc->sc_txdescs[nexttx].tmd0 =
1092 htole32(dmamap->dm_segs[seg].ds_addr);
1093 sc->sc_txdescs[nexttx].tmd2 = 0;
1094 sc->sc_txdescs[nexttx].tmd1 =
1095 htole32(LE_T1_ONES |
1096 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1097 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1098 LE_T1_BCNT_MASK));
1099 lasttx = nexttx;
1100 }
1101 }
1102
1103 KASSERT(lasttx != -1);
1104 /* Interrupt on the packet, if appropriate. */
1105 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1106 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1107
1108 /* Set `start of packet' and `end of packet' appropriately. */
1109 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1110 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1111 htole32(LE_T1_OWN|LE_T1_STP);
1112
1113 /* Sync the descriptors we're using. */
1114 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1115 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1116
1117 /* Kick the transmitter. */
1118 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1119
1120 /*
1121 * Store a pointer to the packet so we can free it later,
1122 * and remember what txdirty will be once the packet is
1123 * done.
1124 */
1125 txs->txs_mbuf = m0;
1126 txs->txs_firstdesc = sc->sc_txnext;
1127 txs->txs_lastdesc = lasttx;
1128
1129 /* Advance the tx pointer. */
1130 sc->sc_txfree -= dmamap->dm_nsegs;
1131 sc->sc_txnext = nexttx;
1132
1133 sc->sc_txsfree--;
1134 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1135
1136 #if NBPFILTER > 0
1137 /* Pass the packet to any BPF listeners. */
1138 if (ifp->if_bpf)
1139 bpf_mtap(ifp->if_bpf, m0);
1140 #endif /* NBPFILTER > 0 */
1141 }
1142
1143 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1144 /* No more slots left; notify upper layer. */
1145 ifp->if_flags |= IFF_OACTIVE;
1146 }
1147
1148 if (sc->sc_txfree != ofree) {
1149 /* Set a watchdog timer in case the chip flakes out. */
1150 ifp->if_timer = 5;
1151 }
1152 }
1153
1154 /*
1155 * pcn_watchdog: [ifnet interface function]
1156 *
1157 * Watchdog timer handler.
1158 */
1159 static void
1160 pcn_watchdog(struct ifnet *ifp)
1161 {
1162 struct pcn_softc *sc = ifp->if_softc;
1163
1164 /*
1165 * Since we're not interrupting every packet, sweep
1166 * up before we report an error.
1167 */
1168 pcn_txintr(sc);
1169
1170 if (sc->sc_txfree != PCN_NTXDESC) {
1171 printf("%s: device timeout (txfree %d txsfree %d)\n",
1172 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1173 ifp->if_oerrors++;
1174
1175 /* Reset the interface. */
1176 (void) pcn_init(ifp);
1177 }
1178
1179 /* Try to get more packets going. */
1180 pcn_start(ifp);
1181 }
1182
1183 /*
1184 * pcn_ioctl: [ifnet interface function]
1185 *
1186 * Handle control requests from the operator.
1187 */
1188 static int
1189 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1190 {
1191 struct pcn_softc *sc = ifp->if_softc;
1192 struct ifreq *ifr = (struct ifreq *) data;
1193 int s, error;
1194
1195 s = splnet();
1196
1197 switch (cmd) {
1198 case SIOCSIFMEDIA:
1199 case SIOCGIFMEDIA:
1200 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1201 break;
1202
1203 default:
1204 error = ether_ioctl(ifp, cmd, data);
1205 if (error == ENETRESET) {
1206 /*
1207 * Multicast list has changed; set the hardware filter
1208 * accordingly.
1209 */
1210 if (ifp->if_flags & IFF_RUNNING)
1211 error = pcn_init(ifp);
1212 else
1213 error = 0;
1214 }
1215 break;
1216 }
1217
1218 /* Try to get more packets going. */
1219 pcn_start(ifp);
1220
1221 splx(s);
1222 return (error);
1223 }
1224
1225 /*
1226 * pcn_intr:
1227 *
1228 * Interrupt service routine.
1229 */
1230 static int
1231 pcn_intr(void *arg)
1232 {
1233 struct pcn_softc *sc = arg;
1234 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1235 uint32_t csr0;
1236 int wantinit, handled = 0;
1237
1238 for (wantinit = 0; wantinit == 0;) {
1239 csr0 = pcn_csr_read(sc, LE_CSR0);
1240 if ((csr0 & LE_C0_INTR) == 0)
1241 break;
1242
1243 #if NRND > 0
1244 if (RND_ENABLED(&sc->rnd_source))
1245 rnd_add_uint32(&sc->rnd_source, csr0);
1246 #endif
1247
1248 /* ACK the bits and re-enable interrupts. */
1249 pcn_csr_write(sc, LE_CSR0, csr0 &
1250 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1251 LE_C0_TINT|LE_C0_IDON));
1252
1253 handled = 1;
1254
1255 if (csr0 & LE_C0_RINT) {
1256 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1257 wantinit = pcn_rxintr(sc);
1258 }
1259
1260 if (csr0 & LE_C0_TINT) {
1261 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1262 pcn_txintr(sc);
1263 }
1264
1265 if (csr0 & LE_C0_ERR) {
1266 if (csr0 & LE_C0_BABL) {
1267 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1268 ifp->if_oerrors++;
1269 }
1270 if (csr0 & LE_C0_MISS) {
1271 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1272 ifp->if_ierrors++;
1273 }
1274 if (csr0 & LE_C0_MERR) {
1275 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1276 printf("%s: memory error\n",
1277 sc->sc_dev.dv_xname);
1278 wantinit = 1;
1279 break;
1280 }
1281 }
1282
1283 if ((csr0 & LE_C0_RXON) == 0) {
1284 printf("%s: receiver disabled\n",
1285 sc->sc_dev.dv_xname);
1286 ifp->if_ierrors++;
1287 wantinit = 1;
1288 }
1289
1290 if ((csr0 & LE_C0_TXON) == 0) {
1291 printf("%s: transmitter disabled\n",
1292 sc->sc_dev.dv_xname);
1293 ifp->if_oerrors++;
1294 wantinit = 1;
1295 }
1296 }
1297
1298 if (handled) {
1299 if (wantinit)
1300 pcn_init(ifp);
1301
1302 /* Try to get more packets going. */
1303 pcn_start(ifp);
1304 }
1305
1306 return (handled);
1307 }
1308
1309 /*
1310 * pcn_spnd:
1311 *
1312 * Suspend the chip.
1313 */
1314 static void
1315 pcn_spnd(struct pcn_softc *sc)
1316 {
1317 int i;
1318
1319 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1320
1321 for (i = 0; i < 10000; i++) {
1322 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1323 return;
1324 delay(5);
1325 }
1326
1327 printf("%s: WARNING: chip failed to enter suspended state\n",
1328 sc->sc_dev.dv_xname);
1329 }
1330
1331 /*
1332 * pcn_txintr:
1333 *
1334 * Helper; handle transmit interrupts.
1335 */
1336 static void
1337 pcn_txintr(struct pcn_softc *sc)
1338 {
1339 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1340 struct pcn_txsoft *txs;
1341 uint32_t tmd1, tmd2, tmd;
1342 int i, j;
1343
1344 ifp->if_flags &= ~IFF_OACTIVE;
1345
1346 /*
1347 * Go through our Tx list and free mbufs for those
1348 * frames which have been transmitted.
1349 */
1350 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1351 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1352 txs = &sc->sc_txsoft[i];
1353
1354 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1355 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1356
1357 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1358 if (tmd1 & LE_T1_OWN)
1359 break;
1360
1361 /*
1362 * Slightly annoying -- we have to loop through the
1363 * descriptors we've used looking for ERR, since it
1364 * can appear on any descriptor in the chain.
1365 */
1366 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1367 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1368 if (tmd & LE_T1_ERR) {
1369 ifp->if_oerrors++;
1370 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1371 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1372 else
1373 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1374 if (tmd2 & LE_T2_UFLO) {
1375 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1376 sc->sc_xmtsp++;
1377 printf("%s: transmit "
1378 "underrun; new threshold: "
1379 "%s\n",
1380 sc->sc_dev.dv_xname,
1381 sc->sc_xmtsp_desc[
1382 sc->sc_xmtsp]);
1383 pcn_spnd(sc);
1384 pcn_csr_write(sc, LE_CSR80,
1385 LE_C80_RCVFW(sc->sc_rcvfw) |
1386 LE_C80_XMTSP(sc->sc_xmtsp) |
1387 LE_C80_XMTFW(sc->sc_xmtfw));
1388 pcn_csr_write(sc, LE_CSR5,
1389 sc->sc_csr5);
1390 } else {
1391 printf("%s: transmit "
1392 "underrun\n",
1393 sc->sc_dev.dv_xname);
1394 }
1395 } else if (tmd2 & LE_T2_BUFF) {
1396 printf("%s: transmit buffer error\n",
1397 sc->sc_dev.dv_xname);
1398 }
1399 if (tmd2 & LE_T2_LCOL)
1400 ifp->if_collisions++;
1401 if (tmd2 & LE_T2_RTRY)
1402 ifp->if_collisions += 16;
1403 goto next_packet;
1404 }
1405 if (j == txs->txs_lastdesc)
1406 break;
1407 }
1408 if (tmd1 & LE_T1_ONE)
1409 ifp->if_collisions++;
1410 else if (tmd & LE_T1_MORE) {
1411 /* Real number is unknown. */
1412 ifp->if_collisions += 2;
1413 }
1414 ifp->if_opackets++;
1415 next_packet:
1416 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1417 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1418 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1419 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1420 m_freem(txs->txs_mbuf);
1421 txs->txs_mbuf = NULL;
1422 }
1423
1424 /* Update the dirty transmit buffer pointer. */
1425 sc->sc_txsdirty = i;
1426
1427 /*
1428 * If there are no more pending transmissions, cancel the watchdog
1429 * timer.
1430 */
1431 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1432 ifp->if_timer = 0;
1433 }
1434
1435 /*
1436 * pcn_rxintr:
1437 *
1438 * Helper; handle receive interrupts.
1439 */
1440 static int
1441 pcn_rxintr(struct pcn_softc *sc)
1442 {
1443 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1444 struct pcn_rxsoft *rxs;
1445 struct mbuf *m;
1446 uint32_t rmd1;
1447 int i, len;
1448
1449 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1450 rxs = &sc->sc_rxsoft[i];
1451
1452 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1453
1454 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1455
1456 if (rmd1 & LE_R1_OWN)
1457 break;
1458
1459 /*
1460 * Check for errors and make sure the packet fit into
1461 * a single buffer. We have structured this block of
1462 * code the way it is in order to compress it into
1463 * one test in the common case (no error).
1464 */
1465 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1466 (LE_R1_STP|LE_R1_ENP))) {
1467 /* Make sure the packet is in a single buffer. */
1468 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1469 (LE_R1_STP|LE_R1_ENP)) {
1470 printf("%s: packet spilled into next buffer\n",
1471 sc->sc_dev.dv_xname);
1472 return (1); /* pcn_intr() will re-init */
1473 }
1474
1475 /*
1476 * If the packet had an error, simple recycle the
1477 * buffer.
1478 */
1479 if (rmd1 & LE_R1_ERR) {
1480 ifp->if_ierrors++;
1481 /*
1482 * If we got an overflow error, chances
1483 * are there will be a CRC error. In
1484 * this case, just print the overflow
1485 * error, and skip the others.
1486 */
1487 if (rmd1 & LE_R1_OFLO)
1488 printf("%s: overflow error\n",
1489 sc->sc_dev.dv_xname);
1490 else {
1491 #define PRINTIT(x, str) \
1492 if (rmd1 & (x)) \
1493 printf("%s: %s\n", \
1494 sc->sc_dev.dv_xname, str);
1495 PRINTIT(LE_R1_FRAM, "framing error");
1496 PRINTIT(LE_R1_CRC, "CRC error");
1497 PRINTIT(LE_R1_BUFF, "buffer error");
1498 }
1499 #undef PRINTIT
1500 PCN_INIT_RXDESC(sc, i);
1501 continue;
1502 }
1503 }
1504
1505 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1506 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1507
1508 /*
1509 * No errors; receive the packet.
1510 */
1511 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1512 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1513 else
1514 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1515
1516 /*
1517 * The LANCE family includes the CRC with every packet;
1518 * trim it off here.
1519 */
1520 len -= ETHER_CRC_LEN;
1521
1522 /*
1523 * If the packet is small enough to fit in a
1524 * single header mbuf, allocate one and copy
1525 * the data into it. This greatly reduces
1526 * memory consumption when we receive lots
1527 * of small packets.
1528 *
1529 * Otherwise, we add a new buffer to the receive
1530 * chain. If this fails, we drop the packet and
1531 * recycle the old buffer.
1532 */
1533 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1534 MGETHDR(m, M_DONTWAIT, MT_DATA);
1535 if (m == NULL)
1536 goto dropit;
1537 m->m_data += 2;
1538 memcpy(mtod(m, void *),
1539 mtod(rxs->rxs_mbuf, void *), len);
1540 PCN_INIT_RXDESC(sc, i);
1541 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1542 rxs->rxs_dmamap->dm_mapsize,
1543 BUS_DMASYNC_PREREAD);
1544 } else {
1545 m = rxs->rxs_mbuf;
1546 if (pcn_add_rxbuf(sc, i) != 0) {
1547 dropit:
1548 ifp->if_ierrors++;
1549 PCN_INIT_RXDESC(sc, i);
1550 bus_dmamap_sync(sc->sc_dmat,
1551 rxs->rxs_dmamap, 0,
1552 rxs->rxs_dmamap->dm_mapsize,
1553 BUS_DMASYNC_PREREAD);
1554 continue;
1555 }
1556 }
1557
1558 m->m_pkthdr.rcvif = ifp;
1559 m->m_pkthdr.len = m->m_len = len;
1560
1561 #if NBPFILTER > 0
1562 /* Pass this up to any BPF listeners. */
1563 if (ifp->if_bpf)
1564 bpf_mtap(ifp->if_bpf, m);
1565 #endif /* NBPFILTER > 0 */
1566
1567 /* Pass it on. */
1568 (*ifp->if_input)(ifp, m);
1569 ifp->if_ipackets++;
1570 }
1571
1572 /* Update the receive pointer. */
1573 sc->sc_rxptr = i;
1574 return (0);
1575 }
1576
1577 /*
1578 * pcn_tick:
1579 *
1580 * One second timer, used to tick the MII.
1581 */
1582 static void
1583 pcn_tick(void *arg)
1584 {
1585 struct pcn_softc *sc = arg;
1586 int s;
1587
1588 s = splnet();
1589 mii_tick(&sc->sc_mii);
1590 splx(s);
1591
1592 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1593 }
1594
1595 /*
1596 * pcn_reset:
1597 *
1598 * Perform a soft reset on the PCnet-PCI.
1599 */
1600 static void
1601 pcn_reset(struct pcn_softc *sc)
1602 {
1603
1604 /*
1605 * The PCnet-PCI chip is reset by reading from the
1606 * RESET register. Note that while the NE2100 LANCE
1607 * boards require a write after the read, the PCnet-PCI
1608 * chips do not require this.
1609 *
1610 * Since we don't know if we're in 16-bit or 32-bit
1611 * mode right now, issue both (it's safe) in the
1612 * hopes that one will succeed.
1613 */
1614 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1615 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1616
1617 /* Wait 1ms for it to finish. */
1618 delay(1000);
1619
1620 /*
1621 * Select 32-bit I/O mode by issuing a 32-bit write to the
1622 * RDP. Since the RAP is 0 after a reset, writing a 0
1623 * to RDP is safe (since it simply clears CSR0).
1624 */
1625 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1626 }
1627
1628 /*
1629 * pcn_init: [ifnet interface function]
1630 *
1631 * Initialize the interface. Must be called at splnet().
1632 */
1633 static int
1634 pcn_init(struct ifnet *ifp)
1635 {
1636 struct pcn_softc *sc = ifp->if_softc;
1637 struct pcn_rxsoft *rxs;
1638 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1639 int i, error = 0;
1640 uint32_t reg;
1641
1642 /* Cancel any pending I/O. */
1643 pcn_stop(ifp, 0);
1644
1645 /* Reset the chip to a known state. */
1646 pcn_reset(sc);
1647
1648 /*
1649 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1650 * else.
1651 *
1652 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1653 * because the structure layout is compatible with ILACC,
1654 * but the burst mode is only available in SSTYLE 3, and
1655 * burst mode should provide some performance enhancement.
1656 */
1657 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1658 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1659 else
1660 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1661 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1662
1663 /* Initialize the transmit descriptor ring. */
1664 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1665 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1666 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1667 sc->sc_txfree = PCN_NTXDESC;
1668 sc->sc_txnext = 0;
1669
1670 /* Initialize the transmit job descriptors. */
1671 for (i = 0; i < PCN_TXQUEUELEN; i++)
1672 sc->sc_txsoft[i].txs_mbuf = NULL;
1673 sc->sc_txsfree = PCN_TXQUEUELEN;
1674 sc->sc_txsnext = 0;
1675 sc->sc_txsdirty = 0;
1676
1677 /*
1678 * Initialize the receive descriptor and receive job
1679 * descriptor rings.
1680 */
1681 for (i = 0; i < PCN_NRXDESC; i++) {
1682 rxs = &sc->sc_rxsoft[i];
1683 if (rxs->rxs_mbuf == NULL) {
1684 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1685 printf("%s: unable to allocate or map rx "
1686 "buffer %d, error = %d\n",
1687 sc->sc_dev.dv_xname, i, error);
1688 /*
1689 * XXX Should attempt to run with fewer receive
1690 * XXX buffers instead of just failing.
1691 */
1692 pcn_rxdrain(sc);
1693 goto out;
1694 }
1695 } else
1696 PCN_INIT_RXDESC(sc, i);
1697 }
1698 sc->sc_rxptr = 0;
1699
1700 /* Initialize MODE for the initialization block. */
1701 sc->sc_mode = 0;
1702 if (ifp->if_flags & IFF_PROMISC)
1703 sc->sc_mode |= LE_C15_PROM;
1704 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1705 sc->sc_mode |= LE_C15_DRCVBC;
1706
1707 /*
1708 * If we have MII, simply select MII in the MODE register,
1709 * and clear ASEL. Otherwise, let ASEL stand (for now),
1710 * and leave PORTSEL alone (it is ignored with ASEL is set).
1711 */
1712 if (sc->sc_flags & PCN_F_HAS_MII) {
1713 pcn_bcr_write(sc, LE_BCR2,
1714 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1715 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1716
1717 /*
1718 * Disable MII auto-negotiation. We handle that in
1719 * our own MII layer.
1720 */
1721 pcn_bcr_write(sc, LE_BCR32,
1722 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1723 }
1724
1725 /*
1726 * Set the Tx and Rx descriptor ring addresses in the init
1727 * block, the TLEN and RLEN other fields of the init block
1728 * MODE register.
1729 */
1730 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1731 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1732 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1733 ((ffs(PCN_NTXDESC) - 1) << 28) |
1734 ((ffs(PCN_NRXDESC) - 1) << 20));
1735
1736 /* Set the station address in the init block. */
1737 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1738 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1739 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1740 (enaddr[5] << 8));
1741
1742 /* Set the multicast filter in the init block. */
1743 pcn_set_filter(sc);
1744
1745 /* Initialize CSR3. */
1746 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1747
1748 /* Initialize CSR4. */
1749 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1750 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1751
1752 /* Initialize CSR5. */
1753 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1754 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1755
1756 /*
1757 * If we have an Am79c971 or greater, initialize CSR7.
1758 *
1759 * XXX Might be nice to use the MII auto-poll interrupt someday.
1760 */
1761 switch (sc->sc_variant->pcv_chipid) {
1762 case PARTID_Am79c970:
1763 case PARTID_Am79c970A:
1764 /* Not available on these chips. */
1765 break;
1766
1767 default:
1768 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1769 break;
1770 }
1771
1772 /*
1773 * On the Am79c970A and greater, initialize BCR18 to
1774 * enable burst mode.
1775 *
1776 * Also enable the "no underflow" option on the Am79c971 and
1777 * higher, which prevents the chip from generating transmit
1778 * underflows, yet sill provides decent performance. Note if
1779 * chip is not connected to external SRAM, then we still have
1780 * to handle underflow errors (the NOUFLO bit is ignored in
1781 * that case).
1782 */
1783 reg = pcn_bcr_read(sc, LE_BCR18);
1784 switch (sc->sc_variant->pcv_chipid) {
1785 case PARTID_Am79c970:
1786 break;
1787
1788 case PARTID_Am79c970A:
1789 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1790 break;
1791
1792 default:
1793 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1794 break;
1795 }
1796 pcn_bcr_write(sc, LE_BCR18, reg);
1797
1798 /*
1799 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1800 */
1801 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1802 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1803
1804 /*
1805 * Send the init block to the chip, and wait for it
1806 * to be processed.
1807 */
1808 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1809 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1810 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1811 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1812 delay(100);
1813 for (i = 0; i < 10000; i++) {
1814 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1815 break;
1816 delay(10);
1817 }
1818 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1819 if (i == 10000) {
1820 printf("%s: timeout processing init block\n",
1821 sc->sc_dev.dv_xname);
1822 error = EIO;
1823 goto out;
1824 }
1825
1826 /* Set the media. */
1827 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1828
1829 /* Enable interrupts and external activity (and ACK IDON). */
1830 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1831
1832 if (sc->sc_flags & PCN_F_HAS_MII) {
1833 /* Start the one second MII clock. */
1834 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1835 }
1836
1837 /* ...all done! */
1838 ifp->if_flags |= IFF_RUNNING;
1839 ifp->if_flags &= ~IFF_OACTIVE;
1840
1841 out:
1842 if (error)
1843 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1844 return (error);
1845 }
1846
1847 /*
1848 * pcn_rxdrain:
1849 *
1850 * Drain the receive queue.
1851 */
1852 static void
1853 pcn_rxdrain(struct pcn_softc *sc)
1854 {
1855 struct pcn_rxsoft *rxs;
1856 int i;
1857
1858 for (i = 0; i < PCN_NRXDESC; i++) {
1859 rxs = &sc->sc_rxsoft[i];
1860 if (rxs->rxs_mbuf != NULL) {
1861 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1862 m_freem(rxs->rxs_mbuf);
1863 rxs->rxs_mbuf = NULL;
1864 }
1865 }
1866 }
1867
1868 /*
1869 * pcn_stop: [ifnet interface function]
1870 *
1871 * Stop transmission on the interface.
1872 */
1873 static void
1874 pcn_stop(struct ifnet *ifp, int disable)
1875 {
1876 struct pcn_softc *sc = ifp->if_softc;
1877 struct pcn_txsoft *txs;
1878 int i;
1879
1880 if (sc->sc_flags & PCN_F_HAS_MII) {
1881 /* Stop the one second clock. */
1882 callout_stop(&sc->sc_tick_ch);
1883
1884 /* Down the MII. */
1885 mii_down(&sc->sc_mii);
1886 }
1887
1888 /* Stop the chip. */
1889 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1890
1891 /* Release any queued transmit buffers. */
1892 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1893 txs = &sc->sc_txsoft[i];
1894 if (txs->txs_mbuf != NULL) {
1895 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1896 m_freem(txs->txs_mbuf);
1897 txs->txs_mbuf = NULL;
1898 }
1899 }
1900
1901 if (disable)
1902 pcn_rxdrain(sc);
1903
1904 /* Mark the interface as down and cancel the watchdog timer. */
1905 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1906 ifp->if_timer = 0;
1907 }
1908
1909 /*
1910 * pcn_add_rxbuf:
1911 *
1912 * Add a receive buffer to the indicated descriptor.
1913 */
1914 static int
1915 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1916 {
1917 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1918 struct mbuf *m;
1919 int error;
1920
1921 MGETHDR(m, M_DONTWAIT, MT_DATA);
1922 if (m == NULL)
1923 return (ENOBUFS);
1924
1925 MCLGET(m, M_DONTWAIT);
1926 if ((m->m_flags & M_EXT) == 0) {
1927 m_freem(m);
1928 return (ENOBUFS);
1929 }
1930
1931 if (rxs->rxs_mbuf != NULL)
1932 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1933
1934 rxs->rxs_mbuf = m;
1935
1936 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1937 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1938 BUS_DMA_READ|BUS_DMA_NOWAIT);
1939 if (error) {
1940 printf("%s: can't load rx DMA map %d, error = %d\n",
1941 sc->sc_dev.dv_xname, idx, error);
1942 panic("pcn_add_rxbuf");
1943 }
1944
1945 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1946 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1947
1948 PCN_INIT_RXDESC(sc, idx);
1949
1950 return (0);
1951 }
1952
1953 /*
1954 * pcn_set_filter:
1955 *
1956 * Set up the receive filter.
1957 */
1958 static void
1959 pcn_set_filter(struct pcn_softc *sc)
1960 {
1961 struct ethercom *ec = &sc->sc_ethercom;
1962 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1963 struct ether_multi *enm;
1964 struct ether_multistep step;
1965 uint32_t crc;
1966
1967 /*
1968 * Set up the multicast address filter by passing all multicast
1969 * addresses through a CRC generator, and then using the high
1970 * order 6 bits as an index into the 64-bit logical address
1971 * filter. The high order bits select the word, while the rest
1972 * of the bits select the bit within the word.
1973 */
1974
1975 if (ifp->if_flags & IFF_PROMISC)
1976 goto allmulti;
1977
1978 sc->sc_initblock.init_ladrf[0] =
1979 sc->sc_initblock.init_ladrf[1] =
1980 sc->sc_initblock.init_ladrf[2] =
1981 sc->sc_initblock.init_ladrf[3] = 0;
1982
1983 ETHER_FIRST_MULTI(step, ec, enm);
1984 while (enm != NULL) {
1985 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1986 /*
1987 * We must listen to a range of multicast addresses.
1988 * For now, just accept all multicasts, rather than
1989 * trying to set only those filter bits needed to match
1990 * the range. (At this time, the only use of address
1991 * ranges is for IP multicast routing, for which the
1992 * range is big enough to require all bits set.)
1993 */
1994 goto allmulti;
1995 }
1996
1997 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1998
1999 /* Just want the 6 most significant bits. */
2000 crc >>= 26;
2001
2002 /* Set the corresponding bit in the filter. */
2003 sc->sc_initblock.init_ladrf[crc >> 4] |=
2004 htole16(1 << (crc & 0xf));
2005
2006 ETHER_NEXT_MULTI(step, enm);
2007 }
2008
2009 ifp->if_flags &= ~IFF_ALLMULTI;
2010 return;
2011
2012 allmulti:
2013 ifp->if_flags |= IFF_ALLMULTI;
2014 sc->sc_initblock.init_ladrf[0] =
2015 sc->sc_initblock.init_ladrf[1] =
2016 sc->sc_initblock.init_ladrf[2] =
2017 sc->sc_initblock.init_ladrf[3] = 0xffff;
2018 }
2019
2020 /*
2021 * pcn_79c970_mediainit:
2022 *
2023 * Initialize media for the Am79c970.
2024 */
2025 static void
2026 pcn_79c970_mediainit(struct pcn_softc *sc)
2027 {
2028 const char *sep = "";
2029
2030 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
2031 pcn_79c970_mediastatus);
2032
2033 #define ADD(str, m, d) \
2034 do { \
2035 printf("%s%s", sep, str); \
2036 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
2037 sep = ", "; \
2038 } while (/*CONSTCOND*/0)
2039
2040 printf("%s: ", sc->sc_dev.dv_xname);
2041 ADD("10base5", IFM_10_5, PORTSEL_AUI);
2042 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2043 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
2044 ADD("10baseT", IFM_10_T, PORTSEL_10T);
2045 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2046 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
2047 ADD("auto", IFM_AUTO, 0);
2048 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2049 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
2050 printf("\n");
2051
2052 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2053 }
2054
2055 /*
2056 * pcn_79c970_mediastatus: [ifmedia interface function]
2057 *
2058 * Get the current interface media status (Am79c970 version).
2059 */
2060 static void
2061 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2062 {
2063 struct pcn_softc *sc = ifp->if_softc;
2064
2065 /*
2066 * The currently selected media is always the active media.
2067 * Note: We have no way to determine what media the AUTO
2068 * process picked.
2069 */
2070 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2071 }
2072
2073 /*
2074 * pcn_79c970_mediachange: [ifmedia interface function]
2075 *
2076 * Set hardware to newly-selected media (Am79c970 version).
2077 */
2078 static int
2079 pcn_79c970_mediachange(struct ifnet *ifp)
2080 {
2081 struct pcn_softc *sc = ifp->if_softc;
2082 uint32_t reg;
2083
2084 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2085 /*
2086 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2087 */
2088 reg = pcn_bcr_read(sc, LE_BCR2);
2089 reg |= LE_B2_ASEL;
2090 pcn_bcr_write(sc, LE_BCR2, reg);
2091 } else {
2092 /*
2093 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2094 */
2095 reg = pcn_bcr_read(sc, LE_BCR2);
2096 reg &= ~LE_B2_ASEL;
2097 pcn_bcr_write(sc, LE_BCR2, reg);
2098
2099 reg = pcn_csr_read(sc, LE_CSR15);
2100 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2101 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2102 pcn_csr_write(sc, LE_CSR15, reg);
2103 }
2104
2105 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2106 reg = LE_B9_FDEN;
2107 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2108 reg |= LE_B9_AUIFD;
2109 pcn_bcr_write(sc, LE_BCR9, reg);
2110 } else
2111 pcn_bcr_write(sc, LE_BCR9, 0);
2112
2113 return (0);
2114 }
2115
2116 /*
2117 * pcn_79c971_mediainit:
2118 *
2119 * Initialize media for the Am79c971.
2120 */
2121 static void
2122 pcn_79c971_mediainit(struct pcn_softc *sc)
2123 {
2124 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2125
2126 /* We have MII. */
2127 sc->sc_flags |= PCN_F_HAS_MII;
2128
2129 /*
2130 * The built-in 10BASE-T interface is mapped to the MII
2131 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2132 * word that tells us which PHY to use.
2133 * This driver used to ignore all but the first PHY to
2134 * answer, but this code was removed to support multiple
2135 * external PHYs. As the default instance will be the first
2136 * one to answer, no harm is done by letting the possibly
2137 * non-connected internal PHY show up.
2138 */
2139
2140 /* Initialize our media structures and probe the MII. */
2141 sc->sc_mii.mii_ifp = ifp;
2142 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2143 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2144 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2145 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2146 pcn_79c971_mediastatus);
2147
2148 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2149 MII_OFFSET_ANY, 0);
2150 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2151 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2152 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2153 } else
2154 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2155 }
2156
2157 /*
2158 * pcn_79c971_mediastatus: [ifmedia interface function]
2159 *
2160 * Get the current interface media status (Am79c971 version).
2161 */
2162 static void
2163 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2164 {
2165 struct pcn_softc *sc = ifp->if_softc;
2166
2167 mii_pollstat(&sc->sc_mii);
2168 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2169 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2170 }
2171
2172 /*
2173 * pcn_79c971_mediachange: [ifmedia interface function]
2174 *
2175 * Set hardware to newly-selected media (Am79c971 version).
2176 */
2177 static int
2178 pcn_79c971_mediachange(struct ifnet *ifp)
2179 {
2180 struct pcn_softc *sc = ifp->if_softc;
2181
2182 if (ifp->if_flags & IFF_UP)
2183 mii_mediachg(&sc->sc_mii);
2184 return (0);
2185 }
2186
2187 /*
2188 * pcn_mii_readreg: [mii interface function]
2189 *
2190 * Read a PHY register on the MII.
2191 */
2192 static int
2193 pcn_mii_readreg(struct device *self, int phy, int reg)
2194 {
2195 struct pcn_softc *sc = (void *) self;
2196 uint32_t rv;
2197
2198 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2199 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2200 if (rv == 0xffff)
2201 return (0);
2202
2203 return (rv);
2204 }
2205
2206 /*
2207 * pcn_mii_writereg: [mii interface function]
2208 *
2209 * Write a PHY register on the MII.
2210 */
2211 static void
2212 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2213 {
2214 struct pcn_softc *sc = (void *) self;
2215
2216 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2217 pcn_bcr_write(sc, LE_BCR34, val);
2218 }
2219
2220 /*
2221 * pcn_mii_statchg: [mii interface function]
2222 *
2223 * Callback from MII layer when media changes.
2224 */
2225 static void
2226 pcn_mii_statchg(struct device *self)
2227 {
2228 struct pcn_softc *sc = (void *) self;
2229
2230 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2231 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2232 else
2233 pcn_bcr_write(sc, LE_BCR9, 0);
2234 }
2235