if_pcn.c revision 1.5 1 /* $NetBSD: if_pcn.c,v 1.5 2001/11/13 07:48:44 lukem Exp $ */
2
3 /*
4 * Copyright 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.5 2001/11/13 07:48:44 lukem Exp $");
69
70 #include "bpfilter.h"
71
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/callout.h>
75 #include <sys/mbuf.h>
76 #include <sys/malloc.h>
77 #include <sys/kernel.h>
78 #include <sys/socket.h>
79 #include <sys/ioctl.h>
80 #include <sys/errno.h>
81 #include <sys/device.h>
82 #include <sys/queue.h>
83
84 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
85
86 #include <net/if.h>
87 #include <net/if_dl.h>
88 #include <net/if_media.h>
89 #include <net/if_ether.h>
90
91 #if NBPFILTER > 0
92 #include <net/bpf.h>
93 #endif
94
95 #include <machine/bus.h>
96 #include <machine/intr.h>
97 #include <machine/endian.h>
98
99 #include <dev/mii/mii.h>
100 #include <dev/mii/miivar.h>
101
102 #include <dev/ic/am79900reg.h>
103 #include <dev/ic/lancereg.h>
104
105 #include <dev/pci/pcireg.h>
106 #include <dev/pci/pcivar.h>
107 #include <dev/pci/pcidevs.h>
108
109 #include <dev/pci/if_pcnreg.h>
110
111 /*
112 * Transmit descriptor list size. This is arbitrary, but allocate
113 * enough descriptors for 128 pending transmissions, and 4 segments
114 * per packet. This MUST work out to a power of 2.
115 *
116 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
117 *
118 * So we play a little trick here. We give each packet up to 8
119 * DMA segments, but only allocate 4 DMA segments per packet.
120 * The transmit logic can deal with this, we just are hoping to
121 * sneak by.
122 */
123 #define PCN_NTXSEGS 8
124 #define PCN_NTXSEGS_ALLOC 4
125
126 #define PCN_TXQUEUELEN 128
127 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
128 #define PCN_NTXDESC (PCN_TXQUEUELEN * PCN_NTXSEGS_ALLOC)
129 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
130 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
131 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
132
133 /* Tx interrupt every N + 1 packets. */
134 #define PCN_TXINTR_MASK 7
135
136 /*
137 * Receive descriptor list size. We have one Rx buffer per incoming
138 * packet, so this logic is a little simpler.
139 */
140 #define PCN_NRXDESC 128
141 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
142 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
143
144 /*
145 * Control structures are DMA'd to the PCnet chip. We allocate them in
146 * a single clump that maps to a single DMA segment to make several things
147 * easier.
148 */
149 struct pcn_control_data {
150 /* The transmit descriptors. */
151 struct letmd pcd_txdescs[PCN_NTXDESC];
152
153 /* The receive descriptors. */
154 struct lermd pcd_rxdescs[PCN_NRXDESC];
155
156 /* The init block. */
157 struct leinit pcd_initblock;
158 };
159
160 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
161 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
162 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
163 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
164
165 /*
166 * Software state for transmit jobs.
167 */
168 struct pcn_txsoft {
169 struct mbuf *txs_mbuf; /* head of our mbuf chain */
170 bus_dmamap_t txs_dmamap; /* our DMA map */
171 int txs_firstdesc; /* first descriptor in packet */
172 int txs_lastdesc; /* last descriptor in packet */
173 };
174
175 /*
176 * Software state for receive jobs.
177 */
178 struct pcn_rxsoft {
179 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
180 bus_dmamap_t rxs_dmamap; /* our DMA map */
181 };
182
183 /*
184 * Description of Rx FIFO watermarks for various revisions.
185 */
186 const char *pcn_79c970_rcvfw[] = {
187 "16 bytes",
188 "64 bytes",
189 "128 bytes",
190 NULL,
191 };
192
193 const char *pcn_79c971_rcvfw[] = {
194 "16 bytes",
195 "64 bytes",
196 "112 bytes",
197 NULL,
198 };
199
200 /*
201 * Description of Tx start points for various revisions.
202 */
203 const char *pcn_79c970_xmtsp[] = {
204 "8 bytes",
205 "64 bytes",
206 "128 bytes",
207 "248 bytes",
208 };
209
210 const char *pcn_79c971_xmtsp[] = {
211 "20 bytes",
212 "64 bytes",
213 "128 bytes",
214 "248 bytes",
215 };
216
217 const char *pcn_79c971_xmtsp_sram[] = {
218 "44 bytes",
219 "64 bytes",
220 "128 bytes",
221 "store-and-forward",
222 };
223
224 /*
225 * Description of Tx FIFO watermarks for various revisions.
226 */
227 const char *pcn_79c970_xmtfw[] = {
228 "16 bytes",
229 "64 bytes",
230 "128 bytes",
231 NULL,
232 };
233
234 const char *pcn_79c971_xmtfw[] = {
235 "16 bytes",
236 "64 bytes",
237 "108 bytes",
238 NULL,
239 };
240
241 /*
242 * Software state per device.
243 */
244 struct pcn_softc {
245 struct device sc_dev; /* generic device information */
246 bus_space_tag_t sc_st; /* bus space tag */
247 bus_space_handle_t sc_sh; /* bus space handle */
248 bus_dma_tag_t sc_dmat; /* bus DMA tag */
249 struct ethercom sc_ethercom; /* Ethernet common data */
250 void *sc_sdhook; /* shutdown hook */
251
252 /* Points to our media routines, etc. */
253 const struct pcn_variant *sc_variant;
254
255 void *sc_ih; /* interrupt cookie */
256
257 struct mii_data sc_mii; /* MII/media information */
258
259 struct callout sc_tick_ch; /* tick callout */
260
261 bus_dmamap_t sc_cddmamap; /* control data DMA map */
262 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
263
264 /* Software state for transmit and receive descriptors. */
265 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
266 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
267
268 /* Control data structures */
269 struct pcn_control_data *sc_control_data;
270 #define sc_txdescs sc_control_data->pcd_txdescs
271 #define sc_rxdescs sc_control_data->pcd_rxdescs
272 #define sc_initblock sc_control_data->pcd_initblock
273
274 #ifdef PCN_EVENT_COUNTERS
275 /* Event counters. */
276 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
277 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
278 struct evcnt sc_ev_txintr; /* Tx interrupts */
279 struct evcnt sc_ev_rxintr; /* Rx interrupts */
280 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
281 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
282 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
283
284 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
285 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
286 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
287 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
288 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
289 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
290 struct evcnt sc_ev_txcopy; /* Tx copies required */
291 #endif /* PCN_EVENT_COUNTERS */
292
293 const char **sc_rcvfw_desc; /* Rx FIFO watermark info */
294 int sc_rcvfw;
295
296 const char **sc_xmtsp_desc; /* Tx start point info */
297 int sc_xmtsp;
298
299 const char **sc_xmtfw_desc; /* Tx FIFO watermark info */
300 int sc_xmtfw;
301
302 int sc_flags; /* misc. flags; see below */
303 int sc_swstyle; /* the software style in use */
304
305 int sc_txfree; /* number of free Tx descriptors */
306 int sc_txnext; /* next ready Tx descriptor */
307
308 int sc_txsfree; /* number of free Tx jobs */
309 int sc_txsnext; /* next free Tx job */
310 int sc_txsdirty; /* dirty Tx jobs */
311
312 int sc_rxptr; /* next ready Rx descriptor/job */
313
314 uint32_t sc_csr5; /* prototype CSR5 register */
315 uint32_t sc_mode; /* prototype MODE register */
316 int sc_phyaddr; /* PHY address */
317 };
318
319 /* sc_flags */
320 #define PCN_F_HAS_MII 0x0001 /* has MII */
321
322 #ifdef PCN_EVENT_COUNTERS
323 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
324 #else
325 #define PCN_EVCNT_INCR(ev) /* nothing */
326 #endif
327
328 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
329 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
330 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
331
332 #define PCN_CDTXSYNC(sc, x, n, ops) \
333 do { \
334 int __x, __n; \
335 \
336 __x = (x); \
337 __n = (n); \
338 \
339 /* If it will wrap around, sync to the end of the ring. */ \
340 if ((__x + __n) > PCN_NTXDESC) { \
341 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
342 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
343 (PCN_NTXDESC - __x), (ops)); \
344 __n -= (PCN_NTXDESC - __x); \
345 __x = 0; \
346 } \
347 \
348 /* Now sync whatever is left. */ \
349 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
350 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
351 } while (/*CONSTCOND*/0)
352
353 #define PCN_CDRXSYNC(sc, x, ops) \
354 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
355 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
356
357 #define PCN_CDINITSYNC(sc, ops) \
358 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
359 PCN_CDINITOFF, sizeof(struct leinit), (ops))
360
361 #define PCN_INIT_RXDESC(sc, x) \
362 do { \
363 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
364 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
365 struct mbuf *__m = __rxs->rxs_mbuf; \
366 \
367 /* \
368 * Note: We scoot the packet forward 2 bytes in the buffer \
369 * so that the payload after the Ethernet header is aligned \
370 * to a 4-byte boundary. \
371 */ \
372 __m->m_data = __m->m_ext.ext_buf + 2; \
373 \
374 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
375 __rmd->rmd2 = \
376 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
377 __rmd->rmd0 = 0; \
378 } else { \
379 __rmd->rmd2 = 0; \
380 __rmd->rmd0 = \
381 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
382 } \
383 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
384 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
385 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
386 } while(/*CONSTCOND*/0)
387
388 void pcn_start(struct ifnet *);
389 void pcn_watchdog(struct ifnet *);
390 int pcn_ioctl(struct ifnet *, u_long, caddr_t);
391 int pcn_init(struct ifnet *);
392 void pcn_stop(struct ifnet *, int);
393
394 void pcn_shutdown(void *);
395
396 void pcn_reset(struct pcn_softc *);
397 void pcn_rxdrain(struct pcn_softc *);
398 int pcn_add_rxbuf(struct pcn_softc *, int);
399 void pcn_tick(void *);
400
401 void pcn_spnd(struct pcn_softc *);
402
403 void pcn_set_filter(struct pcn_softc *);
404
405 int pcn_intr(void *);
406 void pcn_txintr(struct pcn_softc *);
407 int pcn_rxintr(struct pcn_softc *);
408
409 int pcn_mii_readreg(struct device *, int, int);
410 void pcn_mii_writereg(struct device *, int, int, int);
411 void pcn_mii_statchg(struct device *);
412
413 void pcn_79c970_mediainit(struct pcn_softc *);
414 int pcn_79c970_mediachange(struct ifnet *);
415 void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
416
417 void pcn_79c971_mediainit(struct pcn_softc *);
418 int pcn_79c971_mediachange(struct ifnet *);
419 void pcn_79c971_mediastatus(struct ifnet *, struct ifmediareq *);
420
421 /*
422 * Description of a PCnet-PCI variant. Used to select media access
423 * method, mostly, and to print a nice description of the chip.
424 */
425 const struct pcn_variant {
426 const char *pcv_desc;
427 void (*pcv_mediainit)(struct pcn_softc *);
428 uint16_t pcv_chipid;
429 } pcn_variants[] = {
430 { "Am79c970 PCnet-PCI",
431 pcn_79c970_mediainit,
432 PARTID_Am79c970 },
433
434 { "Am79c970A PCnet-PCI II",
435 pcn_79c970_mediainit,
436 PARTID_Am79c970A },
437
438 { "Am79c971 PCnet-FAST",
439 pcn_79c971_mediainit,
440 PARTID_Am79c971 },
441
442 { "Am79c972 PCnet-FAST+",
443 pcn_79c971_mediainit,
444 PARTID_Am79c972 },
445
446 { "Am79c973 PCnet-FAST III",
447 pcn_79c971_mediainit,
448 PARTID_Am79c973 },
449
450 { "Am79c975 PCnet-FAST III",
451 pcn_79c971_mediainit,
452 PARTID_Am79c975 },
453
454 { "Unknown PCnet-PCI variant",
455 pcn_79c971_mediainit,
456 0 },
457 };
458
459 int pcn_copy_small = 0;
460
461 int pcn_match(struct device *, struct cfdata *, void *);
462 void pcn_attach(struct device *, struct device *, void *);
463
464 struct cfattach pcn_ca = {
465 sizeof(struct pcn_softc), pcn_match, pcn_attach,
466 };
467
468 /*
469 * Routines to read and write the PCnet-PCI CSR/BCR space.
470 */
471
472 static __inline uint32_t
473 pcn_csr_read(struct pcn_softc *sc, int reg)
474 {
475
476 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
477 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
478 }
479
480 static __inline void
481 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
482 {
483
484 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
485 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
486 }
487
488 static __inline uint32_t
489 pcn_bcr_read(struct pcn_softc *sc, int reg)
490 {
491
492 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
493 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
494 }
495
496 static __inline void
497 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
498 {
499
500 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
501 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
502 }
503
504 static const struct pcn_variant *
505 pcn_lookup_variant(uint16_t chipid)
506 {
507 const struct pcn_variant *pcv;
508
509 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
510 if (chipid == pcv->pcv_chipid)
511 return (pcv);
512 }
513
514 /*
515 * This covers unknown chips, which we simply treat like
516 * a generic PCnet-FAST.
517 */
518 return (pcv);
519 }
520
521 int
522 pcn_match(struct device *parent, struct cfdata *cf, void *aux)
523 {
524 struct pci_attach_args *pa = aux;
525
526 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
527 return (0);
528
529 switch (PCI_PRODUCT(pa->pa_id)) {
530 case PCI_PRODUCT_AMD_PCNET_PCI:
531 /* Beat if_le_pci.c */
532 return (10);
533 }
534
535 return (0);
536 }
537
538 void
539 pcn_attach(struct device *parent, struct device *self, void *aux)
540 {
541 struct pcn_softc *sc = (struct pcn_softc *) self;
542 struct pci_attach_args *pa = aux;
543 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
544 pci_chipset_tag_t pc = pa->pa_pc;
545 pci_intr_handle_t ih;
546 const char *intrstr = NULL;
547 bus_space_tag_t iot;
548 bus_space_handle_t ioh;
549 bus_dma_segment_t seg;
550 int ioh_valid;
551 int i, rseg, error;
552 pcireg_t pmode;
553 uint32_t chipid, reg;
554 uint8_t enaddr[ETHER_ADDR_LEN];
555 int pmreg;
556
557 callout_init(&sc->sc_tick_ch);
558
559 printf(": AMD PCnet-PCI Ethernet\n");
560
561 /*
562 * Map the device.
563 */
564 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
565 &iot, &ioh, NULL, NULL) == 0);
566
567 if (ioh_valid) {
568 sc->sc_st = iot;
569 sc->sc_sh = ioh;
570 } else {
571 printf("%s: unable to map device registers\n",
572 sc->sc_dev.dv_xname);
573 return;
574 }
575
576 sc->sc_dmat = pa->pa_dmat;
577
578 /* Make sure bus mastering is enabled. */
579 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
580 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
581 PCI_COMMAND_MASTER_ENABLE);
582
583 /* Get it out of power save mode, if needed. */
584 if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) {
585 pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3;
586 if (pmode == 3) {
587 /*
588 * The card has lost all configuration data in
589 * this state, so punt.
590 */
591 printf("%s: unable to wake from power state D3\n",
592 sc->sc_dev.dv_xname);
593 return;
594 }
595 if (pmode != 0) {
596 printf("%s: waking up from power date D%d\n",
597 sc->sc_dev.dv_xname, pmode);
598 pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0);
599 }
600 }
601
602 /*
603 * Reset the chip to a known state. This also puts the
604 * chip into 32-bit mode.
605 */
606 pcn_reset(sc);
607
608 /*
609 * Read the Ethernet address from the EEPROM.
610 */
611 for (i = 0; i < ETHER_ADDR_LEN; i++)
612 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
613 PCN32_APROM + i);
614
615 /*
616 * Now that the device is mapped, attempt to figure out what
617 * kind of chip we have. Note that IDL has all 32 bits of
618 * the chip ID when we're in 32-bit mode.
619 */
620 chipid = pcn_csr_read(sc, LE_CSR88);
621 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
622
623 printf("%s: %s rev %d, Ethernet address %s\n",
624 sc->sc_dev.dv_xname, sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
625 ether_sprintf(enaddr));
626
627 /*
628 * Map and establish our interrupt.
629 */
630 if (pci_intr_map(pa, &ih)) {
631 printf("%s: unable to map interrupt\n", sc->sc_dev.dv_xname);
632 return;
633 }
634 intrstr = pci_intr_string(pc, ih);
635 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
636 if (sc->sc_ih == NULL) {
637 printf("%s: unable to establish interrupt",
638 sc->sc_dev.dv_xname);
639 if (intrstr != NULL)
640 printf(" at %s", intrstr);
641 printf("\n");
642 return;
643 }
644 printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
645
646 /*
647 * Allocate the control data structures, and create and load the
648 * DMA map for it.
649 */
650 if ((error = bus_dmamem_alloc(sc->sc_dmat,
651 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
652 0)) != 0) {
653 printf("%s: unable to allocate control data, error = %d\n",
654 sc->sc_dev.dv_xname, error);
655 goto fail_0;
656 }
657
658 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
659 sizeof(struct pcn_control_data), (caddr_t *)&sc->sc_control_data,
660 BUS_DMA_COHERENT)) != 0) {
661 printf("%s: unable to map control data, error = %d\n",
662 sc->sc_dev.dv_xname, error);
663 goto fail_1;
664 }
665
666 if ((error = bus_dmamap_create(sc->sc_dmat,
667 sizeof(struct pcn_control_data), 1,
668 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
669 printf("%s: unable to create control data DMA map, "
670 "error = %d\n", sc->sc_dev.dv_xname, error);
671 goto fail_2;
672 }
673
674 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
675 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
676 0)) != 0) {
677 printf("%s: unable to load control data DMA map, error = %d\n",
678 sc->sc_dev.dv_xname, error);
679 goto fail_3;
680 }
681
682 /* Create the transmit buffer DMA maps. */
683 for (i = 0; i < PCN_TXQUEUELEN; i++) {
684 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
685 PCN_NTXSEGS, MCLBYTES, 0, 0,
686 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
687 printf("%s: unable to create tx DMA map %d, "
688 "error = %d\n", sc->sc_dev.dv_xname, i, error);
689 goto fail_4;
690 }
691 }
692
693 /* Create the receive buffer DMA maps. */
694 for (i = 0; i < PCN_NRXDESC; i++) {
695 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
696 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
697 printf("%s: unable to create rx DMA map %d, "
698 "error = %d\n", sc->sc_dev.dv_xname, i, error);
699 goto fail_5;
700 }
701 sc->sc_rxsoft[i].rxs_mbuf = NULL;
702 }
703
704 /* Initialize our media structures. */
705 (*sc->sc_variant->pcv_mediainit)(sc);
706
707 /*
708 * Initialize FIFO watermark info.
709 */
710 switch (sc->sc_variant->pcv_chipid) {
711 case PARTID_Am79c970:
712 case PARTID_Am79c970A:
713 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
714 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
715 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
716 break;
717
718 default:
719 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
720 /*
721 * Read BCR25 to determine how much SRAM is
722 * on the board. If > 0, then we the chip
723 * uses different Start Point thresholds.
724 *
725 * Note BCR25 and BCR26 are loaded from the
726 * EEPROM on RST, and unaffected by S_RESET,
727 * so we don't really have to worry about
728 * them except for this.
729 */
730 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
731 if (reg != 0)
732 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
733 else
734 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
735 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
736 break;
737 }
738
739 /*
740 * Set up defaults -- see the tables above for what these
741 * values mean.
742 *
743 * XXX How should we tune RCVFW and XMTFW?
744 */
745 sc->sc_rcvfw = 1; /* minimum for full-duplex */
746 sc->sc_xmtsp = 1;
747 sc->sc_xmtfw = 0;
748
749 ifp = &sc->sc_ethercom.ec_if;
750 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
751 ifp->if_softc = sc;
752 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
753 ifp->if_ioctl = pcn_ioctl;
754 ifp->if_start = pcn_start;
755 ifp->if_watchdog = pcn_watchdog;
756 ifp->if_init = pcn_init;
757 ifp->if_stop = pcn_stop;
758 IFQ_SET_READY(&ifp->if_snd);
759
760 /* Attach the interface. */
761 if_attach(ifp);
762 ether_ifattach(ifp, enaddr);
763
764 #ifdef PCN_EVENT_COUNTERS
765 /* Attach event counters. */
766 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
767 NULL, sc->sc_dev.dv_xname, "txsstall");
768 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
769 NULL, sc->sc_dev.dv_xname, "txdstall");
770 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
771 NULL, sc->sc_dev.dv_xname, "txintr");
772 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
773 NULL, sc->sc_dev.dv_xname, "rxintr");
774 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
775 NULL, sc->sc_dev.dv_xname, "babl");
776 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
777 NULL, sc->sc_dev.dv_xname, "miss");
778 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
779 NULL, sc->sc_dev.dv_xname, "merr");
780
781 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
782 NULL, sc->sc_dev.dv_xname, "txseg1");
783 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
784 NULL, sc->sc_dev.dv_xname, "txseg2");
785 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
786 NULL, sc->sc_dev.dv_xname, "txseg3");
787 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
788 NULL, sc->sc_dev.dv_xname, "txseg4");
789 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
790 NULL, sc->sc_dev.dv_xname, "txseg5");
791 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
792 NULL, sc->sc_dev.dv_xname, "txsegmore");
793 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
794 NULL, sc->sc_dev.dv_xname, "txcopy");
795 #endif /* PCN_EVENT_COUNTERS */
796
797 /* Make sure the interface is shutdown during reboot. */
798 sc->sc_sdhook = shutdownhook_establish(pcn_shutdown, sc);
799 if (sc->sc_sdhook == NULL)
800 printf("%s: WARNING: unable to establish shutdown hook\n",
801 sc->sc_dev.dv_xname);
802 return;
803
804 /*
805 * Free any resources we've allocated during the failed attach
806 * attempt. Do this in reverse order and fall through.
807 */
808 fail_5:
809 for (i = 0; i < PCN_NRXDESC; i++) {
810 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
811 bus_dmamap_destroy(sc->sc_dmat,
812 sc->sc_rxsoft[i].rxs_dmamap);
813 }
814 fail_4:
815 for (i = 0; i < PCN_TXQUEUELEN; i++) {
816 if (sc->sc_txsoft[i].txs_dmamap != NULL)
817 bus_dmamap_destroy(sc->sc_dmat,
818 sc->sc_txsoft[i].txs_dmamap);
819 }
820 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
821 fail_3:
822 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
823 fail_2:
824 bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
825 sizeof(struct pcn_control_data));
826 fail_1:
827 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
828 fail_0:
829 return;
830 }
831
832 /*
833 * pcn_shutdown:
834 *
835 * Make sure the interface is stopped at reboot time.
836 */
837 void
838 pcn_shutdown(void *arg)
839 {
840 struct pcn_softc *sc = arg;
841
842 pcn_stop(&sc->sc_ethercom.ec_if, 1);
843 }
844
845 /*
846 * pcn_start: [ifnet interface function]
847 *
848 * Start packet transmission on the interface.
849 */
850 void
851 pcn_start(struct ifnet *ifp)
852 {
853 struct pcn_softc *sc = ifp->if_softc;
854 struct mbuf *m0, *m;
855 struct pcn_txsoft *txs;
856 bus_dmamap_t dmamap;
857 int error, nexttx, lasttx, ofree, seg;
858
859 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
860 return;
861
862 /*
863 * Remember the previous number of free descriptors and
864 * the first descriptor we'll use.
865 */
866 ofree = sc->sc_txfree;
867
868 /*
869 * Loop through the send queue, setting up transmit descriptors
870 * until we drain the queue, or use up all available transmit
871 * descriptors.
872 */
873 for (;;) {
874 /* Grab a packet off the queue. */
875 IFQ_POLL(&ifp->if_snd, m0);
876 if (m0 == NULL)
877 break;
878 m = NULL;
879
880 /* Get a work queue entry. */
881 if (sc->sc_txsfree == 0) {
882 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
883 break;
884 }
885
886 txs = &sc->sc_txsoft[sc->sc_txsnext];
887 dmamap = txs->txs_dmamap;
888
889 /*
890 * Load the DMA map. If this fails, the packet either
891 * didn't fit in the alloted number of segments, or we
892 * were short on resources. In this case, we'll copy
893 * and try again.
894 */
895 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
896 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
897 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
898 MGETHDR(m, M_DONTWAIT, MT_DATA);
899 if (m == NULL) {
900 printf("%s: unable to allocate Tx mbuf\n",
901 sc->sc_dev.dv_xname);
902 break;
903 }
904 if (m0->m_pkthdr.len > MHLEN) {
905 MCLGET(m, M_DONTWAIT);
906 if ((m->m_flags & M_EXT) == 0) {
907 printf("%s: unable to allocate Tx "
908 "cluster\n", sc->sc_dev.dv_xname);
909 m_freem(m);
910 break;
911 }
912 }
913 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
914 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
915 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
916 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
917 if (error) {
918 printf("%s: unable to load Tx buffer, "
919 "error = %d\n", sc->sc_dev.dv_xname, error);
920 break;
921 }
922 }
923
924 /*
925 * Ensure we have enough descriptors free to describe
926 * the packet. Note, we always reserve one descriptor
927 * at the end of the ring as a termination point, to
928 * prevent wrap-around.
929 */
930 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
931 /*
932 * Not enough free descriptors to transmit this
933 * packet. We haven't committed anything yet,
934 * so just unload the DMA map, put the packet
935 * back on the queue, and punt. Notify the upper
936 * layer that there are not more slots left.
937 *
938 * XXX We could allocate an mbuf and copy, but
939 * XXX is it worth it?
940 */
941 ifp->if_flags |= IFF_OACTIVE;
942 bus_dmamap_unload(sc->sc_dmat, dmamap);
943 if (m != NULL)
944 m_freem(m);
945 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
946 break;
947 }
948
949 IFQ_DEQUEUE(&ifp->if_snd, m0);
950 if (m != NULL) {
951 m_freem(m0);
952 m0 = m;
953 }
954
955 /*
956 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
957 */
958
959 /* Sync the DMA map. */
960 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
961 BUS_DMASYNC_PREWRITE);
962
963 #ifdef PCN_EVENT_COUNTERS
964 switch (dmamap->dm_nsegs) {
965 case 1:
966 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
967 break;
968 case 2:
969 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
970 break;
971 case 3:
972 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
973 break;
974 case 4:
975 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
976 break;
977 case 5:
978 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
979 break;
980 default:
981 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
982 break;
983 }
984 #endif /* PCN_EVENT_COUNTERS */
985
986 /*
987 * Initialize the transmit descriptors.
988 */
989 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
990 for (nexttx = sc->sc_txnext, seg = 0;
991 seg < dmamap->dm_nsegs;
992 seg++, nexttx = PCN_NEXTTX(nexttx)) {
993 /*
994 * If this is the first descriptor we're
995 * enqueueing, don't set the OWN bit just
996 * yet. That could cause a race condition.
997 * We'll do it below.
998 */
999 sc->sc_txdescs[nexttx].tmd0 = 0;
1000 sc->sc_txdescs[nexttx].tmd2 =
1001 htole32(dmamap->dm_segs[seg].ds_addr);
1002 sc->sc_txdescs[nexttx].tmd1 =
1003 ((nexttx == sc->sc_txnext) ? 0 :
1004 htole32(LE_T1_OWN)) |
1005 htole32((LE_BCNT(dmamap->dm_segs[
1006 seg].ds_len) &
1007 LE_T1_BCNT_MASK));
1008 lasttx = nexttx;
1009 }
1010 } else {
1011 for (nexttx = sc->sc_txnext, seg = 0;
1012 seg < dmamap->dm_nsegs;
1013 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1014 /*
1015 * If this is the first descriptor we're
1016 * enqueueing, don't set the OWN bit just
1017 * yet. That could cause a race condition.
1018 * We'll do it below.
1019 */
1020 sc->sc_txdescs[nexttx].tmd0 =
1021 htole32(dmamap->dm_segs[seg].ds_addr);
1022 sc->sc_txdescs[nexttx].tmd2 = 0;
1023 sc->sc_txdescs[nexttx].tmd1 =
1024 ((nexttx == sc->sc_txnext) ? 0 :
1025 htole32(LE_T1_OWN)) |
1026 htole32((LE_BCNT(dmamap->dm_segs[
1027 seg].ds_len) &
1028 LE_T1_BCNT_MASK));
1029 lasttx = nexttx;
1030 }
1031 }
1032
1033 /* Interrupt on the packet, if appropriate. */
1034 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1035 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1036
1037 /* Set `start of packet' and `end of packet' appropriately. */
1038 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1039 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1040 htole32(LE_T1_OWN|LE_T1_STP);
1041
1042 /* Sync the descriptors we're using. */
1043 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1044 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1045
1046 /* Kick the transmitter. */
1047 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1048
1049 /*
1050 * Store a pointer to the packet so we can free it later,
1051 * and remember what txdirty will be once the packet is
1052 * done.
1053 */
1054 txs->txs_mbuf = m0;
1055 txs->txs_firstdesc = sc->sc_txnext;
1056 txs->txs_lastdesc = lasttx;
1057
1058 /* Advance the tx pointer. */
1059 sc->sc_txfree -= dmamap->dm_nsegs;
1060 sc->sc_txnext = nexttx;
1061
1062 sc->sc_txsfree--;
1063 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1064
1065 #if NBPFILTER > 0
1066 /* Pass the packet to any BPF listeners. */
1067 if (ifp->if_bpf)
1068 bpf_mtap(ifp->if_bpf, m0);
1069 #endif /* NBPFILTER > 0 */
1070 }
1071
1072 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1073 /* No more slots left; notify upper layer. */
1074 ifp->if_flags |= IFF_OACTIVE;
1075 }
1076
1077 if (sc->sc_txfree != ofree) {
1078 /* Set a watchdog timer in case the chip flakes out. */
1079 ifp->if_timer = 5;
1080 }
1081 }
1082
1083 /*
1084 * pcn_watchdog: [ifnet interface function]
1085 *
1086 * Watchdog timer handler.
1087 */
1088 void
1089 pcn_watchdog(struct ifnet *ifp)
1090 {
1091 struct pcn_softc *sc = ifp->if_softc;
1092
1093 /*
1094 * Since we're not interrupting every packet, sweep
1095 * up before we report an error.
1096 */
1097 pcn_txintr(sc);
1098
1099 if (sc->sc_txfree != PCN_NTXDESC) {
1100 printf("%s: device timeout (txfree %d txsfree %d)\n",
1101 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree);
1102 ifp->if_oerrors++;
1103
1104 /* Reset the interface. */
1105 (void) pcn_init(ifp);
1106 }
1107
1108 /* Try to get more packets going. */
1109 pcn_start(ifp);
1110 }
1111
1112 /*
1113 * pcn_ioctl: [ifnet interface function]
1114 *
1115 * Handle control requests from the operator.
1116 */
1117 int
1118 pcn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1119 {
1120 struct pcn_softc *sc = ifp->if_softc;
1121 struct ifreq *ifr = (struct ifreq *) data;
1122 int s, error;
1123
1124 s = splnet();
1125
1126 switch (cmd) {
1127 case SIOCSIFMEDIA:
1128 case SIOCGIFMEDIA:
1129 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1130 break;
1131
1132 default:
1133 error = ether_ioctl(ifp, cmd, data);
1134 if (error == ENETRESET) {
1135 /*
1136 * Multicast list has changed; set the hardware filter
1137 * accordingly.
1138 */
1139 error = pcn_init(ifp);
1140 }
1141 break;
1142 }
1143
1144 /* Try to get more packets going. */
1145 pcn_start(ifp);
1146
1147 splx(s);
1148 return (error);
1149 }
1150
1151 /*
1152 * pcn_intr:
1153 *
1154 * Interrupt service routine.
1155 */
1156 int
1157 pcn_intr(void *arg)
1158 {
1159 struct pcn_softc *sc = arg;
1160 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1161 uint32_t csr0;
1162 int wantinit, handled = 0;
1163
1164 for (wantinit = 0; wantinit == 0;) {
1165 csr0 = pcn_csr_read(sc, LE_CSR0);
1166 if ((csr0 & LE_C0_INTR) == 0)
1167 break;
1168
1169 /* ACK the bits and re-enable interrupts. */
1170 pcn_csr_write(sc, LE_CSR0, csr0 &
1171 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1172 LE_C0_TINT|LE_C0_IDON));
1173
1174 handled = 1;
1175
1176 if (csr0 & LE_C0_RINT) {
1177 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1178 wantinit = pcn_rxintr(sc);
1179 }
1180
1181 if (csr0 & LE_C0_TINT) {
1182 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1183 pcn_txintr(sc);
1184 }
1185
1186 if (csr0 & LE_C0_ERR) {
1187 if (csr0 & LE_C0_BABL) {
1188 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1189 ifp->if_oerrors++;
1190 }
1191 if (csr0 & LE_C0_MISS) {
1192 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1193 ifp->if_ierrors++;
1194 }
1195 if (csr0 & LE_C0_MERR) {
1196 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1197 printf("%s: memory error\n",
1198 sc->sc_dev.dv_xname);
1199 wantinit = 1;
1200 break;
1201 }
1202 }
1203
1204 if ((csr0 & LE_C0_RXON) == 0) {
1205 printf("%s: receiver disabled\n",
1206 sc->sc_dev.dv_xname);
1207 ifp->if_ierrors++;
1208 wantinit = 1;
1209 }
1210
1211 if ((csr0 & LE_C0_TXON) == 0) {
1212 printf("%s: transmitter disabled\n",
1213 sc->sc_dev.dv_xname);
1214 ifp->if_oerrors++;
1215 wantinit = 1;
1216 }
1217 }
1218
1219 if (handled) {
1220 if (wantinit)
1221 pcn_init(ifp);
1222
1223 /* Try to get more packets going. */
1224 pcn_start(ifp);
1225 }
1226
1227 return (handled);
1228 }
1229
1230 /*
1231 * pcn_spnd:
1232 *
1233 * Suspend the chip.
1234 */
1235 void
1236 pcn_spnd(struct pcn_softc *sc)
1237 {
1238 int i;
1239
1240 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1241
1242 for (i = 0; i < 10000; i++) {
1243 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1244 return;
1245 delay(5);
1246 }
1247
1248 printf("%s: WARNING: chip failed to enter suspended state\n",
1249 sc->sc_dev.dv_xname);
1250 }
1251
1252 /*
1253 * pcn_txintr:
1254 *
1255 * Helper; handle transmit interrupts.
1256 */
1257 void
1258 pcn_txintr(struct pcn_softc *sc)
1259 {
1260 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1261 struct pcn_txsoft *txs;
1262 uint32_t tmd1, tmd2, tmd;
1263 int i, j;
1264
1265 ifp->if_flags &= ~IFF_OACTIVE;
1266
1267 /*
1268 * Go through our Tx list and free mbufs for those
1269 * frames which have been transmitted.
1270 */
1271 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1272 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1273 txs = &sc->sc_txsoft[i];
1274
1275 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1276 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1277
1278 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1279 if (tmd1 & LE_T1_OWN)
1280 break;
1281
1282 /*
1283 * Slightly annoying -- we have to loop through the
1284 * descriptors we've used looking for ERR, since it
1285 * can appear on any descriptor in the chain.
1286 */
1287 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1288 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1289 if (tmd & LE_T1_ERR) {
1290 ifp->if_oerrors++;
1291 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1292 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1293 else
1294 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1295 if (tmd2 & LE_T2_UFLO) {
1296 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1297 sc->sc_xmtsp++;
1298 printf("%s: transmit "
1299 "underrun; new threshold: "
1300 "%s\n",
1301 sc->sc_dev.dv_xname,
1302 sc->sc_xmtsp_desc[
1303 sc->sc_xmtsp]);
1304 pcn_spnd(sc);
1305 pcn_csr_write(sc, LE_CSR80,
1306 LE_C80_RCVFW(sc->sc_rcvfw) |
1307 LE_C80_XMTSP(sc->sc_xmtsp) |
1308 LE_C80_XMTFW(sc->sc_xmtfw));
1309 pcn_csr_write(sc, LE_CSR5,
1310 sc->sc_csr5);
1311 } else {
1312 printf("%s: transmit "
1313 "underrun\n",
1314 sc->sc_dev.dv_xname);
1315 }
1316 } else if (tmd2 & LE_T2_BUFF) {
1317 printf("%s: transmit buffer error\n",
1318 sc->sc_dev.dv_xname);
1319 }
1320 if (tmd2 & LE_T2_LCOL)
1321 ifp->if_collisions++;
1322 if (tmd2 & LE_T2_RTRY)
1323 ifp->if_collisions += 16;
1324 goto next_packet;
1325 }
1326 if (j == txs->txs_lastdesc)
1327 break;
1328 }
1329 if (tmd1 & LE_T1_ONE)
1330 ifp->if_collisions++;
1331 else if (tmd & LE_T1_MORE) {
1332 /* Real number is unknown. */
1333 ifp->if_collisions += 2;
1334 }
1335 ifp->if_opackets++;
1336 next_packet:
1337 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1338 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1339 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1340 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1341 m_freem(txs->txs_mbuf);
1342 txs->txs_mbuf = NULL;
1343 }
1344
1345 /* Update the dirty transmit buffer pointer. */
1346 sc->sc_txsdirty = i;
1347
1348 /*
1349 * If there are no more pending transmissions, cancel the watchdog
1350 * timer.
1351 */
1352 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1353 ifp->if_timer = 0;
1354 }
1355
1356 /*
1357 * pcn_rxintr:
1358 *
1359 * Helper; handle receive interrupts.
1360 */
1361 int
1362 pcn_rxintr(struct pcn_softc *sc)
1363 {
1364 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1365 struct pcn_rxsoft *rxs;
1366 struct mbuf *m;
1367 uint32_t rmd1;
1368 int i, len;
1369
1370 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1371 rxs = &sc->sc_rxsoft[i];
1372
1373 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1374
1375 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1376
1377 if (rmd1 & LE_R1_OWN)
1378 break;
1379
1380 /*
1381 * Check for errors and make sure the packet fit into
1382 * a single buffer. We have structured this block of
1383 * code the way it is in order to compress it into
1384 * one test in the common case (no error).
1385 */
1386 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1387 (LE_R1_STP|LE_R1_ENP))) {
1388 /* Make sure the packet is in a single buffer. */
1389 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1390 (LE_R1_STP|LE_R1_ENP)) {
1391 printf("%s: packet spilled into next buffer\n",
1392 sc->sc_dev.dv_xname);
1393 return (1); /* pcn_intr() will re-init */
1394 }
1395
1396 /*
1397 * If the packet had an error, simple recycle the
1398 * buffer.
1399 */
1400 if (rmd1 & LE_R1_ERR) {
1401 ifp->if_ierrors++;
1402 /*
1403 * If we got an overflow error, chances
1404 * are there will be a CRC error. In
1405 * this case, just print the overflow
1406 * error, and skip the others.
1407 */
1408 if (rmd1 & LE_R1_OFLO)
1409 printf("%s: overflow error\n",
1410 sc->sc_dev.dv_xname);
1411 else {
1412 #define PRINTIT(x, s) \
1413 if (rmd1 & (x)) \
1414 printf("%s: %s\n", \
1415 sc->sc_dev.dv_xname, s);
1416 PRINTIT(LE_R1_FRAM, "framing error");
1417 PRINTIT(LE_R1_CRC, "CRC error");
1418 PRINTIT(LE_R1_BUFF, "buffer error");
1419 }
1420 #undef PRINTIT
1421 PCN_INIT_RXDESC(sc, i);
1422 continue;
1423 }
1424 }
1425
1426 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1427 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1428
1429 /*
1430 * No errors; receive the packet.
1431 */
1432 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1433 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1434 else
1435 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1436
1437 /*
1438 * The LANCE family includes the CRC with every packet;
1439 * trim it off here.
1440 */
1441 len -= ETHER_CRC_LEN;
1442
1443 /*
1444 * If the packet is small enough to fit in a
1445 * single header mbuf, allocate one and copy
1446 * the data into it. This greatly reduces
1447 * memory consumption when we receive lots
1448 * of small packets.
1449 *
1450 * Otherwise, we add a new buffer to the receive
1451 * chain. If this fails, we drop the packet and
1452 * recycle the old buffer.
1453 */
1454 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1455 MGETHDR(m, M_DONTWAIT, MT_DATA);
1456 if (m == NULL)
1457 goto dropit;
1458 m->m_data += 2;
1459 memcpy(mtod(m, caddr_t),
1460 mtod(rxs->rxs_mbuf, caddr_t), len);
1461 PCN_INIT_RXDESC(sc, i);
1462 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1463 rxs->rxs_dmamap->dm_mapsize,
1464 BUS_DMASYNC_PREREAD);
1465 } else {
1466 m = rxs->rxs_mbuf;
1467 if (pcn_add_rxbuf(sc, i) != 0) {
1468 dropit:
1469 ifp->if_ierrors++;
1470 PCN_INIT_RXDESC(sc, i);
1471 bus_dmamap_sync(sc->sc_dmat,
1472 rxs->rxs_dmamap, 0,
1473 rxs->rxs_dmamap->dm_mapsize,
1474 BUS_DMASYNC_PREREAD);
1475 continue;
1476 }
1477 }
1478
1479 m->m_pkthdr.rcvif = ifp;
1480 m->m_pkthdr.len = m->m_len = len;
1481
1482 #if NBPFILTER > 0
1483 /* Pass this up to any BPF listeners. */
1484 if (ifp->if_bpf)
1485 bpf_mtap(ifp->if_bpf, m);
1486 #endif /* NBPFILTER > 0 */
1487
1488 /* Pass it on. */
1489 (*ifp->if_input)(ifp, m);
1490 ifp->if_ipackets++;
1491 }
1492
1493 /* Update the receive pointer. */
1494 sc->sc_rxptr = i;
1495 return (0);
1496 }
1497
1498 /*
1499 * pcn_tick:
1500 *
1501 * One second timer, used to tick the MII.
1502 */
1503 void
1504 pcn_tick(void *arg)
1505 {
1506 struct pcn_softc *sc = arg;
1507 int s;
1508
1509 s = splnet();
1510 mii_tick(&sc->sc_mii);
1511 splx(s);
1512
1513 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1514 }
1515
1516 /*
1517 * pcn_reset:
1518 *
1519 * Perform a soft reset on the PCnet-PCI.
1520 */
1521 void
1522 pcn_reset(struct pcn_softc *sc)
1523 {
1524
1525 /*
1526 * The PCnet-PCI chip is reset by reading from the
1527 * RESET register. Note that while the NE2100 LANCE
1528 * boards require a write after the read, the PCnet-PCI
1529 * chips do not require this.
1530 *
1531 * Since we don't know if we're in 16-bit or 32-bit
1532 * mode right now, issue both (it's safe) in the
1533 * hopes that one will succeed.
1534 */
1535 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1536 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1537
1538 /* Wait 1ms for it to finish. */
1539 delay(1000);
1540
1541 /*
1542 * Select 32-bit I/O mode by issuing a 32-bit write to the
1543 * RDP. Since the RAP is 0 after a reset, writing a 0
1544 * to RDP is safe (since it simply clears CSR0).
1545 */
1546 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1547 }
1548
1549 /*
1550 * pcn_init: [ifnet interface function]
1551 *
1552 * Initialize the interface. Must be called at splnet().
1553 */
1554 int
1555 pcn_init(struct ifnet *ifp)
1556 {
1557 struct pcn_softc *sc = ifp->if_softc;
1558 struct pcn_rxsoft *rxs;
1559 uint8_t *enaddr = LLADDR(ifp->if_sadl);
1560 int i, error = 0;
1561 uint32_t reg;
1562
1563 /* Cancel any pending I/O. */
1564 pcn_stop(ifp, 0);
1565
1566 /* Reset the chip to a known state. */
1567 pcn_reset(sc);
1568
1569 /*
1570 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1571 * else.
1572 *
1573 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1574 * because the structure layout is compatible with ILACC,
1575 * but the burst mode is only available in SSTYLE 3, and
1576 * burst mode should provide some performance enhancement.
1577 */
1578 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1579 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1580 else
1581 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1582 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1583
1584 /* Initialize the transmit descriptor ring. */
1585 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1586 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1587 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1588 sc->sc_txfree = PCN_NTXDESC;
1589 sc->sc_txnext = 0;
1590
1591 /* Initialize the transmit job descriptors. */
1592 for (i = 0; i < PCN_TXQUEUELEN; i++)
1593 sc->sc_txsoft[i].txs_mbuf = NULL;
1594 sc->sc_txsfree = PCN_TXQUEUELEN;
1595 sc->sc_txsnext = 0;
1596 sc->sc_txsdirty = 0;
1597
1598 /*
1599 * Initialize the receive descriptor and receive job
1600 * descriptor rings.
1601 */
1602 for (i = 0; i < PCN_NRXDESC; i++) {
1603 rxs = &sc->sc_rxsoft[i];
1604 if (rxs->rxs_mbuf == NULL) {
1605 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1606 printf("%s: unable to allocate or map rx "
1607 "buffer %d, error = %d\n",
1608 sc->sc_dev.dv_xname, i, error);
1609 /*
1610 * XXX Should attempt to run with fewer receive
1611 * XXX buffers instead of just failing.
1612 */
1613 pcn_rxdrain(sc);
1614 goto out;
1615 }
1616 } else
1617 PCN_INIT_RXDESC(sc, i);
1618 }
1619 sc->sc_rxptr = 0;
1620
1621 /* Initialize MODE for the initialization block. */
1622 sc->sc_mode = 0;
1623 if (ifp->if_flags & IFF_PROMISC)
1624 sc->sc_mode |= LE_C15_PROM;
1625 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1626 sc->sc_mode |= LE_C15_DRCVBC;
1627
1628 /*
1629 * If we have MII, simply select MII in the MODE register,
1630 * and clear ASEL. Otherwise, let ASEL stand (for now),
1631 * and leave PORTSEL alone (it is ignored with ASEL is set).
1632 */
1633 if (sc->sc_flags & PCN_F_HAS_MII) {
1634 pcn_bcr_write(sc, LE_BCR2,
1635 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1636 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1637
1638 /*
1639 * Disable MII auto-negotiation. We handle that in
1640 * our own MII layer.
1641 */
1642 pcn_bcr_write(sc, LE_BCR32,
1643 pcn_csr_read(sc, LE_BCR32) & ~LE_B32_DANAS);
1644 }
1645
1646 /*
1647 * Set the Tx and Rx descriptor ring addresses in the init
1648 * block, the TLEN and RLEN other fields of the init block
1649 * MODE register.
1650 */
1651 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1652 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1653 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1654 ((ffs(PCN_NTXDESC) - 1) << 28) |
1655 ((ffs(PCN_NRXDESC) - 1) << 20));
1656
1657 /* Set the station address in the init block. */
1658 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1659 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1660 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1661 (enaddr[5] << 8));
1662
1663 /* Set the multicast filter in the init block. */
1664 pcn_set_filter(sc);
1665
1666 /* Initialize CSR3. */
1667 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1668
1669 /* Initialize CSR4. */
1670 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1671 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1672
1673 /* Initialize CSR5. */
1674 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1675 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1676
1677 /*
1678 * If we have an Am79c971 or greater, initialize CSR7.
1679 *
1680 * XXX Might be nice to use the MII auto-poll interrupt someday.
1681 */
1682 switch (sc->sc_variant->pcv_chipid) {
1683 case PARTID_Am79c970:
1684 case PARTID_Am79c970A:
1685 /* Not available on these chips. */
1686 break;
1687
1688 default:
1689 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1690 break;
1691 }
1692
1693 /*
1694 * On the Am79c970A and greater, initialize BCR18 to
1695 * enable burst mode.
1696 *
1697 * Also enable the "no underflow" option on the Am79c971 and
1698 * higher, which prevents the chip from generating transmit
1699 * underflows, yet sill provides decent performance. Note if
1700 * chip is not connected to external SRAM, then we still have
1701 * to handle underflow errors (the NOUFLO bit is ignored in
1702 * that case).
1703 */
1704 reg = pcn_bcr_read(sc, LE_BCR18);
1705 switch (sc->sc_variant->pcv_chipid) {
1706 case PARTID_Am79c970:
1707 break;
1708
1709 case PARTID_Am79c970A:
1710 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1711 break;
1712
1713 default:
1714 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1715 break;
1716 }
1717 pcn_bcr_write(sc, LE_BCR18, reg);
1718
1719 /*
1720 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1721 */
1722 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1723 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1724
1725 /*
1726 * Send the init block to the chip, and wait for it
1727 * to be processed.
1728 */
1729 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1730 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1731 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1732 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1733 delay(100);
1734 for (i = 0; i < 10000; i++) {
1735 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1736 break;
1737 delay(10);
1738 }
1739 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1740 if (i == 10000) {
1741 printf("%s: timeout processing init block\n",
1742 sc->sc_dev.dv_xname);
1743 error = EIO;
1744 goto out;
1745 }
1746
1747 /* Set the media. */
1748 (void) (*sc->sc_mii.mii_media.ifm_change)(ifp);
1749
1750 /* Enable interrupts and external activity (and ACK IDON). */
1751 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1752
1753 if (sc->sc_flags & PCN_F_HAS_MII) {
1754 /* Start the one second MII clock. */
1755 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1756 }
1757
1758 /* ...all done! */
1759 ifp->if_flags |= IFF_RUNNING;
1760 ifp->if_flags &= ~IFF_OACTIVE;
1761
1762 out:
1763 if (error)
1764 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1765 return (error);
1766 }
1767
1768 /*
1769 * pcn_rxdrain:
1770 *
1771 * Drain the receive queue.
1772 */
1773 void
1774 pcn_rxdrain(struct pcn_softc *sc)
1775 {
1776 struct pcn_rxsoft *rxs;
1777 int i;
1778
1779 for (i = 0; i < PCN_NRXDESC; i++) {
1780 rxs = &sc->sc_rxsoft[i];
1781 if (rxs->rxs_mbuf != NULL) {
1782 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1783 m_freem(rxs->rxs_mbuf);
1784 rxs->rxs_mbuf = NULL;
1785 }
1786 }
1787 }
1788
1789 /*
1790 * pcn_stop: [ifnet interface function]
1791 *
1792 * Stop transmission on the interface.
1793 */
1794 void
1795 pcn_stop(struct ifnet *ifp, int disable)
1796 {
1797 struct pcn_softc *sc = ifp->if_softc;
1798 struct pcn_txsoft *txs;
1799 int i;
1800
1801 if (sc->sc_flags & PCN_F_HAS_MII) {
1802 /* Stop the one second clock. */
1803 callout_stop(&sc->sc_tick_ch);
1804
1805 /* Down the MII. */
1806 mii_down(&sc->sc_mii);
1807 }
1808
1809 /* Stop the chip. */
1810 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1811
1812 /* Release any queued transmit buffers. */
1813 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1814 txs = &sc->sc_txsoft[i];
1815 if (txs->txs_mbuf != NULL) {
1816 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1817 m_freem(txs->txs_mbuf);
1818 txs->txs_mbuf = NULL;
1819 }
1820 }
1821
1822 if (disable)
1823 pcn_rxdrain(sc);
1824
1825 /* Mark the interface as down and cancel the watchdog timer. */
1826 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1827 ifp->if_timer = 0;
1828 }
1829
1830 /*
1831 * pcn_add_rxbuf:
1832 *
1833 * Add a receive buffer to the indicated descriptor.
1834 */
1835 int
1836 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1837 {
1838 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1839 struct mbuf *m;
1840 int error;
1841
1842 MGETHDR(m, M_DONTWAIT, MT_DATA);
1843 if (m == NULL)
1844 return (ENOBUFS);
1845
1846 MCLGET(m, M_DONTWAIT);
1847 if ((m->m_flags & M_EXT) == 0) {
1848 m_freem(m);
1849 return (ENOBUFS);
1850 }
1851
1852 if (rxs->rxs_mbuf != NULL)
1853 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1854
1855 rxs->rxs_mbuf = m;
1856
1857 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1858 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1859 BUS_DMA_READ|BUS_DMA_NOWAIT);
1860 if (error) {
1861 printf("%s: can't load rx DMA map %d, error = %d\n",
1862 sc->sc_dev.dv_xname, idx, error);
1863 panic("pcn_add_rxbuf");
1864 }
1865
1866 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1867 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1868
1869 PCN_INIT_RXDESC(sc, idx);
1870
1871 return (0);
1872 }
1873
1874 /*
1875 * pcn_set_filter:
1876 *
1877 * Set up the receive filter.
1878 */
1879 void
1880 pcn_set_filter(struct pcn_softc *sc)
1881 {
1882 struct ethercom *ec = &sc->sc_ethercom;
1883 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1884 struct ether_multi *enm;
1885 struct ether_multistep step;
1886 uint32_t crc;
1887
1888 /*
1889 * Set up the multicast address filter by passing all multicast
1890 * addresses through a CRC generator, and then using the high
1891 * order 6 bits as an index into the 64-bit logical address
1892 * filter. The high order bits select the word, while the rest
1893 * of the bits select the bit within the word.
1894 */
1895
1896 if (ifp->if_flags & IFF_PROMISC)
1897 goto allmulti;
1898
1899 sc->sc_initblock.init_ladrf[0] =
1900 sc->sc_initblock.init_ladrf[1] =
1901 sc->sc_initblock.init_ladrf[2] =
1902 sc->sc_initblock.init_ladrf[3] = 0;
1903
1904 ETHER_FIRST_MULTI(step, ec, enm);
1905 while (enm != NULL) {
1906 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1907 /*
1908 * We must listen to a range of multicast addresses.
1909 * For now, just accept all multicasts, rather than
1910 * trying to set only those filter bits needed to match
1911 * the range. (At this time, the only use of address
1912 * ranges is for IP multicast routing, for which the
1913 * range is big enough to require all bits set.)
1914 */
1915 goto allmulti;
1916 }
1917
1918 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1919
1920 /* Just want the 6 most significant bits. */
1921 crc >>= 26;
1922
1923 /* Set the corresponding bit in the filter. */
1924 sc->sc_initblock.init_ladrf[crc >> 4] |=
1925 htole16(1 << (crc & 0xf));
1926
1927 ETHER_NEXT_MULTI(step, enm);
1928 }
1929
1930 ifp->if_flags &= ~IFF_ALLMULTI;
1931 return;
1932
1933 allmulti:
1934 ifp->if_flags |= IFF_ALLMULTI;
1935 sc->sc_initblock.init_ladrf[0] =
1936 sc->sc_initblock.init_ladrf[1] =
1937 sc->sc_initblock.init_ladrf[2] =
1938 sc->sc_initblock.init_ladrf[3] = 0xffff;
1939 }
1940
1941 /*
1942 * pcn_79c970_mediainit:
1943 *
1944 * Initialize media for the Am79c970.
1945 */
1946 void
1947 pcn_79c970_mediainit(struct pcn_softc *sc)
1948 {
1949 const char *sep = "";
1950
1951 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c970_mediachange,
1952 pcn_79c970_mediastatus);
1953
1954 #define ADD(s, m, d) \
1955 do { \
1956 printf("%s%s", sep, s); \
1957 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
1958 sep = ", "; \
1959 } while (/*CONSTCOND*/0)
1960
1961 printf("%s: ", sc->sc_dev.dv_xname);
1962 ADD("10base5", IFM_10_5, PORTSEL_AUI);
1963 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1964 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
1965 ADD("10baseT", IFM_10_T, PORTSEL_10T);
1966 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1967 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
1968 ADD("auto", IFM_AUTO, 0);
1969 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
1970 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
1971 printf("\n");
1972
1973 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
1974 }
1975
1976 /*
1977 * pcn_79c970_mediastatus: [ifmedia interface function]
1978 *
1979 * Get the current interface media status (Am79c970 version).
1980 */
1981 void
1982 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1983 {
1984 struct pcn_softc *sc = ifp->if_softc;
1985
1986 /*
1987 * The currently selected media is always the active media.
1988 * Note: We have no way to determine what media the AUTO
1989 * process picked.
1990 */
1991 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
1992 }
1993
1994 /*
1995 * pcn_79c970_mediachange: [ifmedia interface function]
1996 *
1997 * Set hardware to newly-selected media (Am79c970 version).
1998 */
1999 int
2000 pcn_79c970_mediachange(struct ifnet *ifp)
2001 {
2002 struct pcn_softc *sc = ifp->if_softc;
2003 uint32_t reg;
2004
2005 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2006 /*
2007 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2008 */
2009 reg = pcn_bcr_read(sc, LE_BCR2);
2010 reg |= LE_B2_ASEL;
2011 pcn_bcr_write(sc, LE_BCR2, reg);
2012 } else {
2013 /*
2014 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2015 */
2016 reg = pcn_bcr_read(sc, LE_BCR2);
2017 reg &= ~LE_B2_ASEL;
2018 pcn_bcr_write(sc, LE_BCR2, reg);
2019
2020 reg = pcn_csr_read(sc, LE_CSR15);
2021 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2022 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2023 pcn_csr_write(sc, LE_CSR15, reg);
2024 }
2025
2026 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2027 reg = LE_B9_FDEN;
2028 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2029 reg |= LE_B9_AUIFD;
2030 pcn_bcr_write(sc, LE_BCR9, reg);
2031 } else
2032 pcn_bcr_write(sc, LE_BCR0, 0);
2033
2034 return (0);
2035 }
2036
2037 /*
2038 * pcn_79c971_mediainit:
2039 *
2040 * Initialize media for the Am79c971.
2041 */
2042 void
2043 pcn_79c971_mediainit(struct pcn_softc *sc)
2044 {
2045 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2046
2047 /* We have MII. */
2048 sc->sc_flags |= PCN_F_HAS_MII;
2049
2050 /*
2051 * The built-in 10BASE-T interface is mapped to the MII
2052 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2053 * word that tells us which PHY to use. Since the 10BASE-T
2054 * interface is always at PHY 31, we make a note of the
2055 * first PHY that responds, and disallow any PHYs after
2056 * it. This is all handled in the MII read routine.
2057 */
2058 sc->sc_phyaddr = -1;
2059
2060 /* Initialize our media structures and probe the MII. */
2061 sc->sc_mii.mii_ifp = ifp;
2062 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2063 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2064 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2065 ifmedia_init(&sc->sc_mii.mii_media, 0, pcn_79c971_mediachange,
2066 pcn_79c971_mediastatus);
2067
2068 mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2069 MII_OFFSET_ANY, 0);
2070 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2071 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2072 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2073 } else
2074 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2075 }
2076
2077 /*
2078 * pcn_79c971_mediastatus: [ifmedia interface function]
2079 *
2080 * Get the current interface media status (Am79c971 version).
2081 */
2082 void
2083 pcn_79c971_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2084 {
2085 struct pcn_softc *sc = ifp->if_softc;
2086
2087 mii_pollstat(&sc->sc_mii);
2088 ifmr->ifm_status = sc->sc_mii.mii_media_status;
2089 ifmr->ifm_active = sc->sc_mii.mii_media_active;
2090 }
2091
2092 /*
2093 * pcn_79c971_mediachange: [ifmedia interface function]
2094 *
2095 * Set hardware to newly-selected media (Am79c971 version).
2096 */
2097 int
2098 pcn_79c971_mediachange(struct ifnet *ifp)
2099 {
2100 struct pcn_softc *sc = ifp->if_softc;
2101
2102 if (ifp->if_flags & IFF_UP)
2103 mii_mediachg(&sc->sc_mii);
2104 return (0);
2105 }
2106
2107 /*
2108 * pcn_mii_readreg: [mii interface function]
2109 *
2110 * Read a PHY register on the MII.
2111 */
2112 int
2113 pcn_mii_readreg(struct device *self, int phy, int reg)
2114 {
2115 struct pcn_softc *sc = (void *) self;
2116 uint32_t rv;
2117
2118 if (sc->sc_phyaddr != -1 && phy != sc->sc_phyaddr)
2119 return (0);
2120
2121 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2122 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2123 if (rv == 0xffff)
2124 return (0);
2125
2126 if (sc->sc_phyaddr == -1)
2127 sc->sc_phyaddr = phy;
2128
2129 return (rv);
2130 }
2131
2132 /*
2133 * pcn_mii_writereg: [mii interface function]
2134 *
2135 * Write a PHY register on the MII.
2136 */
2137 void
2138 pcn_mii_writereg(struct device *self, int phy, int reg, int val)
2139 {
2140 struct pcn_softc *sc = (void *) self;
2141
2142 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2143 pcn_bcr_write(sc, LE_BCR34, val);
2144 }
2145
2146 /*
2147 * pcn_mii_statchg: [mii interface function]
2148 *
2149 * Callback from MII layer when media changes.
2150 */
2151 void
2152 pcn_mii_statchg(struct device *self)
2153 {
2154 struct pcn_softc *sc = (void *) self;
2155
2156 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2157 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2158 else
2159 pcn_bcr_write(sc, LE_BCR0, 0);
2160 }
2161