if_pcn.c revision 1.57 1 /* $NetBSD: if_pcn.c,v 1.57 2014/03/29 19:28:25 christos Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.57 2014/03/29 19:28:25 christos Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/mbuf.h>
74 #include <sys/malloc.h>
75 #include <sys/kernel.h>
76 #include <sys/socket.h>
77 #include <sys/ioctl.h>
78 #include <sys/errno.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81
82 #include <sys/rnd.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_ether.h>
88
89 #include <net/bpf.h>
90
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 #include <machine/endian.h>
94
95 #include <dev/mii/mii.h>
96 #include <dev/mii/miivar.h>
97
98 #include <dev/ic/am79900reg.h>
99 #include <dev/ic/lancereg.h>
100
101 #include <dev/pci/pcireg.h>
102 #include <dev/pci/pcivar.h>
103 #include <dev/pci/pcidevs.h>
104
105 #include <dev/pci/if_pcnreg.h>
106
107 /*
108 * Transmit descriptor list size. This is arbitrary, but allocate
109 * enough descriptors for 128 pending transmissions, and 4 segments
110 * per packet. This MUST work out to a power of 2.
111 *
112 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
113 *
114 * So we play a little trick here. We give each packet up to 16
115 * DMA segments, but only allocate the max of 512 descriptors. The
116 * transmit logic can deal with this, we just are hoping to sneak by.
117 */
118 #define PCN_NTXSEGS 16
119 #define PCN_NTXSEGS_VMWARE 8 /* bug in VMware's emulation */
120
121 #define PCN_TXQUEUELEN 128
122 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
123 #define PCN_NTXDESC 512
124 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
125 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
126 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
127
128 /* Tx interrupt every N + 1 packets. */
129 #define PCN_TXINTR_MASK 7
130
131 /*
132 * Receive descriptor list size. We have one Rx buffer per incoming
133 * packet, so this logic is a little simpler.
134 */
135 #define PCN_NRXDESC 128
136 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
137 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
138
139 /*
140 * Control structures are DMA'd to the PCnet chip. We allocate them in
141 * a single clump that maps to a single DMA segment to make several things
142 * easier.
143 */
144 struct pcn_control_data {
145 /* The transmit descriptors. */
146 struct letmd pcd_txdescs[PCN_NTXDESC];
147
148 /* The receive descriptors. */
149 struct lermd pcd_rxdescs[PCN_NRXDESC];
150
151 /* The init block. */
152 struct leinit pcd_initblock;
153 };
154
155 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
156 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
157 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
158 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
159
160 /*
161 * Software state for transmit jobs.
162 */
163 struct pcn_txsoft {
164 struct mbuf *txs_mbuf; /* head of our mbuf chain */
165 bus_dmamap_t txs_dmamap; /* our DMA map */
166 int txs_firstdesc; /* first descriptor in packet */
167 int txs_lastdesc; /* last descriptor in packet */
168 };
169
170 /*
171 * Software state for receive jobs.
172 */
173 struct pcn_rxsoft {
174 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
175 bus_dmamap_t rxs_dmamap; /* our DMA map */
176 };
177
178 /*
179 * Description of Rx FIFO watermarks for various revisions.
180 */
181 static const char * const pcn_79c970_rcvfw[] = {
182 "16 bytes",
183 "64 bytes",
184 "128 bytes",
185 NULL,
186 };
187
188 static const char * const pcn_79c971_rcvfw[] = {
189 "16 bytes",
190 "64 bytes",
191 "112 bytes",
192 NULL,
193 };
194
195 /*
196 * Description of Tx start points for various revisions.
197 */
198 static const char * const pcn_79c970_xmtsp[] = {
199 "8 bytes",
200 "64 bytes",
201 "128 bytes",
202 "248 bytes",
203 };
204
205 static const char * const pcn_79c971_xmtsp[] = {
206 "20 bytes",
207 "64 bytes",
208 "128 bytes",
209 "248 bytes",
210 };
211
212 static const char * const pcn_79c971_xmtsp_sram[] = {
213 "44 bytes",
214 "64 bytes",
215 "128 bytes",
216 "store-and-forward",
217 };
218
219 /*
220 * Description of Tx FIFO watermarks for various revisions.
221 */
222 static const char * const pcn_79c970_xmtfw[] = {
223 "16 bytes",
224 "64 bytes",
225 "128 bytes",
226 NULL,
227 };
228
229 static const char * const pcn_79c971_xmtfw[] = {
230 "16 bytes",
231 "64 bytes",
232 "108 bytes",
233 NULL,
234 };
235
236 /*
237 * Software state per device.
238 */
239 struct pcn_softc {
240 device_t sc_dev; /* generic device information */
241 bus_space_tag_t sc_st; /* bus space tag */
242 bus_space_handle_t sc_sh; /* bus space handle */
243 bus_dma_tag_t sc_dmat; /* bus DMA tag */
244 struct ethercom sc_ethercom; /* Ethernet common data */
245
246 /* Points to our media routines, etc. */
247 const struct pcn_variant *sc_variant;
248
249 void *sc_ih; /* interrupt cookie */
250
251 struct mii_data sc_mii; /* MII/media information */
252
253 callout_t sc_tick_ch; /* tick callout */
254
255 bus_dmamap_t sc_cddmamap; /* control data DMA map */
256 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
257
258 /* Software state for transmit and receive descriptors. */
259 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
260 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
261
262 /* Control data structures */
263 struct pcn_control_data *sc_control_data;
264 #define sc_txdescs sc_control_data->pcd_txdescs
265 #define sc_rxdescs sc_control_data->pcd_rxdescs
266 #define sc_initblock sc_control_data->pcd_initblock
267
268 #ifdef PCN_EVENT_COUNTERS
269 /* Event counters. */
270 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
271 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
272 struct evcnt sc_ev_txintr; /* Tx interrupts */
273 struct evcnt sc_ev_rxintr; /* Rx interrupts */
274 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
275 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
276 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
277
278 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
279 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
280 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
281 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
282 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
283 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
284 struct evcnt sc_ev_txcopy; /* Tx copies required */
285 #endif /* PCN_EVENT_COUNTERS */
286
287 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */
288 int sc_rcvfw;
289
290 const char * const *sc_xmtsp_desc; /* Tx start point info */
291 int sc_xmtsp;
292
293 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */
294 int sc_xmtfw;
295
296 int sc_flags; /* misc. flags; see below */
297 int sc_swstyle; /* the software style in use */
298
299 int sc_txfree; /* number of free Tx descriptors */
300 int sc_txnext; /* next ready Tx descriptor */
301
302 int sc_txsfree; /* number of free Tx jobs */
303 int sc_txsnext; /* next free Tx job */
304 int sc_txsdirty; /* dirty Tx jobs */
305
306 int sc_rxptr; /* next ready Rx descriptor/job */
307
308 uint32_t sc_csr5; /* prototype CSR5 register */
309 uint32_t sc_mode; /* prototype MODE register */
310
311 krndsource_t rnd_source; /* random source */
312 };
313
314 /* sc_flags */
315 #define PCN_F_HAS_MII 0x0001 /* has MII */
316
317 #ifdef PCN_EVENT_COUNTERS
318 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
319 #else
320 #define PCN_EVCNT_INCR(ev) /* nothing */
321 #endif
322
323 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
324 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
325 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
326
327 #define PCN_CDTXSYNC(sc, x, n, ops) \
328 do { \
329 int __x, __n; \
330 \
331 __x = (x); \
332 __n = (n); \
333 \
334 /* If it will wrap around, sync to the end of the ring. */ \
335 if ((__x + __n) > PCN_NTXDESC) { \
336 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
337 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
338 (PCN_NTXDESC - __x), (ops)); \
339 __n -= (PCN_NTXDESC - __x); \
340 __x = 0; \
341 } \
342 \
343 /* Now sync whatever is left. */ \
344 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
345 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
346 } while (/*CONSTCOND*/0)
347
348 #define PCN_CDRXSYNC(sc, x, ops) \
349 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
350 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
351
352 #define PCN_CDINITSYNC(sc, ops) \
353 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
354 PCN_CDINITOFF, sizeof(struct leinit), (ops))
355
356 #define PCN_INIT_RXDESC(sc, x) \
357 do { \
358 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
359 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
360 struct mbuf *__m = __rxs->rxs_mbuf; \
361 \
362 /* \
363 * Note: We scoot the packet forward 2 bytes in the buffer \
364 * so that the payload after the Ethernet header is aligned \
365 * to a 4-byte boundary. \
366 */ \
367 __m->m_data = __m->m_ext.ext_buf + 2; \
368 \
369 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
370 __rmd->rmd2 = \
371 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
372 __rmd->rmd0 = 0; \
373 } else { \
374 __rmd->rmd2 = 0; \
375 __rmd->rmd0 = \
376 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
377 } \
378 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
379 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
380 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
381 } while(/*CONSTCOND*/0)
382
383 static void pcn_start(struct ifnet *);
384 static void pcn_watchdog(struct ifnet *);
385 static int pcn_ioctl(struct ifnet *, u_long, void *);
386 static int pcn_init(struct ifnet *);
387 static void pcn_stop(struct ifnet *, int);
388
389 static bool pcn_shutdown(device_t, int);
390
391 static void pcn_reset(struct pcn_softc *);
392 static void pcn_rxdrain(struct pcn_softc *);
393 static int pcn_add_rxbuf(struct pcn_softc *, int);
394 static void pcn_tick(void *);
395
396 static void pcn_spnd(struct pcn_softc *);
397
398 static void pcn_set_filter(struct pcn_softc *);
399
400 static int pcn_intr(void *);
401 static void pcn_txintr(struct pcn_softc *);
402 static int pcn_rxintr(struct pcn_softc *);
403
404 static int pcn_mii_readreg(device_t, int, int);
405 static void pcn_mii_writereg(device_t, int, int, int);
406 static void pcn_mii_statchg(struct ifnet *);
407
408 static void pcn_79c970_mediainit(struct pcn_softc *);
409 static int pcn_79c970_mediachange(struct ifnet *);
410 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
411
412 static void pcn_79c971_mediainit(struct pcn_softc *);
413
414 /*
415 * Description of a PCnet-PCI variant. Used to select media access
416 * method, mostly, and to print a nice description of the chip.
417 */
418 static const struct pcn_variant {
419 const char *pcv_desc;
420 void (*pcv_mediainit)(struct pcn_softc *);
421 uint16_t pcv_chipid;
422 } pcn_variants[] = {
423 { "Am79c970 PCnet-PCI",
424 pcn_79c970_mediainit,
425 PARTID_Am79c970 },
426
427 { "Am79c970A PCnet-PCI II",
428 pcn_79c970_mediainit,
429 PARTID_Am79c970A },
430
431 { "Am79c971 PCnet-FAST",
432 pcn_79c971_mediainit,
433 PARTID_Am79c971 },
434
435 { "Am79c972 PCnet-FAST+",
436 pcn_79c971_mediainit,
437 PARTID_Am79c972 },
438
439 { "Am79c973 PCnet-FAST III",
440 pcn_79c971_mediainit,
441 PARTID_Am79c973 },
442
443 { "Am79c975 PCnet-FAST III",
444 pcn_79c971_mediainit,
445 PARTID_Am79c975 },
446
447 { "Unknown PCnet-PCI variant",
448 pcn_79c971_mediainit,
449 0 },
450 };
451
452 int pcn_copy_small = 0;
453
454 static int pcn_match(device_t, cfdata_t, void *);
455 static void pcn_attach(device_t, device_t, void *);
456
457 CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc),
458 pcn_match, pcn_attach, NULL, NULL);
459
460 /*
461 * Routines to read and write the PCnet-PCI CSR/BCR space.
462 */
463
464 static inline uint32_t
465 pcn_csr_read(struct pcn_softc *sc, int reg)
466 {
467
468 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
469 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
470 }
471
472 static inline void
473 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
474 {
475
476 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
477 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
478 }
479
480 static inline uint32_t
481 pcn_bcr_read(struct pcn_softc *sc, int reg)
482 {
483
484 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
485 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
486 }
487
488 static inline void
489 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
490 {
491
492 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
493 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
494 }
495
496 static bool
497 pcn_is_vmware(const char *enaddr)
498 {
499
500 /*
501 * VMware uses the OUI 00:0c:29 for auto-generated MAC
502 * addresses.
503 */
504 if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29)
505 return (TRUE);
506
507 /*
508 * VMware uses the OUI 00:50:56 for manually-set MAC
509 * addresses (and some auto-generated ones).
510 */
511 if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56)
512 return (TRUE);
513
514 return (FALSE);
515 }
516
517 static const struct pcn_variant *
518 pcn_lookup_variant(uint16_t chipid)
519 {
520 const struct pcn_variant *pcv;
521
522 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
523 if (chipid == pcv->pcv_chipid)
524 return (pcv);
525 }
526
527 /*
528 * This covers unknown chips, which we simply treat like
529 * a generic PCnet-FAST.
530 */
531 return (pcv);
532 }
533
534 static int
535 pcn_match(device_t parent, cfdata_t cf, void *aux)
536 {
537 struct pci_attach_args *pa = aux;
538
539 /*
540 * IBM Makes a PCI variant of this card which shows up as a
541 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
542 * this card is truly a pcn card, so we have a special case match for
543 * it
544 */
545
546 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
547 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
548 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
549 return(1);
550
551 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
552 return (0);
553
554 switch (PCI_PRODUCT(pa->pa_id)) {
555 case PCI_PRODUCT_AMD_PCNET_PCI:
556 /* Beat if_le_pci.c */
557 return (10);
558 }
559
560 return (0);
561 }
562
563 static void
564 pcn_attach(device_t parent, device_t self, void *aux)
565 {
566 struct pcn_softc *sc = device_private(self);
567 struct pci_attach_args *pa = aux;
568 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
569 pci_chipset_tag_t pc = pa->pa_pc;
570 pci_intr_handle_t ih;
571 const char *intrstr = NULL;
572 bus_space_tag_t iot, memt;
573 bus_space_handle_t ioh, memh;
574 bus_dma_segment_t seg;
575 int ioh_valid, memh_valid;
576 int ntxsegs, i, rseg, error;
577 uint32_t chipid, reg;
578 uint8_t enaddr[ETHER_ADDR_LEN];
579 prop_object_t obj;
580 bool is_vmware;
581 char intrbuf[PCI_INTRSTR_LEN];
582
583 sc->sc_dev = self;
584 callout_init(&sc->sc_tick_ch, 0);
585
586 aprint_normal(": AMD PCnet-PCI Ethernet\n");
587
588 /*
589 * Map the device.
590 */
591 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
592 &iot, &ioh, NULL, NULL) == 0);
593 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
594 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
595 &memt, &memh, NULL, NULL) == 0);
596
597 if (memh_valid) {
598 sc->sc_st = memt;
599 sc->sc_sh = memh;
600 } else if (ioh_valid) {
601 sc->sc_st = iot;
602 sc->sc_sh = ioh;
603 } else {
604 aprint_error_dev(self, "unable to map device registers\n");
605 return;
606 }
607
608 sc->sc_dmat = pa->pa_dmat;
609
610 /* Make sure bus mastering is enabled. */
611 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
612 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
613 PCI_COMMAND_MASTER_ENABLE);
614
615 /* power up chip */
616 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
617 NULL)) && error != EOPNOTSUPP) {
618 aprint_error_dev(self, "cannot activate %d\n", error);
619 return;
620 }
621
622 /*
623 * Reset the chip to a known state. This also puts the
624 * chip into 32-bit mode.
625 */
626 pcn_reset(sc);
627
628 /*
629 * On some systems with the chip is an on-board device, the
630 * EEPROM is not used. Handle this by reading the MAC address
631 * from the CSRs (assuming that boot firmware has written
632 * it there).
633 */
634 obj = prop_dictionary_get(device_properties(sc->sc_dev),
635 "am79c970-no-eeprom");
636 if (prop_bool_true(obj)) {
637 for (i = 0; i < 3; i++) {
638 uint32_t val;
639 val = pcn_csr_read(sc, LE_CSR12 + i);
640 enaddr[2 * i] = val & 0xff;
641 enaddr[2 * i + 1] = (val >> 8) & 0xff;
642 }
643 } else {
644 for (i = 0; i < ETHER_ADDR_LEN; i++) {
645 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
646 PCN32_APROM + i);
647 }
648 }
649
650 /* Check to see if this is a VMware emulated network interface. */
651 is_vmware = pcn_is_vmware(enaddr);
652
653 /*
654 * Now that the device is mapped, attempt to figure out what
655 * kind of chip we have. Note that IDL has all 32 bits of
656 * the chip ID when we're in 32-bit mode.
657 */
658 chipid = pcn_csr_read(sc, LE_CSR88);
659 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
660
661 aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n",
662 sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
663 ether_sprintf(enaddr));
664
665 /*
666 * VMware has a bug in its network interface emulation; we must
667 * limit the number of Tx segments.
668 */
669 if (is_vmware) {
670 ntxsegs = PCN_NTXSEGS_VMWARE;
671 prop_dictionary_set_bool(device_properties(sc->sc_dev),
672 "am79c970-vmware-tx-bug", TRUE);
673 aprint_verbose_dev(self,
674 "VMware Tx segment count bug detected\n");
675 } else {
676 ntxsegs = PCN_NTXSEGS;
677 }
678
679 /*
680 * Map and establish our interrupt.
681 */
682 if (pci_intr_map(pa, &ih)) {
683 aprint_error_dev(self, "unable to map interrupt\n");
684 return;
685 }
686 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
687 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
688 if (sc->sc_ih == NULL) {
689 aprint_error_dev(self, "unable to establish interrupt");
690 if (intrstr != NULL)
691 aprint_error(" at %s", intrstr);
692 aprint_error("\n");
693 return;
694 }
695 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
696
697 /*
698 * Allocate the control data structures, and create and load the
699 * DMA map for it.
700 */
701 if ((error = bus_dmamem_alloc(sc->sc_dmat,
702 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
703 0)) != 0) {
704 aprint_error_dev(self, "unable to allocate control data, "
705 "error = %d\n", error);
706 goto fail_0;
707 }
708
709 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
710 sizeof(struct pcn_control_data), (void **)&sc->sc_control_data,
711 BUS_DMA_COHERENT)) != 0) {
712 aprint_error_dev(self, "unable to map control data, "
713 "error = %d\n", error);
714 goto fail_1;
715 }
716
717 if ((error = bus_dmamap_create(sc->sc_dmat,
718 sizeof(struct pcn_control_data), 1,
719 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
720 aprint_error_dev(self, "unable to create control data DMA map, "
721 "error = %d\n", error);
722 goto fail_2;
723 }
724
725 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
726 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
727 0)) != 0) {
728 aprint_error_dev(self,
729 "unable to load control data DMA map, error = %d\n", error);
730 goto fail_3;
731 }
732
733 /* Create the transmit buffer DMA maps. */
734 for (i = 0; i < PCN_TXQUEUELEN; i++) {
735 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
736 ntxsegs, MCLBYTES, 0, 0,
737 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
738 aprint_error_dev(self,
739 "unable to create tx DMA map %d, error = %d\n",
740 i, error);
741 goto fail_4;
742 }
743 }
744
745 /* Create the receive buffer DMA maps. */
746 for (i = 0; i < PCN_NRXDESC; i++) {
747 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
748 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
749 aprint_error_dev(self,
750 "unable to create rx DMA map %d, error = %d\n",
751 i, error);
752 goto fail_5;
753 }
754 sc->sc_rxsoft[i].rxs_mbuf = NULL;
755 }
756
757 /* Initialize our media structures. */
758 (*sc->sc_variant->pcv_mediainit)(sc);
759
760 /*
761 * Initialize FIFO watermark info.
762 */
763 switch (sc->sc_variant->pcv_chipid) {
764 case PARTID_Am79c970:
765 case PARTID_Am79c970A:
766 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
767 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
768 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
769 break;
770
771 default:
772 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
773 /*
774 * Read BCR25 to determine how much SRAM is
775 * on the board. If > 0, then we the chip
776 * uses different Start Point thresholds.
777 *
778 * Note BCR25 and BCR26 are loaded from the
779 * EEPROM on RST, and unaffected by S_RESET,
780 * so we don't really have to worry about
781 * them except for this.
782 */
783 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
784 if (reg != 0)
785 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
786 else
787 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
788 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
789 break;
790 }
791
792 /*
793 * Set up defaults -- see the tables above for what these
794 * values mean.
795 *
796 * XXX How should we tune RCVFW and XMTFW?
797 */
798 sc->sc_rcvfw = 1; /* minimum for full-duplex */
799 sc->sc_xmtsp = 1;
800 sc->sc_xmtfw = 0;
801
802 ifp = &sc->sc_ethercom.ec_if;
803 strcpy(ifp->if_xname, device_xname(self));
804 ifp->if_softc = sc;
805 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
806 ifp->if_ioctl = pcn_ioctl;
807 ifp->if_start = pcn_start;
808 ifp->if_watchdog = pcn_watchdog;
809 ifp->if_init = pcn_init;
810 ifp->if_stop = pcn_stop;
811 IFQ_SET_READY(&ifp->if_snd);
812
813 /* Attach the interface. */
814 if_attach(ifp);
815 ether_ifattach(ifp, enaddr);
816 rnd_attach_source(&sc->rnd_source, device_xname(self),
817 RND_TYPE_NET, 0);
818
819 #ifdef PCN_EVENT_COUNTERS
820 /* Attach event counters. */
821 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
822 NULL, device_xname(self), "txsstall");
823 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
824 NULL, device_xname(self), "txdstall");
825 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
826 NULL, device_xname(self), "txintr");
827 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
828 NULL, device_xname(self), "rxintr");
829 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
830 NULL, device_xname(self), "babl");
831 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
832 NULL, device_xname(self), "miss");
833 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
834 NULL, device_xname(self), "merr");
835
836 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
837 NULL, device_xname(self), "txseg1");
838 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
839 NULL, device_xname(self), "txseg2");
840 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
841 NULL, device_xname(self), "txseg3");
842 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
843 NULL, device_xname(self), "txseg4");
844 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
845 NULL, device_xname(self), "txseg5");
846 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
847 NULL, device_xname(self), "txsegmore");
848 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
849 NULL, device_xname(self), "txcopy");
850 #endif /* PCN_EVENT_COUNTERS */
851
852 /*
853 * Establish power handler with shutdown hook, to make sure
854 * the interface is shutdown during reboot.
855 */
856 if (pmf_device_register1(self, NULL, NULL, pcn_shutdown))
857 pmf_class_network_register(self, ifp);
858 else
859 aprint_error_dev(self, "couldn't establish power handler\n");
860
861 return;
862
863 /*
864 * Free any resources we've allocated during the failed attach
865 * attempt. Do this in reverse order and fall through.
866 */
867 fail_5:
868 for (i = 0; i < PCN_NRXDESC; i++) {
869 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
870 bus_dmamap_destroy(sc->sc_dmat,
871 sc->sc_rxsoft[i].rxs_dmamap);
872 }
873 fail_4:
874 for (i = 0; i < PCN_TXQUEUELEN; i++) {
875 if (sc->sc_txsoft[i].txs_dmamap != NULL)
876 bus_dmamap_destroy(sc->sc_dmat,
877 sc->sc_txsoft[i].txs_dmamap);
878 }
879 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
880 fail_3:
881 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
882 fail_2:
883 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
884 sizeof(struct pcn_control_data));
885 fail_1:
886 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
887 fail_0:
888 return;
889 }
890
891 /*
892 * pcn_shutdown:
893 *
894 * Make sure the interface is stopped at reboot time.
895 */
896 static bool
897 pcn_shutdown(device_t self, int howto)
898 {
899 struct pcn_softc *sc = device_private(self);
900
901 pcn_stop(&sc->sc_ethercom.ec_if, 1);
902 /* explicitly reset the chip for some onboard one with lazy firmware */
903 pcn_reset(sc);
904
905 return true;
906 }
907
908 /*
909 * pcn_start: [ifnet interface function]
910 *
911 * Start packet transmission on the interface.
912 */
913 static void
914 pcn_start(struct ifnet *ifp)
915 {
916 struct pcn_softc *sc = ifp->if_softc;
917 struct mbuf *m0, *m;
918 struct pcn_txsoft *txs;
919 bus_dmamap_t dmamap;
920 int error, nexttx, lasttx = -1, ofree, seg;
921
922 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
923 return;
924
925 /*
926 * Remember the previous number of free descriptors and
927 * the first descriptor we'll use.
928 */
929 ofree = sc->sc_txfree;
930
931 /*
932 * Loop through the send queue, setting up transmit descriptors
933 * until we drain the queue, or use up all available transmit
934 * descriptors.
935 */
936 for (;;) {
937 /* Grab a packet off the queue. */
938 IFQ_POLL(&ifp->if_snd, m0);
939 if (m0 == NULL)
940 break;
941 m = NULL;
942
943 /* Get a work queue entry. */
944 if (sc->sc_txsfree == 0) {
945 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
946 break;
947 }
948
949 txs = &sc->sc_txsoft[sc->sc_txsnext];
950 dmamap = txs->txs_dmamap;
951
952 /*
953 * Load the DMA map. If this fails, the packet either
954 * didn't fit in the alloted number of segments, or we
955 * were short on resources. In this case, we'll copy
956 * and try again.
957 */
958 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
959 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
960 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
961 MGETHDR(m, M_DONTWAIT, MT_DATA);
962 if (m == NULL) {
963 printf("%s: unable to allocate Tx mbuf\n",
964 device_xname(sc->sc_dev));
965 break;
966 }
967 if (m0->m_pkthdr.len > MHLEN) {
968 MCLGET(m, M_DONTWAIT);
969 if ((m->m_flags & M_EXT) == 0) {
970 printf("%s: unable to allocate Tx "
971 "cluster\n",
972 device_xname(sc->sc_dev));
973 m_freem(m);
974 break;
975 }
976 }
977 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
978 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
979 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
980 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
981 if (error) {
982 printf("%s: unable to load Tx buffer, "
983 "error = %d\n", device_xname(sc->sc_dev),
984 error);
985 break;
986 }
987 }
988
989 /*
990 * Ensure we have enough descriptors free to describe
991 * the packet. Note, we always reserve one descriptor
992 * at the end of the ring as a termination point, to
993 * prevent wrap-around.
994 */
995 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
996 /*
997 * Not enough free descriptors to transmit this
998 * packet. We haven't committed anything yet,
999 * so just unload the DMA map, put the packet
1000 * back on the queue, and punt. Notify the upper
1001 * layer that there are not more slots left.
1002 *
1003 * XXX We could allocate an mbuf and copy, but
1004 * XXX is it worth it?
1005 */
1006 ifp->if_flags |= IFF_OACTIVE;
1007 bus_dmamap_unload(sc->sc_dmat, dmamap);
1008 if (m != NULL)
1009 m_freem(m);
1010 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
1011 break;
1012 }
1013
1014 IFQ_DEQUEUE(&ifp->if_snd, m0);
1015 if (m != NULL) {
1016 m_freem(m0);
1017 m0 = m;
1018 }
1019
1020 /*
1021 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1022 */
1023
1024 /* Sync the DMA map. */
1025 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1026 BUS_DMASYNC_PREWRITE);
1027
1028 #ifdef PCN_EVENT_COUNTERS
1029 switch (dmamap->dm_nsegs) {
1030 case 1:
1031 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1032 break;
1033 case 2:
1034 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1035 break;
1036 case 3:
1037 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1038 break;
1039 case 4:
1040 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1041 break;
1042 case 5:
1043 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1044 break;
1045 default:
1046 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1047 break;
1048 }
1049 #endif /* PCN_EVENT_COUNTERS */
1050
1051 /*
1052 * Initialize the transmit descriptors.
1053 */
1054 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1055 for (nexttx = sc->sc_txnext, seg = 0;
1056 seg < dmamap->dm_nsegs;
1057 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1058 /*
1059 * If this is the first descriptor we're
1060 * enqueueing, don't set the OWN bit just
1061 * yet. That could cause a race condition.
1062 * We'll do it below.
1063 */
1064 sc->sc_txdescs[nexttx].tmd0 = 0;
1065 sc->sc_txdescs[nexttx].tmd2 =
1066 htole32(dmamap->dm_segs[seg].ds_addr);
1067 sc->sc_txdescs[nexttx].tmd1 =
1068 htole32(LE_T1_ONES |
1069 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1070 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1071 LE_T1_BCNT_MASK));
1072 lasttx = nexttx;
1073 }
1074 } else {
1075 for (nexttx = sc->sc_txnext, seg = 0;
1076 seg < dmamap->dm_nsegs;
1077 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1078 /*
1079 * If this is the first descriptor we're
1080 * enqueueing, don't set the OWN bit just
1081 * yet. That could cause a race condition.
1082 * We'll do it below.
1083 */
1084 sc->sc_txdescs[nexttx].tmd0 =
1085 htole32(dmamap->dm_segs[seg].ds_addr);
1086 sc->sc_txdescs[nexttx].tmd2 = 0;
1087 sc->sc_txdescs[nexttx].tmd1 =
1088 htole32(LE_T1_ONES |
1089 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1090 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1091 LE_T1_BCNT_MASK));
1092 lasttx = nexttx;
1093 }
1094 }
1095
1096 KASSERT(lasttx != -1);
1097 /* Interrupt on the packet, if appropriate. */
1098 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1099 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1100
1101 /* Set `start of packet' and `end of packet' appropriately. */
1102 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1103 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1104 htole32(LE_T1_OWN|LE_T1_STP);
1105
1106 /* Sync the descriptors we're using. */
1107 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1108 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1109
1110 /* Kick the transmitter. */
1111 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1112
1113 /*
1114 * Store a pointer to the packet so we can free it later,
1115 * and remember what txdirty will be once the packet is
1116 * done.
1117 */
1118 txs->txs_mbuf = m0;
1119 txs->txs_firstdesc = sc->sc_txnext;
1120 txs->txs_lastdesc = lasttx;
1121
1122 /* Advance the tx pointer. */
1123 sc->sc_txfree -= dmamap->dm_nsegs;
1124 sc->sc_txnext = nexttx;
1125
1126 sc->sc_txsfree--;
1127 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1128
1129 /* Pass the packet to any BPF listeners. */
1130 bpf_mtap(ifp, m0);
1131 }
1132
1133 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1134 /* No more slots left; notify upper layer. */
1135 ifp->if_flags |= IFF_OACTIVE;
1136 }
1137
1138 if (sc->sc_txfree != ofree) {
1139 /* Set a watchdog timer in case the chip flakes out. */
1140 ifp->if_timer = 5;
1141 }
1142 }
1143
1144 /*
1145 * pcn_watchdog: [ifnet interface function]
1146 *
1147 * Watchdog timer handler.
1148 */
1149 static void
1150 pcn_watchdog(struct ifnet *ifp)
1151 {
1152 struct pcn_softc *sc = ifp->if_softc;
1153
1154 /*
1155 * Since we're not interrupting every packet, sweep
1156 * up before we report an error.
1157 */
1158 pcn_txintr(sc);
1159
1160 if (sc->sc_txfree != PCN_NTXDESC) {
1161 printf("%s: device timeout (txfree %d txsfree %d)\n",
1162 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree);
1163 ifp->if_oerrors++;
1164
1165 /* Reset the interface. */
1166 (void) pcn_init(ifp);
1167 }
1168
1169 /* Try to get more packets going. */
1170 pcn_start(ifp);
1171 }
1172
1173 /*
1174 * pcn_ioctl: [ifnet interface function]
1175 *
1176 * Handle control requests from the operator.
1177 */
1178 static int
1179 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1180 {
1181 struct pcn_softc *sc = ifp->if_softc;
1182 struct ifreq *ifr = (struct ifreq *) data;
1183 int s, error;
1184
1185 s = splnet();
1186
1187 switch (cmd) {
1188 case SIOCSIFMEDIA:
1189 case SIOCGIFMEDIA:
1190 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1191 break;
1192
1193 default:
1194 error = ether_ioctl(ifp, cmd, data);
1195 if (error == ENETRESET) {
1196 /*
1197 * Multicast list has changed; set the hardware filter
1198 * accordingly.
1199 */
1200 if (ifp->if_flags & IFF_RUNNING)
1201 error = pcn_init(ifp);
1202 else
1203 error = 0;
1204 }
1205 break;
1206 }
1207
1208 /* Try to get more packets going. */
1209 pcn_start(ifp);
1210
1211 splx(s);
1212 return (error);
1213 }
1214
1215 /*
1216 * pcn_intr:
1217 *
1218 * Interrupt service routine.
1219 */
1220 static int
1221 pcn_intr(void *arg)
1222 {
1223 struct pcn_softc *sc = arg;
1224 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1225 uint32_t csr0;
1226 int wantinit, handled = 0;
1227
1228 for (wantinit = 0; wantinit == 0;) {
1229 csr0 = pcn_csr_read(sc, LE_CSR0);
1230 if ((csr0 & LE_C0_INTR) == 0)
1231 break;
1232
1233 rnd_add_uint32(&sc->rnd_source, csr0);
1234
1235 /* ACK the bits and re-enable interrupts. */
1236 pcn_csr_write(sc, LE_CSR0, csr0 &
1237 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1238 LE_C0_TINT|LE_C0_IDON));
1239
1240 handled = 1;
1241
1242 if (csr0 & LE_C0_RINT) {
1243 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1244 wantinit = pcn_rxintr(sc);
1245 }
1246
1247 if (csr0 & LE_C0_TINT) {
1248 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1249 pcn_txintr(sc);
1250 }
1251
1252 if (csr0 & LE_C0_ERR) {
1253 if (csr0 & LE_C0_BABL) {
1254 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1255 ifp->if_oerrors++;
1256 }
1257 if (csr0 & LE_C0_MISS) {
1258 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1259 ifp->if_ierrors++;
1260 }
1261 if (csr0 & LE_C0_MERR) {
1262 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1263 printf("%s: memory error\n",
1264 device_xname(sc->sc_dev));
1265 wantinit = 1;
1266 break;
1267 }
1268 }
1269
1270 if ((csr0 & LE_C0_RXON) == 0) {
1271 printf("%s: receiver disabled\n",
1272 device_xname(sc->sc_dev));
1273 ifp->if_ierrors++;
1274 wantinit = 1;
1275 }
1276
1277 if ((csr0 & LE_C0_TXON) == 0) {
1278 printf("%s: transmitter disabled\n",
1279 device_xname(sc->sc_dev));
1280 ifp->if_oerrors++;
1281 wantinit = 1;
1282 }
1283 }
1284
1285 if (handled) {
1286 if (wantinit)
1287 pcn_init(ifp);
1288
1289 /* Try to get more packets going. */
1290 pcn_start(ifp);
1291 }
1292
1293 return (handled);
1294 }
1295
1296 /*
1297 * pcn_spnd:
1298 *
1299 * Suspend the chip.
1300 */
1301 static void
1302 pcn_spnd(struct pcn_softc *sc)
1303 {
1304 int i;
1305
1306 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1307
1308 for (i = 0; i < 10000; i++) {
1309 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1310 return;
1311 delay(5);
1312 }
1313
1314 printf("%s: WARNING: chip failed to enter suspended state\n",
1315 device_xname(sc->sc_dev));
1316 }
1317
1318 /*
1319 * pcn_txintr:
1320 *
1321 * Helper; handle transmit interrupts.
1322 */
1323 static void
1324 pcn_txintr(struct pcn_softc *sc)
1325 {
1326 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1327 struct pcn_txsoft *txs;
1328 uint32_t tmd1, tmd2, tmd;
1329 int i, j;
1330
1331 ifp->if_flags &= ~IFF_OACTIVE;
1332
1333 /*
1334 * Go through our Tx list and free mbufs for those
1335 * frames which have been transmitted.
1336 */
1337 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1338 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1339 txs = &sc->sc_txsoft[i];
1340
1341 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1342 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1343
1344 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1345 if (tmd1 & LE_T1_OWN)
1346 break;
1347
1348 /*
1349 * Slightly annoying -- we have to loop through the
1350 * descriptors we've used looking for ERR, since it
1351 * can appear on any descriptor in the chain.
1352 */
1353 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1354 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1355 if (tmd & LE_T1_ERR) {
1356 ifp->if_oerrors++;
1357 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1358 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1359 else
1360 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1361 if (tmd2 & LE_T2_UFLO) {
1362 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1363 sc->sc_xmtsp++;
1364 printf("%s: transmit "
1365 "underrun; new threshold: "
1366 "%s\n",
1367 device_xname(sc->sc_dev),
1368 sc->sc_xmtsp_desc[
1369 sc->sc_xmtsp]);
1370 pcn_spnd(sc);
1371 pcn_csr_write(sc, LE_CSR80,
1372 LE_C80_RCVFW(sc->sc_rcvfw) |
1373 LE_C80_XMTSP(sc->sc_xmtsp) |
1374 LE_C80_XMTFW(sc->sc_xmtfw));
1375 pcn_csr_write(sc, LE_CSR5,
1376 sc->sc_csr5);
1377 } else {
1378 printf("%s: transmit "
1379 "underrun\n",
1380 device_xname(sc->sc_dev));
1381 }
1382 } else if (tmd2 & LE_T2_BUFF) {
1383 printf("%s: transmit buffer error\n",
1384 device_xname(sc->sc_dev));
1385 }
1386 if (tmd2 & LE_T2_LCOL)
1387 ifp->if_collisions++;
1388 if (tmd2 & LE_T2_RTRY)
1389 ifp->if_collisions += 16;
1390 goto next_packet;
1391 }
1392 if (j == txs->txs_lastdesc)
1393 break;
1394 }
1395 if (tmd1 & LE_T1_ONE)
1396 ifp->if_collisions++;
1397 else if (tmd & LE_T1_MORE) {
1398 /* Real number is unknown. */
1399 ifp->if_collisions += 2;
1400 }
1401 ifp->if_opackets++;
1402 next_packet:
1403 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1404 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1405 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1406 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1407 m_freem(txs->txs_mbuf);
1408 txs->txs_mbuf = NULL;
1409 }
1410
1411 /* Update the dirty transmit buffer pointer. */
1412 sc->sc_txsdirty = i;
1413
1414 /*
1415 * If there are no more pending transmissions, cancel the watchdog
1416 * timer.
1417 */
1418 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1419 ifp->if_timer = 0;
1420 }
1421
1422 /*
1423 * pcn_rxintr:
1424 *
1425 * Helper; handle receive interrupts.
1426 */
1427 static int
1428 pcn_rxintr(struct pcn_softc *sc)
1429 {
1430 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1431 struct pcn_rxsoft *rxs;
1432 struct mbuf *m;
1433 uint32_t rmd1;
1434 int i, len;
1435
1436 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1437 rxs = &sc->sc_rxsoft[i];
1438
1439 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1440
1441 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1442
1443 if (rmd1 & LE_R1_OWN)
1444 break;
1445
1446 /*
1447 * Check for errors and make sure the packet fit into
1448 * a single buffer. We have structured this block of
1449 * code the way it is in order to compress it into
1450 * one test in the common case (no error).
1451 */
1452 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1453 (LE_R1_STP|LE_R1_ENP))) {
1454 /* Make sure the packet is in a single buffer. */
1455 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1456 (LE_R1_STP|LE_R1_ENP)) {
1457 printf("%s: packet spilled into next buffer\n",
1458 device_xname(sc->sc_dev));
1459 return (1); /* pcn_intr() will re-init */
1460 }
1461
1462 /*
1463 * If the packet had an error, simple recycle the
1464 * buffer.
1465 */
1466 if (rmd1 & LE_R1_ERR) {
1467 ifp->if_ierrors++;
1468 /*
1469 * If we got an overflow error, chances
1470 * are there will be a CRC error. In
1471 * this case, just print the overflow
1472 * error, and skip the others.
1473 */
1474 if (rmd1 & LE_R1_OFLO)
1475 printf("%s: overflow error\n",
1476 device_xname(sc->sc_dev));
1477 else {
1478 #define PRINTIT(x, str) \
1479 if (rmd1 & (x)) \
1480 printf("%s: %s\n", \
1481 device_xname(sc->sc_dev), \
1482 str);
1483 PRINTIT(LE_R1_FRAM, "framing error");
1484 PRINTIT(LE_R1_CRC, "CRC error");
1485 PRINTIT(LE_R1_BUFF, "buffer error");
1486 }
1487 #undef PRINTIT
1488 PCN_INIT_RXDESC(sc, i);
1489 continue;
1490 }
1491 }
1492
1493 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1494 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1495
1496 /*
1497 * No errors; receive the packet.
1498 */
1499 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1500 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1501 else
1502 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1503
1504 /*
1505 * The LANCE family includes the CRC with every packet;
1506 * trim it off here.
1507 */
1508 len -= ETHER_CRC_LEN;
1509
1510 /*
1511 * If the packet is small enough to fit in a
1512 * single header mbuf, allocate one and copy
1513 * the data into it. This greatly reduces
1514 * memory consumption when we receive lots
1515 * of small packets.
1516 *
1517 * Otherwise, we add a new buffer to the receive
1518 * chain. If this fails, we drop the packet and
1519 * recycle the old buffer.
1520 */
1521 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1522 MGETHDR(m, M_DONTWAIT, MT_DATA);
1523 if (m == NULL)
1524 goto dropit;
1525 m->m_data += 2;
1526 memcpy(mtod(m, void *),
1527 mtod(rxs->rxs_mbuf, void *), len);
1528 PCN_INIT_RXDESC(sc, i);
1529 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1530 rxs->rxs_dmamap->dm_mapsize,
1531 BUS_DMASYNC_PREREAD);
1532 } else {
1533 m = rxs->rxs_mbuf;
1534 if (pcn_add_rxbuf(sc, i) != 0) {
1535 dropit:
1536 ifp->if_ierrors++;
1537 PCN_INIT_RXDESC(sc, i);
1538 bus_dmamap_sync(sc->sc_dmat,
1539 rxs->rxs_dmamap, 0,
1540 rxs->rxs_dmamap->dm_mapsize,
1541 BUS_DMASYNC_PREREAD);
1542 continue;
1543 }
1544 }
1545
1546 m->m_pkthdr.rcvif = ifp;
1547 m->m_pkthdr.len = m->m_len = len;
1548
1549 /* Pass this up to any BPF listeners. */
1550 bpf_mtap(ifp, m);
1551
1552 /* Pass it on. */
1553 (*ifp->if_input)(ifp, m);
1554 ifp->if_ipackets++;
1555 }
1556
1557 /* Update the receive pointer. */
1558 sc->sc_rxptr = i;
1559 return (0);
1560 }
1561
1562 /*
1563 * pcn_tick:
1564 *
1565 * One second timer, used to tick the MII.
1566 */
1567 static void
1568 pcn_tick(void *arg)
1569 {
1570 struct pcn_softc *sc = arg;
1571 int s;
1572
1573 s = splnet();
1574 mii_tick(&sc->sc_mii);
1575 splx(s);
1576
1577 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1578 }
1579
1580 /*
1581 * pcn_reset:
1582 *
1583 * Perform a soft reset on the PCnet-PCI.
1584 */
1585 static void
1586 pcn_reset(struct pcn_softc *sc)
1587 {
1588
1589 /*
1590 * The PCnet-PCI chip is reset by reading from the
1591 * RESET register. Note that while the NE2100 LANCE
1592 * boards require a write after the read, the PCnet-PCI
1593 * chips do not require this.
1594 *
1595 * Since we don't know if we're in 16-bit or 32-bit
1596 * mode right now, issue both (it's safe) in the
1597 * hopes that one will succeed.
1598 */
1599 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1600 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1601
1602 /* Wait 1ms for it to finish. */
1603 delay(1000);
1604
1605 /*
1606 * Select 32-bit I/O mode by issuing a 32-bit write to the
1607 * RDP. Since the RAP is 0 after a reset, writing a 0
1608 * to RDP is safe (since it simply clears CSR0).
1609 */
1610 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1611 }
1612
1613 /*
1614 * pcn_init: [ifnet interface function]
1615 *
1616 * Initialize the interface. Must be called at splnet().
1617 */
1618 static int
1619 pcn_init(struct ifnet *ifp)
1620 {
1621 struct pcn_softc *sc = ifp->if_softc;
1622 struct pcn_rxsoft *rxs;
1623 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1624 int i, error = 0;
1625 uint32_t reg;
1626
1627 /* Cancel any pending I/O. */
1628 pcn_stop(ifp, 0);
1629
1630 /* Reset the chip to a known state. */
1631 pcn_reset(sc);
1632
1633 /*
1634 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1635 * else.
1636 *
1637 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1638 * because the structure layout is compatible with ILACC,
1639 * but the burst mode is only available in SSTYLE 3, and
1640 * burst mode should provide some performance enhancement.
1641 */
1642 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1643 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1644 else
1645 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1646 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1647
1648 /* Initialize the transmit descriptor ring. */
1649 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1650 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1651 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1652 sc->sc_txfree = PCN_NTXDESC;
1653 sc->sc_txnext = 0;
1654
1655 /* Initialize the transmit job descriptors. */
1656 for (i = 0; i < PCN_TXQUEUELEN; i++)
1657 sc->sc_txsoft[i].txs_mbuf = NULL;
1658 sc->sc_txsfree = PCN_TXQUEUELEN;
1659 sc->sc_txsnext = 0;
1660 sc->sc_txsdirty = 0;
1661
1662 /*
1663 * Initialize the receive descriptor and receive job
1664 * descriptor rings.
1665 */
1666 for (i = 0; i < PCN_NRXDESC; i++) {
1667 rxs = &sc->sc_rxsoft[i];
1668 if (rxs->rxs_mbuf == NULL) {
1669 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1670 printf("%s: unable to allocate or map rx "
1671 "buffer %d, error = %d\n",
1672 device_xname(sc->sc_dev), i, error);
1673 /*
1674 * XXX Should attempt to run with fewer receive
1675 * XXX buffers instead of just failing.
1676 */
1677 pcn_rxdrain(sc);
1678 goto out;
1679 }
1680 } else
1681 PCN_INIT_RXDESC(sc, i);
1682 }
1683 sc->sc_rxptr = 0;
1684
1685 /* Initialize MODE for the initialization block. */
1686 sc->sc_mode = 0;
1687 if (ifp->if_flags & IFF_PROMISC)
1688 sc->sc_mode |= LE_C15_PROM;
1689 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1690 sc->sc_mode |= LE_C15_DRCVBC;
1691
1692 /*
1693 * If we have MII, simply select MII in the MODE register,
1694 * and clear ASEL. Otherwise, let ASEL stand (for now),
1695 * and leave PORTSEL alone (it is ignored with ASEL is set).
1696 */
1697 if (sc->sc_flags & PCN_F_HAS_MII) {
1698 pcn_bcr_write(sc, LE_BCR2,
1699 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1700 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1701
1702 /*
1703 * Disable MII auto-negotiation. We handle that in
1704 * our own MII layer.
1705 */
1706 pcn_bcr_write(sc, LE_BCR32,
1707 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1708 }
1709
1710 /*
1711 * Set the Tx and Rx descriptor ring addresses in the init
1712 * block, the TLEN and RLEN other fields of the init block
1713 * MODE register.
1714 */
1715 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1716 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1717 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1718 ((ffs(PCN_NTXDESC) - 1) << 28) |
1719 ((ffs(PCN_NRXDESC) - 1) << 20));
1720
1721 /* Set the station address in the init block. */
1722 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1723 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1724 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1725 (enaddr[5] << 8));
1726
1727 /* Set the multicast filter in the init block. */
1728 pcn_set_filter(sc);
1729
1730 /* Initialize CSR3. */
1731 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1732
1733 /* Initialize CSR4. */
1734 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1735 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1736
1737 /* Initialize CSR5. */
1738 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1739 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1740
1741 /*
1742 * If we have an Am79c971 or greater, initialize CSR7.
1743 *
1744 * XXX Might be nice to use the MII auto-poll interrupt someday.
1745 */
1746 switch (sc->sc_variant->pcv_chipid) {
1747 case PARTID_Am79c970:
1748 case PARTID_Am79c970A:
1749 /* Not available on these chips. */
1750 break;
1751
1752 default:
1753 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1754 break;
1755 }
1756
1757 /*
1758 * On the Am79c970A and greater, initialize BCR18 to
1759 * enable burst mode.
1760 *
1761 * Also enable the "no underflow" option on the Am79c971 and
1762 * higher, which prevents the chip from generating transmit
1763 * underflows, yet sill provides decent performance. Note if
1764 * chip is not connected to external SRAM, then we still have
1765 * to handle underflow errors (the NOUFLO bit is ignored in
1766 * that case).
1767 */
1768 reg = pcn_bcr_read(sc, LE_BCR18);
1769 switch (sc->sc_variant->pcv_chipid) {
1770 case PARTID_Am79c970:
1771 break;
1772
1773 case PARTID_Am79c970A:
1774 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1775 break;
1776
1777 default:
1778 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1779 break;
1780 }
1781 pcn_bcr_write(sc, LE_BCR18, reg);
1782
1783 /*
1784 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1785 */
1786 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1787 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1788
1789 /*
1790 * Send the init block to the chip, and wait for it
1791 * to be processed.
1792 */
1793 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1794 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1795 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1796 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1797 delay(100);
1798 for (i = 0; i < 10000; i++) {
1799 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1800 break;
1801 delay(10);
1802 }
1803 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1804 if (i == 10000) {
1805 printf("%s: timeout processing init block\n",
1806 device_xname(sc->sc_dev));
1807 error = EIO;
1808 goto out;
1809 }
1810
1811 /* Set the media. */
1812 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1813 goto out;
1814
1815 /* Enable interrupts and external activity (and ACK IDON). */
1816 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1817
1818 if (sc->sc_flags & PCN_F_HAS_MII) {
1819 /* Start the one second MII clock. */
1820 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1821 }
1822
1823 /* ...all done! */
1824 ifp->if_flags |= IFF_RUNNING;
1825 ifp->if_flags &= ~IFF_OACTIVE;
1826
1827 out:
1828 if (error)
1829 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1830 return (error);
1831 }
1832
1833 /*
1834 * pcn_rxdrain:
1835 *
1836 * Drain the receive queue.
1837 */
1838 static void
1839 pcn_rxdrain(struct pcn_softc *sc)
1840 {
1841 struct pcn_rxsoft *rxs;
1842 int i;
1843
1844 for (i = 0; i < PCN_NRXDESC; i++) {
1845 rxs = &sc->sc_rxsoft[i];
1846 if (rxs->rxs_mbuf != NULL) {
1847 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1848 m_freem(rxs->rxs_mbuf);
1849 rxs->rxs_mbuf = NULL;
1850 }
1851 }
1852 }
1853
1854 /*
1855 * pcn_stop: [ifnet interface function]
1856 *
1857 * Stop transmission on the interface.
1858 */
1859 static void
1860 pcn_stop(struct ifnet *ifp, int disable)
1861 {
1862 struct pcn_softc *sc = ifp->if_softc;
1863 struct pcn_txsoft *txs;
1864 int i;
1865
1866 if (sc->sc_flags & PCN_F_HAS_MII) {
1867 /* Stop the one second clock. */
1868 callout_stop(&sc->sc_tick_ch);
1869
1870 /* Down the MII. */
1871 mii_down(&sc->sc_mii);
1872 }
1873
1874 /* Stop the chip. */
1875 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1876
1877 /* Release any queued transmit buffers. */
1878 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1879 txs = &sc->sc_txsoft[i];
1880 if (txs->txs_mbuf != NULL) {
1881 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1882 m_freem(txs->txs_mbuf);
1883 txs->txs_mbuf = NULL;
1884 }
1885 }
1886
1887 /* Mark the interface as down and cancel the watchdog timer. */
1888 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1889 ifp->if_timer = 0;
1890
1891 if (disable)
1892 pcn_rxdrain(sc);
1893 }
1894
1895 /*
1896 * pcn_add_rxbuf:
1897 *
1898 * Add a receive buffer to the indicated descriptor.
1899 */
1900 static int
1901 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1902 {
1903 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1904 struct mbuf *m;
1905 int error;
1906
1907 MGETHDR(m, M_DONTWAIT, MT_DATA);
1908 if (m == NULL)
1909 return (ENOBUFS);
1910
1911 MCLGET(m, M_DONTWAIT);
1912 if ((m->m_flags & M_EXT) == 0) {
1913 m_freem(m);
1914 return (ENOBUFS);
1915 }
1916
1917 if (rxs->rxs_mbuf != NULL)
1918 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1919
1920 rxs->rxs_mbuf = m;
1921
1922 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1923 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1924 BUS_DMA_READ|BUS_DMA_NOWAIT);
1925 if (error) {
1926 printf("%s: can't load rx DMA map %d, error = %d\n",
1927 device_xname(sc->sc_dev), idx, error);
1928 panic("pcn_add_rxbuf");
1929 }
1930
1931 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1932 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1933
1934 PCN_INIT_RXDESC(sc, idx);
1935
1936 return (0);
1937 }
1938
1939 /*
1940 * pcn_set_filter:
1941 *
1942 * Set up the receive filter.
1943 */
1944 static void
1945 pcn_set_filter(struct pcn_softc *sc)
1946 {
1947 struct ethercom *ec = &sc->sc_ethercom;
1948 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1949 struct ether_multi *enm;
1950 struct ether_multistep step;
1951 uint32_t crc;
1952
1953 /*
1954 * Set up the multicast address filter by passing all multicast
1955 * addresses through a CRC generator, and then using the high
1956 * order 6 bits as an index into the 64-bit logical address
1957 * filter. The high order bits select the word, while the rest
1958 * of the bits select the bit within the word.
1959 */
1960
1961 if (ifp->if_flags & IFF_PROMISC)
1962 goto allmulti;
1963
1964 sc->sc_initblock.init_ladrf[0] =
1965 sc->sc_initblock.init_ladrf[1] =
1966 sc->sc_initblock.init_ladrf[2] =
1967 sc->sc_initblock.init_ladrf[3] = 0;
1968
1969 ETHER_FIRST_MULTI(step, ec, enm);
1970 while (enm != NULL) {
1971 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1972 /*
1973 * We must listen to a range of multicast addresses.
1974 * For now, just accept all multicasts, rather than
1975 * trying to set only those filter bits needed to match
1976 * the range. (At this time, the only use of address
1977 * ranges is for IP multicast routing, for which the
1978 * range is big enough to require all bits set.)
1979 */
1980 goto allmulti;
1981 }
1982
1983 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1984
1985 /* Just want the 6 most significant bits. */
1986 crc >>= 26;
1987
1988 /* Set the corresponding bit in the filter. */
1989 sc->sc_initblock.init_ladrf[crc >> 4] |=
1990 htole16(1 << (crc & 0xf));
1991
1992 ETHER_NEXT_MULTI(step, enm);
1993 }
1994
1995 ifp->if_flags &= ~IFF_ALLMULTI;
1996 return;
1997
1998 allmulti:
1999 ifp->if_flags |= IFF_ALLMULTI;
2000 sc->sc_initblock.init_ladrf[0] =
2001 sc->sc_initblock.init_ladrf[1] =
2002 sc->sc_initblock.init_ladrf[2] =
2003 sc->sc_initblock.init_ladrf[3] = 0xffff;
2004 }
2005
2006 /*
2007 * pcn_79c970_mediainit:
2008 *
2009 * Initialize media for the Am79c970.
2010 */
2011 static void
2012 pcn_79c970_mediainit(struct pcn_softc *sc)
2013 {
2014 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2015 const char *sep = "";
2016
2017 sc->sc_mii.mii_ifp = ifp;
2018
2019 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
2020 pcn_79c970_mediastatus);
2021
2022 #define ADD(str, m, d) \
2023 do { \
2024 aprint_normal("%s%s", sep, str); \
2025 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
2026 sep = ", "; \
2027 } while (/*CONSTCOND*/0)
2028
2029 aprint_normal("%s: ", device_xname(sc->sc_dev));
2030 ADD("10base5", IFM_10_5, PORTSEL_AUI);
2031 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2032 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
2033 ADD("10baseT", IFM_10_T, PORTSEL_10T);
2034 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2035 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
2036 ADD("auto", IFM_AUTO, 0);
2037 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2038 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
2039 aprint_normal("\n");
2040
2041 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2042 }
2043
2044 /*
2045 * pcn_79c970_mediastatus: [ifmedia interface function]
2046 *
2047 * Get the current interface media status (Am79c970 version).
2048 */
2049 static void
2050 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2051 {
2052 struct pcn_softc *sc = ifp->if_softc;
2053
2054 /*
2055 * The currently selected media is always the active media.
2056 * Note: We have no way to determine what media the AUTO
2057 * process picked.
2058 */
2059 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2060 }
2061
2062 /*
2063 * pcn_79c970_mediachange: [ifmedia interface function]
2064 *
2065 * Set hardware to newly-selected media (Am79c970 version).
2066 */
2067 static int
2068 pcn_79c970_mediachange(struct ifnet *ifp)
2069 {
2070 struct pcn_softc *sc = ifp->if_softc;
2071 uint32_t reg;
2072
2073 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2074 /*
2075 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2076 */
2077 reg = pcn_bcr_read(sc, LE_BCR2);
2078 reg |= LE_B2_ASEL;
2079 pcn_bcr_write(sc, LE_BCR2, reg);
2080 } else {
2081 /*
2082 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2083 */
2084 reg = pcn_bcr_read(sc, LE_BCR2);
2085 reg &= ~LE_B2_ASEL;
2086 pcn_bcr_write(sc, LE_BCR2, reg);
2087
2088 reg = pcn_csr_read(sc, LE_CSR15);
2089 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2090 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2091 pcn_csr_write(sc, LE_CSR15, reg);
2092 }
2093
2094 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2095 reg = LE_B9_FDEN;
2096 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2097 reg |= LE_B9_AUIFD;
2098 pcn_bcr_write(sc, LE_BCR9, reg);
2099 } else
2100 pcn_bcr_write(sc, LE_BCR9, 0);
2101
2102 return (0);
2103 }
2104
2105 /*
2106 * pcn_79c971_mediainit:
2107 *
2108 * Initialize media for the Am79c971.
2109 */
2110 static void
2111 pcn_79c971_mediainit(struct pcn_softc *sc)
2112 {
2113 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2114
2115 /* We have MII. */
2116 sc->sc_flags |= PCN_F_HAS_MII;
2117
2118 /*
2119 * The built-in 10BASE-T interface is mapped to the MII
2120 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2121 * word that tells us which PHY to use.
2122 * This driver used to ignore all but the first PHY to
2123 * answer, but this code was removed to support multiple
2124 * external PHYs. As the default instance will be the first
2125 * one to answer, no harm is done by letting the possibly
2126 * non-connected internal PHY show up.
2127 */
2128
2129 /* Initialize our media structures and probe the MII. */
2130 sc->sc_mii.mii_ifp = ifp;
2131 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2132 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2133 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2134
2135 sc->sc_ethercom.ec_mii = &sc->sc_mii;
2136 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
2137 ether_mediastatus);
2138
2139 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2140 MII_OFFSET_ANY, 0);
2141 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2142 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2143 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2144 } else
2145 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2146 }
2147
2148 /*
2149 * pcn_mii_readreg: [mii interface function]
2150 *
2151 * Read a PHY register on the MII.
2152 */
2153 static int
2154 pcn_mii_readreg(device_t self, int phy, int reg)
2155 {
2156 struct pcn_softc *sc = device_private(self);
2157 uint32_t rv;
2158
2159 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2160 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2161 if (rv == 0xffff)
2162 return (0);
2163
2164 return (rv);
2165 }
2166
2167 /*
2168 * pcn_mii_writereg: [mii interface function]
2169 *
2170 * Write a PHY register on the MII.
2171 */
2172 static void
2173 pcn_mii_writereg(device_t self, int phy, int reg, int val)
2174 {
2175 struct pcn_softc *sc = device_private(self);
2176
2177 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2178 pcn_bcr_write(sc, LE_BCR34, val);
2179 }
2180
2181 /*
2182 * pcn_mii_statchg: [mii interface function]
2183 *
2184 * Callback from MII layer when media changes.
2185 */
2186 static void
2187 pcn_mii_statchg(struct ifnet *ifp)
2188 {
2189 struct pcn_softc *sc = ifp->if_softc;
2190
2191 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2192 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2193 else
2194 pcn_bcr_write(sc, LE_BCR9, 0);
2195 }
2196