if_pcn.c revision 1.63 1 /* $NetBSD: if_pcn.c,v 1.63 2016/12/08 01:12:01 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 2001 Wasabi Systems, Inc.
5 * All rights reserved.
6 *
7 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * Wasabi Systems, Inc.
21 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
22 * or promote products derived from this software without specific prior
23 * written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
27 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
29 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
32 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
33 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
34 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 */
37
38 /*
39 * Device driver for the AMD PCnet-PCI series of Ethernet
40 * chips:
41 *
42 * * Am79c970 PCnet-PCI Single-Chip Ethernet Controller for PCI
43 * Local Bus
44 *
45 * * Am79c970A PCnet-PCI II Single-Chip Full-Duplex Ethernet Controller
46 * for PCI Local Bus
47 *
48 * * Am79c971 PCnet-FAST Single-Chip Full-Duplex 10/100Mbps
49 * Ethernet Controller for PCI Local Bus
50 *
51 * * Am79c972 PCnet-FAST+ Enhanced 10/100Mbps PCI Ethernet Controller
52 * with OnNow Support
53 *
54 * * Am79c973/Am79c975 PCnet-FAST III Single-Chip 10/100Mbps PCI
55 * Ethernet Controller with Integrated PHY
56 *
57 * This also supports the virtual PCnet-PCI Ethernet interface found
58 * in VMware.
59 *
60 * TODO:
61 *
62 * * Split this into bus-specific and bus-independent portions.
63 * The core could also be used for the ILACC (Am79900) 32-bit
64 * Ethernet chip (XXX only if we use an ILACC-compatible SWSTYLE).
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: if_pcn.c,v 1.63 2016/12/08 01:12:01 ozaki-r Exp $");
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/mbuf.h>
74 #include <sys/malloc.h>
75 #include <sys/kernel.h>
76 #include <sys/socket.h>
77 #include <sys/ioctl.h>
78 #include <sys/errno.h>
79 #include <sys/device.h>
80 #include <sys/queue.h>
81
82 #include <sys/rndsource.h>
83
84 #include <net/if.h>
85 #include <net/if_dl.h>
86 #include <net/if_media.h>
87 #include <net/if_ether.h>
88
89 #include <net/bpf.h>
90
91 #include <sys/bus.h>
92 #include <sys/intr.h>
93 #include <machine/endian.h>
94
95 #include <dev/mii/mii.h>
96 #include <dev/mii/miivar.h>
97
98 #include <dev/ic/am79900reg.h>
99 #include <dev/ic/lancereg.h>
100
101 #include <dev/pci/pcireg.h>
102 #include <dev/pci/pcivar.h>
103 #include <dev/pci/pcidevs.h>
104
105 #include <dev/pci/if_pcnreg.h>
106
107 /*
108 * Transmit descriptor list size. This is arbitrary, but allocate
109 * enough descriptors for 128 pending transmissions, and 4 segments
110 * per packet. This MUST work out to a power of 2.
111 *
112 * NOTE: We can't have any more than 512 Tx descriptors, SO BE CAREFUL!
113 *
114 * So we play a little trick here. We give each packet up to 16
115 * DMA segments, but only allocate the max of 512 descriptors. The
116 * transmit logic can deal with this, we just are hoping to sneak by.
117 */
118 #define PCN_NTXSEGS 16
119 #define PCN_NTXSEGS_VMWARE 8 /* bug in VMware's emulation */
120
121 #define PCN_TXQUEUELEN 128
122 #define PCN_TXQUEUELEN_MASK (PCN_TXQUEUELEN - 1)
123 #define PCN_NTXDESC 512
124 #define PCN_NTXDESC_MASK (PCN_NTXDESC - 1)
125 #define PCN_NEXTTX(x) (((x) + 1) & PCN_NTXDESC_MASK)
126 #define PCN_NEXTTXS(x) (((x) + 1) & PCN_TXQUEUELEN_MASK)
127
128 /* Tx interrupt every N + 1 packets. */
129 #define PCN_TXINTR_MASK 7
130
131 /*
132 * Receive descriptor list size. We have one Rx buffer per incoming
133 * packet, so this logic is a little simpler.
134 */
135 #define PCN_NRXDESC 128
136 #define PCN_NRXDESC_MASK (PCN_NRXDESC - 1)
137 #define PCN_NEXTRX(x) (((x) + 1) & PCN_NRXDESC_MASK)
138
139 /*
140 * Control structures are DMA'd to the PCnet chip. We allocate them in
141 * a single clump that maps to a single DMA segment to make several things
142 * easier.
143 */
144 struct pcn_control_data {
145 /* The transmit descriptors. */
146 struct letmd pcd_txdescs[PCN_NTXDESC];
147
148 /* The receive descriptors. */
149 struct lermd pcd_rxdescs[PCN_NRXDESC];
150
151 /* The init block. */
152 struct leinit pcd_initblock;
153 };
154
155 #define PCN_CDOFF(x) offsetof(struct pcn_control_data, x)
156 #define PCN_CDTXOFF(x) PCN_CDOFF(pcd_txdescs[(x)])
157 #define PCN_CDRXOFF(x) PCN_CDOFF(pcd_rxdescs[(x)])
158 #define PCN_CDINITOFF PCN_CDOFF(pcd_initblock)
159
160 /*
161 * Software state for transmit jobs.
162 */
163 struct pcn_txsoft {
164 struct mbuf *txs_mbuf; /* head of our mbuf chain */
165 bus_dmamap_t txs_dmamap; /* our DMA map */
166 int txs_firstdesc; /* first descriptor in packet */
167 int txs_lastdesc; /* last descriptor in packet */
168 };
169
170 /*
171 * Software state for receive jobs.
172 */
173 struct pcn_rxsoft {
174 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
175 bus_dmamap_t rxs_dmamap; /* our DMA map */
176 };
177
178 /*
179 * Description of Rx FIFO watermarks for various revisions.
180 */
181 static const char * const pcn_79c970_rcvfw[] = {
182 "16 bytes",
183 "64 bytes",
184 "128 bytes",
185 NULL,
186 };
187
188 static const char * const pcn_79c971_rcvfw[] = {
189 "16 bytes",
190 "64 bytes",
191 "112 bytes",
192 NULL,
193 };
194
195 /*
196 * Description of Tx start points for various revisions.
197 */
198 static const char * const pcn_79c970_xmtsp[] = {
199 "8 bytes",
200 "64 bytes",
201 "128 bytes",
202 "248 bytes",
203 };
204
205 static const char * const pcn_79c971_xmtsp[] = {
206 "20 bytes",
207 "64 bytes",
208 "128 bytes",
209 "248 bytes",
210 };
211
212 static const char * const pcn_79c971_xmtsp_sram[] = {
213 "44 bytes",
214 "64 bytes",
215 "128 bytes",
216 "store-and-forward",
217 };
218
219 /*
220 * Description of Tx FIFO watermarks for various revisions.
221 */
222 static const char * const pcn_79c970_xmtfw[] = {
223 "16 bytes",
224 "64 bytes",
225 "128 bytes",
226 NULL,
227 };
228
229 static const char * const pcn_79c971_xmtfw[] = {
230 "16 bytes",
231 "64 bytes",
232 "108 bytes",
233 NULL,
234 };
235
236 /*
237 * Software state per device.
238 */
239 struct pcn_softc {
240 device_t sc_dev; /* generic device information */
241 bus_space_tag_t sc_st; /* bus space tag */
242 bus_space_handle_t sc_sh; /* bus space handle */
243 bus_dma_tag_t sc_dmat; /* bus DMA tag */
244 struct ethercom sc_ethercom; /* Ethernet common data */
245
246 /* Points to our media routines, etc. */
247 const struct pcn_variant *sc_variant;
248
249 void *sc_ih; /* interrupt cookie */
250
251 struct mii_data sc_mii; /* MII/media information */
252
253 callout_t sc_tick_ch; /* tick callout */
254
255 bus_dmamap_t sc_cddmamap; /* control data DMA map */
256 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
257
258 /* Software state for transmit and receive descriptors. */
259 struct pcn_txsoft sc_txsoft[PCN_TXQUEUELEN];
260 struct pcn_rxsoft sc_rxsoft[PCN_NRXDESC];
261
262 /* Control data structures */
263 struct pcn_control_data *sc_control_data;
264 #define sc_txdescs sc_control_data->pcd_txdescs
265 #define sc_rxdescs sc_control_data->pcd_rxdescs
266 #define sc_initblock sc_control_data->pcd_initblock
267
268 #ifdef PCN_EVENT_COUNTERS
269 /* Event counters. */
270 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
271 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
272 struct evcnt sc_ev_txintr; /* Tx interrupts */
273 struct evcnt sc_ev_rxintr; /* Rx interrupts */
274 struct evcnt sc_ev_babl; /* BABL in pcn_intr() */
275 struct evcnt sc_ev_miss; /* MISS in pcn_intr() */
276 struct evcnt sc_ev_merr; /* MERR in pcn_intr() */
277
278 struct evcnt sc_ev_txseg1; /* Tx packets w/ 1 segment */
279 struct evcnt sc_ev_txseg2; /* Tx packets w/ 2 segments */
280 struct evcnt sc_ev_txseg3; /* Tx packets w/ 3 segments */
281 struct evcnt sc_ev_txseg4; /* Tx packets w/ 4 segments */
282 struct evcnt sc_ev_txseg5; /* Tx packets w/ 5 segments */
283 struct evcnt sc_ev_txsegmore; /* Tx packets w/ more than 5 segments */
284 struct evcnt sc_ev_txcopy; /* Tx copies required */
285 #endif /* PCN_EVENT_COUNTERS */
286
287 const char * const *sc_rcvfw_desc; /* Rx FIFO watermark info */
288 int sc_rcvfw;
289
290 const char * const *sc_xmtsp_desc; /* Tx start point info */
291 int sc_xmtsp;
292
293 const char * const *sc_xmtfw_desc; /* Tx FIFO watermark info */
294 int sc_xmtfw;
295
296 int sc_flags; /* misc. flags; see below */
297 int sc_swstyle; /* the software style in use */
298
299 int sc_txfree; /* number of free Tx descriptors */
300 int sc_txnext; /* next ready Tx descriptor */
301
302 int sc_txsfree; /* number of free Tx jobs */
303 int sc_txsnext; /* next free Tx job */
304 int sc_txsdirty; /* dirty Tx jobs */
305
306 int sc_rxptr; /* next ready Rx descriptor/job */
307
308 uint32_t sc_csr5; /* prototype CSR5 register */
309 uint32_t sc_mode; /* prototype MODE register */
310
311 krndsource_t rnd_source; /* random source */
312 };
313
314 /* sc_flags */
315 #define PCN_F_HAS_MII 0x0001 /* has MII */
316
317 #ifdef PCN_EVENT_COUNTERS
318 #define PCN_EVCNT_INCR(ev) (ev)->ev_count++
319 #else
320 #define PCN_EVCNT_INCR(ev) /* nothing */
321 #endif
322
323 #define PCN_CDTXADDR(sc, x) ((sc)->sc_cddma + PCN_CDTXOFF((x)))
324 #define PCN_CDRXADDR(sc, x) ((sc)->sc_cddma + PCN_CDRXOFF((x)))
325 #define PCN_CDINITADDR(sc) ((sc)->sc_cddma + PCN_CDINITOFF)
326
327 #define PCN_CDTXSYNC(sc, x, n, ops) \
328 do { \
329 int __x, __n; \
330 \
331 __x = (x); \
332 __n = (n); \
333 \
334 /* If it will wrap around, sync to the end of the ring. */ \
335 if ((__x + __n) > PCN_NTXDESC) { \
336 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
337 PCN_CDTXOFF(__x), sizeof(struct letmd) * \
338 (PCN_NTXDESC - __x), (ops)); \
339 __n -= (PCN_NTXDESC - __x); \
340 __x = 0; \
341 } \
342 \
343 /* Now sync whatever is left. */ \
344 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
345 PCN_CDTXOFF(__x), sizeof(struct letmd) * __n, (ops)); \
346 } while (/*CONSTCOND*/0)
347
348 #define PCN_CDRXSYNC(sc, x, ops) \
349 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
350 PCN_CDRXOFF((x)), sizeof(struct lermd), (ops))
351
352 #define PCN_CDINITSYNC(sc, ops) \
353 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
354 PCN_CDINITOFF, sizeof(struct leinit), (ops))
355
356 #define PCN_INIT_RXDESC(sc, x) \
357 do { \
358 struct pcn_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
359 struct lermd *__rmd = &(sc)->sc_rxdescs[(x)]; \
360 struct mbuf *__m = __rxs->rxs_mbuf; \
361 \
362 /* \
363 * Note: We scoot the packet forward 2 bytes in the buffer \
364 * so that the payload after the Ethernet header is aligned \
365 * to a 4-byte boundary. \
366 */ \
367 __m->m_data = __m->m_ext.ext_buf + 2; \
368 \
369 if ((sc)->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) { \
370 __rmd->rmd2 = \
371 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
372 __rmd->rmd0 = 0; \
373 } else { \
374 __rmd->rmd2 = 0; \
375 __rmd->rmd0 = \
376 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 2); \
377 } \
378 __rmd->rmd1 = htole32(LE_R1_OWN|LE_R1_ONES| \
379 (LE_BCNT(MCLBYTES - 2) & LE_R1_BCNT_MASK)); \
380 PCN_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);\
381 } while(/*CONSTCOND*/0)
382
383 static void pcn_start(struct ifnet *);
384 static void pcn_watchdog(struct ifnet *);
385 static int pcn_ioctl(struct ifnet *, u_long, void *);
386 static int pcn_init(struct ifnet *);
387 static void pcn_stop(struct ifnet *, int);
388
389 static bool pcn_shutdown(device_t, int);
390
391 static void pcn_reset(struct pcn_softc *);
392 static void pcn_rxdrain(struct pcn_softc *);
393 static int pcn_add_rxbuf(struct pcn_softc *, int);
394 static void pcn_tick(void *);
395
396 static void pcn_spnd(struct pcn_softc *);
397
398 static void pcn_set_filter(struct pcn_softc *);
399
400 static int pcn_intr(void *);
401 static void pcn_txintr(struct pcn_softc *);
402 static int pcn_rxintr(struct pcn_softc *);
403
404 static int pcn_mii_readreg(device_t, int, int);
405 static void pcn_mii_writereg(device_t, int, int, int);
406 static void pcn_mii_statchg(struct ifnet *);
407
408 static void pcn_79c970_mediainit(struct pcn_softc *);
409 static int pcn_79c970_mediachange(struct ifnet *);
410 static void pcn_79c970_mediastatus(struct ifnet *, struct ifmediareq *);
411
412 static void pcn_79c971_mediainit(struct pcn_softc *);
413
414 /*
415 * Description of a PCnet-PCI variant. Used to select media access
416 * method, mostly, and to print a nice description of the chip.
417 */
418 static const struct pcn_variant {
419 const char *pcv_desc;
420 void (*pcv_mediainit)(struct pcn_softc *);
421 uint16_t pcv_chipid;
422 } pcn_variants[] = {
423 { "Am79c970 PCnet-PCI",
424 pcn_79c970_mediainit,
425 PARTID_Am79c970 },
426
427 { "Am79c970A PCnet-PCI II",
428 pcn_79c970_mediainit,
429 PARTID_Am79c970A },
430
431 { "Am79c971 PCnet-FAST",
432 pcn_79c971_mediainit,
433 PARTID_Am79c971 },
434
435 { "Am79c972 PCnet-FAST+",
436 pcn_79c971_mediainit,
437 PARTID_Am79c972 },
438
439 { "Am79c973 PCnet-FAST III",
440 pcn_79c971_mediainit,
441 PARTID_Am79c973 },
442
443 { "Am79c975 PCnet-FAST III",
444 pcn_79c971_mediainit,
445 PARTID_Am79c975 },
446
447 { "Unknown PCnet-PCI variant",
448 pcn_79c971_mediainit,
449 0 },
450 };
451
452 int pcn_copy_small = 0;
453
454 static int pcn_match(device_t, cfdata_t, void *);
455 static void pcn_attach(device_t, device_t, void *);
456
457 CFATTACH_DECL_NEW(pcn, sizeof(struct pcn_softc),
458 pcn_match, pcn_attach, NULL, NULL);
459
460 /*
461 * Routines to read and write the PCnet-PCI CSR/BCR space.
462 */
463
464 static inline uint32_t
465 pcn_csr_read(struct pcn_softc *sc, int reg)
466 {
467
468 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
469 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RDP));
470 }
471
472 static inline void
473 pcn_csr_write(struct pcn_softc *sc, int reg, uint32_t val)
474 {
475
476 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
477 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, val);
478 }
479
480 static inline uint32_t
481 pcn_bcr_read(struct pcn_softc *sc, int reg)
482 {
483
484 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
485 return (bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_BDP));
486 }
487
488 static inline void
489 pcn_bcr_write(struct pcn_softc *sc, int reg, uint32_t val)
490 {
491
492 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RAP, reg);
493 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_BDP, val);
494 }
495
496 static bool
497 pcn_is_vmware(const char *enaddr)
498 {
499
500 /*
501 * VMware uses the OUI 00:0c:29 for auto-generated MAC
502 * addresses.
503 */
504 if (enaddr[0] == 0x00 && enaddr[1] == 0x0c && enaddr[2] == 0x29)
505 return (TRUE);
506
507 /*
508 * VMware uses the OUI 00:50:56 for manually-set MAC
509 * addresses (and some auto-generated ones).
510 */
511 if (enaddr[0] == 0x00 && enaddr[1] == 0x50 && enaddr[2] == 0x56)
512 return (TRUE);
513
514 return (FALSE);
515 }
516
517 static const struct pcn_variant *
518 pcn_lookup_variant(uint16_t chipid)
519 {
520 const struct pcn_variant *pcv;
521
522 for (pcv = pcn_variants; pcv->pcv_chipid != 0; pcv++) {
523 if (chipid == pcv->pcv_chipid)
524 return (pcv);
525 }
526
527 /*
528 * This covers unknown chips, which we simply treat like
529 * a generic PCnet-FAST.
530 */
531 return (pcv);
532 }
533
534 static int
535 pcn_match(device_t parent, cfdata_t cf, void *aux)
536 {
537 struct pci_attach_args *pa = aux;
538
539 /*
540 * IBM Makes a PCI variant of this card which shows up as a
541 * Trident Microsystems 4DWAVE DX (ethernet network, revision 0x25)
542 * this card is truly a pcn card, so we have a special case match for
543 * it
544 */
545
546 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TRIDENT &&
547 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TRIDENT_4DWAVE_DX &&
548 PCI_CLASS(pa->pa_class) == PCI_CLASS_NETWORK)
549 return(1);
550
551 if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_AMD)
552 return (0);
553
554 switch (PCI_PRODUCT(pa->pa_id)) {
555 case PCI_PRODUCT_AMD_PCNET_PCI:
556 /* Beat if_le_pci.c */
557 return (10);
558 }
559
560 return (0);
561 }
562
563 static void
564 pcn_attach(device_t parent, device_t self, void *aux)
565 {
566 struct pcn_softc *sc = device_private(self);
567 struct pci_attach_args *pa = aux;
568 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
569 pci_chipset_tag_t pc = pa->pa_pc;
570 pci_intr_handle_t ih;
571 const char *intrstr = NULL;
572 bus_space_tag_t iot, memt;
573 bus_space_handle_t ioh, memh;
574 bus_dma_segment_t seg;
575 int ioh_valid, memh_valid;
576 int ntxsegs, i, rseg, error;
577 uint32_t chipid, reg;
578 uint8_t enaddr[ETHER_ADDR_LEN];
579 prop_object_t obj;
580 bool is_vmware;
581 char intrbuf[PCI_INTRSTR_LEN];
582
583 sc->sc_dev = self;
584 callout_init(&sc->sc_tick_ch, 0);
585
586 aprint_normal(": AMD PCnet-PCI Ethernet\n");
587
588 /*
589 * Map the device.
590 */
591 ioh_valid = (pci_mapreg_map(pa, PCN_PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
592 &iot, &ioh, NULL, NULL) == 0);
593 memh_valid = (pci_mapreg_map(pa, PCN_PCI_CBMEM,
594 PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0,
595 &memt, &memh, NULL, NULL) == 0);
596
597 if (memh_valid) {
598 sc->sc_st = memt;
599 sc->sc_sh = memh;
600 } else if (ioh_valid) {
601 sc->sc_st = iot;
602 sc->sc_sh = ioh;
603 } else {
604 aprint_error_dev(self, "unable to map device registers\n");
605 return;
606 }
607
608 sc->sc_dmat = pa->pa_dmat;
609
610 /* Make sure bus mastering is enabled. */
611 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
612 pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
613 PCI_COMMAND_MASTER_ENABLE);
614
615 /* power up chip */
616 if ((error = pci_activate(pa->pa_pc, pa->pa_tag, self,
617 NULL)) && error != EOPNOTSUPP) {
618 aprint_error_dev(self, "cannot activate %d\n", error);
619 return;
620 }
621
622 /*
623 * Reset the chip to a known state. This also puts the
624 * chip into 32-bit mode.
625 */
626 pcn_reset(sc);
627
628 /*
629 * On some systems with the chip is an on-board device, the
630 * EEPROM is not used. Handle this by reading the MAC address
631 * from the CSRs (assuming that boot firmware has written
632 * it there).
633 */
634 obj = prop_dictionary_get(device_properties(sc->sc_dev),
635 "am79c970-no-eeprom");
636 if (prop_bool_true(obj)) {
637 for (i = 0; i < 3; i++) {
638 uint32_t val;
639 val = pcn_csr_read(sc, LE_CSR12 + i);
640 enaddr[2 * i] = val & 0xff;
641 enaddr[2 * i + 1] = (val >> 8) & 0xff;
642 }
643 } else {
644 for (i = 0; i < ETHER_ADDR_LEN; i++) {
645 enaddr[i] = bus_space_read_1(sc->sc_st, sc->sc_sh,
646 PCN32_APROM + i);
647 }
648 }
649
650 /* Check to see if this is a VMware emulated network interface. */
651 is_vmware = pcn_is_vmware(enaddr);
652
653 /*
654 * Now that the device is mapped, attempt to figure out what
655 * kind of chip we have. Note that IDL has all 32 bits of
656 * the chip ID when we're in 32-bit mode.
657 */
658 chipid = pcn_csr_read(sc, LE_CSR88);
659 sc->sc_variant = pcn_lookup_variant(CHIPID_PARTID(chipid));
660
661 aprint_normal_dev(self, "%s rev %d, Ethernet address %s\n",
662 sc->sc_variant->pcv_desc, CHIPID_VER(chipid),
663 ether_sprintf(enaddr));
664
665 /*
666 * VMware has a bug in its network interface emulation; we must
667 * limit the number of Tx segments.
668 */
669 if (is_vmware) {
670 ntxsegs = PCN_NTXSEGS_VMWARE;
671 prop_dictionary_set_bool(device_properties(sc->sc_dev),
672 "am79c970-vmware-tx-bug", TRUE);
673 aprint_verbose_dev(self,
674 "VMware Tx segment count bug detected\n");
675 } else {
676 ntxsegs = PCN_NTXSEGS;
677 }
678
679 /*
680 * Map and establish our interrupt.
681 */
682 if (pci_intr_map(pa, &ih)) {
683 aprint_error_dev(self, "unable to map interrupt\n");
684 return;
685 }
686 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
687 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, pcn_intr, sc);
688 if (sc->sc_ih == NULL) {
689 aprint_error_dev(self, "unable to establish interrupt");
690 if (intrstr != NULL)
691 aprint_error(" at %s", intrstr);
692 aprint_error("\n");
693 return;
694 }
695 aprint_normal_dev(self, "interrupting at %s\n", intrstr);
696
697 /*
698 * Allocate the control data structures, and create and load the
699 * DMA map for it.
700 */
701 if ((error = bus_dmamem_alloc(sc->sc_dmat,
702 sizeof(struct pcn_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
703 0)) != 0) {
704 aprint_error_dev(self, "unable to allocate control data, "
705 "error = %d\n", error);
706 goto fail_0;
707 }
708
709 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
710 sizeof(struct pcn_control_data), (void **)&sc->sc_control_data,
711 BUS_DMA_COHERENT)) != 0) {
712 aprint_error_dev(self, "unable to map control data, "
713 "error = %d\n", error);
714 goto fail_1;
715 }
716
717 if ((error = bus_dmamap_create(sc->sc_dmat,
718 sizeof(struct pcn_control_data), 1,
719 sizeof(struct pcn_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
720 aprint_error_dev(self, "unable to create control data DMA map, "
721 "error = %d\n", error);
722 goto fail_2;
723 }
724
725 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
726 sc->sc_control_data, sizeof(struct pcn_control_data), NULL,
727 0)) != 0) {
728 aprint_error_dev(self,
729 "unable to load control data DMA map, error = %d\n", error);
730 goto fail_3;
731 }
732
733 /* Create the transmit buffer DMA maps. */
734 for (i = 0; i < PCN_TXQUEUELEN; i++) {
735 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
736 ntxsegs, MCLBYTES, 0, 0,
737 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
738 aprint_error_dev(self,
739 "unable to create tx DMA map %d, error = %d\n",
740 i, error);
741 goto fail_4;
742 }
743 }
744
745 /* Create the receive buffer DMA maps. */
746 for (i = 0; i < PCN_NRXDESC; i++) {
747 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
748 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
749 aprint_error_dev(self,
750 "unable to create rx DMA map %d, error = %d\n",
751 i, error);
752 goto fail_5;
753 }
754 sc->sc_rxsoft[i].rxs_mbuf = NULL;
755 }
756
757 /* Initialize our media structures. */
758 (*sc->sc_variant->pcv_mediainit)(sc);
759
760 /*
761 * Initialize FIFO watermark info.
762 */
763 switch (sc->sc_variant->pcv_chipid) {
764 case PARTID_Am79c970:
765 case PARTID_Am79c970A:
766 sc->sc_rcvfw_desc = pcn_79c970_rcvfw;
767 sc->sc_xmtsp_desc = pcn_79c970_xmtsp;
768 sc->sc_xmtfw_desc = pcn_79c970_xmtfw;
769 break;
770
771 default:
772 sc->sc_rcvfw_desc = pcn_79c971_rcvfw;
773 /*
774 * Read BCR25 to determine how much SRAM is
775 * on the board. If > 0, then we the chip
776 * uses different Start Point thresholds.
777 *
778 * Note BCR25 and BCR26 are loaded from the
779 * EEPROM on RST, and unaffected by S_RESET,
780 * so we don't really have to worry about
781 * them except for this.
782 */
783 reg = pcn_bcr_read(sc, LE_BCR25) & 0x00ff;
784 if (reg != 0)
785 sc->sc_xmtsp_desc = pcn_79c971_xmtsp_sram;
786 else
787 sc->sc_xmtsp_desc = pcn_79c971_xmtsp;
788 sc->sc_xmtfw_desc = pcn_79c971_xmtfw;
789 break;
790 }
791
792 /*
793 * Set up defaults -- see the tables above for what these
794 * values mean.
795 *
796 * XXX How should we tune RCVFW and XMTFW?
797 */
798 sc->sc_rcvfw = 1; /* minimum for full-duplex */
799 sc->sc_xmtsp = 1;
800 sc->sc_xmtfw = 0;
801
802 ifp = &sc->sc_ethercom.ec_if;
803 strcpy(ifp->if_xname, device_xname(self));
804 ifp->if_softc = sc;
805 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
806 ifp->if_ioctl = pcn_ioctl;
807 ifp->if_start = pcn_start;
808 ifp->if_watchdog = pcn_watchdog;
809 ifp->if_init = pcn_init;
810 ifp->if_stop = pcn_stop;
811 IFQ_SET_READY(&ifp->if_snd);
812
813 /* Attach the interface. */
814 if_attach(ifp);
815 if_deferred_start_init(ifp, NULL);
816 ether_ifattach(ifp, enaddr);
817 rnd_attach_source(&sc->rnd_source, device_xname(self),
818 RND_TYPE_NET, RND_FLAG_DEFAULT);
819
820 #ifdef PCN_EVENT_COUNTERS
821 /* Attach event counters. */
822 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
823 NULL, device_xname(self), "txsstall");
824 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
825 NULL, device_xname(self), "txdstall");
826 evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
827 NULL, device_xname(self), "txintr");
828 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
829 NULL, device_xname(self), "rxintr");
830 evcnt_attach_dynamic(&sc->sc_ev_babl, EVCNT_TYPE_MISC,
831 NULL, device_xname(self), "babl");
832 evcnt_attach_dynamic(&sc->sc_ev_miss, EVCNT_TYPE_MISC,
833 NULL, device_xname(self), "miss");
834 evcnt_attach_dynamic(&sc->sc_ev_merr, EVCNT_TYPE_MISC,
835 NULL, device_xname(self), "merr");
836
837 evcnt_attach_dynamic(&sc->sc_ev_txseg1, EVCNT_TYPE_MISC,
838 NULL, device_xname(self), "txseg1");
839 evcnt_attach_dynamic(&sc->sc_ev_txseg2, EVCNT_TYPE_MISC,
840 NULL, device_xname(self), "txseg2");
841 evcnt_attach_dynamic(&sc->sc_ev_txseg3, EVCNT_TYPE_MISC,
842 NULL, device_xname(self), "txseg3");
843 evcnt_attach_dynamic(&sc->sc_ev_txseg4, EVCNT_TYPE_MISC,
844 NULL, device_xname(self), "txseg4");
845 evcnt_attach_dynamic(&sc->sc_ev_txseg5, EVCNT_TYPE_MISC,
846 NULL, device_xname(self), "txseg5");
847 evcnt_attach_dynamic(&sc->sc_ev_txsegmore, EVCNT_TYPE_MISC,
848 NULL, device_xname(self), "txsegmore");
849 evcnt_attach_dynamic(&sc->sc_ev_txcopy, EVCNT_TYPE_MISC,
850 NULL, device_xname(self), "txcopy");
851 #endif /* PCN_EVENT_COUNTERS */
852
853 /*
854 * Establish power handler with shutdown hook, to make sure
855 * the interface is shutdown during reboot.
856 */
857 if (pmf_device_register1(self, NULL, NULL, pcn_shutdown))
858 pmf_class_network_register(self, ifp);
859 else
860 aprint_error_dev(self, "couldn't establish power handler\n");
861
862 return;
863
864 /*
865 * Free any resources we've allocated during the failed attach
866 * attempt. Do this in reverse order and fall through.
867 */
868 fail_5:
869 for (i = 0; i < PCN_NRXDESC; i++) {
870 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
871 bus_dmamap_destroy(sc->sc_dmat,
872 sc->sc_rxsoft[i].rxs_dmamap);
873 }
874 fail_4:
875 for (i = 0; i < PCN_TXQUEUELEN; i++) {
876 if (sc->sc_txsoft[i].txs_dmamap != NULL)
877 bus_dmamap_destroy(sc->sc_dmat,
878 sc->sc_txsoft[i].txs_dmamap);
879 }
880 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
881 fail_3:
882 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
883 fail_2:
884 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
885 sizeof(struct pcn_control_data));
886 fail_1:
887 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
888 fail_0:
889 return;
890 }
891
892 /*
893 * pcn_shutdown:
894 *
895 * Make sure the interface is stopped at reboot time.
896 */
897 static bool
898 pcn_shutdown(device_t self, int howto)
899 {
900 struct pcn_softc *sc = device_private(self);
901
902 pcn_stop(&sc->sc_ethercom.ec_if, 1);
903 /* explicitly reset the chip for some onboard one with lazy firmware */
904 pcn_reset(sc);
905
906 return true;
907 }
908
909 /*
910 * pcn_start: [ifnet interface function]
911 *
912 * Start packet transmission on the interface.
913 */
914 static void
915 pcn_start(struct ifnet *ifp)
916 {
917 struct pcn_softc *sc = ifp->if_softc;
918 struct mbuf *m0, *m;
919 struct pcn_txsoft *txs;
920 bus_dmamap_t dmamap;
921 int error, nexttx, lasttx = -1, ofree, seg;
922
923 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
924 return;
925
926 /*
927 * Remember the previous number of free descriptors and
928 * the first descriptor we'll use.
929 */
930 ofree = sc->sc_txfree;
931
932 /*
933 * Loop through the send queue, setting up transmit descriptors
934 * until we drain the queue, or use up all available transmit
935 * descriptors.
936 */
937 for (;;) {
938 /* Grab a packet off the queue. */
939 IFQ_POLL(&ifp->if_snd, m0);
940 if (m0 == NULL)
941 break;
942 m = NULL;
943
944 /* Get a work queue entry. */
945 if (sc->sc_txsfree == 0) {
946 PCN_EVCNT_INCR(&sc->sc_ev_txsstall);
947 break;
948 }
949
950 txs = &sc->sc_txsoft[sc->sc_txsnext];
951 dmamap = txs->txs_dmamap;
952
953 /*
954 * Load the DMA map. If this fails, the packet either
955 * didn't fit in the alloted number of segments, or we
956 * were short on resources. In this case, we'll copy
957 * and try again.
958 */
959 if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
960 BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
961 PCN_EVCNT_INCR(&sc->sc_ev_txcopy);
962 MGETHDR(m, M_DONTWAIT, MT_DATA);
963 if (m == NULL) {
964 printf("%s: unable to allocate Tx mbuf\n",
965 device_xname(sc->sc_dev));
966 break;
967 }
968 if (m0->m_pkthdr.len > MHLEN) {
969 MCLGET(m, M_DONTWAIT);
970 if ((m->m_flags & M_EXT) == 0) {
971 printf("%s: unable to allocate Tx "
972 "cluster\n",
973 device_xname(sc->sc_dev));
974 m_freem(m);
975 break;
976 }
977 }
978 m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
979 m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
980 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
981 m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
982 if (error) {
983 printf("%s: unable to load Tx buffer, "
984 "error = %d\n", device_xname(sc->sc_dev),
985 error);
986 m_freem(m);
987 break;
988 }
989 }
990
991 /*
992 * Ensure we have enough descriptors free to describe
993 * the packet. Note, we always reserve one descriptor
994 * at the end of the ring as a termination point, to
995 * prevent wrap-around.
996 */
997 if (dmamap->dm_nsegs > (sc->sc_txfree - 1)) {
998 /*
999 * Not enough free descriptors to transmit this
1000 * packet. We haven't committed anything yet,
1001 * so just unload the DMA map, put the packet
1002 * back on the queue, and punt. Notify the upper
1003 * layer that there are not more slots left.
1004 *
1005 * XXX We could allocate an mbuf and copy, but
1006 * XXX is it worth it?
1007 */
1008 ifp->if_flags |= IFF_OACTIVE;
1009 bus_dmamap_unload(sc->sc_dmat, dmamap);
1010 if (m != NULL)
1011 m_freem(m);
1012 PCN_EVCNT_INCR(&sc->sc_ev_txdstall);
1013 break;
1014 }
1015
1016 IFQ_DEQUEUE(&ifp->if_snd, m0);
1017 if (m != NULL) {
1018 m_freem(m0);
1019 m0 = m;
1020 }
1021
1022 /*
1023 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1024 */
1025
1026 /* Sync the DMA map. */
1027 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1028 BUS_DMASYNC_PREWRITE);
1029
1030 #ifdef PCN_EVENT_COUNTERS
1031 switch (dmamap->dm_nsegs) {
1032 case 1:
1033 PCN_EVCNT_INCR(&sc->sc_ev_txseg1);
1034 break;
1035 case 2:
1036 PCN_EVCNT_INCR(&sc->sc_ev_txseg2);
1037 break;
1038 case 3:
1039 PCN_EVCNT_INCR(&sc->sc_ev_txseg3);
1040 break;
1041 case 4:
1042 PCN_EVCNT_INCR(&sc->sc_ev_txseg4);
1043 break;
1044 case 5:
1045 PCN_EVCNT_INCR(&sc->sc_ev_txseg5);
1046 break;
1047 default:
1048 PCN_EVCNT_INCR(&sc->sc_ev_txsegmore);
1049 break;
1050 }
1051 #endif /* PCN_EVENT_COUNTERS */
1052
1053 /*
1054 * Initialize the transmit descriptors.
1055 */
1056 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3) {
1057 for (nexttx = sc->sc_txnext, seg = 0;
1058 seg < dmamap->dm_nsegs;
1059 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1060 /*
1061 * If this is the first descriptor we're
1062 * enqueueing, don't set the OWN bit just
1063 * yet. That could cause a race condition.
1064 * We'll do it below.
1065 */
1066 sc->sc_txdescs[nexttx].tmd0 = 0;
1067 sc->sc_txdescs[nexttx].tmd2 =
1068 htole32(dmamap->dm_segs[seg].ds_addr);
1069 sc->sc_txdescs[nexttx].tmd1 =
1070 htole32(LE_T1_ONES |
1071 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1072 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1073 LE_T1_BCNT_MASK));
1074 lasttx = nexttx;
1075 }
1076 } else {
1077 for (nexttx = sc->sc_txnext, seg = 0;
1078 seg < dmamap->dm_nsegs;
1079 seg++, nexttx = PCN_NEXTTX(nexttx)) {
1080 /*
1081 * If this is the first descriptor we're
1082 * enqueueing, don't set the OWN bit just
1083 * yet. That could cause a race condition.
1084 * We'll do it below.
1085 */
1086 sc->sc_txdescs[nexttx].tmd0 =
1087 htole32(dmamap->dm_segs[seg].ds_addr);
1088 sc->sc_txdescs[nexttx].tmd2 = 0;
1089 sc->sc_txdescs[nexttx].tmd1 =
1090 htole32(LE_T1_ONES |
1091 (nexttx == sc->sc_txnext ? 0 : LE_T1_OWN) |
1092 (LE_BCNT(dmamap->dm_segs[seg].ds_len) &
1093 LE_T1_BCNT_MASK));
1094 lasttx = nexttx;
1095 }
1096 }
1097
1098 KASSERT(lasttx != -1);
1099 /* Interrupt on the packet, if appropriate. */
1100 if ((sc->sc_txsnext & PCN_TXINTR_MASK) == 0)
1101 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_LTINT);
1102
1103 /* Set `start of packet' and `end of packet' appropriately. */
1104 sc->sc_txdescs[lasttx].tmd1 |= htole32(LE_T1_ENP);
1105 sc->sc_txdescs[sc->sc_txnext].tmd1 |=
1106 htole32(LE_T1_OWN|LE_T1_STP);
1107
1108 /* Sync the descriptors we're using. */
1109 PCN_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1110 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1111
1112 /* Kick the transmitter. */
1113 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_TDMD);
1114
1115 /*
1116 * Store a pointer to the packet so we can free it later,
1117 * and remember what txdirty will be once the packet is
1118 * done.
1119 */
1120 txs->txs_mbuf = m0;
1121 txs->txs_firstdesc = sc->sc_txnext;
1122 txs->txs_lastdesc = lasttx;
1123
1124 /* Advance the tx pointer. */
1125 sc->sc_txfree -= dmamap->dm_nsegs;
1126 sc->sc_txnext = nexttx;
1127
1128 sc->sc_txsfree--;
1129 sc->sc_txsnext = PCN_NEXTTXS(sc->sc_txsnext);
1130
1131 /* Pass the packet to any BPF listeners. */
1132 bpf_mtap(ifp, m0);
1133 }
1134
1135 if (sc->sc_txsfree == 0 || sc->sc_txfree == 0) {
1136 /* No more slots left; notify upper layer. */
1137 ifp->if_flags |= IFF_OACTIVE;
1138 }
1139
1140 if (sc->sc_txfree != ofree) {
1141 /* Set a watchdog timer in case the chip flakes out. */
1142 ifp->if_timer = 5;
1143 }
1144 }
1145
1146 /*
1147 * pcn_watchdog: [ifnet interface function]
1148 *
1149 * Watchdog timer handler.
1150 */
1151 static void
1152 pcn_watchdog(struct ifnet *ifp)
1153 {
1154 struct pcn_softc *sc = ifp->if_softc;
1155
1156 /*
1157 * Since we're not interrupting every packet, sweep
1158 * up before we report an error.
1159 */
1160 pcn_txintr(sc);
1161
1162 if (sc->sc_txfree != PCN_NTXDESC) {
1163 printf("%s: device timeout (txfree %d txsfree %d)\n",
1164 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree);
1165 ifp->if_oerrors++;
1166
1167 /* Reset the interface. */
1168 (void) pcn_init(ifp);
1169 }
1170
1171 /* Try to get more packets going. */
1172 pcn_start(ifp);
1173 }
1174
1175 /*
1176 * pcn_ioctl: [ifnet interface function]
1177 *
1178 * Handle control requests from the operator.
1179 */
1180 static int
1181 pcn_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1182 {
1183 struct pcn_softc *sc = ifp->if_softc;
1184 struct ifreq *ifr = (struct ifreq *) data;
1185 int s, error;
1186
1187 s = splnet();
1188
1189 switch (cmd) {
1190 case SIOCSIFMEDIA:
1191 case SIOCGIFMEDIA:
1192 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
1193 break;
1194
1195 default:
1196 error = ether_ioctl(ifp, cmd, data);
1197 if (error == ENETRESET) {
1198 /*
1199 * Multicast list has changed; set the hardware filter
1200 * accordingly.
1201 */
1202 if (ifp->if_flags & IFF_RUNNING)
1203 error = pcn_init(ifp);
1204 else
1205 error = 0;
1206 }
1207 break;
1208 }
1209
1210 /* Try to get more packets going. */
1211 pcn_start(ifp);
1212
1213 splx(s);
1214 return (error);
1215 }
1216
1217 /*
1218 * pcn_intr:
1219 *
1220 * Interrupt service routine.
1221 */
1222 static int
1223 pcn_intr(void *arg)
1224 {
1225 struct pcn_softc *sc = arg;
1226 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1227 uint32_t csr0;
1228 int wantinit, handled = 0;
1229
1230 for (wantinit = 0; wantinit == 0;) {
1231 csr0 = pcn_csr_read(sc, LE_CSR0);
1232 if ((csr0 & LE_C0_INTR) == 0)
1233 break;
1234
1235 rnd_add_uint32(&sc->rnd_source, csr0);
1236
1237 /* ACK the bits and re-enable interrupts. */
1238 pcn_csr_write(sc, LE_CSR0, csr0 &
1239 (LE_C0_INEA|LE_C0_BABL|LE_C0_MISS|LE_C0_MERR|LE_C0_RINT|
1240 LE_C0_TINT|LE_C0_IDON));
1241
1242 handled = 1;
1243
1244 if (csr0 & LE_C0_RINT) {
1245 PCN_EVCNT_INCR(&sc->sc_ev_rxintr);
1246 wantinit = pcn_rxintr(sc);
1247 }
1248
1249 if (csr0 & LE_C0_TINT) {
1250 PCN_EVCNT_INCR(&sc->sc_ev_txintr);
1251 pcn_txintr(sc);
1252 }
1253
1254 if (csr0 & LE_C0_ERR) {
1255 if (csr0 & LE_C0_BABL) {
1256 PCN_EVCNT_INCR(&sc->sc_ev_babl);
1257 ifp->if_oerrors++;
1258 }
1259 if (csr0 & LE_C0_MISS) {
1260 PCN_EVCNT_INCR(&sc->sc_ev_miss);
1261 ifp->if_ierrors++;
1262 }
1263 if (csr0 & LE_C0_MERR) {
1264 PCN_EVCNT_INCR(&sc->sc_ev_merr);
1265 printf("%s: memory error\n",
1266 device_xname(sc->sc_dev));
1267 wantinit = 1;
1268 break;
1269 }
1270 }
1271
1272 if ((csr0 & LE_C0_RXON) == 0) {
1273 printf("%s: receiver disabled\n",
1274 device_xname(sc->sc_dev));
1275 ifp->if_ierrors++;
1276 wantinit = 1;
1277 }
1278
1279 if ((csr0 & LE_C0_TXON) == 0) {
1280 printf("%s: transmitter disabled\n",
1281 device_xname(sc->sc_dev));
1282 ifp->if_oerrors++;
1283 wantinit = 1;
1284 }
1285 }
1286
1287 if (handled) {
1288 if (wantinit)
1289 pcn_init(ifp);
1290
1291 /* Try to get more packets going. */
1292 if_schedule_deferred_start(ifp);
1293 }
1294
1295 return (handled);
1296 }
1297
1298 /*
1299 * pcn_spnd:
1300 *
1301 * Suspend the chip.
1302 */
1303 static void
1304 pcn_spnd(struct pcn_softc *sc)
1305 {
1306 int i;
1307
1308 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5 | LE_C5_SPND);
1309
1310 for (i = 0; i < 10000; i++) {
1311 if (pcn_csr_read(sc, LE_CSR5) & LE_C5_SPND)
1312 return;
1313 delay(5);
1314 }
1315
1316 printf("%s: WARNING: chip failed to enter suspended state\n",
1317 device_xname(sc->sc_dev));
1318 }
1319
1320 /*
1321 * pcn_txintr:
1322 *
1323 * Helper; handle transmit interrupts.
1324 */
1325 static void
1326 pcn_txintr(struct pcn_softc *sc)
1327 {
1328 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1329 struct pcn_txsoft *txs;
1330 uint32_t tmd1, tmd2, tmd;
1331 int i, j;
1332
1333 ifp->if_flags &= ~IFF_OACTIVE;
1334
1335 /*
1336 * Go through our Tx list and free mbufs for those
1337 * frames which have been transmitted.
1338 */
1339 for (i = sc->sc_txsdirty; sc->sc_txsfree != PCN_TXQUEUELEN;
1340 i = PCN_NEXTTXS(i), sc->sc_txsfree++) {
1341 txs = &sc->sc_txsoft[i];
1342
1343 PCN_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1344 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1345
1346 tmd1 = le32toh(sc->sc_txdescs[txs->txs_lastdesc].tmd1);
1347 if (tmd1 & LE_T1_OWN)
1348 break;
1349
1350 /*
1351 * Slightly annoying -- we have to loop through the
1352 * descriptors we've used looking for ERR, since it
1353 * can appear on any descriptor in the chain.
1354 */
1355 for (j = txs->txs_firstdesc;; j = PCN_NEXTTX(j)) {
1356 tmd = le32toh(sc->sc_txdescs[j].tmd1);
1357 if (tmd & LE_T1_ERR) {
1358 ifp->if_oerrors++;
1359 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1360 tmd2 = le32toh(sc->sc_txdescs[j].tmd0);
1361 else
1362 tmd2 = le32toh(sc->sc_txdescs[j].tmd2);
1363 if (tmd2 & LE_T2_UFLO) {
1364 if (sc->sc_xmtsp < LE_C80_XMTSP_MAX) {
1365 sc->sc_xmtsp++;
1366 printf("%s: transmit "
1367 "underrun; new threshold: "
1368 "%s\n",
1369 device_xname(sc->sc_dev),
1370 sc->sc_xmtsp_desc[
1371 sc->sc_xmtsp]);
1372 pcn_spnd(sc);
1373 pcn_csr_write(sc, LE_CSR80,
1374 LE_C80_RCVFW(sc->sc_rcvfw) |
1375 LE_C80_XMTSP(sc->sc_xmtsp) |
1376 LE_C80_XMTFW(sc->sc_xmtfw));
1377 pcn_csr_write(sc, LE_CSR5,
1378 sc->sc_csr5);
1379 } else {
1380 printf("%s: transmit "
1381 "underrun\n",
1382 device_xname(sc->sc_dev));
1383 }
1384 } else if (tmd2 & LE_T2_BUFF) {
1385 printf("%s: transmit buffer error\n",
1386 device_xname(sc->sc_dev));
1387 }
1388 if (tmd2 & LE_T2_LCOL)
1389 ifp->if_collisions++;
1390 if (tmd2 & LE_T2_RTRY)
1391 ifp->if_collisions += 16;
1392 goto next_packet;
1393 }
1394 if (j == txs->txs_lastdesc)
1395 break;
1396 }
1397 if (tmd1 & LE_T1_ONE)
1398 ifp->if_collisions++;
1399 else if (tmd & LE_T1_MORE) {
1400 /* Real number is unknown. */
1401 ifp->if_collisions += 2;
1402 }
1403 ifp->if_opackets++;
1404 next_packet:
1405 sc->sc_txfree += txs->txs_dmamap->dm_nsegs;
1406 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1407 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1408 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1409 m_freem(txs->txs_mbuf);
1410 txs->txs_mbuf = NULL;
1411 }
1412
1413 /* Update the dirty transmit buffer pointer. */
1414 sc->sc_txsdirty = i;
1415
1416 /*
1417 * If there are no more pending transmissions, cancel the watchdog
1418 * timer.
1419 */
1420 if (sc->sc_txsfree == PCN_TXQUEUELEN)
1421 ifp->if_timer = 0;
1422 }
1423
1424 /*
1425 * pcn_rxintr:
1426 *
1427 * Helper; handle receive interrupts.
1428 */
1429 static int
1430 pcn_rxintr(struct pcn_softc *sc)
1431 {
1432 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1433 struct pcn_rxsoft *rxs;
1434 struct mbuf *m;
1435 uint32_t rmd1;
1436 int i, len;
1437
1438 for (i = sc->sc_rxptr;; i = PCN_NEXTRX(i)) {
1439 rxs = &sc->sc_rxsoft[i];
1440
1441 PCN_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1442
1443 rmd1 = le32toh(sc->sc_rxdescs[i].rmd1);
1444
1445 if (rmd1 & LE_R1_OWN)
1446 break;
1447
1448 /*
1449 * Check for errors and make sure the packet fit into
1450 * a single buffer. We have structured this block of
1451 * code the way it is in order to compress it into
1452 * one test in the common case (no error).
1453 */
1454 if (__predict_false((rmd1 & (LE_R1_STP|LE_R1_ENP|LE_R1_ERR)) !=
1455 (LE_R1_STP|LE_R1_ENP))) {
1456 /* Make sure the packet is in a single buffer. */
1457 if ((rmd1 & (LE_R1_STP|LE_R1_ENP)) !=
1458 (LE_R1_STP|LE_R1_ENP)) {
1459 printf("%s: packet spilled into next buffer\n",
1460 device_xname(sc->sc_dev));
1461 return (1); /* pcn_intr() will re-init */
1462 }
1463
1464 /*
1465 * If the packet had an error, simple recycle the
1466 * buffer.
1467 */
1468 if (rmd1 & LE_R1_ERR) {
1469 ifp->if_ierrors++;
1470 /*
1471 * If we got an overflow error, chances
1472 * are there will be a CRC error. In
1473 * this case, just print the overflow
1474 * error, and skip the others.
1475 */
1476 if (rmd1 & LE_R1_OFLO)
1477 printf("%s: overflow error\n",
1478 device_xname(sc->sc_dev));
1479 else {
1480 #define PRINTIT(x, str) \
1481 if (rmd1 & (x)) \
1482 printf("%s: %s\n", \
1483 device_xname(sc->sc_dev), \
1484 str);
1485 PRINTIT(LE_R1_FRAM, "framing error");
1486 PRINTIT(LE_R1_CRC, "CRC error");
1487 PRINTIT(LE_R1_BUFF, "buffer error");
1488 }
1489 #undef PRINTIT
1490 PCN_INIT_RXDESC(sc, i);
1491 continue;
1492 }
1493 }
1494
1495 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1496 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1497
1498 /*
1499 * No errors; receive the packet.
1500 */
1501 if (sc->sc_swstyle == LE_B20_SSTYLE_PCNETPCI3)
1502 len = le32toh(sc->sc_rxdescs[i].rmd0) & LE_R1_BCNT_MASK;
1503 else
1504 len = le32toh(sc->sc_rxdescs[i].rmd2) & LE_R1_BCNT_MASK;
1505
1506 /*
1507 * The LANCE family includes the CRC with every packet;
1508 * trim it off here.
1509 */
1510 len -= ETHER_CRC_LEN;
1511
1512 /*
1513 * If the packet is small enough to fit in a
1514 * single header mbuf, allocate one and copy
1515 * the data into it. This greatly reduces
1516 * memory consumption when we receive lots
1517 * of small packets.
1518 *
1519 * Otherwise, we add a new buffer to the receive
1520 * chain. If this fails, we drop the packet and
1521 * recycle the old buffer.
1522 */
1523 if (pcn_copy_small != 0 && len <= (MHLEN - 2)) {
1524 MGETHDR(m, M_DONTWAIT, MT_DATA);
1525 if (m == NULL)
1526 goto dropit;
1527 m->m_data += 2;
1528 memcpy(mtod(m, void *),
1529 mtod(rxs->rxs_mbuf, void *), len);
1530 PCN_INIT_RXDESC(sc, i);
1531 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1532 rxs->rxs_dmamap->dm_mapsize,
1533 BUS_DMASYNC_PREREAD);
1534 } else {
1535 m = rxs->rxs_mbuf;
1536 if (pcn_add_rxbuf(sc, i) != 0) {
1537 dropit:
1538 ifp->if_ierrors++;
1539 PCN_INIT_RXDESC(sc, i);
1540 bus_dmamap_sync(sc->sc_dmat,
1541 rxs->rxs_dmamap, 0,
1542 rxs->rxs_dmamap->dm_mapsize,
1543 BUS_DMASYNC_PREREAD);
1544 continue;
1545 }
1546 }
1547
1548 m_set_rcvif(m, ifp);
1549 m->m_pkthdr.len = m->m_len = len;
1550
1551 /* Pass this up to any BPF listeners. */
1552 bpf_mtap(ifp, m);
1553
1554 /* Pass it on. */
1555 if_percpuq_enqueue(ifp->if_percpuq, m);
1556 ifp->if_ipackets++;
1557 }
1558
1559 /* Update the receive pointer. */
1560 sc->sc_rxptr = i;
1561 return (0);
1562 }
1563
1564 /*
1565 * pcn_tick:
1566 *
1567 * One second timer, used to tick the MII.
1568 */
1569 static void
1570 pcn_tick(void *arg)
1571 {
1572 struct pcn_softc *sc = arg;
1573 int s;
1574
1575 s = splnet();
1576 mii_tick(&sc->sc_mii);
1577 splx(s);
1578
1579 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1580 }
1581
1582 /*
1583 * pcn_reset:
1584 *
1585 * Perform a soft reset on the PCnet-PCI.
1586 */
1587 static void
1588 pcn_reset(struct pcn_softc *sc)
1589 {
1590
1591 /*
1592 * The PCnet-PCI chip is reset by reading from the
1593 * RESET register. Note that while the NE2100 LANCE
1594 * boards require a write after the read, the PCnet-PCI
1595 * chips do not require this.
1596 *
1597 * Since we don't know if we're in 16-bit or 32-bit
1598 * mode right now, issue both (it's safe) in the
1599 * hopes that one will succeed.
1600 */
1601 (void) bus_space_read_2(sc->sc_st, sc->sc_sh, PCN16_RESET);
1602 (void) bus_space_read_4(sc->sc_st, sc->sc_sh, PCN32_RESET);
1603
1604 /* Wait 1ms for it to finish. */
1605 delay(1000);
1606
1607 /*
1608 * Select 32-bit I/O mode by issuing a 32-bit write to the
1609 * RDP. Since the RAP is 0 after a reset, writing a 0
1610 * to RDP is safe (since it simply clears CSR0).
1611 */
1612 bus_space_write_4(sc->sc_st, sc->sc_sh, PCN32_RDP, 0);
1613 }
1614
1615 /*
1616 * pcn_init: [ifnet interface function]
1617 *
1618 * Initialize the interface. Must be called at splnet().
1619 */
1620 static int
1621 pcn_init(struct ifnet *ifp)
1622 {
1623 struct pcn_softc *sc = ifp->if_softc;
1624 struct pcn_rxsoft *rxs;
1625 const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
1626 int i, error = 0;
1627 uint32_t reg;
1628
1629 /* Cancel any pending I/O. */
1630 pcn_stop(ifp, 0);
1631
1632 /* Reset the chip to a known state. */
1633 pcn_reset(sc);
1634
1635 /*
1636 * On the Am79c970, select SSTYLE 2, and SSTYLE 3 on everything
1637 * else.
1638 *
1639 * XXX It'd be really nice to use SSTYLE 2 on all the chips,
1640 * because the structure layout is compatible with ILACC,
1641 * but the burst mode is only available in SSTYLE 3, and
1642 * burst mode should provide some performance enhancement.
1643 */
1644 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970)
1645 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI2;
1646 else
1647 sc->sc_swstyle = LE_B20_SSTYLE_PCNETPCI3;
1648 pcn_bcr_write(sc, LE_BCR20, sc->sc_swstyle);
1649
1650 /* Initialize the transmit descriptor ring. */
1651 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1652 PCN_CDTXSYNC(sc, 0, PCN_NTXDESC,
1653 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1654 sc->sc_txfree = PCN_NTXDESC;
1655 sc->sc_txnext = 0;
1656
1657 /* Initialize the transmit job descriptors. */
1658 for (i = 0; i < PCN_TXQUEUELEN; i++)
1659 sc->sc_txsoft[i].txs_mbuf = NULL;
1660 sc->sc_txsfree = PCN_TXQUEUELEN;
1661 sc->sc_txsnext = 0;
1662 sc->sc_txsdirty = 0;
1663
1664 /*
1665 * Initialize the receive descriptor and receive job
1666 * descriptor rings.
1667 */
1668 for (i = 0; i < PCN_NRXDESC; i++) {
1669 rxs = &sc->sc_rxsoft[i];
1670 if (rxs->rxs_mbuf == NULL) {
1671 if ((error = pcn_add_rxbuf(sc, i)) != 0) {
1672 printf("%s: unable to allocate or map rx "
1673 "buffer %d, error = %d\n",
1674 device_xname(sc->sc_dev), i, error);
1675 /*
1676 * XXX Should attempt to run with fewer receive
1677 * XXX buffers instead of just failing.
1678 */
1679 pcn_rxdrain(sc);
1680 goto out;
1681 }
1682 } else
1683 PCN_INIT_RXDESC(sc, i);
1684 }
1685 sc->sc_rxptr = 0;
1686
1687 /* Initialize MODE for the initialization block. */
1688 sc->sc_mode = 0;
1689 if (ifp->if_flags & IFF_PROMISC)
1690 sc->sc_mode |= LE_C15_PROM;
1691 if ((ifp->if_flags & IFF_BROADCAST) == 0)
1692 sc->sc_mode |= LE_C15_DRCVBC;
1693
1694 /*
1695 * If we have MII, simply select MII in the MODE register,
1696 * and clear ASEL. Otherwise, let ASEL stand (for now),
1697 * and leave PORTSEL alone (it is ignored with ASEL is set).
1698 */
1699 if (sc->sc_flags & PCN_F_HAS_MII) {
1700 pcn_bcr_write(sc, LE_BCR2,
1701 pcn_bcr_read(sc, LE_BCR2) & ~LE_B2_ASEL);
1702 sc->sc_mode |= LE_C15_PORTSEL(PORTSEL_MII);
1703
1704 /*
1705 * Disable MII auto-negotiation. We handle that in
1706 * our own MII layer.
1707 */
1708 pcn_bcr_write(sc, LE_BCR32,
1709 pcn_bcr_read(sc, LE_BCR32) | LE_B32_DANAS);
1710 }
1711
1712 /*
1713 * Set the Tx and Rx descriptor ring addresses in the init
1714 * block, the TLEN and RLEN other fields of the init block
1715 * MODE register.
1716 */
1717 sc->sc_initblock.init_rdra = htole32(PCN_CDRXADDR(sc, 0));
1718 sc->sc_initblock.init_tdra = htole32(PCN_CDTXADDR(sc, 0));
1719 sc->sc_initblock.init_mode = htole32(sc->sc_mode |
1720 ((ffs(PCN_NTXDESC) - 1) << 28) |
1721 ((ffs(PCN_NRXDESC) - 1) << 20));
1722
1723 /* Set the station address in the init block. */
1724 sc->sc_initblock.init_padr[0] = htole32(enaddr[0] |
1725 (enaddr[1] << 8) | (enaddr[2] << 16) | (enaddr[3] << 24));
1726 sc->sc_initblock.init_padr[1] = htole32(enaddr[4] |
1727 (enaddr[5] << 8));
1728
1729 /* Set the multicast filter in the init block. */
1730 pcn_set_filter(sc);
1731
1732 /* Initialize CSR3. */
1733 pcn_csr_write(sc, LE_CSR3, LE_C3_MISSM|LE_C3_IDONM|LE_C3_DXSUFLO);
1734
1735 /* Initialize CSR4. */
1736 pcn_csr_write(sc, LE_CSR4, LE_C4_DMAPLUS|LE_C4_APAD_XMT|
1737 LE_C4_MFCOM|LE_C4_RCVCCOM|LE_C4_TXSTRTM);
1738
1739 /* Initialize CSR5. */
1740 sc->sc_csr5 = LE_C5_LTINTEN|LE_C5_SINTE;
1741 pcn_csr_write(sc, LE_CSR5, sc->sc_csr5);
1742
1743 /*
1744 * If we have an Am79c971 or greater, initialize CSR7.
1745 *
1746 * XXX Might be nice to use the MII auto-poll interrupt someday.
1747 */
1748 switch (sc->sc_variant->pcv_chipid) {
1749 case PARTID_Am79c970:
1750 case PARTID_Am79c970A:
1751 /* Not available on these chips. */
1752 break;
1753
1754 default:
1755 pcn_csr_write(sc, LE_CSR7, LE_C7_FASTSPNDE);
1756 break;
1757 }
1758
1759 /*
1760 * On the Am79c970A and greater, initialize BCR18 to
1761 * enable burst mode.
1762 *
1763 * Also enable the "no underflow" option on the Am79c971 and
1764 * higher, which prevents the chip from generating transmit
1765 * underflows, yet sill provides decent performance. Note if
1766 * chip is not connected to external SRAM, then we still have
1767 * to handle underflow errors (the NOUFLO bit is ignored in
1768 * that case).
1769 */
1770 reg = pcn_bcr_read(sc, LE_BCR18);
1771 switch (sc->sc_variant->pcv_chipid) {
1772 case PARTID_Am79c970:
1773 break;
1774
1775 case PARTID_Am79c970A:
1776 reg |= LE_B18_BREADE|LE_B18_BWRITE;
1777 break;
1778
1779 default:
1780 reg |= LE_B18_BREADE|LE_B18_BWRITE|LE_B18_NOUFLO;
1781 break;
1782 }
1783 pcn_bcr_write(sc, LE_BCR18, reg);
1784
1785 /*
1786 * Initialize CSR80 (FIFO thresholds for Tx and Rx).
1787 */
1788 pcn_csr_write(sc, LE_CSR80, LE_C80_RCVFW(sc->sc_rcvfw) |
1789 LE_C80_XMTSP(sc->sc_xmtsp) | LE_C80_XMTFW(sc->sc_xmtfw));
1790
1791 /*
1792 * Send the init block to the chip, and wait for it
1793 * to be processed.
1794 */
1795 PCN_CDINITSYNC(sc, BUS_DMASYNC_PREWRITE);
1796 pcn_csr_write(sc, LE_CSR1, PCN_CDINITADDR(sc) & 0xffff);
1797 pcn_csr_write(sc, LE_CSR2, (PCN_CDINITADDR(sc) >> 16) & 0xffff);
1798 pcn_csr_write(sc, LE_CSR0, LE_C0_INIT);
1799 delay(100);
1800 for (i = 0; i < 10000; i++) {
1801 if (pcn_csr_read(sc, LE_CSR0) & LE_C0_IDON)
1802 break;
1803 delay(10);
1804 }
1805 PCN_CDINITSYNC(sc, BUS_DMASYNC_POSTWRITE);
1806 if (i == 10000) {
1807 printf("%s: timeout processing init block\n",
1808 device_xname(sc->sc_dev));
1809 error = EIO;
1810 goto out;
1811 }
1812
1813 /* Set the media. */
1814 if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
1815 goto out;
1816
1817 /* Enable interrupts and external activity (and ACK IDON). */
1818 pcn_csr_write(sc, LE_CSR0, LE_C0_INEA|LE_C0_STRT|LE_C0_IDON);
1819
1820 if (sc->sc_flags & PCN_F_HAS_MII) {
1821 /* Start the one second MII clock. */
1822 callout_reset(&sc->sc_tick_ch, hz, pcn_tick, sc);
1823 }
1824
1825 /* ...all done! */
1826 ifp->if_flags |= IFF_RUNNING;
1827 ifp->if_flags &= ~IFF_OACTIVE;
1828
1829 out:
1830 if (error)
1831 printf("%s: interface not running\n", device_xname(sc->sc_dev));
1832 return (error);
1833 }
1834
1835 /*
1836 * pcn_rxdrain:
1837 *
1838 * Drain the receive queue.
1839 */
1840 static void
1841 pcn_rxdrain(struct pcn_softc *sc)
1842 {
1843 struct pcn_rxsoft *rxs;
1844 int i;
1845
1846 for (i = 0; i < PCN_NRXDESC; i++) {
1847 rxs = &sc->sc_rxsoft[i];
1848 if (rxs->rxs_mbuf != NULL) {
1849 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1850 m_freem(rxs->rxs_mbuf);
1851 rxs->rxs_mbuf = NULL;
1852 }
1853 }
1854 }
1855
1856 /*
1857 * pcn_stop: [ifnet interface function]
1858 *
1859 * Stop transmission on the interface.
1860 */
1861 static void
1862 pcn_stop(struct ifnet *ifp, int disable)
1863 {
1864 struct pcn_softc *sc = ifp->if_softc;
1865 struct pcn_txsoft *txs;
1866 int i;
1867
1868 if (sc->sc_flags & PCN_F_HAS_MII) {
1869 /* Stop the one second clock. */
1870 callout_stop(&sc->sc_tick_ch);
1871
1872 /* Down the MII. */
1873 mii_down(&sc->sc_mii);
1874 }
1875
1876 /* Stop the chip. */
1877 pcn_csr_write(sc, LE_CSR0, LE_C0_STOP);
1878
1879 /* Release any queued transmit buffers. */
1880 for (i = 0; i < PCN_TXQUEUELEN; i++) {
1881 txs = &sc->sc_txsoft[i];
1882 if (txs->txs_mbuf != NULL) {
1883 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1884 m_freem(txs->txs_mbuf);
1885 txs->txs_mbuf = NULL;
1886 }
1887 }
1888
1889 /* Mark the interface as down and cancel the watchdog timer. */
1890 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1891 ifp->if_timer = 0;
1892
1893 if (disable)
1894 pcn_rxdrain(sc);
1895 }
1896
1897 /*
1898 * pcn_add_rxbuf:
1899 *
1900 * Add a receive buffer to the indicated descriptor.
1901 */
1902 static int
1903 pcn_add_rxbuf(struct pcn_softc *sc, int idx)
1904 {
1905 struct pcn_rxsoft *rxs = &sc->sc_rxsoft[idx];
1906 struct mbuf *m;
1907 int error;
1908
1909 MGETHDR(m, M_DONTWAIT, MT_DATA);
1910 if (m == NULL)
1911 return (ENOBUFS);
1912
1913 MCLGET(m, M_DONTWAIT);
1914 if ((m->m_flags & M_EXT) == 0) {
1915 m_freem(m);
1916 return (ENOBUFS);
1917 }
1918
1919 if (rxs->rxs_mbuf != NULL)
1920 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1921
1922 rxs->rxs_mbuf = m;
1923
1924 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1925 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1926 BUS_DMA_READ|BUS_DMA_NOWAIT);
1927 if (error) {
1928 printf("%s: can't load rx DMA map %d, error = %d\n",
1929 device_xname(sc->sc_dev), idx, error);
1930 panic("pcn_add_rxbuf");
1931 }
1932
1933 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1934 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1935
1936 PCN_INIT_RXDESC(sc, idx);
1937
1938 return (0);
1939 }
1940
1941 /*
1942 * pcn_set_filter:
1943 *
1944 * Set up the receive filter.
1945 */
1946 static void
1947 pcn_set_filter(struct pcn_softc *sc)
1948 {
1949 struct ethercom *ec = &sc->sc_ethercom;
1950 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1951 struct ether_multi *enm;
1952 struct ether_multistep step;
1953 uint32_t crc;
1954
1955 /*
1956 * Set up the multicast address filter by passing all multicast
1957 * addresses through a CRC generator, and then using the high
1958 * order 6 bits as an index into the 64-bit logical address
1959 * filter. The high order bits select the word, while the rest
1960 * of the bits select the bit within the word.
1961 */
1962
1963 if (ifp->if_flags & IFF_PROMISC)
1964 goto allmulti;
1965
1966 sc->sc_initblock.init_ladrf[0] =
1967 sc->sc_initblock.init_ladrf[1] =
1968 sc->sc_initblock.init_ladrf[2] =
1969 sc->sc_initblock.init_ladrf[3] = 0;
1970
1971 ETHER_FIRST_MULTI(step, ec, enm);
1972 while (enm != NULL) {
1973 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1974 /*
1975 * We must listen to a range of multicast addresses.
1976 * For now, just accept all multicasts, rather than
1977 * trying to set only those filter bits needed to match
1978 * the range. (At this time, the only use of address
1979 * ranges is for IP multicast routing, for which the
1980 * range is big enough to require all bits set.)
1981 */
1982 goto allmulti;
1983 }
1984
1985 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1986
1987 /* Just want the 6 most significant bits. */
1988 crc >>= 26;
1989
1990 /* Set the corresponding bit in the filter. */
1991 sc->sc_initblock.init_ladrf[crc >> 4] |=
1992 htole16(1 << (crc & 0xf));
1993
1994 ETHER_NEXT_MULTI(step, enm);
1995 }
1996
1997 ifp->if_flags &= ~IFF_ALLMULTI;
1998 return;
1999
2000 allmulti:
2001 ifp->if_flags |= IFF_ALLMULTI;
2002 sc->sc_initblock.init_ladrf[0] =
2003 sc->sc_initblock.init_ladrf[1] =
2004 sc->sc_initblock.init_ladrf[2] =
2005 sc->sc_initblock.init_ladrf[3] = 0xffff;
2006 }
2007
2008 /*
2009 * pcn_79c970_mediainit:
2010 *
2011 * Initialize media for the Am79c970.
2012 */
2013 static void
2014 pcn_79c970_mediainit(struct pcn_softc *sc)
2015 {
2016 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2017 const char *sep = "";
2018
2019 sc->sc_mii.mii_ifp = ifp;
2020
2021 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, pcn_79c970_mediachange,
2022 pcn_79c970_mediastatus);
2023
2024 #define ADD(str, m, d) \
2025 do { \
2026 aprint_normal("%s%s", sep, str); \
2027 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|(m), (d), NULL); \
2028 sep = ", "; \
2029 } while (/*CONSTCOND*/0)
2030
2031 aprint_normal("%s: ", device_xname(sc->sc_dev));
2032 ADD("10base5", IFM_10_5, PORTSEL_AUI);
2033 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2034 ADD("10base5-FDX", IFM_10_5|IFM_FDX, PORTSEL_AUI);
2035 ADD("10baseT", IFM_10_T, PORTSEL_10T);
2036 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2037 ADD("10baseT-FDX", IFM_10_T|IFM_FDX, PORTSEL_10T);
2038 ADD("auto", IFM_AUTO, 0);
2039 if (sc->sc_variant->pcv_chipid == PARTID_Am79c970A)
2040 ADD("auto-FDX", IFM_AUTO|IFM_FDX, 0);
2041 aprint_normal("\n");
2042
2043 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2044 }
2045
2046 /*
2047 * pcn_79c970_mediastatus: [ifmedia interface function]
2048 *
2049 * Get the current interface media status (Am79c970 version).
2050 */
2051 static void
2052 pcn_79c970_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2053 {
2054 struct pcn_softc *sc = ifp->if_softc;
2055
2056 /*
2057 * The currently selected media is always the active media.
2058 * Note: We have no way to determine what media the AUTO
2059 * process picked.
2060 */
2061 ifmr->ifm_active = sc->sc_mii.mii_media.ifm_media;
2062 }
2063
2064 /*
2065 * pcn_79c970_mediachange: [ifmedia interface function]
2066 *
2067 * Set hardware to newly-selected media (Am79c970 version).
2068 */
2069 static int
2070 pcn_79c970_mediachange(struct ifnet *ifp)
2071 {
2072 struct pcn_softc *sc = ifp->if_softc;
2073 uint32_t reg;
2074
2075 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_AUTO) {
2076 /*
2077 * CSR15:PORTSEL doesn't matter. Just set BCR2:ASEL.
2078 */
2079 reg = pcn_bcr_read(sc, LE_BCR2);
2080 reg |= LE_B2_ASEL;
2081 pcn_bcr_write(sc, LE_BCR2, reg);
2082 } else {
2083 /*
2084 * Clear BCR2:ASEL and set the new CSR15:PORTSEL value.
2085 */
2086 reg = pcn_bcr_read(sc, LE_BCR2);
2087 reg &= ~LE_B2_ASEL;
2088 pcn_bcr_write(sc, LE_BCR2, reg);
2089
2090 reg = pcn_csr_read(sc, LE_CSR15);
2091 reg = (reg & ~LE_C15_PORTSEL(PORTSEL_MASK)) |
2092 LE_C15_PORTSEL(sc->sc_mii.mii_media.ifm_cur->ifm_data);
2093 pcn_csr_write(sc, LE_CSR15, reg);
2094 }
2095
2096 if ((sc->sc_mii.mii_media.ifm_media & IFM_FDX) != 0) {
2097 reg = LE_B9_FDEN;
2098 if (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media) == IFM_10_5)
2099 reg |= LE_B9_AUIFD;
2100 pcn_bcr_write(sc, LE_BCR9, reg);
2101 } else
2102 pcn_bcr_write(sc, LE_BCR9, 0);
2103
2104 return (0);
2105 }
2106
2107 /*
2108 * pcn_79c971_mediainit:
2109 *
2110 * Initialize media for the Am79c971.
2111 */
2112 static void
2113 pcn_79c971_mediainit(struct pcn_softc *sc)
2114 {
2115 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2116
2117 /* We have MII. */
2118 sc->sc_flags |= PCN_F_HAS_MII;
2119
2120 /*
2121 * The built-in 10BASE-T interface is mapped to the MII
2122 * on the PCNet-FAST. Unfortunately, there's no EEPROM
2123 * word that tells us which PHY to use.
2124 * This driver used to ignore all but the first PHY to
2125 * answer, but this code was removed to support multiple
2126 * external PHYs. As the default instance will be the first
2127 * one to answer, no harm is done by letting the possibly
2128 * non-connected internal PHY show up.
2129 */
2130
2131 /* Initialize our media structures and probe the MII. */
2132 sc->sc_mii.mii_ifp = ifp;
2133 sc->sc_mii.mii_readreg = pcn_mii_readreg;
2134 sc->sc_mii.mii_writereg = pcn_mii_writereg;
2135 sc->sc_mii.mii_statchg = pcn_mii_statchg;
2136
2137 sc->sc_ethercom.ec_mii = &sc->sc_mii;
2138 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
2139 ether_mediastatus);
2140
2141 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
2142 MII_OFFSET_ANY, 0);
2143 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
2144 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
2145 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
2146 } else
2147 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
2148 }
2149
2150 /*
2151 * pcn_mii_readreg: [mii interface function]
2152 *
2153 * Read a PHY register on the MII.
2154 */
2155 static int
2156 pcn_mii_readreg(device_t self, int phy, int reg)
2157 {
2158 struct pcn_softc *sc = device_private(self);
2159 uint32_t rv;
2160
2161 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2162 rv = pcn_bcr_read(sc, LE_BCR34) & LE_B34_MIIMD;
2163 if (rv == 0xffff)
2164 return (0);
2165
2166 return (rv);
2167 }
2168
2169 /*
2170 * pcn_mii_writereg: [mii interface function]
2171 *
2172 * Write a PHY register on the MII.
2173 */
2174 static void
2175 pcn_mii_writereg(device_t self, int phy, int reg, int val)
2176 {
2177 struct pcn_softc *sc = device_private(self);
2178
2179 pcn_bcr_write(sc, LE_BCR33, reg | (phy << PHYAD_SHIFT));
2180 pcn_bcr_write(sc, LE_BCR34, val);
2181 }
2182
2183 /*
2184 * pcn_mii_statchg: [mii interface function]
2185 *
2186 * Callback from MII layer when media changes.
2187 */
2188 static void
2189 pcn_mii_statchg(struct ifnet *ifp)
2190 {
2191 struct pcn_softc *sc = ifp->if_softc;
2192
2193 if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
2194 pcn_bcr_write(sc, LE_BCR9, LE_B9_FDEN);
2195 else
2196 pcn_bcr_write(sc, LE_BCR9, 0);
2197 }
2198